18.05 Lecture 29

April 25, 2005

Score distribution for Test 2:
70-100 A, 40-70 B, 20-40 C, 10-20 D
Average $=45$

## Hypotheses Testing.

$X_{1}, \ldots, X_{n}$ with unknown distribution $\mathbb{P}$
Hypothesis possibilities:
$H_{1}: \mathbb{P}=\mathbb{P}_{1}$
$H_{2}: \mathbb{P}=\mathbb{P}_{2}$
...
$H_{k}: \mathbb{P}=\mathbb{P}_{k}$
There are k simple hypotheses.
A simple hypothesis states that the distribution is equal to a particular probability distribution.
Consider two normal distributions: $\mathrm{N}(0,1)$, and $\mathrm{N}(1,1)$.


There is only 1 point of data: $X_{1}$
Depending on where the point is, it is more likely to come from either $\mathrm{N}(0,1)$ or $\mathrm{N}(1,1)$.
Hypothesis testing is similar to maximum likelihood testing $\rightarrow$
Within your k choices, pick the most likely distribution given the data.
However, hypothesis testing is NOT like estimation theory, as there is a different goal:
Definition: Error of type i
$\mathbb{P}\left(\right.$ make a mistake $\mid H_{i}$ is true $)=\alpha_{i}$
Decision Rule: $\delta: \mathcal{X}^{n} \rightarrow\left(H_{1}, H_{2}, \ldots, H_{k}\right)$
Given a sample $\left(X_{1}, \ldots, X_{n}\right), \delta\left(X_{1}, \ldots, X_{n}\right) \in\left\{H_{1}, \ldots, H_{k}\right\}$
$\alpha_{i}=\mathbb{P}\left(\delta \neq H_{i} \mid H_{i}\right)$ - error of type i
"The decision rule picks the wrong hypothesis" = error.
Example: Medical test, $H_{1}$ - positive, $H_{2}$ - negative.
Error of Type 1: $\alpha_{1}=\mathbb{P}\left(\delta \neq H_{1} \mid H_{1}\right)=\mathbb{P}($ negative $\mid$ positive $)$
Error of Type 2: $\alpha_{2}=\mathbb{P}\left(\delta \neq H_{2} \mid H_{2}\right)=\mathbb{P}($ positive $\mid$ negative $)$
These are very different errors, have different severity based on the particular situation.
Example: Missile Detection vs. Airplane
Type $1 \rightarrow \mathbb{P}$ (airplane $\mid$ missile $)$, Type $2 \rightarrow \mathbb{P}$ (missile $\mid$ airplane $)$
Very different consequences based on the error made.

## Bayes Decision Rules

Choose a prior distribution on the hypothesis.

Assign a weight to each hypothesis, based upon the importance of the different errors.
$\xi(1), \ldots, \xi(k) \geq 0, \sum \xi(i)=1$
Bayes error $\alpha(\xi)=\xi(1) \alpha_{1}+\xi(2) \alpha_{2}+\ldots+\xi(k) \alpha_{k}$
Minimize the Bayes error, choose the appropriate decision rule.
Simple solution to finding the decision rule:
$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, let $f_{i}(x)$ be a p.f. or p.d.f. of $\mathbb{P}_{i}$
$f_{i}(\mathbf{x})=f_{i}\left(x_{1}\right) \times \ldots \times f_{i}\left(x_{n}\right)-$ joint p.f. $/$ p.d.f.
Theorem: Bayes Decision Rule:

$$
\delta=\left\{H_{i}: \xi(i) f_{i}(\mathbf{x})=\max _{i \leq j \leq k} \xi(j) f_{j}(\mathbf{x})\right.
$$

Similar to max. likelihood.
Find the largest of joint densities, but weighted in this case.
$\alpha(\xi)=\sum \xi(i) \mathbb{P}_{i}\left(\delta \neq H_{i}\right)=\sum \xi(i)\left(1-\mathbb{P}_{i}\left(\delta=H_{i}\right)\right)=$
$=1-\sum \xi(i) \mathbb{P}_{i}\left(\delta=H_{i}\right)=1-\sum \xi(i) \int I\left(\delta(\mathbf{x})=H_{i}\right) f_{i}(\mathbf{x}) d \mathbf{x}=$
$=1-\int\left(\sum \xi(i) I\left(\delta(\mathbf{x})=H_{i}\right) f_{i}(\mathbf{x})\right) d \mathbf{x}$ - minimize, so maximize the integral:
Function within the integral:

$$
I\left(\delta=H_{1}\right) \xi(1) f_{1}(\mathbf{x})+\ldots+I\left(\delta=H_{k}\right) \xi(k) f_{k}(\mathbf{x})
$$

The indicators pick the term $\rightarrow$
$\delta=H_{1}: 1 \xi(1) f_{1}(\mathbf{x})+0+0+\ldots+0$
So, just choose the largest term to maximize the integral.
Let $\delta$ pick the largest term in the sum.
Most of the time, we will consider 2 simple hypotheses:

$$
\delta=\left\{H_{1}: \xi(1) f_{1}(\mathbf{x})>\xi(2) f_{2}(\mathbf{x}), \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}>\frac{\xi(2)}{\xi(1)} ; H_{2} \text { if }<; H_{1} \text { or } H_{2} \text { if }=\right\}
$$

Example:
$H_{1}: N(0,1), H_{2}: N(1,1)$
$\xi(1) f_{1}(\mathbf{x})+\xi(2) f_{2}(\mathbf{x}) \rightarrow$ minimize

$$
\begin{gathered}
f_{1}(\mathbf{x})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2} \sum x_{i}^{2}} ; f_{2}(\mathbf{x})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2} \sum\left(x_{i}-1\right)^{2}} \\
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})}=e^{-\frac{1}{2} \sum x_{i}^{2}+\frac{1}{2} \sum\left(x_{i}-1\right)^{2}}=e^{\frac{n}{2}-\sum x_{i}}>\frac{\xi(2)}{\xi(1)} \\
\delta=\left\{H_{1}: \sum x_{i}<\frac{n}{2}-\log \frac{\xi(2)}{\xi(1)} ; H_{2} \text { if }>; H_{1} \text { or } H_{2} \text { if }=\right\}
\end{gathered}
$$

Considering the earlier example, $\mathrm{N}(0,1)$ and $\mathrm{N}(1,1)$


$$
\begin{aligned}
& X_{1}, n=1, \xi(1)=\xi(2)=\frac{1}{2} \\
& \qquad \quad \delta=\left\{H_{1}: x_{1}<\frac{1}{2} ; H_{2} x_{1}>\frac{1}{2} ; H_{1} \text { or } H_{2} \text { if }=\right\}
\end{aligned}
$$

However, if 1 distribution were more important, it would be weighted.


If $\mathrm{N}(0,1)$ were more important, you would choose it more of the time, even on some occasions when $x_{i}>\frac{1}{2}$

Definition: $H_{1}, H_{2}$ - two simple hypotheses, then:
$\alpha_{1}(\delta)=\mathbb{P}\left(\delta \neq H_{1} \mid H_{2}\right)$ - level of significance.
$\beta(\delta)=1-\alpha_{2}(\delta)=\mathbb{P}\left(\delta=H_{2} \mid H_{2}\right)$ - power.
For more than 2 hypotheses,
$\alpha_{1}(\delta)$ is always the level of significance, because $H_{1}$ is always the Most Important hypothesis.
$\beta(\delta)$ becomes a power function, with respect to each extra hypothesis.
Definition: $H_{0}$ - null hypothesis
Example, when a drug company evaluates a new drug, the null hypothesis is that it doesn't work.
$H_{0}$ is what you want to disprove first and foremost, you don't want to make that error!

Next time: consider class of decision rules.
$K_{\alpha}=\left\{\delta: \alpha_{1}(\delta) \leq \alpha\right\}, \alpha \in[0,1]$
Minimize $\alpha_{2}(\delta)$ within the class $K_{\alpha}$
** End of Lecture 29

