18.05 Lecture 6

February 16, 2005

Solutions to Problem Set \#1

$\mathbf{1 - 1}$ pg. $12 \# 9$
$B_{n}=\bigcup_{i=n}^{\infty} A_{i}, C_{n}=\bigcap_{i=n}^{\infty} A_{i}$
a) $B_{n} \supset B_{n+1} \cdots$
$B_{n}=A_{n} \cup\left(\bigcup_{i=n+1}^{\infty} A_{i}\right)=A_{n} \cup B_{n+1}$
$s \in B_{n+1} \Rightarrow s \in B_{n+1} \cup A_{n}=B_{n}$
$C_{n} \subset C_{n+1} \cdots$
$C_{n}=A_{n} \cap C_{n+1}$
$s \in C_{n}=A_{n} \cap C_{n+1} \Rightarrow s \in C_{n+1}$
b) $s \in \bigcap_{n=1}^{\infty} B_{n} \Rightarrow s \in B_{n}$ for all n
$s \in \bigcup_{i=1}^{\infty} A_{i}$ for all $\mathrm{n} \Rightarrow s \in$ some A_{i} for $i \geq n$, for all n
$\Rightarrow s \in$ infinitely many events $A_{i} \Rightarrow A_{i}$ happen infinitely often.
c) $s \in \bigcup_{n=1}^{\infty} C_{n} \Rightarrow s \in$ some $C_{n}=\bigcap_{i=n}^{\infty} A_{i} \Rightarrow$ for some $\mathrm{n}, \mathrm{s} \in$ all A_{i} for $i \geq n$ $\Rightarrow s \in$ all events starting at n.

1-2 pg. $18 \# 4$
$P($ at least 1 fails $)=1-P($ neither fail $)=1-0.4=0.6$
1-3 pg. $18 \# 12$
A_{1}, A_{2}, \ldots
$B_{1}=A_{1}, B_{2}=A_{1}^{c} A_{2}, \ldots, B_{n}=A_{1}^{c} \ldots A_{n-1}^{c} A_{n}$
$P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(B_{i}\right)$ splits the union into disjoint events, and covers the entire space.
follows from: $\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n} B_{i}$
take point (s) in $\bigcup_{i=1}^{n} A_{i}, \Rightarrow s \in$ at least one $\Rightarrow s \in A_{1}=B_{1}$,
if not, $s \in A_{1}^{c}$, if $s \in A_{2}$, then $s \in A_{1}^{c} A_{2}=B_{2}$, if not... etc.
at some point, the point belongs to a set.
The sequence stops when $s \in A_{1}^{c} \cap A_{2}^{c} \cap \ldots \cap A_{k-1}^{c} \cap A_{k}=B_{k}$
$\Rightarrow s \in \bigcup_{i=1}^{n} B_{i} . P\left(\bigcup_{i=1}^{n} A_{i}\right)=P\left(\bigcup_{i=1}^{n} B_{i}\right)$
$=\sum_{i=1}^{n} P\left(B_{i}\right)$ if B_{i} 's are disjoint.
Should also prove that the point in B_{i} belongs in A_{i}. Need to prove B_{i} 's disjoint - by construction:
$B_{i}, B_{j} \Rightarrow B_{i}=A_{i}^{c} \cap \ldots \cap A_{i-1}^{c} \cap A_{i}$
$B_{j}=A_{1}^{c} \cap \ldots \cap A_{i}^{c} \cap \ldots \cap A_{j-1}^{c} \cap A_{j}$
$s \in B_{i} \Rightarrow s \in A_{i}, s^{\prime} \in B_{j} \Rightarrow s^{\prime} \notin A_{i}$.
\Rightarrow implies that $s \neq s^{\prime}$
1-4 pg. $27 \# 5$
$\#(S)=6 \times 6 \times 6 \times 6=6^{4}$
$\#($ all different $)=6 \times 5 \times 4 \times 3=P_{6,4}$
$P($ all different $)=\frac{P_{6,4}}{6^{4}}=\frac{5}{18}$
1-5 pg. $27 \# 7$
12 balls in 20 boxes.
P (no box receives >1 ball, each box will have 0 or 1 balls) also means that all balls fall into different boxes.
$\#(S)=20^{12}$
$\#($ all different $)=20 \times 19 \ldots \times 9=P_{20,12}$
$P(\ldots)=\frac{P_{20,12}}{20^{12}}$
1-6 pg. $27 \# 10$
100 balls, r red balls.
$A_{i}=\{$ draw red at step i $\}$
think of arranging the balls in 100 spots in a row.
a) $P\left(A_{1}\right)=\frac{r}{100}$
b) $P\left(A_{50}\right)$
sample space $=$ sequences of length 50 .
$\#(S)=100 \times 99 \times \ldots \times 50=P_{100,50}$
$\#\left(A_{50}\right)=r \times P_{99,49}$ red on 50. There are 99 balls left, r choices to put red on 50.
$P\left(A_{50}\right)=\frac{r}{100}$, same as part a.
c) As shown in part b, the particular draw doesn't matter, probability is the same.
$P\left(A_{100}\right)=\frac{r}{100}$
1-7 pg. $34 \# 6$
Seat n people in n spots.
$\#(S)=n$!
$\#(\mathrm{AB}$ sit together $)=$?
visualize n seats, you have $n-1$ choices for the pair.
$2(\mathrm{n}-1)$ ways to seat the pair, because you can switch the two people.
but, need to account for the ($\mathrm{n}-2$) people remaining!
$\#(A B)=2(n-1)(n-2)$!
therefore, $P=\frac{2(n-1)!}{n!}=\frac{2}{n}$
or, think of the pair as 1 entity. There are (n-1) entities, permute them, multiply by 2 to swap the pair.

1-8 pg. $34 \# 11$
Out of 100 , choose $12 . \#(S)=\binom{100}{12}$
$\#(A B$ are on committee $)=\binom{98}{10}$, choose 10 from the 98 remaining.
$\mathbb{P}=\frac{\left(\begin{array}{c}98 \\ 100 \\ 100\end{array}\right)}{\left(\begin{array}{c}12\end{array}\right)}$
1-9 pg. $34 \# 16$
50 states $\times 2$ senators each.
a) Select $8, \#(S)=\binom{100}{8}$
$\#($ state 1 or state 2$)=\binom{98}{6}\binom{2}{2}+\binom{2}{1}\binom{98}{7}$
or, calculate: $1-\mathbb{P}($ neither chosen $)=1-\frac{\binom{98}{8}}{\binom{100}{8}}$
b) $\#($ one senator from each state $)=2^{50}$
select group of $50=\binom{100}{50}$
1-10 pg. $34 \# 17$
In the sample space, only consider the positions of the aces in the hands.
$\#(S)=\binom{52}{4}, \#($ all go to 1 player $)=4 \times\binom{ 13}{4}$
$\mathbb{P}=4 \times \frac{\binom{13}{4}}{\binom{52}{4}}$

1-11

r balls, n boxes, no box is empty.
first of all, put 1 ball in each box from the beginning.
$r-n$ balls remain to be distributed in n boxes.

$$
\binom{n+(r-n)-1}{r-n}=\binom{r-1}{r-n}
$$

1-12
30 people, 12 months.
$\mathbb{P}(6$ months with 3 birthdays, 6 months with 2 birthdays $)$
$\#(S)=12^{30}$
Need to choose the 6 months with 3 or 2 birthdays, then the multinomial coefficient:

$$
\#(\text { possibilities })=\binom{12}{6}\binom{30}{3,3,3,3,3,3,2,2,2,2,2,2}
$$

** End of Lecture 6

