18.05 Lecture 29 April 25, 2005

Score distribution for Test 2: 70-100 A, 40-70 B, 20-40 C, 10-20 D Average = 45

Hypotheses Testing.

$$\begin{split} X_1, & \dots, X_n \text{ with unknown distribution } \mathbb{P} \\ \text{Hypothesis possibilities:} \\ H_1 : \mathbb{P} = \mathbb{P}_1 \\ H_2 : \mathbb{P} = \mathbb{P}_2 \\ & \dots \\ H_k : \mathbb{P} = \mathbb{P}_k \\ \text{There are k simple hypotheses.} \end{split}$$

A simple hypothesis states that the distribution is equal to a particular probability distribution.

Consider two normal distributions: N(0, 1), and N(1, 1).

There is only 1 point of data: X_1

Depending on where the point is, it is more likely to come from either N(0, 1) or N(1, 1). Hypothesis testing is similar to maximum likelihood testing \rightarrow

Within your k choices, pick the most likely distribution given the data.

However, hypothesis testing is NOT like estimation theory, as there is a different goal:

Definition: Error of type i $\mathbb{P}(\text{make a mistake } | H_i \text{ is true}) = \alpha_i$ Decision Rule: $\delta : \mathcal{X}^n \to (H_1, H_2, ..., H_k)$ Given a sample $(X_1, ..., X_n), \delta(X_1, ..., X_n) \in \{H_1, ..., H_k\}$ $\alpha_i = \mathbb{P}(\delta \neq H_i | H_i)$ - error of type i "The decision rule picks the wrong hypothesis" = error.

Example: Medical test, H_1 - positive, H_2 - negative. Error of Type 1: $\alpha_1 = \mathbb{P}(\delta \neq H_1|H_1) = \mathbb{P}(negative|positive)$ Error of Type 2: $\alpha_2 = \mathbb{P}(\delta \neq H_2|H_2) = \mathbb{P}(positive|negative)$ These are very different errors, have different severity based on the particular situation.

Example: Missile Detection vs. Airplane Type $1 \to \mathbb{P}(airplane|missile)$, Type $2 \to \mathbb{P}(missile|airplane)$ Very different consequences based on the error made.

Bayes Decision Rules

Choose a prior distribution on the hypothesis.

Assign a weight to each hypothesis, based upon the importance of the different errors. $\xi(1), ..., \xi(k) \ge 0, \sum \xi(i) = 1$ Bayes error $\alpha(\xi) = \xi(1)\alpha_1 + \xi(2)\alpha_2 + ... + \xi(k)\alpha_k$ Minimize the Bayes error, choose the appropriate decision rule. Simple solution to finding the decision rule: $\mathbf{X} = (X_1, ..., X_n)$, let $f_i(x)$ be a p.f. or p.d.f. of \mathbb{P}_i $f_i(\mathbf{x}) = f_i(x_1) \times ... \times f_i(x_n)$ - joint p.f./p.d.f.

Theorem: Bayes Decision Rule:

$$\delta = \{H_i : \xi(i)f_i(\mathbf{x}) = \max_{i < j < k} \xi(j)f_j(\mathbf{x})\}$$

Similar to max. likelihood.

Find the largest of joint densities, but weighted in this case.

 $\begin{array}{l} \alpha(\xi) = \sum \xi(i) \mathbb{P}_i(\delta \neq H_i) = \sum \xi(i)(1 - \mathbb{P}_i(\delta = H_i)) = \\ = 1 - \sum \xi(i) \mathbb{P}_i(\delta = H_i) = 1 - \sum \xi(i) \int I(\delta(\mathbf{x}) = H_i) f_i(\mathbf{x}) d\mathbf{x} = \\ = 1 - \int (\sum \xi(i) I(\delta(\mathbf{x}) = H_i) f_i(\mathbf{x})) d\mathbf{x} - \text{minimize, so maximize the integral:} \\ \text{Function within the integral:} \end{array}$

$$I(\delta = H_1)\xi(1)f_1(\mathbf{x}) + \dots + I(\delta = H_k)\xi(k)f_k(\mathbf{x})$$

The indicators pick the term $\rightarrow \delta = H_1 : 1\xi(1)f_1(\mathbf{x}) + 0 + 0 + \dots + 0$ So, just choose the largest term to maximize the integral. Let δ pick the largest term in the sum.

Most of the time, we will consider 2 simple hypotheses:

$$\delta = \{H_1 : \xi(1)f_1(\mathbf{x}) > \xi(2)f_2(\mathbf{x}), \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\xi(2)}{\xi(1)}; H_2 \text{ if } <; H_1 \text{ or } H_2 \text{ if } = \}$$

Example:

 $\begin{array}{l} H_1: N(0,1), H_2: N(1,1) \\ \xi(1)f_1(\mathbf{x}) + \xi(2)f_2(\mathbf{x}) \to \text{minimize} \end{array}$

$$f_1(\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum x_i^2}; f_2(\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum (x_i-1)^2}$$
$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = e^{-\frac{1}{2}\sum x_i^2 + \frac{1}{2}\sum (x_i-1)^2} = e^{\frac{n}{2}-\sum x_i} > \frac{\xi(2)}{\xi(1)}$$
$$\delta = \{H_1 : \sum x_i < \frac{n}{2} - \log \frac{\xi(2)}{\xi(1)}; H_2 \text{ if } >; H_1 \text{ or } H_2 \text{ if } =\}$$

Considering the earlier example, N(0, 1) and N(1, 1)

 $X_1, n = 1, \xi(1) = \xi(2) = \frac{1}{2}$

$$\delta = \{H_1 : x_1 < \frac{1}{2}; H_2 x_1 > \frac{1}{2}; H_1 \text{ or } H_2 \text{ if } =\}$$

However, if 1 distribution were more important, it would be weighted.

If N(0, 1) were more important, you would choose it more of the time, even on some occasions when $x_i > \frac{1}{2}$

Definition: H_1, H_2 - two simple hypotheses, then: $\alpha_1(\delta) = \mathbb{P}(\delta \neq H_1|H_2)$ - level of significance. $\beta(\delta) = 1 - \alpha_2(\delta) = \mathbb{P}(\delta = H_2|H_2)$ - power. For more than 2 hypotheses, $\alpha_1(\delta)$ is always the level of significance, because H_1 is always the Most Important hypothesis. $\beta(\delta)$ becomes a power function, with respect to each extra hypothesis.

Definition: H_0 - null hypothesis Example, when a drug company evaluates a new drug, the null hypothesis is that it doesn't work. H_0 is what you want to disprove first and foremost, you don't want to make that error!

Next time: consider class of decision rules. $K_{\alpha} = \{\delta : \alpha_1(\delta) \leq \alpha\}, \alpha \in [0, 1]$ Minimize $\alpha_2(\delta)$ within the class K_{α}

 $\ast\ast$ End of Lecture 29