
18.05 Lecture 29 
April 25, 2005 

Score distribution for Test 2: 
70-100 A, 40-70 B, 20-40 C, 10-20 D 
Average = 45 

Hypotheses Testing. 
X1, ..., Xn with unknown distribution P 
Hypothesis possibilities: 
H1 : P = P1 

H2 : P = P2 

... 
Hk : P = Pk 

There are k simple hypotheses. 
A simple hypothesis states that the distribution is equal to a particular probability distribution. 

Consider two normal distributions: N(0, 1), and N(1, 1). 

There is only 1 point of data: X1


Depending on where the point is, it is more likely to come from either N(0, 1) or N(1, 1).

Hypothesis testing is similar to maximum likelihood testing ↔

Within your k choices, pick the most likely distribution given the data.

However, hypothesis testing is NOT like estimation theory, as there is a different goal:


Definition: Error of type i

P(make a mistake Hi is true) = ∂i
|
Decision Rule: β : X n ↔ (H1, H2, ..., Hk )

Given a sample (X1, ..., Xn), β(X1, ..., Xn) ⊂ {H1, ..., Hk}

∂i = P(β = Hi Hi) - error of type i
∈ |
“The decision rule picks the wrong hypothesis” = error. 

Example: Medical test, H1 - positive, H2 - negative.

Error of Type 1: ∂1 = P(β = H1 H1) = P(negative positive)
∈ | |
Error of Type 2: ∂2 = P(β = H2 H2) = P(positive negative)∈ | |
These are very different errors, have different severity based on the particular situation. 

Example: Missile Detection vs. Airplane 
Type 1 ↔ P(airplane missile), Type 2 ↔ P(missile airplane)| |
Very different consequences based on the error made. 

Bayes Decision Rules 
Choose a prior distribution on the hypothesis. 
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Assign a weight to each hypothesis, based upon the importance of the different errors.

�(1), ..., �(k) ∼ 0, 

� 
�(i) = 1


Bayes error ∂(�) = �(1)∂1 + �(2)∂2 + ... + �(k)∂k


Minimize the Bayes error, choose the appropriate decision rule.

Simple solution to finding the decision rule:

X = (X1, ..., Xn), let fi(x) be a p.f. or p.d.f. of Pi


fi(x) = fi(x1) × ... × fi(xn) - joint p.f./p.d.f.


Theorem: Bayes Decision Rule:


β = {Hi : �(i)fi(x) = maxi�j�k �(j)fj (x) 

Similar to max. likelihood.

Find the largest of joint densities, but weighted in this case.


∂(�) = 
� 
�(i)Pi(β = Hi) = 

� 
�(i)(1 − Pi(β = Hi)) =


= 1 − 
� 
�(i)Pi(β = 

∈
Hi) = 1 − 

� 
�(i) 

� 
I(β(x) = Hi)fi(x)dx =


= 1 − 
� 
(
� 
�(i)I(β(x) = Hi)fi(x))dx - minimize, so maximize the integral:


Function within the integral:


I(β = H1)�(1)f1(x) + ... + I(β = Hk )�(k)fk (x) 

The indicators pick the term ↔

β = H1 : 1�(1)f1(x) + 0 + 0 + ... + 0

So, just choose the largest term to maximize the integral.

Let β pick the largest term in the sum.


Most of the time, we will consider 2 simple hypotheses:


f1(x) �(2)
β = {H1 : �(1)f1(x) > �(2)f2(x), > ; H2 if <; H1 or H2 if =

f2(x) �(1) 
} 

Example:

H1 : N (0, 1), H2 : N (1, 1)

�(1)f1(x) + �(2)f2(x) ↔ minimize
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Considering the earlier example, N(0, 1) and N(1, 1) 
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X1, n = 1, �(1) = �(2) = 1 
2 

1 1 
β = {H1 : x1 < ; H1 or H2 if =; H2x1 > 

2 2 
} 

However, if 1 distribution were more important, it would be weighted. 

If N(0, 1) were more important, you would choose it more of the time, even on 
1some occasions when xi > 2 

Definition: H1, H2 - two simple hypotheses, then: 
∂1(β) = P(β = H1 H2) - level of significance. ∈ |
λ(β) = 1 − ∂2(β) = P(β = H2 H2) - power. |
For more than 2 hypotheses,

∂1(β) is always the level of significance, because H1 is always the

Most Important hypothesis.

λ(β) becomes a power function, with respect to each extra hypothesis.


Definition: H0 - null hypothesis

Example, when a drug company evaluates a new drug,

the null hypothesis is that it doesn’t work.

H0 is what you want to disprove first and foremost,

you don’t want to make that error!


Next time: consider class of decision rules.

K∂ = {β : ∂1(β) ← ∂}, ∂ ⊂ [0, 1]

Minimize ∂2(β) within the class K∂


** End of Lecture 29 
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