18.05 Lecture 5 February 14, 2005

§2.2 Independence of events. $\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)};$ Definition - A and B are independent if $\mathbb{P}(A|B) = \mathbb{P}(A)$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} = \mathbb{P}(A) \rightsquigarrow \mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

Experiments can be physically independent (roll 1 die, then roll another die), or seem physically related and still be independent.

Example: $A = \{odd\}, B = \{1, 2, 3, 4\}$. Related events, but independent. $\mathbb{P}(A) = \frac{1}{2} \cdot \mathbb{P}(B) = \frac{2}{3} \cdot AB = \{1, 3\}$ $\mathbb{P}(AB) = \frac{1}{2} \times \frac{2}{3} = \mathbb{P}(AB) = \frac{1}{3}, \text{ therefore independent.}$

Independence does not imply that the sets do not intersect.

Disjoint \neq Independent.

If A, B are independent, find $\mathbb{P}(AB^c)$ $\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$ $AB^c = A \setminus AB$, as shown:

so, $\mathbb{P}(AB^c) = \mathbb{P}(A) - \mathbb{P}(AB)$ $= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$ $= \mathbb{P}(A)(1 - \mathbb{P}(B))$ $= \mathbb{P}(A)\mathbb{P}(B^c)$ therefore, A and B^c are independent as well.

similarly, A^c and B^c are independent. See Pset 3 for proof.

Independence allows you to find $\mathbb{P}(\text{intersection})$ through simple multiplication.

Example: Toss an unfair coin twice, these are independent events. $\mathbb{P}(H) = p, 0 \le p \le 1$, find $\mathbb{P}("TH") =$ tails first, heads second $\mathbb{P}("TH") = \mathbb{P}(T)\mathbb{P}(H) = (1-p)p$ Since this is an unfair coin, the probability is **not** just $\frac{1}{4}$ If fair, $\frac{TH}{HH+HT+TH+TT} = \frac{1}{4}$

If you have several events: $A_1, A_2, ..., A_n$ that you need to prove independent: It is necessary to show that **any** subset is independent. Total subsets: $A_{i1}, A_{i2}, ..., A_{ik}, 2 \le k \le n$ Prove: $\mathbb{P}(A_{i1}A_{i2}...A_{ik}) = \mathbb{P}(A_{i1})\mathbb{P}(A_{i2})...\mathbb{P}(A_{ik})$ You could prove that any 2 events are independent, which is called "pairwise" independence, but this is not sufficient to prove that all events are independent.

Example of pairwise independence: Consider a tetrahedral die, equally weighted. Three of the faces are each colored red, blue, and green, but the last face is multicolored, containing red, blue and green. $\mathbb{P}(\text{red}) = 2/4 = 1/2 = \mathbb{P}(\text{blue}) = \mathbb{P}(\text{green})$ $\mathbb{P}(\text{red and blue}) = 1/4 = 1/2 \times 1/2 = \mathbb{P}(\text{red})\mathbb{P}(\text{blue})$ Therefore, the pair {red, blue} is independent. The same can be proven for {red, green} and {blue, green}. but, what about all three together? $\mathbb{P}(\text{red, blue, and green}) = 1/4 \neq \mathbb{P}(\text{red})\mathbb{P}(\text{blue})\mathbb{P}(\text{green}) = 1/8$, not fully independent.

Example: $\mathbb{P}(H) = p, \mathbb{P}(T) = 1 - p$ for unfair coin Toss the coin 5 times $\rightsquigarrow \mathbb{P}("HTHTT") = \mathbb{P}(H)\mathbb{P}(T)\mathbb{P}(H)\mathbb{P}(T)\mathbb{P}(T)$ $= p(1-p)p(1-p)(1-p) = p^2(1-p)^3$

Example: Find $\mathbb{P}(\text{get } 2\text{H and } 3\text{T}, \text{ in any order})$ = sum of probabilities for ordering

 $= \mathbb{P}(HHTTT) + \mathbb{P}(HTHTT) = \dots$ = $p^2(1-p)^3 + p^2(1-p)^3 + \dots$ = $\binom{5}{2}p^2(1-p)^3$

General Example: Throw a coin n times, $\mathbb{P}(k \text{ heads out of n throws})$

$$= \binom{n}{k} p^k (1-p)^{n-k}$$

Example: Toss a coin until the result is "heads;" there are n tosses before H results. $\mathbb{P}(\text{number of tosses} = n) = ?$

needs to result as "TTT....TH," number of T's = (n - 1)

$$\mathbb{P}(\text{tosses} = \mathbf{n}) = \mathbb{P}(TT...H) = (1-p)^{n-1}p$$

Example: In a criminal case, witnesses give a specific description of the couple seen fleeing the scene. $\mathbb{P}(\text{random couple meets description}) = 8.3 \times 10^{-8} = p$

We know at the beginning that 1 couple exists. Perhaps a better question to be asked is: Given a couple exists, what is the probability that another couple fits the same description? $\mathbb{P}(2 \text{ couples exists})$

 $A = \mathbb{P}(\text{at least 1 couple}), B = \mathbb{P}(\text{at least 2 couples}), \text{ find } \mathbb{P}(B|A)$ $\mathbb{P}(B|A) = \frac{\mathbb{P}(BA)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$ Out of n couples, $\mathbb{P}(A) = \mathbb{P}(\text{at least 1 couple}) = 1 - \mathbb{P}(\text{no couples}) = 1 - \prod_{i=1}^{n} (1-p)$ *Each* couple doesn't satisfy the description, if no couples exist. Use independence property, and multiply. $\mathbb{P}(A) = 1 - (1-p)^n$ $\mathbb{P}(B) = \mathbb{P}(\text{at least two}) = 1 - \mathbb{P}(0 \text{ couples}) - \mathbb{P}(\text{exactly 1 couple})$ $= 1 - (1-p)^n - n \times p(1-p)^{n-1}$, keep in mind that $\mathbb{P}(\text{exactly 1})$ falls into $\mathbb{P}(\text{k out of n})$

$$\mathbb{P}(B|A) = \frac{1 - (1 - p)^n - np(1 - p)^{n-1}}{1 - (1 - p)^n}$$

If n = 8 million people, $\mathbb{P}(B|A) = 0.2966$, which is within reasonable doubt! $\mathbb{P}(2 \text{ couples}) < \mathbb{P}(1 \text{ couple})$, but given that 1 couple exists, the probability that 2 exist is not insignificant.

In the large sample space, the probability that B occurs when we know that A occured is significant!

§2.3 Bayes's Theorem

It is sometimes useful to separate a sample space S into a set of disjoint partitions:

 $B_1, ..., B_k$ - a partition of sample space S.

 $\begin{array}{l} B_i \cap B_j = \emptyset, \text{ for } i \neq j, S = \bigcup_{i=1}^k B_i \text{ (disjoint)} \\ \text{Total probability: } \mathbb{P}(A) = \sum_{i=1}^k \mathbb{P}(AB_i) = \sum_{i=1}^k \mathbb{P}(A|B_i) \mathbb{P}(B_i) \\ \text{(all } AB_i \text{ are disjoint, } \bigcup_{i=1}^k AB_i = A) \end{array}$

** End of Lecture 5