18.05 Lecture 33

May 4, 2005

Simple goodness-of-fit test:

$H_{1}: p_{i}=p_{i}^{0}, i \leq r ; H_{2}$: otherwise.

$$
\mathcal{T}=\sum_{i=1}^{r} \frac{\left(N_{i}-n p_{i}^{0}\right)^{2}}{n p_{i}^{0}} \sim \chi_{r-1}^{2}
$$

Decision Rule:

$$
\delta=\left\{H_{1}: T \leq c ; H_{2}: T>c\right\}
$$

If the distribution is continuous or has infinitely many discrete points:
Hypotheses: $H_{1}: \mathbb{P}=\mathbb{P}_{0} ; H_{2}: \mathbb{P} \neq \mathbb{P}_{0}$

Discretize the distribution into intervals, and count the points in each interval.
You know the probability of each interval by area, then, consider a finite number of intervals. This discretizes the problem.

New Hypotheses: $H_{1}^{\prime}: p_{i}=\mathbb{P}\left(X \in I_{i}\right)=\mathbb{P}_{0}\left(X \in I_{i}\right) ; H_{2}$ otherwise.
If H_{1} is true $\rightarrow H_{1}^{\prime}$ is also true.

Rule of Thumb:
$n p_{i}^{0}=n \mathbb{P}_{0}\left(X \in I_{i}\right) \geq 5$
If too small, too unlikely to find points in the interval, does not approximate the chi-square distribution well.

Example 9.1.2 \rightarrow Data $\sim N(3.912,0.25), n=23$
$H_{1}: \mathbb{P} \sim N(3.912,0.25)$
Choose k intervals $\rightarrow p_{i}^{0}=\frac{1}{k}$
$n\left(\frac{1}{k}\right) \geq 5 \rightarrow \frac{23}{k} \geq 5, k=4$

$N(3.912,0.25) \sim X \rightarrow \frac{X-3.912}{\sqrt{0.25}} \sim N(0,1)$
Dividing points: $c_{1}, c_{2}=3.912, c_{3}$
Find the normalized dividing points by the following relation:

$$
\frac{c_{i}-3.912}{0.5}=c_{i}^{\prime}
$$

The c_{i}^{\prime} values are from the std. normal distribution.
$\rightarrow c_{1}^{\prime}=-0.68 \rightarrow c_{1}=-0.68(0.5)+3.912=3.575$
$\rightarrow c_{2}^{\prime}=0 \rightarrow c_{2}=0(0.5)+3.912=3.912$
$\rightarrow c_{3}^{\prime}=0.68 \rightarrow c_{3}=0.68(0.5)+3.912=4.249$
Then, count the number of data points in each interval.
Data: $N_{1}=3, N_{2}=4, N_{3}=8, N_{4}=8 ; n=23$
Calculate the T statistic:

$$
T=\frac{(3-23(0.25))^{2}}{23(0.25}+\ldots+\frac{(8-23(0.5))^{2}}{23(0.25)}=3.609
$$

Now, decide if T is too large.
$\alpha=0.05$ - significance level.
$\chi_{r-1}^{2} \rightarrow \chi_{3}^{2}, c=7.815$

Decision Rule:
$\delta=\left\{H_{1}: T \leq 7.815 ; H_{2}: T>7.815\right\}$
$T=3.609<7.815$, conclusion: accept H_{1}
The distribution is relatively uniform among the intervals.

Composite Hypotheses:

$H_{1}: p_{i}=p_{i}(\theta), i \leq r$ for $\theta \in \Theta$ - parameter set.
H_{2} : not true for any choice of θ
Step 1: Find θ that best describes the data.
Find the MLE of θ
Likelihood Function: $\psi(\theta)=p_{1}(\theta)^{N_{1}} p_{2}(\theta)^{N-2} \times \ldots \times p_{r}(\theta)^{N_{r}}$
Take the \log of $\psi(\theta) \rightarrow$ maximize $\rightarrow \widehat{\theta}$
Step 2: See if the best choice of $\widehat{\theta}$ is good enough.
$H_{1}: p_{i}=p_{i}(\widehat{\theta})$ for $i \leq r, H_{2}:$ otherwise.

$$
T=\sum_{i=1}^{r} \frac{\left(N_{i}-n p_{i}(\widehat{\theta})\right)^{2}}{n p_{i}(\widehat{\theta})} \sim \chi_{r-s-1}^{2}
$$

where s-dimension of the parameter set, number of free parameters.
Example: $N\left(\mu, \sigma^{2}\right) \rightarrow s=2$
If there are a lot of free parameters, it makes the distribution set more flexible.
Need to subtract out this flexibility by lowering the degrees of freedom.

Decision Rule:
$\delta=\left\{H_{1}: T \leq c ; H_{2}: T>c\right\}$
Choose c from χ_{r-s-1}^{2} with area $=\alpha$

Example: (pg. 543)
Gene has 2 possible alleles A_{1}, A_{2}
Genotypes: $A_{1} A_{1}, A_{1} A_{2}, A_{2} A_{2}$
Test that $\mathbb{P}\left(A_{1}\right)=\theta, \mathbb{P}\left(A_{2}\right)=1-\theta$,
but you only observe genotype.
$H_{1}: \mathbb{P}\left(A_{1} A_{2}\right)=2 \theta(1-\theta) \leftarrow N_{2}$
$\mathbb{P}\left(A_{1} A_{1}\right)=\theta^{2} \leftarrow N_{1}$
$\mathbb{P}\left(A_{2} A_{2}\right)=(1-\theta)^{2}-\leftarrow N_{3}$
$\mathrm{r}=3$ categories.
$\mathrm{s}=1($ only 1 parameter, $\theta)$

$$
\begin{gathered}
\psi(\theta)=\left(\theta^{2}\right)^{N_{1}}(2 \theta(1-\theta))^{N_{2}}\left((1-\theta)^{2}\right)^{N_{3}}=2^{N_{2}} \theta^{2 N_{1}+N_{2}}(1-\theta)^{2 N_{3}+N_{2}} \\
\log \psi(\theta)=N_{2} \log 2+\left(2 N_{1}+N_{2}\right) \log \theta+\left(2 N_{3}+N_{2}\right) \log (1-\theta) \\
\frac{\partial}{\partial \theta}=\frac{2 N_{1}+N_{2}}{\theta}-\frac{2 N_{3}+N_{2}}{1-\theta}=0 \\
\left(2 N_{1}+N_{2}\right)(1-\theta)-\left(2 N_{3}+N_{2}\right) \theta=0 \\
\widehat{\theta}=\frac{2 N_{1}+N_{2}}{2 N_{1}+2 N_{2}+2 N_{3}}=\frac{2 N_{1}+N_{2}}{2 n}
\end{gathered}
$$

compute $\widehat{\theta}$ based on data.
$p_{i}^{0}=\widehat{\theta}^{2}, p_{2}^{0}=2 \widehat{\theta}(1-\widehat{\theta}), p_{3}^{0}=(1-\widehat{\theta})^{2}$

$$
\mathcal{T}=\sum \frac{\left(N_{i}-n p_{i}^{0}\right)^{2}}{n p_{i}^{0}} \sim \chi_{r-s-1}^{2}=\chi_{1}^{2}
$$

For an $\alpha=0.05, \mathrm{c}=3.841$ from the χ_{1}^{2} distribution.
Decision Rule:
$\delta=\left\{H_{1}: T \leq 3.841 ; H_{2}: T>3.841\right\}$
** End of Lecture 33

