18.05 Lecture 23
April 6, 2005

Estimation Theory:

If only 2 outcomes: Bernoulli distribution describes your experiment.

If calculating wrong numbers: Poisson distribution describes experiment.
May know the type of distribution, but not the parameters involved.

A sample (i.i.d.) Xi, ..., X,, has distribution P from the family of distributions:
{Pg 10 e @}

P = Py,, 0o is unknown

Estimation Theory - take data and estimate the parameter.

It is often obvious based on the relation to the problem itself.

Example: B(p), sample: 0011010111
p=E(X) —7=6/10=0.6

Example: E(a),ae " 2z > 0,E(X) =1/a.
Once again, parameter is connected to the expected value.

1/a =E(X) <« T,a = 1/T - estimate of alpha.

Bayes Estimators: - used when intuitive model can be used in describing the data.

X1,., X, ~ ]P@O, 0y € ©

Prior Distribution - describes the distribution of the set of parameters (NOT the data)
f(0) - p.f. or p.d.f. — corresponds to intuition.

Py has p.f. or p.d.f.; f(x|0)

Given 1, ..., z, joint p.f. or p.d.f: f(z1,...,2,|0) = f(21]|0) X ... X f(2,]|0)

To find the Posterior Distribution - distribution of the parameter given your collected data.
Use Bayes formula:

prior :
posteror

S S B

= fo = Bix's) 5]

f(y, .., 2a]0) £ (0)
F(x1, ooy 2,10) F(0)d0

The posterior distribution adjusts your assumption (prior distribution) based upon your sample data.

f@lxy,.yzpn) = T

Example: B(p), f(z|p) = p*(1 —p)'~;
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F(@1, o nlp) = Tp™ (1 = p)' 7% = p2i(1 — p)rm 2™

Your only possibilities are p = 0.4, p = 0.6, and you make a prior distribution based on

the probability that the parameter p is equal to each of those values.

Prior assumption: f(0.4) = 0.7, £(0.6) = 0.3

You test the data, and find that there are are 9 successes out of 10, p = 0.9

Based on the data that give p = 0.9, find the probability that the actual p is equal to 0.4 or 0.6.
You would expect it to shift to be more likely to be the larger value.

Joint p.f. for each value:

f(x1, ..., 210]0.4) = 0.4°(0.6)*

f(l‘l, ceey .’210|0.6) = 069(04)1
Then, find the posterior distributions:

(0.49(0.6)1)(0.7)
(0.49(0.6)1)(0.7) + (0.69(0.4)1)(0.3)

f(04]xy,...,2p) = =0.08

(0.69(0.4)1)(0.3)
(0.4°(0.6)1)(0.7) + (0.6°(0.4)1)(0.3)
Note that it becomes much more likely that p = 0.6 than p = 0.4

f(0.6]x1,...,2,) = =0.92

Example: B(p), prior distribution on [0, 1]
Choose any prior to fit intuition, but simplify by choosing the conjugate prior.

_ ng“‘(l _ p)n—ZI,fO?)
flz1,.yzn) = (b

Choose f(p) to simplify the integral. Beta distribution works for Bernoulli distributions.
Prior is therefore:

Fla+B8) 4
ﬂm=ﬁaﬁap

Then, choose o and f to fit intuition: makes E(X) and Var(X) fit intuition.

(1-pflto<p<i

P(a—i_zwi +ﬁ+n_2$1) (a+>z1)—1 _ (B+n—>z;)—1
xp (1-p)

Do+ @)0(6 +n =3 i)

Posterior Distribution = Beta(a+ > a;, 8+ n — > ;)

The conjugate prior gives the same distribution as the data.

fpley..an) =

Example:

/L% Jouteof 10 —
0.4
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B(a, 3) such that EX = 0.4, Var(X) = 0.1
Use knowledge of parameter relations to expectation and variance to solve:

of
(a+B)*(a+B+1)

a
EX =04=—— X)=0.1=
0 a+ﬁ,Var() 0

The posterior distribution is therefore:

Beta(a +9,5+ 1)

And the new expected value is shifted:

a+9
a+B3+10

Once this posterior is calculated, choose the parameters by finding the expected value.

EX =

Definition of Bayes Estimator:
Bayes estimator of unknown parameter 6y is (X7, ..., X,,) = expectation of the posterior distribution.

Example: B(p), prior Beta(a, 8), X1, ..., X;, — posterior Beta(a+ > a;, 8+n — > ;)

a+ > at )
a+Yzi+p+n—>x a+pB+n

To see the relation to the prior, divide by n:

Bayes Estimator:

_ a/n+T
a/n+pB/n+1

Note that it erases the intuition for large n.
The Bayes Estimator becomes the average for large n.

** End of Lecture 23
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