
MIT Open Access Articles

A Circuitous Route to Noncoding RNA

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wilusz, J. E., and P. A. Sharp. “A Circuitous Route to Noncoding RNA.” Science 340, no. 
6131 (April 25, 2013): 440–441.

As Published: http://dx.doi.org/10.1126/science.1238522

Publisher: American Association for the Advancement of Science (AAAS)

Persistent URL: http://hdl.handle.net/1721.1/96798

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/96798
http://creativecommons.org/licenses/by-nc-sa/4.0/


A Circuitous Route to Noncoding RNA

Jeremy E. Wilusz and Phillip A. Sharp
Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA.

Most genetic information is expressed as, and transacted by, proteins. Yet, less than 2% of

the human genome actually codes for proteins, prompting a search for functions for the other

98% of the genome, once considered to be mostly “junk DNA.” Transcription is pervasive,

however, and high-throughput sequencing has identified tens of thousands of distinct RNAs

generated from the non–protein–coding portion of the genome (1). These so-called

noncoding RNAs vary in length, but like protein-coding RNAs, appear to be linear

molecules with 5′ and 3′ termini, reflecting the defined start and end points of RNA

polymerase on the DNA template. But do all RNAs have to be linear?

Circular RNAs that have covalently linked ends are found in pathogens such as viroids

(virus-like infectious particles), circular satellite viruses, and hepatitis delta virus—which

causes severe liver disease in humans infected with hepatitis B and replicates by a rolling-

circle–based mechanism (2). A handful of circular RNAs generated from eukaryotic

genomes have also been identifi ed (3, 4), but their role is unclear as they are generated by

seemingly rare errors in RNA splicing. Because eukaryotes contain split genes, their

precursor mRNAs (pre-mRNAs) must be modified such that noncoding introns are removed

and protein-coding exons are joined together (see the figure). In these rare cases that

generated circular RNAs, the splicing machinery failed to join the 3′ end of one exon to the

5′ end of the next and instead appeared to mis-splice by, for example, joining the two ends

of a single exon together. High-throughput sequencing data combined with new

computational algorithms (5– 8) have now revealed thousands of circular RNAs in species

ranging from humans to archaea.

Human fibroblasts alone have more than 25,000 circular RNAs (5). Derived from ~15% of

actively transcribed genes, these circles contain mostly exonic sequences (usually between

one and five exons). Large numbers of circular RNAs accumulate in the cytoplasm of cells,

sometimes exceeding the abundance of the associated linear mRNA by a factor of 10 (5, 7).

This is likely because circular RNAs are resistant to degradation by many cellular RNA

decay machineries, which recognize the ends of linear RNAs.

For a subset of circular RNAs, the circularization signals appear to be evolution-arily

conserved, as some were detected in both human and mouse (5, 6). The splicing machinery

is very likely involved in their biogenesis as canonical splicing signals generally

immediately flank their sequences. However, the exact mechanism by which the splicing
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machinery selects particular regions to circularize is still unclear. The presence of inverted

repeats in the surround ing introns and/or exon skipping events may play a role (3, 5, 9).

One particular circular RNA found predominantly in human and mouse brain is ~1500

nucleotides in length and, surprisingly, contains more than 70 evolutionarily conserved

binding sites for the microRNA miR-7 (6, 9). MicroRNAs are ~21-nucleotide RNAs that

function by base pairing to mRNAs and repressing protein production and/or causing

mRNA degradation (10). However, a microRNA can bind to any transcript that contains a

complementary sequence and, indeed, this circular RNA may efficiently bind ~20,000

miR-7 microRNAs per cell (6), thereby preventing miR-7 from binding other RNAs.

Consistent with a “sponging” model (11), decreasing expression of this circular RNA in

cells caused mRNAs containing miR-7 binding sites to also decrease in number, indicative

of increased binding of miR-7 to these mRNAs leading to their degradation (6, 9).

Additional circular RNAs may function similarly to regulate the activity of other

microRNAs because, in general, microRNA binding sites are abundant in circular RNAs (6).

For example, in the mouse, sex-determining region Y (Sry) plays a key role in testes

development and generates a circular RNA that contains 16 miR-138 binding sites (9).

Circular RNAs thus join a growing class of naturally occurring microRNA “sponges,” which

includes competing endogenous RNAs and pseudogene (nonfunctional gene) RNAs (12).

Compared to competing endogenous RNAs and pseudogene RNAs, however, circular RNAs

are likely much more potent microRNA sponges as they are expressed in greater amounts

and contain many more microRNA binding sites. Furthermore, unlike competing

endogenous RNAs, circular RNAs appear to be resistant to RNA degradation triggered by

microRNAs and thus could have long half-lives (9).

Beyond regulating microRNAs, circular RNAs may bind and sequester RNA-binding

proteins or even base pair with RNAs besides microRNAs, resulting in the formation of

large RNA-protein complexes. Other circular RNAs may produce proteins, given that

synthetic circular RNAs can be efficiently translated (13). As even linear mRNAs are

thought to circularize during translation through protein-protein interactions between factors

binding the 5′ and 3′ ends of the mRNA, RNA circularization, whether by direct covalent

bonds or noncovalent means such as protein bridging or Watson-Crick base pairing, may be

much more common than is currently appreciated. The discovery of such a large class of

previously unknown RNAs also raises the question of what other RNAs might have been

missed. Considering that RNA structural elements, such as triple helices, efficiently prevent

degradation from RNA termini (14), it is becoming increasingly clear that the cell uses a

myriad of distinct ways to process and stabilize RNA molecules.

A class of circular RNAs that regulates microRNAs is abundant in mammalian cells.
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Circular RNAs sequester microRNAs
Noncoding introns [flanked by splice sites (ss)] are removed from premRNA by the splicing

machinery and a poly(A) tail is added to prevent mRNA degradation (left). Linear mRNA is

then translated by ribosomes unless it becomes bound by microRNAs that are associated

with argonaute (Ago) protein. The latter interaction inhibits translation and/or promotes

mRNA degradation. The splicing machinery can also “backsplice” and generate circular

RNAs whose 5′ and 3′ ends are covalently linked (right). Large numbers of these circular

RNAs sequester microRNAs from binding mRNA targets.
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