18.05 Lecture 6 February 16, 2005

Solutions to Problem Set #1

1-1 pg. 12 #9 $B_n = \bigcup_{i=n}^{\infty} A_i, C_n = \bigcap_{i=n}^{\infty} A_i$ a) $B_n \supset B_{n+1}...$ $B_n = A_n \cup (\bigcup_{i=n+1}^{\infty} A_i) = A_n \cup B_{n+1}$ $s \in B_{n+1} \Rightarrow s \in B_{n+1} \cup A_n = B_n$ $C_n \subset C_{n+1}...$ $C_n = A_n \cap C_{n+1}$ $s \in C_n = A_n \cap C_{n+1} \Rightarrow s \in C_{n+1}$ b) $s \in \bigcap_{n=1}^{\infty} B_n \Rightarrow s \in B_n$ for all n $s \in \bigcup_{i=1}^{\infty} A_i$ for all $n \Rightarrow s \in$ some A_i for $i \ge n$, for all n $\Rightarrow s \in$ infinitely many events $A_i \Rightarrow A_i$ happen infinitely often. c) $s \in \bigcup_{n=1}^{\infty} C_n \Rightarrow s \in$ some $C_n = \bigcap_{i=n}^{\infty} A_i \Rightarrow$ for some $n, s \in$ all A_i for $i \ge n$ $\Rightarrow s \in$ all events starting at n.

1-2 pg. 18 #4 P(at least 1 fails) = 1 - P(neither fail) = 1 - 0.4 = 0.6

1-3 pg. 18 #12 A_1, A_2, \dots $B_1 = A_1, B_2 = A_1^c A_2, \dots, B_n = A_1^c \dots A_{n-1}^c A_n$ $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(B_i) \text{ splits the union into disjoint events, and covers the entire space.}$ follows from: $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$ take point (s) in $\bigcup_{i=1}^{n} A_i, \Rightarrow s \in \text{at least one} \Rightarrow s \in A_1 = B_1,$ if not, $s \in A_1^c$, if $s \in A_2$, then $s \in A_1^c A_2 = B_2$, if not... etc. at some point, the point belongs to a set. The sequence stops when $s \in A_1^c \cap A_2^c \cap ... \cap A_{k-1}^c \cap A_k = B_k$ $\Rightarrow s \in \bigcup_{i=1}^{n} B_i \cdot P(\bigcup_{i=1}^{n} A_i) = P(\bigcup_{i=1}^{n} B_i)$ $=\sum_{i=1}^{n} P(B_i)$ if B_i 's are disjoint. Should also prove that the point in B_i belongs in A_i . Need to prove B_i 's disjoint - by construction: $B_i, B_j \Rightarrow B_i = A_i^c \cap ... \cap A_{i-1}^c \cap A_i$ $B_j = A_1^c \cap \ldots \cap A_i^c \cap \ldots \cap A_{j-1}^c \cap A_j$ $s \in B_i \Rightarrow s \in A_i, s' \in B_j \Rightarrow s' \notin A_i.$ \Rightarrow implies that $s \neq s'$ 1-4 pg. 27 #5 $\#(S) = 6 \times 6 \times 6 \times 6 = 6^4$ $#(all different) = 6 \times 5 \times 4 \times 3 = P_{6.4}$ $P(\text{all different}) = \frac{P_{6,4}}{6^4} = \frac{5}{18}$

1-5 pg. 27 #7 12 balls in 20 boxes. P(no box receives > 1 ball, each box will have 0 or 1 balls) also means that all balls fall into different boxes. $\#(S) = 20^{12}$ $\#(\text{all different}) = 20 \times 19... \times 9 = P_{20,12}$

$$P(...) = \frac{P_{20,12}}{20^{12}}$$

1-6 pg. 27 #10 100 balls, r red balls. $A_i = \{ \text{draw red at step i} \}$ think of arranging the balls in 100 spots in a row. **a)** $P(A_1) = \frac{r}{100}$ **b)** $P(A_{50})$ sample space = sequences of length 50. $\#(S) = 100 \times 99 \times ... \times 50 = P_{100,50}$ $\#(A_{50}) = r \times P_{99,49}$ red on 50. There are 99 balls left, r choices to put red on 50. $P(A_{50}) = \frac{r}{100}$, same as part a. **c)** As shown in part b, the particular draw doesn't matter, probability is the same. $P(A_{100}) = \frac{r}{100}$

1-7 pg. 34 #6 Seat n people in n spots. #(S) = n! #(AB sit together) =? visualize n seats, you have n-1 choices for the pair. 2(n-1) ways to seat the pair, because you can switch the two people. but, need to account for the (n-2) people remaining! #(AB) = 2(n-1)(n-2)!therefore, $P = \frac{2(n-1)!}{n!} = \frac{2}{n}$ or, think of the pair as 1 entity. There are (n-1) entities, permute them, multiply by 2 to swap the pair.

1-8 pg. 34 #11
Out of 100, choose 12.
$$\#(S) = \binom{100}{12}$$

 $\#(AB \text{ are on committee}) = \binom{98}{10}$, choose 10 from the 98 remaining.
 $\mathbb{P} = \frac{\binom{98}{10}}{\binom{100}{12}}$

1-9 pg. 34 #16 50 states × 2 senators each. **a)** Select 8 , $\#(S) = \binom{100}{8}$ $\#(\text{state 1 or state 2}) = \binom{98}{6}\binom{2}{2} + \binom{2}{1}\binom{98}{7}$ or, calculate: 1 – $\mathbb{P}(\text{neither chosen}) = 1 - \frac{\binom{98}{8}}{\binom{100}{8}}$ **b)** $\#(\text{one senator from each state}) = 2^{50}$ select group of 50 = $\binom{100}{50}$

1-10 pg. 34 #17 In the sample space, only consider the positions of the aces in the hands. $\#(S) = \binom{52}{4}, \#(\text{all go to 1 player}) = 4 \times \binom{13}{4}$ $\mathbb{P} = 4 \times \frac{\binom{13}{4}}{\binom{52}{4}}$

1 - 11

r balls, n boxes, no box is empty. first of all, put 1 ball in each box from the beginning. r-n balls remain to be distributed in n boxes.

$$\binom{n+(r-n)-1}{r-n} = \binom{r-1}{r-n}$$

1 - 12

30 people, 12 months. $\mathbb{P}(6 \text{ months with 3 birthdays, 6 months with 2 birthdays})$ $\#(S) = 12^{30}$ Need to choose the 6 months with 3 or 2 birthdays, then the multinomial coefficient:

$$\#(\text{possibilities}) = \binom{12}{6} \binom{30}{3,3,3,3,3,3,3,2,2,2,2,2,2}$$

** End of Lecture 6