18.05 Lecture 5

February 14, 2005

§2.2 Independence of events.

$\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A B)}{\mathbb{P}(B)} ;$
Definition - A and B are independent if $\mathbb{P}(A \mid B)=\mathbb{P}(A)$

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A B)}{\mathbb{P}(B)}=\mathbb{P}(A) \leadsto \mathbb{P}(A B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Experiments can be physically independent (roll 1 die, then roll another die), or seem physically related and still be independent.
Example: $\mathrm{A}=\{\operatorname{odd}\}, \mathrm{B}=\{1,2,3,4\}$. Related events, but independent. $\mathbb{P}(A)=\frac{1}{2} \cdot \mathbb{P}(B)=\frac{2}{3} \cdot A B=\{1,3\}$
$\mathbb{P}(A B)=\frac{1}{2} \times \frac{2}{3}=\stackrel{\mathbb{P}}{ }(A B)=\frac{1}{3}$, therefore independent.
Independence does not imply that the sets do not intersect.

Disjoint \neq Independent.
If A, B are independent, find $\mathbb{P}\left(A B^{c}\right)$
$\mathbb{P}(A B)=\mathbb{P}(A) \mathbb{P}(B)$
$A B^{c}=A \backslash A B$, as shown:

so, $\mathbb{P}\left(A B^{c}\right)=\mathbb{P}(A)-\mathbb{P}(A B)$
$=\mathbb{P}(A)-\mathbb{P}(A) \mathbb{P}(B)$
$=\mathbb{P}(A)(1-\mathbb{P}(B))$
$=\mathbb{P}(A) \mathbb{P}\left(B^{c}\right)$
therefore, A and B^{c} are independent as well.
similarly, A^{c} and B^{c} are independent. See Pset 3 for proof.

Independence allows you to find \mathbb{P} (intersection) through simple multiplication.

Example: Toss an unfair coin twice, these are independent events.
$\mathbb{P}(H)=p, 0 \leq p \leq 1$, find $\mathbb{P}\left(" T H^{\prime \prime}\right)=$ tails first, heads second $\mathbb{P}\left(" T H^{\prime \prime}\right)=\mathbb{P}(T) \mathbb{P}(H)=(1-p) p$
Since this is an unfair coin, the probability is not just $\frac{1}{4}$
If fair, $\frac{T H}{H H+H T+T H+T T}=\frac{1}{4}$
If you have several events: $A_{1}, A_{2}, \ldots A_{n}$ that you need to prove independent:
It is necessary to show that any subset is independent.
Total subsets: $A_{i 1}, A_{i 2}, \ldots, A_{i k}, 2 \leq k \leq n$
Prove: $\mathbb{P}\left(A_{i 1} A_{i 2} \ldots A_{i k}\right)=\mathbb{P}\left(A_{i 1}\right) \mathbb{P}\left(A_{i 2}\right) \ldots \mathbb{P}\left(A_{i k}\right)$
You could prove that any 2 events are independent, which is called "pairwise" independence, but this is not sufficient to prove that all events are independent.

Example of pairwise independence:
Consider a tetrahedral die, equally weighted.
Three of the faces are each colored red, blue, and green,
but the last face is multicolored, containing red, blue and green.
$\mathbb{P}($ red $)=2 / 4=1 / 2=\mathbb{P}($ blue $)=\mathbb{P}($ green $)$
$\mathbb{P}($ red and blue $)=1 / 4=1 / 2 \times 1 / 2=\mathbb{P}($ red $) \mathbb{P}($ blue $)$
Therefore, the pair $\{$ red, blue $\}$ is independent.
The same can be proven for $\{$ red, green $\}$ and \{blue, green $\}$.
but, what about all three together?
$\mathbb{P}($ red, blue, and green $)=1 / 4 \neq \mathbb{P}($ red $) \mathbb{P}($ blue $) \mathbb{P}($ green $)=1 / 8$, not fully independent.
Example: $\mathbb{P}(H)=p, \mathbb{P}(T)=1-p$ for unfair coin
Toss the coin 5 times $\leadsto \mathbb{P}$ ("HTHTT")
$=\mathbb{P}(H) \mathbb{P}(T) \mathbb{P}(H) \mathbb{P}(T) \mathbb{P}(T)$
$=p(1-p) p(1-p)(1-p)=p^{2}(1-p)^{3}$
Example: Find \mathbb{P} (get 2 H and 3 T , in any order)
$=$ sum of probabilities for ordering
$=\mathbb{P}(H H T T T)+\mathbb{P}(H T H T T)=\ldots$
$=p^{2}(1-p)^{3}+p^{2}(1-p)^{3}+\ldots$
$=\binom{5}{2} p^{2}(1-p)^{3}$
General Example: Throw a coin n times, $\mathbb{P}(\mathrm{k}$ heads out of n throws $)$

$$
=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Example: Toss a coin until the result is "heads;" there are n tosses before H results.
$\mathbb{P}($ number of tosses $=\mathrm{n})=$?
needs to result as "TTT....TH," number of T's $=(\mathrm{n}-1)$

$$
\mathbb{P}(\text { tosses }=\mathrm{n})=\mathbb{P}(T T \ldots H)=(1-p)^{n-1} p
$$

Example: In a criminal case, witnesses give a specific description of the couple seen fleeing the scene.
$\mathbb{P}($ random couple meets description $)=8.3 \times 10^{-8}=p$
We know at the beginning that 1 couple exists. Perhaps a better question to be asked is:
Given a couple exists, what is the probability that another couple fits the same description?
$\mathbb{P}(2$ couples exists $)$
$A=\mathbb{P}$ (at least 1 couple), $B=\mathbb{P}$ (at least 2 couples), find $\mathbb{P}(B \mid A)$
$\mathbb{P}(B \mid A)=\frac{\mathbb{P}(B A)}{\mathbb{P}(A)}=\frac{\mathbb{P}(B)}{\mathbb{P}(A)}$

Out of n couples, $\mathbb{P}(A)=\mathbb{P}($ at least 1 couple $)=1-\mathbb{P}($ no couples $)=1-\prod_{i=1}^{n}(1-p)$
Each couple doesn't satisfy the description, if no couples exist.
Use independence property, and multiply.
$\mathbb{P}(A)=1-(1-p)^{n}$
$\mathbb{P}(B)=\mathbb{P}($ at least two $)=1-\mathbb{P}(0$ couples $)-\mathbb{P}($ exactly 1 couple $)$
$=1-(1-p)^{n}-n \times p(1-p)^{n-1}$, keep in mind that $\mathbb{P}($ exactly 1$)$ falls into $\mathbb{P}(\mathrm{k}$ out of n$)$

$$
\mathbb{P}(B \mid A)=\frac{1-(1-p)^{n}-n p(1-p)^{n-1}}{1-(1-p)^{n}}
$$

If $\mathrm{n}=8$ million people, $\mathbb{P}(B \mid A)=0.2966$, which is within reasonable doubt!
$\mathbb{P}(2$ couples $)<\mathbb{P}(1$ couple $)$, but given that 1 couple exists, the probability that 2 exist is not insignificant.

In the large sample space, the probability that B occurs when we know that A occured is significant!

$\S 2.3$ Bayes's Theorem

It is sometimes useful to separate a sample space S into a set of disjoint partitions:

B_{1}, \ldots, B_{k} - a partition of sample space S .
$B_{i} \cap B_{j}=\emptyset$, for $i \neq j, S=\bigcup_{i=1}^{k} B_{i}$ (disjoint)
Total probability: $\mathbb{P}(A)=\sum_{i=1}^{k} \mathbb{P}\left(A B_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right)$
(all $A B_{i}$ are disjoint, $\bigcup_{i=1}^{k} A B_{i}=A$)
** End of Lecture 5

