18.05 Lecture 23

April 6, 2005

Estimation Theory:

If only 2 outcomes: Bernoulli distribution describes your experiment.
If calculating wrong numbers: Poisson distribution describes experiment.
May know the type of distribution, but not the parameters involved.
A sample (i.i.d.) X_{1}, \ldots, X_{n} has distribution \mathbb{P} from the family of distributions:
$\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$
$\mathbb{P}=\mathbb{P}_{\theta_{0}}, \theta_{0}$ is unknown
Estimation Theory - take data and estimate the parameter.
It is often obvious based on the relation to the problem itself.
Example: $\mathrm{B}(\mathrm{p})$, sample: 0011010111
$p=\mathbb{E}(X) \leftarrow \bar{x}=6 / 10=0.6$
Example: $E(\alpha), \alpha e^{-\alpha x}, x \geq 0, \mathbb{E}(X)=1 / \alpha$.
Once again, parameter is connected to the expected value.
$1 / \alpha=\mathbb{E}(X) \leftarrow \bar{x}, \alpha \approx 1 / \bar{x}$ - estimate of alpha.
Bayes Estimators: - used when intuitive model can be used in describing the data.

$X_{1}, \ldots, X_{n} \sim \mathbb{P}_{\theta_{0}}, \theta_{0} \in \Theta$
Prior Distribution - describes the distribution of the set of parameters (NOT the data) $f(\theta)$ - p.f. or p.d.f. \rightarrow corresponds to intuition.
\mathbb{P}_{0} has p.f. or p.d.f.; $f(x \mid \theta)$
Given x_{1}, \ldots, x_{n} joint p.f. or p.d.f.: $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=f\left(x_{1} \mid \theta\right) \times \ldots \times f\left(x_{n} \mid \theta\right)$
To find the Posterior Distribution - distribution of the parameter given your collected data.
Use Bayes formula:

The posterior distribution adjusts your assumption (prior distribution) based upon your sample data.
Example: $B(p), f(x \mid p)=p^{x}(1-p)^{1-x}$;

$$
f\left(x_{1}, \ldots, x_{n} \mid p\right)=\Pi p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}
$$

Your only possibilities are $\mathrm{p}=0.4, \mathrm{p}=0.6$, and you make a prior distribution based on the probability that the parameter p is equal to each of those values.
Prior assumption: $\mathrm{f}(0.4)=0.7, \mathrm{f}(0.6)=0.3$
You test the data, and find that there are are 9 successes out of $10, \hat{p}=0.9$
Based on the data that give $\hat{p}=0.9$, find the probability that the actual p is equal to 0.4 or 0.6 . You would expect it to shift to be more likely to be the larger value.
Joint p.f. for each value:

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{10} \mid 0.4\right)=0.4^{9}(0.6)^{1} \\
& f\left(x_{1}, \ldots, x_{10} \mid 0.6\right)=0.6^{9}(0.4)^{1}
\end{aligned}
$$

Then, find the posterior distributions:

$$
\begin{aligned}
& f\left(0.4 \mid x_{1}, \ldots, x_{n}\right)=\frac{\left(0.4^{9}(0.6)^{1}\right)(0.7)}{\left(0.4^{9}(0.6)^{1}\right)(0.7)+\left(0.6^{9}(0.4)^{1}\right)(0.3)}=0.08 \\
& f\left(0.6 \mid x_{1}, \ldots, x_{n}\right)=\frac{\left(0.6^{9}(0.4)^{1}\right)(0.3)}{\left(0.4^{9}(0.6)^{1}\right)(0.7)+\left(0.6^{9}(0.4)^{1}\right)(0.3)}=0.92
\end{aligned}
$$

Note that it becomes much more likely that $p=0.6$ than $p=0.4$
Example: B(p), prior distribution on $[0,1]$
Choose any prior to fit intuition, but simplify by choosing the conjugate prior.

$$
f\left(p \mid x_{1}, \ldots, x_{n}\right)=\frac{p^{\Sigma x_{i}}(1-p)^{n-\Sigma x_{i}} f(p)}{\int(\ldots) d p}
$$

Choose $\mathrm{f}(\mathrm{p})$ to simplify the integral. Beta distribution works for Bernoulli distributions.
Prior is therefore:

$$
f(p)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}, 0 \leq p \leq 1
$$

Then, choose α and β to fit intuition: makes $\mathbb{E}(X)$ and $\operatorname{Var}(X)$ fit intuition.

$$
f\left(p \mid x_{1} \ldots x_{n}\right)=\frac{\Gamma\left(\alpha+\sum x_{i}+\beta+n-\sum x_{i}\right)}{\Gamma\left(\alpha+\sum x_{i}\right) \Gamma\left(\beta+n-\sum x_{i}\right)} \times p^{\left(\alpha+\sum x_{1}\right)-1}(1-p)^{\left(\beta+n-\sum x_{i}\right)-1}
$$

Posterior Distribution $=\operatorname{Beta}\left(\alpha+\sum x_{i}, \beta+n-\sum x_{i}\right)$
The conjugate prior gives the same distribution as the data.
Example:

$B(\alpha, \beta)$ such that $\mathbb{E} X=0.4, \operatorname{Var}(X)=0.1$
Use knowledge of parameter relations to expectation and variance to solve:

$$
\mathbb{E} X=0.4=\frac{\alpha}{\alpha+\beta}, \operatorname{Var}(X)=0.1=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

The posterior distribution is therefore:

$$
\operatorname{Beta}(\alpha+9, \beta+1)
$$

And the new expected value is shifted:

$$
\mathbb{E} X=\frac{\alpha+9}{\alpha+\beta+10}
$$

Once this posterior is calculated, choose the parameters by finding the expected value.

Definition of Bayes Estimator:

Bayes estimator of unknown parameter θ_{0} is $\theta\left(X_{1}, \ldots, X_{n}\right)=$ expectation of the posterior distribution.
Example: $\mathrm{B}(\mathrm{p})$, prior $\operatorname{Beta}(\alpha, \beta), X_{1}, \ldots, X_{n} \rightarrow$ posterior $\operatorname{Beta}\left(\alpha+\sum x_{i}, \beta+n-\sum x_{i}\right)$

$$
\text { Bayes Estimator: } \frac{\alpha+\sum x_{i}}{\alpha+\sum x_{i}+\beta+n-\sum x_{i}}=\frac{\alpha+\sum x_{i}}{\alpha+\beta+n}
$$

To see the relation to the prior, divide by n:

$$
=\frac{\alpha / n+\bar{x}}{\alpha / n+\beta / n+1}
$$

Note that it erases the intuition for large n.
The Bayes Estimator becomes the average for large n.
** End of Lecture 23

