18.05 Lecture 26

April 13, 2005

Confidence intervals for parameters of Normal distribution.

Confidence intervals for μ_{0}, σ_{0}^{2} in $N\left(\mu_{0}, \sigma_{0}^{2}\right)$
$\hat{\mu}=\bar{x}, \hat{\sigma}^{2}=\overline{x^{2}}-(\bar{x})^{2}$
$\hat{\mu} \rightarrow \mu_{0}, \hat{\sigma}^{2} \rightarrow \sigma_{0}^{2}$ with large n , but how close exactly?
You can guarantee that the mean or variance are in a particular interval with some probability:
Definition: Take $\alpha \in[0,1], \alpha-$ confidence level
If $\mathbb{P}\left(S_{1}\left(X_{1}, \ldots, X_{n}\right) \leq \mu_{0} \leq S_{2}\left(X_{1}, \ldots, X_{n}\right)\right)=\alpha$,
then interval $\left[S_{1}, S_{2}\right.$] is the confidence interval for μ_{0} with confidence level α.
Consider Z_{0}, \ldots, Z_{n} - i.i.d., $\mathrm{N}(0,1)$
Definition: The distribution of $Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2}$ is called a chi-square $\left(\chi^{2}\right)$ distribution, with n degrees of freedom.
As shown in $\S 7.2$, the chi-square distribution is a Gamma distribution $\rightarrow \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$
Definition:

$$
\text { The distribution of } \frac{Z_{0}}{\sqrt{\frac{1}{n}\left(Z_{1}^{2}+\ldots+Z_{n}^{2}\right)}} \text { is called a t-distribution with } \mathrm{n} \text { d.o.f. }
$$

The t-distribution is also called Student's distribution, see $\S 7.4$ for detail.

To find the confidence interval for $N\left(\mu_{0}, \sigma_{0}^{2}\right)$, need the following:
Fact: $Z_{1}, \ldots, Z_{n} \sim$ i.i.d. $N(0,1)$

$$
\bar{z}=\frac{1}{n}\left(Z_{1}+\ldots+Z_{n}\right), \overline{z^{2}}-(\bar{z})^{2}=\frac{1}{n} \sum z_{i}^{2}-\left(\frac{1}{n} \sum z_{i}\right)^{2}
$$

Then, $A=\sqrt{n} \bar{z} \sim N(0,1), B=n\left(\overline{z^{2}}-(\bar{z})^{2}\right) \sim \chi_{n-1}^{2}$,
and A and B are independent.
Take $X_{1}, \ldots, X_{n} \sim N\left(\mu_{0}, \sigma_{0}^{2}\right), \mu_{0}, \sigma_{0}^{2}$ unknown.

$$
\begin{gathered}
Z_{1}=\frac{x_{1}-\mu_{0}}{\sigma_{0}}, \ldots, Z_{n}=\frac{x_{n}-\mu_{0}}{\sigma_{0}} \sim N(0,1) \\
A=\sqrt{n} \bar{z}=\sqrt{n}\left(\frac{\bar{x}-\mu_{0}}{\sigma_{0}}\right) \\
B=n\left(\overline{z^{2}}-(\bar{z})^{2}\right)=\sqrt{n}\left(\frac{1}{n} \sum \frac{\left(x_{i}-\mu_{0}\right)^{2}}{\sigma_{0}^{2}}-\left(\frac{\bar{x}-\mu_{0}}{\sigma_{0}}\right)^{2}\right)=\frac{\sqrt{n}}{\sigma_{0}^{2}}\left(\frac{1}{n} \sum\left(x_{i}-\mu_{0}\right)^{2}-\left(\bar{x}-\mu_{0}\right)^{2}\right)= \\
=\frac{\sqrt{n}}{\sigma_{0}^{2}}\left(\overline{x^{2}}-2 \mu_{0} \bar{x}+\mu_{0}^{2}-\bar{x}^{2}+2 \mu_{0} \bar{x}-\mu_{0}^{2}\right)=\frac{\sqrt{n}}{\sigma_{0}^{2}}\left(\overline{x^{2}}-(\bar{x})^{2}\right)
\end{gathered}
$$

To summarize:

$$
A=\sqrt{n}\left(\frac{\bar{x}-\mu_{0}}{\sigma_{0}}\right) \sim N(0,1) ; B=\frac{\sqrt{n}}{\sigma_{0}^{2}}\left(\overline{x^{2}}-(\bar{x})^{2}\right) \sim \chi_{n-1}^{2}
$$

and, A and B are independent.
You can't compute B, because you don't know σ_{0}, but you know the distribution:

$$
B=\frac{\sqrt{n}\left(\overline{x^{2}}-(\bar{x})^{2}\right)}{\sigma_{0}^{2}} \sim \chi_{n-1}^{2}
$$

Choose the most likely values for B , between c_{1} and c_{2}.

Choose the c values from the chi-square tabled values, such that area $=\alpha$ confidence.
With probability $=$ confidence $(\alpha), c_{1} \leq B \leq c_{2}$

$$
c_{1} \leq \frac{\sqrt{n}\left(\overline{x^{2}}-(\bar{x})^{2}\right)}{\sigma_{0}^{2}} \leq c_{2}
$$

Solve for σ_{0} :

$$
\frac{\sqrt{n}\left(\overline{x^{2}}-(\bar{x})^{2}\right)}{c_{2}} \leq \sigma_{0}^{2} \leq \frac{\sqrt{n}\left(\overline{x^{2}}-(\bar{x})^{2}\right)}{c_{1}}
$$

Choose c_{1} and c_{2} such that the right tail has probability $\frac{1-\alpha}{2}$, same as left tail.
This results in throwing away the possibilities outside c_{1} and c_{2}
Or, you could choose to make the interval as small as possible, minimize: $\frac{1}{c_{1}}-\frac{1}{c_{2}}$ given α
Why wouldn't you throw away a small interval in between c_{1} and c_{2}, with area $1-\alpha$? Though it's the same area, you are throwing away very likely values for the parameter!

[^0]
[^0]: ** End of Lecture 26

