18.05 Lecture 3

February 7, 2005
$P_{n, k}=\frac{n!}{(n-k)!}$ - choose k out of n , order counts, without replacement.
n^{k} - choose k out of n , order counts, with replacement.
$C_{n, k}=\frac{n!}{k!(n-k)!}$ - choose k out of n , order doesn't count, without replacement.

§1.9 Multinomial Coefficients

These values are used to split objects into groups of various sizes.
$s_{1}, s_{2}, \ldots, s_{n}-n$ elements such that n_{1} in group $1, n_{2}$ in group $2, \ldots, n_{k}$ in group k .
$n_{1}+\ldots+n_{k}=n$

$$
\begin{gathered}
\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{n_{3}} \times \ldots \times\binom{ n-n_{1}-\ldots-n_{k-2}}{n_{k-1}}\binom{n_{k}}{n_{k}} \\
=\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \times \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \times \frac{\left(n-n_{1}-n_{2}\right)!}{n_{3}!\left(n-n_{1}-n_{2}-n_{3}\right)!} \times \ldots \times \frac{\left(n-n_{1}-\ldots-n_{k-2}\right)!}{n_{k-1}!\left(n-n_{1}-\ldots-n_{k-1}\right)!} \times 1 \\
=\frac{n!}{n_{1}!n_{2}!\ldots n_{k-1}!n_{k}!}=\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}
\end{gathered}
$$

These combinations are called multinomial coefficients.

Further explanation: You have n "spots" in which you have n! ways to place your elements.
However, you can permute the elements within a particular group and the splitting is still the same.
You must therefore divide out these internal permutations.
This is a "distinguishable permutations" situation.
Example \#1-20 members of a club need to be split into 3 committees ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) of 8,8 , and 4 people, respectively. How many ways are there to split the club into these committees?

$$
\text { ways to split }=\binom{20}{8,8,4}=\frac{20!}{8!8!4!}
$$

Example \#2 - When rolling 12 dice, what is the probability that 6 pairs are thrown?
This can be thought of as "each number appears twice"
There are 6^{12} possibilities for the dice throws, as each of the 12 dice has 6 possible values.
In pairs, the only freedom is where the dice show up.

$$
\binom{12}{2,2,2,2,2,2}=\frac{12!}{(2!)^{6}} \leadsto \mathbb{P}=\frac{12!}{(2!)^{6} 6^{12}}=0.0034
$$

Example \#3 - Playing Bridge
Players $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D each get 13 cards.
$\mathbb{P}(A-6 \bigcirc s, B-4 \bigcirc s, C-2 \bigcirc s, D-1 \bigcirc)=$?

$$
\mathbb{P}=\frac{\binom{13}{6,4,2,1}\binom{39}{7,9,11,12}}{\binom{52}{13,13,13,13}}=\frac{\left(\text { choose } \nabla_{s}\right)(\text { choose other cards })}{\text { (ways to arrange all cards) }}=0.00196
$$

Note - If it didn't matter who got the cards, multiply by 4! to arrange people around the hands. Alternate way to solve - just track the locations of the $\odot \mathrm{s}$

$$
\mathbb{P}=\frac{\binom{13}{6}\binom{13}{4}\binom{13}{2}\binom{13}{1}}{\left(\begin{array}{l}
13
\end{array}\right)}
$$

Probabilities of Unions of Events:

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A B)
$$

$\mathbb{P}(A \cup B \cup C)=\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A B)-\mathbb{P}(B C)-\mathbb{P}(A C)+\mathbb{P}(A B C)$
§1.10-Calculating a Union of Events - \mathbb{P} (union of events)
$\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A B)$ (Figure 1)
$\mathbb{P}(A \cup B \cup C)=\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(A B)-\mathbb{P}(B C)-\mathbb{P}(A C)+\mathbb{P}(A B C)$ (Figure 2)
Theorem:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i \leq n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i} A_{j} A_{k}\right)-\ldots+(-1)^{n+1} \mathbb{P}\left(A_{i} \ldots A_{n}\right)
$$

Express each disjoint piece, then add them up according to what sets each piece
belongs or doesn't belong to.
$A_{1} \cup \ldots \cup A_{n}$ can be split into a disjoint partition of sets:

$$
A_{i 1} \cap A_{i 2} \cap \ldots \cap A_{i k} \cap A_{i(k+1)}^{c} \cap \ldots \cap A_{i n}^{c}
$$

where $\mathrm{k}=$ last set the piece is a part of.

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum \mathbb{P}(\text { disjoint partition })
$$

To check if the theorem is correct, see how many times each partition is counted.
$\mathbb{P}\left(A_{1}\right), \mathbb{P}\left(A_{2}\right), \ldots, \mathbb{P}\left(A_{k}\right)$ - k times
$\sum_{i<j} \mathbb{P}\left(A_{i} A_{j}\right)-\binom{k}{2}$ times
(needs to contain A_{i} and A_{j} in k different intersections.)
Example: Consider the piece $A \cap B \cap C^{c}$, as shown:

This piece is counted: $\mathbb{P}(A \cup B \cup C)=$ once.
$\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)=$ counted twice.
$-\mathbb{P}(A B)-\mathbb{P}(A C)-\mathbb{P}(B C)=$ subtracted once.
$+\mathbb{P}(A B C)=$ counted zero times.
The sum: 2-1+0=1, piece only counted once.
Example: Consider the piece $A_{1} \cap A_{2} \cap A_{3} \cap A_{4}^{c}$
$\mathrm{k}=3, \mathrm{n}=4$.
$\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)+\mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(A_{4}\right)=$ counted k times (3 times).
$-\mathbb{P}\left(A_{1} A_{2}\right)-\mathbb{P}\left(A_{1} A_{3}\right)-\mathbb{P}\left(A_{1} A_{4}\right)-\mathbb{P}\left(A_{2} A_{3}\right)-\mathbb{P}\left(A_{2} A_{4}\right)-\mathbb{P}\left(A_{3} A_{4}\right)=$ counted $\binom{k}{2}$ times (3 times).
as follows: $\sum_{i<j<k}=$ counted $\binom{k}{3}$ times (1 time).
total in general: $k-\binom{k}{2}+\binom{k}{3}-\binom{k}{4}+\ldots+(-1)^{k+1}\binom{k}{k}=$ sum of times counted.
To simplify, this is a binomial situation.

$$
\begin{gathered}
0=(1-1)^{k}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}(1)^{(k-i)}=\binom{k}{0}-\binom{k}{1}+\binom{k}{2}-\binom{k}{3} \ldots \\
0=1-\text { sum of times counted }
\end{gathered}
$$

therefore, all disjoint pieces are counted once.
** End of Lecture 3

