
18.05 Lecture 23 
April 6, 2005 

Estimation Theory: 
If only 2 outcomes: Bernoulli distribution describes your experiment.

If calculating wrong numbers: Poisson distribution describes experiment.

May know the type of distribution, but not the parameters involved.


A sample (i.i.d.) X1, ..., Xn has distribution P from the family of distributions: 
{Pβ : χ ⊂ Γ}

P = Pβ0 , χ0 is unknown

Estimation Theory - take data and estimate the parameter.

It is often obvious based on the relation to the problem itself.


Example: B(p), sample: 0 0 1 1 0 1 0 1 1 1

p = E(X) ♥ x = 6/10 = 0.6


Example: E(∂), ∂e−∂x, x ∼ 0, E(X) = 1/∂.

Once again, parameter is connected to the expected value.

1/∂ = E(X) ♥ x, ∂ � 1/x - estimate of alpha.


Bayes Estimators: - used when intuitive model can be used in describing the data.


X1, ..., Xn ≈ Pβ0 , χ0 ⊂ Γ 
Prior Distribution - describes the distribution of the set of parameters (NOT the data)

f (χ) - p.f. or p.d.f. ↔ corresponds to intuition.

P0 has p.f. or p.d.f.; f (x χ)
|
Given x1, ..., xn joint p.f. or p.d.f.: f (x1, ..., xn χ) = f (x1 χ) × ... × f (xn χ)| | |
To find the Posterior Distribution - distribution of the parameter given your collected data. 
Use Bayes formula: 

f (x1, .., xn χ)f (χ)
f (χ x1, ..., xn) = | � 

f (x1, ..., xn

|
|χ)f (χ)dχ 

The posterior distribution adjusts your assumption (prior distribution) based upon your sample data. 

Example: B(p), f (x p) = px(1 − p)1−x;|
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f (x1, ..., xn p) = �p xi (1 − p)1−xi = p
P 

xi (1 − p)n−P 
xi|

Your only possibilities are p = 0.4, p = 0.6, and you make a prior distribution based on 
the probability that the parameter p is equal to each of those values. 
Prior assumption: f(0.4) = 0.7, f(0.6) = 0.3 
You test the data, and find that there are are 9 successes out of 10, p̂ = 0.9 
Based on the data that give p̂ = 0.9, find the probability that the actual p is equal to 0.4 or 0.6. 
You would expect it to shift to be more likely to be the larger value. 
Joint p.f. for each value: 

f (x1, ..., x10|0.4) = 0.49(0.6)1 

f (x1, ..., x10|0.6) = 0.69(0.4)1 

Then, find the posterior distributions: 

(0.49(0.6)1)(0.7)
f (0.4|x1, ..., xn) = 

(0.49(0.6)1)(0.7) + (0.69(0.4)1)(0.3) 
= 0.08 

(0.69(0.4)1)(0.3)
f (0.6|x1, ..., xn) = 

(0.49(0.6)1)(0.7) + (0.69(0.4)1)(0.3) 
= 0.92 

Note that it becomes much more likely that p = 0.6 than p = 0.4


Example: B(p), prior distribution on [0, 1]

Choose any prior to fit intuition, but simplify by choosing the conjugate prior.


p�xi (1 − p)n−�xi f (p)
f (p x1, ..., xn) = � 

(...)dp
|

Choose f(p) to simplify the integral. Beta distribution works for Bernoulli distributions. 
Prior is therefore: 

f (p) = 
�(∂ + λ) 

p ∂−1(1 − p)ξ−1 , 0 ← p ← 1 
�(∂)�(λ) 

Then, choose ∂ and λ to fit intuition: makes E(X) and Var(X) fit intuition. 

�(∂ + 
� 
xi + λ + n − 

� 
xi) 

(1 − p)(ξ+n−P 
xi )−1f (p x1...xn) = |

�(∂ + 
� 
xi)�(λ + n − 

� 
xi) 
× p(∂+

P 
x1 )−1

Posterior Distribution = Beta(∂ + 
� 
xi, λ + n − 

� 
xi )


The conjugate prior gives the same distribution as the data.


Example:
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B(∂, λ) such that EX = 0.4, Var(X) = 0.1 
Use knowledge of parameter relations to expectation and variance to solve: 

∂ ∂λ 
EX = 0.4 = , Var(X) = 0.1 = 

∂ + λ (∂ + λ)2(∂ + λ + 1) 

The posterior distribution is therefore: 

Beta(∂ + 9, λ + 1) 

And the new expected value is shifted: 

∂ + 9 
EX = 

∂ + λ + 10 

Once this posterior is calculated, choose the parameters by finding the expected value. 

Definition of Bayes Estimator: 
Bayes estimator of unknown parameter χ0 is χ(X1, ..., Xn) = expectation of the posterior distribution. 

Example: B(p), prior Beta(∂, λ), X1, ..., Xn ↔ posterior Beta(∂ + 
� 
xi, λ + n − 

� 
xi ) 

∂ + 
� 
xi ∂ + 

� 
xi

Bayes Estimator: = 
∂ + 

� 
xi + λ + n − 

� 
xi ∂ + λ + n 

To see the relation to the prior, divide by n: 

∂/n + x 
= 
∂/n + λ/n + 1 

Note that it erases the intuition for large n.

The Bayes Estimator becomes the average for large n.


** End of Lecture 23 
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