18.05 Lecture 27 April 15, 2005

Take sample $X_1, ..., X_n \sim N(0, 1)$

$$A = \frac{\sqrt{n}(\overline{x} - \mu)}{\sigma} \sim N(0, 1), B = \frac{n(\overline{x^2} - (\overline{x})^2)}{\sigma^2} \sim \chi_{n-1}^2$$

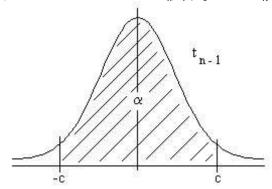
A, B - independent.

To determine the confidence interval for μ , must eliminate σ from A:

$$\frac{A}{\sqrt{\frac{1}{n-1}B}} = \frac{Z^0}{\sqrt{\frac{1}{n-1}(z_1^2 + \dots + z_{n-1}^2)}} \sim t_{n-1}$$

Where $Z_0, Z_1, ..., Z_{n-1} \sim N(0, 1)$

The standard normal is a symmetric distribution, and $\frac{1}{n-1}(Z_1^2+...+Z_{n-1}^2)\to \mathbb{E} Z_1^2=1$



So t_n -distribution still looks like a normal distribution (especially for large n), and it is symmetric about zero.

Given $\alpha \in (0,1)$ find c, $t_{n-1}(-c,c) = \alpha$

$$-c \le \frac{A}{\sqrt{\frac{1}{n-1}B}} \le c$$

with probability = confidence (α)

$$\begin{aligned} -c & \leq \frac{\sqrt{n}(\overline{x} - \mu)}{\sigma} / \sqrt{\frac{1}{n-1} \frac{n(\overline{x^2} - (\overline{x})^2)}{\sigma^2}} \leq c \\ & -c \leq \frac{\overline{x} - \mu}{\sqrt{\frac{1}{n-1}}(\overline{x^2} - (\overline{x})^2)} \leq c \\ & \overline{x} - c \sqrt{\frac{1}{n-1}}(\overline{x^2} - (\overline{x})^2) \leq \mu \leq \overline{x} + c \sqrt{\frac{1}{n-1}}(\overline{x^2} - (\overline{x})^2) \end{aligned}$$

By the law of large numbers, $\overline{x} \to \mathbb{E}X = \mu$

The center of the interval is a typical estimator (for example, MLE).

error \propto estimate of variance $\approx \sqrt{\frac{\sigma^2}{n}}$ for large n.

 $\hat{\sigma}^2 = \overline{x^2} - (\overline{x})^2$ is a sample variance and it converges to the true variance,

by LLN $\hat{\sigma}^2 \rightarrow \sigma^2$

$$\mathbb{E}\hat{\sigma}^2 = \mathbb{E}\frac{1}{n}(x_1^2 + \dots + x_n^2) - \mathbb{E}(\frac{1}{n}(x_1 + \dots + x_n))^2 =$$

$$= \mathbb{E}X_1^2 - \frac{1}{n^2} \sum_{i,j} \mathbb{E}X_i X_j = \mathbb{E}X_1^2 - \frac{1}{n^2}(n\mathbb{E}X_1^2 + n(n+1)(\mathbb{E}X_1)^2)$$

Note that for $i \neq j$, $\mathbb{E}X_iX_j = \mathbb{E}X_i\mathbb{E}X_j = (\mathbb{E}X_1)^2 = \mu^2$, n(n - 1) terms with different indices.

$$\mathbb{E}\hat{\sigma}^{2} = \frac{n-1}{n} \mathbb{E}X_{1}^{2} - \frac{n-1}{n} (\mathbb{E}X_{1})^{2} =$$

$$= \frac{n-1}{n} (\mathbb{E}X_{1}^{2} - (\mathbb{E}X_{1})^{2}) = \frac{n-1}{n} \text{Var}(X_{1}) = \frac{n-1}{n} \sigma^{2}$$

Therefore:

$$\mathbb{E}\hat{\sigma}^2 = \frac{n-1}{n}\sigma^2 < \sigma^2$$

Good estimator, but more often than not, less than actual. So, to compensate for the lower error:

$$\mathbb{E}\frac{n}{n-1}\hat{\sigma}^2 = \sigma^2$$

Consider $(\sigma')^2 = \frac{n}{n-1}\hat{\sigma}^2$, unbiased sample variance.

$$\pm c\sqrt{\frac{1}{n-1}(\overline{x^2} - (\overline{x})^2)} = \pm c\sqrt{\frac{1}{n-1}\hat{\sigma}^2} = \pm c\sqrt{\frac{1}{n}(\sigma')^2}$$
$$\overline{x} - c\sqrt{\frac{(\sigma')^2}{n}} \le \mu \le \overline{x} + c\sqrt{\frac{(\sigma')^2}{n}}$$

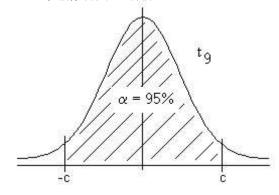
§7.5 pg. 140 Example: Lactic Acid in Cheese

0.86, 1.53, 1.57, ..., 1.58, n = 10

$$\sim N(\mu, \sigma^2), \overline{x} = 1.379, \hat{\sigma}^2 = \overline{x^2} - (\overline{x})^2 = 0.0966$$

Predict parameters with confidence $\alpha = 95\%$

Use a t-distribution with n - 1 = 9 degrees of freedom.



See table: $(-\infty, c) = 0.975$ gives c = 2.262

$$\overline{x} - 2.262\sqrt{\frac{1}{9}\hat{\sigma}^2} \le \mu \le \overline{x} + 2.262\sqrt{\frac{1}{9}\hat{\sigma}^2}$$

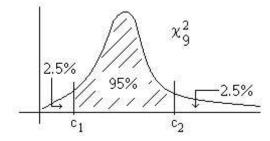
$$0.6377 \le \mu \le 2.1203$$

Large interval due to a high guarantee and a small number of samples. If we change α to 90% c = 1.833, interval: $1.189 \le \mu \le 1.569$ Much better sized interval.

Confidence interval for variance:

$$c_1 \leq \frac{n\hat{\sigma}^2}{\sigma^2} \leq c_2$$

where the c values come from the χ^2 distribution



Not symmetric, all positive points given for χ^2 distribution. $c_1 = 2.7, c_2 = 19.02 \rightarrow 0.0508 \le \sigma^2 \le 0.3579$ again, wide interval as result of small n and high confidence.

Sketch of Fisher's theorem.

$$z_{1}, ..., z_{n} \sim N(0, 1)$$

$$\sqrt{n}\overline{z} = \frac{1}{\sqrt{n}}(z_{1} + ... + z_{n}) \sim N(0, 1)$$

$$n(\overline{z^{2}} - (\overline{z})^{2}) = n(\frac{1}{n}\sum z_{i}^{2} - (\frac{1}{n}\sum z_{i})^{2}) = \sum z_{i}^{2} - (\frac{1}{\sqrt{n}}(z_{1} + ... + z_{n}))^{2} \sim \chi_{n-1}^{2}$$

$$f(z_{1}, ..., z_{n}) = (\frac{1}{\sqrt{2\pi}})^{n}e^{-1/2\sum z_{i}^{2}} = (\frac{1}{\sqrt{2\pi}})^{n}e^{-1/2r^{2}}$$

$$f(y_{1}, ..., y_{n}) = (\frac{1}{\sqrt{2\pi}})^{n}e^{-1/2r^{2}} = (\frac{1}{\sqrt{2\pi}})^{n}e^{-1/2\sum y_{i}^{2}}$$

The graph is symmetric with respect to rotation, so rotating the coordinates gives again i.i.d. standard normal sequence.

$$\prod_{i} \frac{1}{\sqrt{2\pi}} e^{-1/2y_i^2} \to y_1, ..., y_n - i.i.d.N(0, 1)$$

Choose coordinate system such that:

$$y_1 = \frac{1}{\sqrt{n}}(z_1 + \dots + z_n)$$
, i.e. $\vec{v}_1 = (\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}})$ - new first axis.

Choose all other vectors however you want to make a new orthogonal basis:

$$y_1^2 + \dots + y_n^2 = z_1^2 + \dots + z_n^2$$

since the length does not change after rotation!

$$\sqrt{n}\overline{z} = y_1 \sim N(0,1)$$

$$n(\overline{z^2} - (\overline{z})^2) = \sum y_i^2 - y_1^2 = y_2^2 + \dots + y_n^2 \sim \chi_{n-1}^2$$

** End of Lecture 27