18.05 Lecture 32

May 2, 2005

Two-sample t-test

$X_{1}, \ldots, X_{m} \sim N\left(\mu_{1}, \sigma^{2}\right)$
$Y_{1}, \ldots, Y_{n} \sim N\left(\mu_{2}, \sigma^{2}\right)$
Samples are independent.
Compare the means of the distributions.

Hypothesis Tests:
$H_{1}: \mu_{1}=\mu_{2}, \mu_{1} \leq \mu_{2}$
$H_{2}: \mu_{1} \neq \mu_{2}, \mu_{1}>\mu_{2}$
By properties of Normal distribution and Fisher's theorem:

$$
\begin{gathered}
\frac{\sqrt{m}\left(\bar{x}-\mu_{1}\right)}{\sigma}, \frac{\sqrt{n}\left(\bar{y}-\mu_{2}\right)}{\sigma} \sim N(0,1) \\
\sigma_{x}^{2}=\overline{x^{2}}-(\bar{x})^{2}, \sigma_{y}^{2}=\overline{y^{2}}-(\bar{y})^{2} \\
\frac{m \sigma_{x}^{2}}{\sigma^{2}} \sim \chi_{m-1}^{2}, \frac{n \sigma_{y}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \\
\mathcal{T}=\frac{\bar{x}-\mu}{\sqrt{\frac{1}{n-1}\left(\overline{x^{2}}-(\bar{x})^{2}\right)}} \sim t_{n-1}
\end{gathered}
$$

Calculate $\bar{x}-\bar{y}$

$$
\begin{gathered}
\frac{\bar{x}-\mu_{1}}{\sigma} \sim \frac{1}{\sqrt{m}} N(0,1)=N\left(0, \frac{1}{m}\right), \frac{\bar{y}-\mu_{2}}{\sigma} \sim N\left(0, \frac{1}{n}\right) \\
\frac{\bar{x}-\mu_{1}}{\sigma}-\frac{\bar{y}-\mu_{2}}{\sigma}=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma} \sim N\left(0, \frac{1}{m}+\frac{1}{n}\right) \\
\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{m}+\frac{1}{n}}} \sim N(0,1) \\
\frac{m \sigma_{x}^{2}}{\sigma^{2}}+\frac{n \sigma_{y}^{2}}{\sigma^{2}} \sim \chi_{m+n-2}^{2}
\end{gathered}
$$

Construct the t-statistic:

$$
\begin{gathered}
\frac{N(0,1)}{\sqrt{\frac{1}{m+n-2}\left(\chi_{m+n-2}^{2}\right)}} \sim t_{m+n-2} \\
\mathcal{T}=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{m}+\frac{1}{n}} \sqrt{\frac{1}{m+n-2}\left(\frac{m \sigma_{x}^{2}+n \sigma_{y}^{2}}{\sigma^{2}}\right)}}=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{1}{m}+\frac{1}{n}\right) \frac{1}{m+n-2}\left(m \sigma_{x}^{2}+n \sigma_{y}^{2}\right)}} \sim t_{m+n-2}
\end{gathered}
$$

Construct the test:
$H_{1}: \mu_{1}=\mu_{2}, H_{2}: \mu_{1} \neq \mu_{2}$
If H_{1} is true, then:

$$
\mathcal{T}=\frac{\bar{x}-\bar{y}}{\sqrt{\left(\frac{1}{m}+\frac{1}{n}\right) \frac{1}{m+n-2}\left(m \sigma_{x}^{2}+n \sigma_{y}^{2}\right)}} \sim t_{m+n-2}
$$

Decision Rule:

$$
\delta=\left\{H_{1}:-c \leq T \leq c, H_{2}: \text { otherwise }\right\}
$$

where the c values come from the t distribution with $\mathrm{m}+\mathrm{n}-2$ degrees of freedom. $\mathrm{c}=\mathrm{T}$ value where the area is equal to $\alpha / 2$, as the failure is both below -c and above +c

If the test were: $H_{1}: \mu_{1} \leq \mu_{2}, H_{2}: \mu_{1}>\mu_{2}$,
then the \mathcal{T} value would correspond to an area in one tail, as the failure is only above +c .

There are different functions you can construct to approach the problem, based on different combinations of the data.
This is why statistics is entirely based on your assumptions and the resulting
distribution function!

Example: Testing soil types in different locations by amount of aluminum oxide present.
$m=14, \bar{x}=12.56 \sim N\left(\mu_{1}, \sigma^{2}\right) ; n=5, \bar{y}=17.32 \sim N\left(\mu_{2}, \sigma^{2}\right)$
$H_{1}: \mu_{1} \leq \mu_{2} ; H_{2}: \mu_{1}>\mu_{2} \rightarrow \mathcal{T}=-6.3 \sim t_{14+5-2=17}$

c-value is 1.74 , however this is a one-sided test. T is very negative, but we still accept H_{1} If the hypotheses were: $H_{1}: \mu_{1} \geq \mu_{2} ; H_{2}: \mu_{1}<\mu_{2}$,
Then the T value of -6.3 is way to the left of the c-value of -1.74 . Reject H_{1}

Goodness-of-fit tests.

Setup: Consider r different categories for the random variable.
The probability that a data point takes value B_{i} is p_{i}
$\sum p_{i}=p_{1}+\ldots+p_{r}=1$
Hypotheses: $H_{1}: p_{i}=p_{i}^{0}$ for all $\mathrm{i}=1, \ldots, \mathrm{r} ; H_{2}$: otherwise.
Example: (9.1.1)
3 categories exist, regarding a family's financial situation.
They are either worse, better, or the same this year as last year.
Data: Worse $=58$, Same $=64$, Better $=67(\mathrm{n}=189)$
Hypothesis: $H_{1}: p_{1}=p_{2}=p_{3}=\frac{1}{3}, H_{2}$: otherwise.
$N_{i}=$ number of observations in each category.
You would expect, under H_{1}, that $N_{1}=n p_{1}, N_{2}=n p_{2}, N_{3}=n p_{3}$
Measure using the central limit theorem:

$$
\frac{N_{1}-n p_{1}}{\sqrt{n p_{1}\left(1-p_{1}\right)}} \rightarrow N(0,1)
$$

However, keep in mind that the N_{i} values are not independent!! (they sum to 1) Ignore part of the scaling to account for this (proof beyond scope):

$$
\frac{N_{1}-n p_{1}}{\sqrt{n p_{1}}} \rightarrow \sqrt{1-p_{1}} N(0,1)=N\left(0,1-p_{1}\right)
$$

Pearson's Theorem:

$$
\mathcal{T}=\frac{\left(N_{1}-n p_{1}\right)^{2}}{n p_{1}}+\ldots+\frac{\left(N_{r}-n p_{r}\right)^{2}}{n p_{r}} \rightarrow \chi_{r-1}^{2}
$$

If H_{1} is true, then:

$$
\mathcal{T}=\sum_{i=1}^{r} \frac{\left(N_{i}-n p_{i}^{0}\right)^{2}}{n p_{i}^{0}} \rightarrow \chi_{r-1}^{2}
$$

If H_{1} is not true, then:

$$
\mathcal{T} \rightarrow+\infty
$$

Proof:

$$
\text { if } p_{1} \neq p_{1}^{0}, \frac{N_{1}-n p_{i}^{0}}{\sqrt{n p_{i}^{0}}}=\frac{N_{1}-n p_{1}}{\sqrt{n p_{1}^{0}}}+\frac{n\left(p_{1}-p_{1}^{0}\right)}{\sqrt{n p_{i}^{0}}} \rightarrow N\left(0, \sigma^{2}\right)+(\pm \infty)
$$

However, is squared $\rightarrow+\infty$
Decision Rule:

The example yields a T value of 0.666 , from the $\chi_{r-1=3-1=2}^{2}=\chi_{2}^{2}$ c is much larger, therefore accept H_{1}.
The difference among the categories is not significant.
** End of Lecture 32

