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1 Introduction

In proton-proton (pp) collisions, Standard Model (SM) processes rarely produce two iso-

lated leptons with large transverse momentum (pT) and the same electric charge (same-

sign). However, such signatures frequently occur in models of physics beyond the SM.

Supersymmetry [1], universal extra dimensions [2], left-right symmetric models [3–6], see-

saw models [7–14], vector-like quarks [15–20], the Zee-Babu neutrino mass model [21–23],

and the coloured Zee-Babu model [24] could all give rise to final states with two same-

sign leptons.

An inclusive search in events with pairs of isolated same-sign leptons is presented in this

paper. The dilepton pairs are selected in the pp collision data corresponding to 20.3 fb−1

– 1 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
1

of integrated luminosity taken in 2012 at a centre-of-mass energy of
√
s = 8 TeV with

the ATLAS detector [25] at the Large Hadron Collider (LHC). The same-sign dilepton

pairs can be either two electrons (e±e±), two muons (µ±µ±), or one electron and one

muon (e±µ±), and must have a transverse momentum (pT) of at least 25 (20) GeV for

the leading (subleading) lepton. After selection of these pairs the resulting invariant mass

distributions are examined. The data are found to be consistent with the SM background

predictions, and exclusion limits are set on the fiducial cross-section of new physics in

the same-sign dilepton final state. Limits are also provided separately for two positively or

negatively charged leptons as a function of the dilepton invariant mass. The analysis, using

the 8TeV dataset, provides significantly stronger constraints on new physics models than

that presented in earlier ATLAS publications using 4.7 fb−1 of pp collision data recorded

at
√
s = 7TeV [26, 27]. Exclusion limits are also presented for the mass of pair-produced

doubly charged Higgs bosons (H±±) [27]. The CDF experiment has performed similar

inclusive searches [28, 29] without observing any evidence for new physics. This search

is more inclusive than other similar searches at ATLAS and CMS in events with same-

sign dileptons with additional requirements on missing transverse energy, jets, and charged

particles [30–36]. Recently, the ATLAS experiment published limits on doubly charged

Higgs production in multi-lepton events [37] based on the
√
s = 8 TeV data.

2 The ATLAS detector

From the inside to the outside, the ATLAS detector comprises an inner tracking detector

(ID), electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID

is embedded in a 2 T axial magnetic field produced by a superconducting solenoid and

provides precision tracking within the pseudorapidity1 range |η| < 2.5. It consists of a

silicon pixel detector, a semiconductor tracker (SCT) using silicon microstrip detectors,

and, in the region |η| < 2, a transition-radiation straw tube tracker (TRT).

The calorimeter system consists of electromagnetic and hadronic components and cov-

ers the pseudorapidity range |η| < 4.9. The electromagnetic calorimeter is a lead/liquid-

argon sampling calorimeter. It covers |η| < 3.2 with a fine lateral and longitudinal seg-

mentation up to |η| = 2.5, and is subdivided into a barrel (|η| < 1.4) and two endcaps

(1.5 < |η| < 3.2). The steel/scintillator-tile hadronic calorimeter provides coverage up to

|η| = 1.7, while the hadronic calorimeter in the endcap (1.5 < |η| < 3.2) and in the forward

region (3.1 < |η| < 4.9) uses liquid argon technology.

The muon spectrometer uses toroidal magnetic fields generated by three large super-

conducting magnet systems with eight coils each. The detector is made up of separate

trigger and high-precision tracking chambers. The precision chambers cover the region

|η| < 2.7 with three layers of monitored drift tube chambers, complemented by cathode

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the

centre of the detector and the z-axis along the beam line. The x-axis points from the interaction point to

the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the

transverse plane, φ being the azimuthal angle around the beam line. The pseudorapidity is defined in terms

of the polar angle θ as η = − ln tan(θ/2).
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strip chambers in the forward region. The trigger system covers the range |η| < 2.4 using

resistive plate chambers in the barrel and thin-gap chambers in the endcap regions.

A three-level trigger system is used to select events. The first level is implemented

in custom electronics, and is followed by two software-based trigger levels. This system

selects from the collision rate of around 20 MHz about 400 Hz of events to be recorded for

physics analyses.

More details about the detector and the trigger system can be found elsewhere [25].

3 Background and signal simulation

Monte Carlo (MC) simulations are used to estimate the background contributions and

also to model hypothetical signal events. The MC background samples used are shown

in table 1. For each process the table provides information on the generator, the chosen

parton distribution function (PDF) and the order of cross-section calculations used for

the normalisation.

The irreducible background in the analysis comes mainly from the purely leptonic

decays of WZ and ZZ production processes. A small contribution arises from W±W±

production [38], which proceeds via the t-channel exchange of a gluon and results in at

least two jets in the final state, in addition to the two W bosons. The small contributions

from multiple parton interactions (MPI) for WW , WZ and ZZ are also considered. In

these processes two hard scatterings occur in the same pp collision, each producing either

a W or Z boson. Other smaller sources of background are the processes in which a W

or Z boson is produced in association with a top-quark pair (tt̄W and tt̄Z). One of the

reducible backgrounds arises from the opposite-sign lepton pairs where the charge for one

of the leptons is wrongly reconstructed. In order to estimate the contribution, Drell-Yan

(Z/γ∗+jets), tt̄, W±W∓ and Wt simulations are used, and misidentification probabilities

derived from data are applied to the MC samples (see section 6.2). The process Wγ, where

the photon converts to an e+e− pair, is also simulated. The production of Zγ is included

in the Z/γ∗ process.

The MC program sherpa-1.4.1 [39] is used to model the WZ, ZZ, W±W∓ and Wγ

processes. These samples use the default sherpa parameterisation for the renormalisation

and factorisation scales. For processes with a Z boson, the contribution from γ∗ → ℓ+ℓ−

due to internal or external bremsstrahlung of final-state quarks or leptons is simulated for

m(ℓ+ℓ−) > 0.1 GeV. The tt̄W , tt̄Z and W±W± events are generated using MadGraph-

5.1.4.8 [40, 41], and for the fragmentation and hadronisation, pythia-6.426 [42] is used

for tt̄W and tt̄Z and pythia-8.165 [43] for W±W±. The MPI samples are generated

by pythia-8.165. The Drell-Yan process is modelled using alpgen-2.14 [44], and the

top-quark pair production and single top-quark production in association with a W boson

are generated with mc@nlo-4.06 [45, 46]. These are interfaced to herwig-6.520 [47, 48]

for the fragmentation and hadronisation process, and jimmy-4.31 [49] is used for the

underlying-event description.

The CT10 [50] PDF set is used for WZ, ZZ, W±W∓, Wγ, tt̄, and Wt processes

and CTEQ6L1 for others. The cross-sections for MPI diboson and W±W± produc-
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Process Generator PDF set Normalisation

+ fragmentation/ based on

hadronisation

WZ sherpa-1.4.1 [39] CT10 [50]
NLO QCD

with mcfm-6.2[51]

ZZ sherpa-1.4.1 CT10
NLO QCD

with mcfm-6.2

W±W± MadGraph-5.1.4.8 [40]
CTEQ6L1 [52] LO QCD

pythia-8.165 [43]

tt̄V , MadGraph-5.1.4.8
CTEQ6L1 NLO QCD [53, 54]

V = W,Z + pythia-6.426

MPI V V
pythia-8.165[43] CTEQ6L1 LO QCD

V = W,Z

Z/γ∗+ jets
alpgen-2.14 [44]

CTEQ6L1
dynnlo-1.1 [55] with

+ herwig-6.520 [47, 48] MSTW2008 NNLO [56]

tt̄
mc@nlo-4.06 [45, 46]

CT10
NNLO+NNLL

+ herwig-6.520 QCD [57–62]

Wt
mc@nlo-4.06

CT10
NNLO+NNLL

+ herwig-6.520 QCD [63, 64]

W±W∓ sherpa-1.4.1 CT10
NLO QCD

with mcfm-6.2

Wγ sherpa-1.4.1 CT10
NLO QCD

with mcfm-6.3

Table 1. Generated samples used for background estimates. The generator, PDF set and order of

cross-section calculations used for the normalisation are shown for each sample. The upper part of

the table shows the MC samples used for the SM background coming from leptons with the same

charge (MPI stands for multiple parton interactions), the lower part gives the background sources

arising in the e±e± or e±µ± channel due to electron charge misidentification.

tion are calculated at leading order (LO) in QCD. For diboson samples (WZ, ZZ and

WW ), the cross-sections are normalised to next-to-leading order (NLO) in QCD using

mcfm-6.2 [51]. The QCD next-to-next-to-leading-order (NNLO) and next-to-next-to-

leading-logarithm (NNLL) calculations are utilised for top-quark processes [53, 54, 57–

64]. The Drell-Yan cross-section is also calculated at NNLO in QCD by dynnlo-1.1 with

MSTW2008 NNLO [55, 56].

Some typical same-sign dilepton signals of physics beyond the SM are simulated to

evaluate the efficiency and acceptance of the event selection, which are needed to set the

cross-section limits (see section 8.2). Pair production of doubly charged Higgs bosons via

a virtual Z/γ∗ exchange is generated [65]. Right-handed W bosons (WR) decaying to a

charged lepton and a right-handed neutrino (NR) are also used [66]. The production of a

fourth-generation heavy b′b̄′ pair with the b′ quarks decaying into a W boson and either

a top quark or an up-type quark is considered [67]. The above processes are generated

using pythia-8.165. MadGraph is used to simulate the coloured Zee-Babu process, in
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which a diquark (SDQ) with charge ±2/3 or ±4/3 decays into two same-sign leptoquarks

(SLQ): pp → SDQ → SLQSLQ → ℓℓqq [24]. For this process, pythia-8.165 is utilised

for the fragmentation and hadronisation. For all signal samples mentioned above, the

MSTW2008LO PDF set is used and cross-sections are calculated at LO in QCD.

The background and some of the signal samples are processed using the geant4-

based [68] ATLAS detector simulation package [69]. Other signal samples are produced

with a fast simulation [70] using a parameterisation of the calorimeter response. Additional

inelastic pp interactions (referred to as ‘pile-up’), generated with pythia-6.426, are overlaid

on the hard-scatter events to emulate the multiple pp interactions in the current and nearby

bunch crossings. The distribution of the number of interactions per bunch crossing in the

MC simulation is reweighted to that observed in the data. The simulated response is

also corrected for differences in efficiencies, momentum scales, and momentum resolutions

observed between data and simulation.

4 Physics object reconstruction

The analysis makes use of muons and electrons and the basic reconstruction and identifi-

cation is explained in the following. In addition, the jet reconstruction is detailed as jets

misidentified as electrons are a main source of background and as electrons and muons in

the vicinity of a jet are not considered in this analysis.

Jets are reconstructed in |η| < 4.9 from topological clusters [71] formed from the energy

deposits in the calorimeter, using the anti-kt algorithm [72] with a radius parameter of 0.4.

Jets are calibrated [73] using an energy- and η-dependent simulation-based calibration

scheme, with in-situ corrections based on data. The impact of multiple overlapping pp

interactions is accounted for using a technique that provides an event-by-event and jet-by-

jet pile-up correction [74]. To reduce the effect from pile-up, for jets with pT < 50 GeV,

|η| < 2.4, the pT of all tracks inside the jet is summed and the fraction belonging to tracks

from the primary vertex is required to be larger than 0.5. The primary vertex is defined

as the interaction vertex which has the highest squared-pT sum of associated tracks with

pT > 0.4 GeV found in the event. At least three charged-particle tracks must be associated

with this vertex.

An electron is formed from a cluster of cells in the electromagnetic calorimeter asso-

ciated with a track in the ID. The electron pT is obtained from the calorimeter energy

measurement and the direction of the associated track. The electron must be within the

range |η| < 2.47 and not in the transition region between the barrel and endcap calorime-

ters (1.37 < |η| < 1.52). In addition, a “tight” [75] set of identification criteria need

to be satisfied. One major source of background surviving these selections comes from

jets misidentified as electrons. To suppress this background, in particular at low pT, the

electrons are required to be isolated. The sum of the transverse energies in the electro-

magnetic and hadronic calorimeter cells around the electron direction in a cone of size

∆R =
√

(∆η)2 + (∆φ)2 = 0.2 is required to be less than 3 GeV + (peT − 20 GeV)× 0.037,

where peT is the electron transverse momentum. The core of the electron energy depositions

in the electromagnetic calorimeter is excluded and, before the cut, the sum is corrected

for lateral shower leakage and pile-up from additional pp collisions. A further isolation cut
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is applied using the ID information. The sum of the pT of all tracks with pT > 0.4 GeV

in a cone of size ∆R = 0.3 surrounding the electron track (the latter being excluded from

the sum) is required to be less than 10% of the electron pT. The isolation selections were

optimised using electron pairs with a mass compatible with the Z boson in the data, such

that the application of both isolation criteria to electrons yields an efficiency that is pile-

up independent and more than 99% for electrons with pT > 40 GeV. The efficiency slowly

decreases with diminishing pT to around 92% at pT = 20 GeV. However, these isolation

selections help to suppress the background from jets misidentified as electrons, which be-

comes more prominent as pT decreases. To further suppress leptons from hadron decays,

jets in a cone of size ∆R = 0.4 around the electron direction are examined. Since the jet

reconstruction algorithm also reconstructs electrons as jets, any jet within ∆R = 0.2 of

an electron is not considered to avoid double counting. The electron is rejected if there is

a remaining jet in the cone with pT > 25 GeV + peT × 0.05, where peT is the electron pT.

The non-constant cut value on the jet pT is placed to maintain a high efficiency for very

high-pT electrons. The background arising in particular from electrons from heavy-flavour

decays is reduced by requiring that the electron track is associated with the primary vertex.

The transverse impact parameter significance is required to be |d0|/σ(d0) < 3, where d0
is the transverse impact parameter and σ(d0) is the uncertainty on the measured d0. The

longitudinal impact parameter z0 must fulfil |z0 × sin θ| < 1 mm.

Muons are reconstructed independently in both the ID and MS. Subsequently, these

two tracks are combined based on a statistical combination of the two independent mea-

surements using the parameters of the reconstructed tracks and their covariance matrices.

The combined track is required to be within |η| < 2.5 and the track in the ID must have

at least four hits in the SCT, at least one hit in the pixel detector and one hit in the first

pixel layer if an active pixel sensor is traversed. The charge measured in the ID and the

MS must match as this reduces the small effect of charge misidentification to a negligible

level. To reduce background from heavy-flavour hadron decays, each muon is required to

be isolated in the calorimeter and the ID. The calorimeter-based isolation is chosen to be
∑

ET < 3.5 GeV + (pµT − 20 GeV) × 0.06 where the
∑

ET is calculated in a cone of size

∆R = 0.3 and pµT is the muon transverse momentum. The ID-based isolation is defined

as (
∑

pT)/p
µ
T < 0.07, where the sum runs over ID tracks with pT > 1 GeV in a cone of

size ∆R = 0.3 surrounding the muon track, the latter being excluded from the sum. These

isolation cuts result in an efficiency for muons from Z decays in data which is above 99% for

muons with pµT > 40 GeV and decreases to around 90% at pµT = 20 GeV. As for electrons,

with diminishing pT the background becomes more pronounced and these cuts result in a

better background rejection. To further reduce the background a nearby jet veto is applied,

similar to that for electrons: a muon is rejected if a jet with pT > 25 GeV+pµT×0.05 is found

in a cone of size ∆R = 0.4 around the muon. The muons are required to be associated with

the primary vertex by requiring |d0|/σ(d0) < 3, |d0| < 0.2 mm and |z0 × sin θ| < 1 mm.

5 Data and event selection

This analysis uses the 2012 pp collision data collected at a centre-of-mass energy of 8 TeV

with, on average, 21 interactions per bunch crossing. After requiring that all detector

components are operational, the dataset amounts to 20.3 fb−1 of integrated luminosity.
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The events are selected by electron and muon triggers. Events in the µ±µ± channel are

selected by a dimuon trigger, which requires one muon with transverse momentum larger

than 18 GeV and another muon with pT > 8 GeV. At the trigger level, muons are identified

by requiring that the candidate muon tracks are reconstructed in both the MS and the

ID. Dielectron events are recorded if the event contains two electrons with a pT larger

than 12 GeV that satisfy the “loose” identification criteria. In the e±µ± channel events

are selected by the trigger if both an electron and a muon (eµ) are found or if a high-pT
electron is identified. For the eµ trigger the electron must have pT > 12 GeV satisfying

the “medium” set of identification criteria, whereas the muon must have pT > 8 GeV. The

high-pT electron trigger selects events containing electrons, which satisfy the “medium”

identification criteria and have pT > 60 GeV. These triggers yield a sample of dilepton

events with high efficiency over the whole pT range considered in this analysis.

The selected events must have a reconstructed primary vertex and contain lepton pairs

with pT > 25 GeV for the leading lepton and pT > 20 GeV for the subleading one. These

leptons must have the same electric charge, meet the above selection requirements, and

have an invariant mass m(ℓℓ′) > 15 GeV. To reduce the background from leptons from Z

boson decays, events in which an opposite-sign, same-flavour lepton pair is found to be

consistent with the invariant mass of the Z boson (|mℓℓ −mZ | < 10 GeV) are rejected. In

the e±e± channel, electron pairs in the mass range between 70 GeV and 110 GeV are vetoed

as this region is used for the background estimates (see section 6.2). Any combination of

two leptons with the same charge and with pT > 25 GeV and pT > 20 GeV respectively is

included. This allows more than one lepton pair per event to be considered, which happens

in fewer than 0.1% of the events.

6 Background estimation

The backgrounds in this search can be subdivided into prompt background, backgrounds

from SM processes with two opposite-sign leptons where the charge of one of the leptons is

misidentified and non-prompt background. Prompt leptons originate from a decay of a W

boson, Z boson, and include any leptonic products of a prompt τ lepton decay. Non-prompt

leptons are from decays of long-lived particles and mainly arise from semileptonic decays of

heavy-flavour hadrons (containing b or c-quarks). Hadrons or overlapping hadrons within

a jet which may be misidentified as an electron are also called non-prompt leptons in the

following. The prompt background comes from SM processes producing two same-sign

leptons from the primary vertex, and arises mainly from WZ,ZZ, W±W±, tt̄W , and tt̄Z

production (see section 6.1). The method used to estimate the background from lepton

charge misidentification is described in section 6.2. Background from non-prompt leptons

can arise from various sources and is discussed in section 6.3. For electrons, the main

sources are jets misidentified as electrons and semileptonic decays of hadrons containing b-

or c-quarks. For muons, the main contribution arises from semileptonic decays of heavy-

flavour hadrons. Small contributions also come from pions and kaons that decay in flight

and misidentified muons from hadronic showers in the calorimeter which reach the MS and

are incorrectly matched to a reconstructed ID track.
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6.1 Background from prompt same-sign lepton pairs

The background from SM processes in which prompt same-sign lepton pairs are produced

is determined from MC simulations. Processes other than those listed in table 1 do not

contribute significantly to this type of background and are neglected. In all of these samples,

only reconstructed leptons are considered that are matched to a lepton at generator level

from a decay of a W boson, a Z boson, and include any leptonic products of a prompt τ

lepton decay. Leptons from any other sources are discarded to avoid double counting with

the background from non-prompt leptons.

6.2 Background from opposite-sign lepton pairs

Monte Carlo samples are also used to simulate the contributions from processes in which

opposite-sign lepton pairs are produced and one of the leptons has an incorrect charge as-

signed. In principle, this charge misidentification can occur for muons as well as electrons.

However, a study using muons from Z boson decays shows that this effect is negligible in

this analysis. In the case of electrons, the dominant process that leads to charge misiden-

tification is electrons emitting hard bremsstrahlung and subsequently producing electron-

positron pairs by photon conversion, with one of these leptons having a high pT. Typically

these conversions would be reconstructed as such, but in some asymmetric conversions

only one of the tracks is reconstructed and the charge may be opposite to the charge of

the original lepton that radiated the photon. The charge misidentification probability is

measured using electrons from Z boson decays. This is done in a data-driven way using the

same likelihood method as used in ref. [26]. The electrons are required to pass the same

selection cuts as detailed in sections 4 and 5, and are selected by requiring same-sign elec-

tron pairs with an invariant mass between 80 GeV and 100 GeV. This results in a very pure

sample of electron pairs for which the charge of one of the electrons is incorrectly assigned.

A comparison between data and MC events shows that the charge misidentification rate

as a function of ET is well modelled in the simulation. Simulation is used to predict the

backgrounds from Drell-Yan, tt̄, and W±W∓ production, correcting the event weights for

events with a charge-misidentified electron by an |η|-dependent factor derived from these

studies. The process V γ → ℓℓ′γ → ℓℓ′ee, V = W,Z can also give rise to same-sign lepton

pairs when the photon converts. Since this background is closely related to the electron

charge misidentification, the same correction factor is applied to the electrons from con-

verted photons in the MC simulation. The contribution of conversions from Zγ events is

implicitly accounted for in the simulation of the Z/γ∗ process and is included in the charge

misidentification category.

The uncertainty in the measurement of the charge misidentification rate is estimated

by varying the invariant mass window and by loosening the isolation criteria. The total

systematic error varies between 6% and 20% depending on the pseudorapidity. For tracks

with very high pT, the charge can be incorrectly assigned due to the imperfect resolu-

tion and alignment of the detector, since the curvature of the tracks is very small. An

additional uncertainty of 20% is assigned to the misidentification rate for electrons with

pT > 100 GeV, based on the following study. Since the charge misidentification rate is

– 8 –
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affected by the detector material description in the simulation, simulations with different

material descriptions2 are compared with the nominal simulation. The largest variation is

found in the endcap region and this difference is taken as the overall uncertainty.

6.3 Background from non-prompt leptons

The background from non-prompt and misidentified leptons is determined in a data-driven

way as a function of the lepton pT and |η|. For both the electrons and the muons (see sec-

tions 6.3.1 and 6.3.2) the following method is used to predict the contribution of non-prompt

leptons in the signal region. A background region is defined that contains predominantly

non-prompt leptons or jets that are kinematically similar to those in the signal region.

A factor f is determined, which is the ratio of the number of leptons satisfying a given

selection criterion (NP) to the number of leptons, which do not meet this requirement but

satisfy a less stringent criterion (NF),

f =
NP −Nprompt

P

NF −Nprompt
F

. (6.1)

This ratio, which is determined as a function of pT and |η|, is corrected for the residual

contribution of prompt leptons (Nprompt
P and Nprompt

F ) using MC simulations. The factors

f are calculated separately for the different pass and fail criteria that apply to the signal

and validation regions discussed in sections 4 and 6.4, respectively.

The total number of events with non-prompt leptons, NNP, in a given signal or vali-

dation region is predicted to be

NNP =

NPl+Fs
∑

i

fs(pTi, |ηi|) +
NFl+Ps
∑

i

fl(pTi, |ηi|)−
NFl+Fs
∑

i

fl(pTi, |ηi|)× fs(pTi, |ηi|). (6.2)

The first term is the number of pairs NPl+Fs , where the leading lepton (denoted by l) fulfils

the selection requirements (Pl) and the subleading lepton (denoted by s) fails to satisfy

its selection criteria (Fs). This is weighted per pair by the factor fs of the subleading

lepton (the lepton which failed). Similarly for the second term, the leading lepton fails

its selection (Fl) and the subleading lepton satisfies its respective selection criteria (Ps),

hence the weight per pair is given by the factor fl for the leading lepton. The last term

is included to avoid double counting and represents the case where both the leading and

subleading leptons fail to satisfy their respective criteria, and so a weight for each lepton is

needed. The factors fl and fs are taken to be the same in regions where both leptons fulfil

the same selection requirement, as in the signal region and some of the validation regions.

6.3.1 Measurement of f for muons

In the case of muons the factor f is determined using a background region that contains

mainly muons from semileptonic decays of b- and c-hadrons. This region is defined by taking

advantage of the long lifetimes of b- and c-hadrons. Events are selected containing same-

sign muon pairs that fulfil the same selection criteria as for the signal region (see section 4),

2These simulations contain the following additional material: 5% in the whole of the ID, 20% for the

pixel and SCT services each, 15% X0 at the end of the SCT/TRT endcap and 15% X0 at the ID endplate.
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but requiring that at least one of the leptons has |d0|/σ(d0) > 3 and |d0| < 10 mm. The

same dimuon trigger as in the signal region is used here. The number of muons passing

these impact parameter cuts is subdivided in two categories: NP, which are those muons

passing the calorimeter and track-based isolation cuts, and NF, which contain those muons

which fail the calorimeter-based isolation cut, the track-based isolation cut or both. The

measured factor f is between 0.11 and 0.20 for muons with pT > 20 GeV.

Muons from b- and c-hadron decays tend to have large impact parameters, to be accom-

panied by other tracks, and to be less isolated than prompt muons, which are associated

with the primary vertex. Since the muon isolation can depend on the impact parameter, a

correction needs to be applied to the factor f in the signal region. This correction is deter-

mined using bb̄ and cc̄ MC simulations. In both the signal region and background region

f is determined and the correction is then given by the ratio of these two quantities. As

the correction factor is found to be independent of pT, the overall value of 1.3 is measured

using same-sign muon pairs with pT > 20 GeV and mµµ > 15 GeV.

The two main sources of uncertainty in this procedure come from the uncertainty

associated with the correction made to f before its use in the signal region, which comes

primarily from the statistical error on the MC sample used in its derivation, and from the

statistical uncertainties in the background data sample. Further sources of uncertainty

arise from the prompt background subtraction and a possible difference between the signal

and background region in the fraction of non-prompt muons from heavy-flavour decays and

light particles, such as pions and kaons, which decay in flight. The total uncertainty on f

is 17% at pT ≈ 20 GeV increasing to 23% for pT ≈ 60 GeV. A value of 100% is used for

pT > 100 GeV due to a lack of statistics to determine f .

6.3.2 Measurement of f for electrons

To measure f for electrons a dijet data sample is selected which contains events with either

a jet misidentified as an electron or a non-prompt electron from a semileptonic decay of b-

and c-hadrons. The selected region consists of events that contain exactly one electron with

pT > 20 GeV and a jet in the opposite azimuthal direction (∆φ(e, jet) > 2.4). The electron

has to satisfy the “medium” identification criteria, the same impact parameter cuts as for

the signal region and is rejected if, after removal of any jet within ∆R = 0.2 of the electron,

there is a remaining jet within ∆R = 0.4. These events are selected by a set of prescaled

single-electron triggers with different electron pT thresholds. To ensure that the electron

and the jet are well balanced in terms of energy, a pT > 30 GeV requirement is applied

to the jet. The different cut value from the electron case accounts for the differences in

the electron and jet energy scale calibrations and for energy depositions from other decay

products in the isolation cone around the electron direction. Electron pairs from Z/γ∗ or

tt̄ events do not satisfy the above selection criteria. To suppress electrons from W boson

decays, events are rejected if the transverse mass3 exceeds 40 GeV.

3Transverse mass mT =
√

2× Eℓ
T × Emiss

T × (1− cos∆φ), where ∆φ is the azimuthal angle between

the directions of the electron and the missing transverse momentum (with magnitude Emiss
T ). The missing

transverse momentum is defined as the momentum imbalance in the plane transverse to the beam axis and

is obtained from the negative vector sum of the momenta of all particles detected in the event [76].

– 10 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
1

Validation method Primary background or validation criterion

Weak isolation VR’s Electron and muon non-prompt background

Fail-d0 VR’s Electron and muon non-prompt background

Medium VR Electron and muon non-prompt background

Low muon pT VR Muon non-prompt background

Opposite-sign VR Normalisation, efficiencies, lepton pT scale

and resolution

Prompt VR Prompt MC background predictions

Same-sign dielectron Z peak closure test Charge misidentification correction applied to

opposite-sign MC background samples

Table 2. A summary of the validation methods used and an explanation of the type of background

the methods are testing or which data-driven estimates they validate. These tests are carried out

using validation regions (VR) or closure tests and are discussed in detail in the text.

The number NP is calculated from events in this background region for which the elec-

tron satisfies the same electron selection criteria as applied in the signal region. The value

of NF is based on electron candidates satisfying the signal selection criteria but passing less

stringent electron identification cuts (“medium”) and failing to meet the calorimeter-based

or track-based isolation requirements, or both. The numbers are corrected for the small

remaining contribution from prompt electrons (see equation (6.1)). The measured factor f

is 0.18 at pT = 20 GeV and increases to around 0.3 for pT ≈ 100 GeV. The main systematic

uncertainty is due to the jet requirements in the event selection. This effect is estimated

by varying the jet pT between 30 GeV and 50 GeV, which leads to an uncertainty rang-

ing between 10% and 30% depending on the electron pT. Other systematic uncertainties

arise from a possible difference in the heavy-flavour fraction in the signal and background

region, and the prompt background subtraction. The total uncertainty varies between ap-

proximately 40% at pT ≈ 20 GeV and 13% for pT ≈ 100 GeV. Due to a lack of statistics

to calculate f for electrons with pT > 100 GeV, the value of f for 60 < pT < 100 GeV

electrons is used, and the uncertainty is increased to 100%.

6.4 Validation of background extraction methods

The background predictions from the various sources (prompt, non-prompt and charge

misidentification) are validated using different methods, as discussed in the following and

summarised in table 2.

To test the predictions for the non-prompt background, validation regions (VR) that

contain same-sign lepton pairs are defined. In these regions one or both of the leptons fail

one of the signal selection cuts but pass a less stringent cut, which is called a “weaker”

selection in the following. The dilepton invariant mass, the lepton pT and η distributions

are compared between data and predictions.

One of the validation regions selects a leading lepton that satisfies the signal selection

criteria and a subleading lepton that passes the “weak” isolation cuts, which means the

subleading lepton fails to meet the signal calorimeter or ID-based isolation requirement

and instead passes isolation cuts that are loosened by 4 GeV (weak isolation on subleading

lepton VR). For this region, the factor f for the subleading lepton is determined according
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Figure 1. Invariant mass distributions in one of the validation regions (VR) used in the (a) e±e±

(b) e±µ± and (c) µ±µ± channels. The pT distribution for the leading muon in the µ±µ± channel

is shown in (d). In (a), (c) and (d) the leading lepton of the pair passes the signal isolation cuts

while the subleading lepton passes the “weak” isolation cuts (weak isolation on subleading lepton

VR). The mass range between 70 GeV and 110 GeV is not included in the e±e± channel as this

region is used to estimate the background from charge misidentification. The electron passes the

isolation cuts defined for the signal region while the muon passes the “weak” isolation cuts in (b)

(weak isolation on muon VR). The data are compared to the background expectations and the lower

panels show the ratio of data to the background prediction. The error bars on the data points show

the statistical uncertainty and the dashed band shows the total uncertainties of the predictions.

The last bin in the histograms includes overflows, and is normalised as though it is 50 GeV wide in

(a)–(c) and 20 GeV wide in (d).

to equation (6.1) using as pass criteria the “weak” isolation requirements and as fail criteria

the loose isolation criteria applied in the “weak” selection. The invariant mass distributions

for the three final states in this validation region are shown in figure 1 together with one

example for the pT distribution. The predictions agree well with the data.
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Number of electron pairs

Region Predictions Data Difference/σ

Weak isolation on both leptons VR 280± 130 285 0.0

Weak isolation on leading lepton VR 190± 60 224 −0.6

Weak isolation on subleading lepton VR 620± 120 574 +0.4

Medium VR 195± 32 217 −0.7

Opposite-sign VR 4740000± 330000 4895830 −0.5

Prompt VR with mℓ±ℓ± > 15 GeV 275± 23 268 +0.3

Z peak closure test 12700± 1300 11793 +0.7

Number of electron-muon pairs

Region Predictions Data Difference/σ

Weak isolation on muon VR 790± 130 800 −0.1

Weak isolation on electron VR 750± 150 965 −1.4

Fail-d0 VR 249± 19 216 +1.7

Low muon pT VR 211± 12 201 +0.8

Opposite-sign VR 70400± 4700 71771 −0.3

Prompt VR with mℓ±ℓ± > 15 GeV 950± 60 1001 −0.8

Number of muon pairs

Region Predictions Data Difference/σ

Weak isolation on both leptons VR 280± 40 283 −0.1

Weak isolation on leading lepton VR 199± 25 199 0.0

Weak isolation on subleading lepton VR 697± 90 652 +0.5

Fail-d0 VR 250± 31 255 −0.2

Opposite-sign VR 8144000± 10000 8216983 −0.7

Prompt VR with mℓ±ℓ± > 15 GeV 651± 43 714 −1.5

Table 3. Expected and observed numbers of lepton pairs for the different validation regions,

explained in detail in the text. The uncertainties on the predictions include the statistical and

systematic uncertainties. The column ‘Difference/σ’ is calculated by dividing the difference between

the predictions and the data by the uncertainty (σ) of the prediction.

In another validation region the “weak” isolation selection is applied to the leading

lepton (weak isolation on leading lepton VR). In the µ±µ± and e±µ± channel one valida-

tion region (fail-d0 VR) requires that one muon has an impact parameter significance of

|d0|/σ(d0) > 3 and in order to increase the statistics the |d0| cut is loosened to 10 mm. In

the e±e± final state one region (medium VR) contains same-sign electron pairs, in which

one of the electrons fails the “tight” identification cuts but passes the looser “medium” se-

lections instead. One region (low muon pT VR) used in the e±µ± channel selects same-sign

electron-muon pairs, where both leptons satisfy the signal selection criteria but the muon

has a transverse momentum between 18 GeV and 20 GeV.

To test the trigger and reconstruction efficiencies, as well as the lepton momentum

scale and resolution, an opposite-sign validation region (opposite-sign VR) is defined. This

region is populated with prompt lepton pairs that pass the same event selection as for the
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Source Process Uncertainty

e±e± e±µ± µ±µ±

Trigger
Signal and background

2.1-2.6% 2.1-2.6% 2.1–2.6%
from MC simulations

Electron reconstruction Signal, prompt
1.9–2.7% 1.4%

and identification background

Muon reconstruction Signal, prompt
0.28% 0.6%

and identification background

Electron charge Opposite-sign
9% 1.2%

misidentification backgrounds

Determination of Non-prompt
22% 24% 17%

factor f for e/µ backgrounds

Luminosity
Signal and background

2.8% 2.8% 2.8%
from MC simulations

MC statistics
Backgrounds from

5% 1.6% 1.3%
MC simulations

Photon misidentification
Wγ 13% 11%

as electron

MC cross-sections
Prompt, opposite-

4% 2.5% 4%
sign backgrounds

Table 4. Sources of systematic uncertainty (in %) on the signal yield and the expected background

predictions, described in the second column, for the mass range mℓℓ > 15 GeV.

same-sign signal region, but the leptons have opposite charge. In order to cross-check the

normalisation of the dominant WZ and ZZ MC predictions, a prompt validation region

(prompt VR) is utilised. Events are selected in which at least three leptons are present.

One pair must be from a same-sign lepton pair and another from an opposite-sign same-

flavour lepton pair that has an invariant mass (mℓℓ) compatible with the Z boson mass

(|mℓℓ −mZ| < 10 GeV). The data and predictions are compared for different cuts on the

invariant mass of the same-sign lepton pair. To test the correction factor for the charge

misidentification (see section 6.2), the factor f is applied to simulated Z decays into an

electron pair where one electron is reconstructed with the wrong charge. A closure test

is carried out in the region around the Z peak. This test shows that the shape of the

background from charge misidentification is correctly reproduced.

In all channels and validation regions the agreement between observation and predic-

tion is good, as can be seen in table 3. The agreement between data and predictions is

typically better than 1σ and at most 1.7σ.

7 Systematic uncertainties

The systematic uncertainties considered in this analysis are summarised in table 4. Ex-

perimental systematic uncertainties arise from the trigger selection and the lepton recon-
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struction and identification. These include the effects of the energy scale and resolution

uncertainties. Also shown is the overall uncertainty in the e±e± and e±µ± channels from

electron charge misidentification (discussed in section 6.2) and the non-prompt background

estimation (presented in section 6.3).

The uncertainty on the integrated luminosity is 2.8%. It is derived following the same

methodology as that detailed in ref. [77]. Another systematic uncertainty is due to the

limited number of events available in the MC samples and also the data control samples

used for the background predictions. The overall effect from the MC samples used per

channel is shown in table 4. Systematic uncertainties on different physics processes from the

same source are assumed to be 100% correlated. An example is the charge misidentification

rate uncertainty for the Z/γ∗, tt̄, WW and Wγ samples.

Theoretical uncertainties on the production cross-section arise from the choice of renor-

malisation and factorisation scales in the fixed-order calculations as well as the uncertainties

on the PDF sets and the value of the strong coupling constant αs used in the perturbative

expansion. The uncertainties due to the renormalisation and factorisation scales are found

by varying the scales by a factor of two relative to their nominal values. The PDF and

αs uncertainties are determined using different PDF sets and PDF error sets following the

recommendations documented in ref. [78]. The uncertainties on the MC modelling of back-

ground processes are estimated by testing different generators as well as parton shower and

hadronisation models. The resulting total cross-section uncertainties are 7% for WZ [79],

5% for ZZ [79], and 22% for tt̄V [54, 80]. The uncertainties on W±W± cross-sections and

diboson production in MPI processes are taken to be 50% and 100% respectively, but their

contributions to the final results are small.

8 Results and interpretation

8.1 Signal region

The invariant mass distributions for the data and the expected SM background are shown in

figure 2, separately for the e±e±, e±µ± and µ±µ± final states. In general, good agreement

is seen in both the total normalisation and shapes for all channels within the uncertainties.

The last bin in the figures contains the overflow bin. There is no event in the overflow in the

µ±µ± channel, while the mass distribution extends up to around 1300 (1100) GeV in the

e±e± (e±µ±) channel. The expected and observed numbers of events for several cuts on the

dilepton mass for each final state are given in table 5, which also shows the contributions

from the different background types. In the e±e± channel the dominant background contri-

bution comes from charge misidentification of electrons from the Drell-Yan process. In the

e±µ± and µ±µ± channel the prompt production dominates the background. The prompt

background predominantly arises from WZ boson production, which amounts to around

70% of the prompt background. This fraction slightly decreases for high-mass dilepton

pairs. Other contributions are from ZZ and W±W± production and a very small fraction

comes from the tt̄W and tt̄Z production or from diboson production in MPI processes.

For dilepton masses mℓℓ > 500 GeV, the contribution from W±W± and ZZ to the prompt
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Figure 2. Invariant mass distribution of (a) e±e± (b) e±µ± and (c) µ±µ± pairs as a function of

a threshold on the dilepton mass in the same-sign signal region. The mass range between 70 GeV

and 110 GeV is not included in the e±e± channel as this region is used to estimate the background

from charge misidentification. The data are compared to the SM expectations and the lower panels

show the ratio of data to the background prediction. The error bars on the data points show the

statistical uncertainty and the dashed band shows the total uncertainties of the predictions. The

last bin in the histograms includes overflows, and is normalised as though it is 50 GeV wide.

background becomes more pronounced with W±W± being the largest contribution to the

prompt background for mℓℓ > 600 GeV in the µ±µ± channel.

Table 6 shows a similar comparison of the data with the SM expectation separately for

ℓ+ℓ+ and ℓ−ℓ− pairs. Due to the contribution of the valence quarks in the proton, more

W+ than W− bosons are produced in pp collisions resulting in a higher background for the

ℓ+ℓ+ final state. For all final states no significant excesses or deficits are observed between

the data and the SM background predictions.

Based on the above findings, upper limits are computed at the 95% confidence level

(CL) using the CLS [81] prescription. Limits are given on the number of same-sign lepton

pairs (N95) contributed by new physics beyond the SM for various invariant mass thresh-
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Number of electron pairs

m(e±e±)
Prompt

Non- e± charge Wγ →
Total SM Data

[GeV] Prompt misid. Wee

> 15 347± 25 520± 120 1020± 150 180± 40 2060± 190 1976

> 100 174± 14 250± 50 550± 80 75± 16 1050± 100 987

> 200 51.5± 4.9 72± 13 150± 27 22± 5 296± 31 265

> 300 15.7± 1.9 23± 5 43± 12 8.0± 2.3 89± 14 83

> 400 5.3± 0.9 8.1± 2.4 16± 8 3.8± 1.3 33± 8 30

> 500 2.3± 0.5 3.1± 1.5 6± 5 2.7± 1.0 14± 5 13

> 600 0.91± 0.28 0.8+1.0
−0.8 6± 5 1.0± 0.6 9± 5 7

Number of electron-muon pairs

m(e±µ±)
Prompt

Non- e± charge Wγ →
Total SM Data

[GeV] Prompt misid. Wee

> 15 1030± 50 910± 220 370± 40 270± 50 2580± 240 2315

> 100 458± 26 340± 80 87± 11 104± 20 990± 90 859

> 200 130± 9 79± 17 29± 4 28± 6 265± 22 226

> 300 43± 5 24± 6 9.5± 1.9 8.1± 2.4 84± 8 85

> 400 16.0± 2.1 9.2± 3.0 2.5± 0.8 2.7± 1.1 31± 4 31

> 500 6.8± 1.1 2.8± 1.5 1.5± 0.4 1.6± 0.8 12.6± 2.1 13

> 600 3.5± 0.7 1.6± 1.0 0.9± 0.4 1.2± 0.7 7.4± 1.5 9

Number of muon pairs

m(µ±µ±)
Prompt

Non-
Total SM Data

[GeV] Prompt

> 15 580± 40 203± 34 780± 50 843

> 100 245± 21 56± 11 301± 24 330

> 200 67± 7 8.7± 2.3 76± 8 87

> 300 20.7± 2.9 1.9± 1.0 22.6± 3.1 27

> 400 7.7± 1.5 1.2± 0.9 9.0± 1.7 9

> 500 2.9± 0.8 0.32+0.41
−0.32 3.2± 0.9 4

> 600 0.9± 0.4 0.0+0.2
−0.0 0.9± 0.4 1

Table 5. Expected and observed numbers of isolated same-sign lepton pairs in the e±e±, e±µ±

and µ±µ± channel for various cuts on the dilepton invariant mass, m(ℓ±ℓ±). The uncertainties

shown are the systematic uncertainties.

olds. In this procedure the number of pairs in each mass bin is described using a Poisson

probability density function. The systematic uncertainties (as discussed in section 7) are

incorporated into the limit calculation as nuisance parameters with Gaussian priors with

the correlations between uncertainties taken into account. The limits can be translated

into an upper limit on the fiducial cross-section using: σfid
95 = N95/(ǫfid ×

∫

Ldt), where ǫfid
is the efficiency for finding a lepton pair from a possible signal from new physics in the

fiducial region at particle level, and
∫

Ldt is the integrated luminosity. The efficiency ǫfid
is discussed in detail in the next section.
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m(ℓℓ) e+e+ pairs e+µ+ pairs µ+µ+ pairs

[GeV] Total SM Data Total SM Data Total SM Data

> 15 1120± 100 1124 1440± 130 1327 454± 32 502

> 100 610± 60 593 570± 50 523 184± 16 198

> 200 187± 22 167 146± 13 143 48± 6 62

> 300 61± 11 48 50± 5 56 15.3± 2.2 18

> 400 19± 6 18 18.4± 2.6 21 6.2± 1.2 6

> 500 9± 5 9 7.8± 1.4 8 2.6± 0.8 1

> 600 7± 5 5 4.8± 1.1 6 0.8± 0.4 0

m(ℓℓ) e−e− pairs e−µ− pairs µ−µ− pairs

[GeV] Total SM Data Total SM Data Total SM Data

> 15 940± 100 852 1140± 110 988 328± 23 341

> 100 440± 50 394 417± 40 336 117± 9 132

> 200 109± 16 98 119± 11 83 27.6± 2.8 25

> 300 29± 7 35 35± 4 29 7.3± 1.2 9

> 400 14± 5 12 12.1± 2.3 10 2.7± 0.7 3

> 500 5.0± 1.3 4 4.9± 1.5 5 0.64+0.33
−0.26 3

> 600 2.7± 0.9 2 2.5± 1.0 3 0.09+0.23
−0.09 1

Table 6. Expected and observed numbers of positively or negatively charged lepton pairs for

various cuts on the dilepton invariant mass, m(ℓℓ). The uncertainties shown are the systematic

uncertainties.

Selection Electron requirement Muon requirement

Leading lepton pT pT > 25 GeV pT > 25 GeV

Subleading lepton pT pT > 20 GeV pT > 20 GeV

Lepton η |η| < 1.37 or 1.52 < |η| < 2.47 |η| < 2.5

Isolation
∑

pT(∆R = 0.3)/peT < 0.1
∑

pT(∆R = 0.3)/pµT < 0.07

Selection Event selection

Lepton pair Same-sign pair with mℓℓ > 15 GeV

Electron pair Veto pairs with 70 < mℓℓ < 110 GeV

Event No opposite-sign same-flavour pair with |mℓℓ −mZ | < 10 GeV

Table 7. Summary of requirements on generated leptons and lepton pairs in the fiducial region at

particle level. More information on the calculation of the isolation pT is given in the text.

The fiducial volume at particle level, as summarised in table 7, is chosen to be very

similar to the one used in the object and event selections (see sections 4 and 5). The leptons

must be isolated and fulfil the same kinematic requirements on transverse momentum and

pseudorapidity as imposed at reconstruction level. Lepton isolation is implemented by

requiring that the sum of the pT of the stable charged particles with pT > 1 (0.4) GeV

in a cone of size ∆R = 0.3 around the lepton is required to be less than 7% (10%) of

the lepton pT for muons (electrons). In addition, the two leptons must have the same

charge and pass the same invariant mass cut, mℓℓ > 15 GeV, as required at reconstruction
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level. In addition, in the e±e± channel the mass range 70 < mℓℓ < 110 GeV is vetoed.

Finally, events are rejected in which an opposite-sign, same-flavour lepton pair is found

with |mℓℓ −mZ | < 10 GeV.

8.2 Fiducial cross-section limits

To derive upper limits on the cross-section due to physics beyond the SM, the fiducial

efficiency, ǫfid, is calculated. The quantity ǫfid is the ratio, for leptons from the signal

processes, of the number of selected lepton pairs to the number of true same-sign lepton

pairs satisfying the fiducial selection at particle level. The value of ǫfid generally depends on

the new physics process, e.g. the number of leptons in the final state passing the kinematic

selection criteria or the number of jets that may affect the lepton isolation. To minimise this

dependence, the definition of the fiducial region is closely related to the analysis selection.

The limits are quoted using the lowest fiducial efficiency obtained for the following beyond-

the-SM processes.

Firstly, production of doubly charged Higgs boson pairs with masses ranging between

100 GeV and 1 TeV is considered. Another process is production of a diquark (SDQ) with

charge ±2/3 or ±4/3 in the Zee-Babu model, which decays into two same-sign leptoquarks

(SLQ), decaying subsequently into a same-sign lepton pair. This model is considered for

diquark masses between 2.5 TeV and 3.5 TeV and leptoquark masses between 1 TeV and

1.4 TeV. The third process is a production of a right-handed WR boson decaying into a

lepton and a Majorana neutrino NR, with NR subsequently decaying into a lepton and two

jets, for WR masses between 1 TeV and 2 TeV, and NR masses between 250 GeV and 1.5

TeV. The last process is pair production of b′ chiral quarks, decaying either exclusively into

Wt or decaying into Wq, q being an up-type quark, with a 33% branching ratio in each

quark channel, for b′ masses between 400 GeV and 1 TeV.

The fiducial efficiencies vary between 46% and 74% with similar values for the e±e±,

e±µ± and µ±µ± final states. The lowest values of ǫfid are found in the case of the fourth-

generation down-type chiral quark model, and the highest for the production of WR bosons

and NR neutrinos. The primary reason for this dependence is that the electron identifica-

tion efficiency varies by about 15% over the relevant pT range [75]. For muons differences

in the efficiencies arise due to the detector acceptances [82], which are populated differ-

ently depending on the kinematics of the leptons produced in the new physics process.

Further differences of the order of 1% arise since the calorimeter-based isolation criterion

is not emulated because the isolation energy has a poor resolution in the calorimeter. The

fiducial efficiencies are also derived separately for ℓ+ℓ+ and ℓ−ℓ− pairs and found to be

charge independent.

In the following, cross-section limits are presented for the case which yields the lowest

fiducial efficiency, that is 48%, 50% and 46% in the e±e±, e±µ± and µ±µ± channel respec-

tively. The 95% CL upper limits on the fiducial cross-section are shown in figure 3 and in

table 8 separately for each final state. The cross-section limits are statistical combinations

of the ℓ+ℓ+ and ℓ−ℓ− limits and observed limits vary between 0.48 fb and 32 fb depending

on the mass cut and the final state for the inclusive analysis. The limits obtained for ℓ+ℓ+

and ℓ−ℓ− pairs are also shown in table 8 and range between 0.32 fb to 28 fb. Since the
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Figure 3. Fiducial cross-section limits at 95% CL for (a) e±e±, (b) e±µ± and (c) µ±µ± pairs, as a

function of the lower bound on the lepton pair mass. The green and yellow bands show the 1σ and

2σ bands on the expected limits. The mass range between 70 GeV and 110 GeV is not included in

the e±e± channel as this region is used to estimate the background from charge misidentification.

total limits are the limits on the sum of ℓ+ℓ+ and ℓ−ℓ−, they are, in general, larger than

charge separated limits. For all final states the observed limits are generally within 1σ

of the expected limits, which are obtained using simulated pseudo-experiments using only

SM processes.

– 20 –



J
H
E
P
0
3
(
2
0
1
5
)
0
4
1

95% CL upper limit [fb]

e±e± e±µ± µ±µ±

Mass range Expected Observed Expected Observed Expected Observed

> 15GeV 39+10
−13 32 41+5

−8 29 12+4
−3 16

> 100GeV 19+6
−6 14 15.1+5.5

−2.6 11.8 5.9+2.2
−2.3 8.4

> 200GeV 6.8+2.6
−1.7 5.3 5.0+1.9

−0.9 3.4 2.4+0.9
−0.8 2.9

> 300GeV 3.3+1.3
−0.4 3.3 2.5+1.0

−0.7 2.7 1.25+0.55
−0.15 1.69

> 400GeV 2.02+0.74
−0.21 2.03 1.5+0.4

−0.5 1.6 0.83+0.32
−0.20 0.91

> 500GeV 1.25+0.36
−0.26 1.10 1.02+0.30

−0.27 1.06 0.54+0.19
−0.12 0.82

> 600GeV 0.99+0.34
−0.20 1.02 0.78+0.24

−0.28 0.92 0.44+0.11
−0.06 0.48

e+e+ e+µ+ µ+µ+

Mass range Expected Observed Expected Observed Expected Observed

> 15GeV 27+11
−6 28 25+10

−4 23 9.5+3.3
−3.1 14

> 100GeV 14.3+5.4
−2.8 13.5 11+4

−2.1 9 5.0+1.6
−1.3 6.3

> 200GeV 5.4+2.0
−1.4 4.6 3.6+1.3

−0.7 3.6 2.2+0.8
−0.5 3.6

> 300GeV 2.5+0.9
−0.6 2.0 1.9+0.8

−0.5 2.6 1.11+0.46
−0.29 1.42

> 400GeV 1.59+0.47
−0.34 1.64 1.10+0.46

−0.23 1.39 0.74+0.27
−0.17 0.74

> 500GeV 1.44+0.34
−0.36 1.55 0.79+0.21

−0.22 0.89 0.42+0.24
−0.10 0.38

> 600GeV 1.27+0.37
−0.26 1.10 0.65+0.14

−0.16 0.77 0.37+0.09
−0.05 0.32

e−e− e−µ− µ−µ−

Mass range Expected Observed Expected Observed Expected Observed

> 15GeV 23+8
−5 19 19.0+8.0

−2.8 16.0 6.8+2.7
−1.5 8.3

> 100GeV 10.8+4.4
−2.4 9.0 8.2+2.2

−2.1 5.6 3.5+1.4
−0.9 5.1

> 200GeV 3.9+1.4
−1.2 3.5 2.8+1.2

−0.9 1.5 1.41+0.54
−0.33 1.29

> 300GeV 2.1+0.7
−0.5 2.6 1.6+0.6

−0.4 1.3 0.79+0.30
−0.16 1.0

> 400GeV 1.56+0.41
−0.31 1.35 0.91+0.34

−0.26 0.77 0.52+0.20
−0.13 0.59

> 500GeV 0.69+0.27
−0.17 0.64 0.62+0.12

−0.12 0.65 0.355+0.139
−0.013 0.683

> 600GeV 0.58+0.21
−0.08 0.61 0.49+0.16

−0.10 0.59 0.332+0.014
−0.011 0.454

Table 8. Upper limit at 95% CL on the fiducial cross-section for ℓ±ℓ± pairs from non-SM signals.

The expected limits and their 1σ uncertainties are given together with the observed limits derived

from the data. Limits are given separately for the e±e±, e±µ± and µ±µ± channel inclusively and

separated by charge.
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8.3 Cross-section and mass limits for pair-produced doubly charged Higgs

bosons

As an example of the models producing same-sign lepton pairs, mass limits are obtained

for doubly charged Higgs bosons, which are pair produced via s-channel Z boson or photon

exchange in the framework of the left-right symmetric models [3–6]. In this framework,

left-handed states, H±±
L , and right-handed states H±±

R are predicted. These Higgs bosons

have identical kinematic properties, but their production rate differs due to the different

couplings to Z bosons [7]. The cross-section, which is known at NLO, is around 2.5 times

higher for H++
L H−−

L pair production compared to H++
R H−−

R . In this analysis the decay

of the two H±± bosons into leptons (H±±H∓∓ → ℓ±1 ℓ
±
2 ℓ

∓
3 ℓ

∓
4 ) is considered. This is done

using the same search strategy as for the fiducial cross-section limits, which looks for signs

of new physics in events containing same-sign lepton pairs. Alternatively this search could

be carried out looking for events with two same-sign lepton pairs (four-lepton final states).

However, the four-lepton channel has a low efficiency due to the cases where at least one

of the leptons falls outside the acceptance.

In the following, H±± boson mass values in the range 50 GeV to 1 TeV are considered.

The cross-section is determined using σHH × BR = N rec
H /(2 × A × ǫ ×

∫

Ldt), where BR

is the branching ratio of the decay into a lepton pair (H±± → ℓ±ℓ′±), N rec
H is the number

of reconstructed Higgs boson candidates, A × ǫ is the acceptance times efficiency to find

a lepton pair from the H±± decay, and the factor of two accounts for the two same-sign

lepton pairs from the H++ and H−− bosons. The A × ǫ is calculated for the simulated

mass points and masses in between are interpolated via an empirical fit function. In the

mass range considered in this analysis, the width of the H±± resonance is much smaller

than the detector resolution of the lepton pairs. To extract the cross-section limits of H±±

bosons the size of the mass bins used is optimised for each final state, such that in each

mass bin the Higgs selection efficiency is very similar. Limits on the cross-section for pair

production of H±± and H∓∓ bosons times the branching ratio in each of the three final

states are extracted using the CLS technique.

The results at 95% CL are shown in figure 4. The scatter between adjacent mass bins

in the observed limits is due to fluctuations in the background yields derived from limited

statistics. In general, good agreement is seen between observed and expected limits with

maximum deviations of 2σ. In the three final states, the cross-section limits vary between

11 fb for a H±± mass of 50 GeV to around 0.3 fb for a H±± mass of 600 GeV. The expected

cross-section curves for the pair production of HL and HR are also shown in figure 4. The

lower mass limits are given by the crossing point of the cross-section limit curve and the

expected curve, and are summarised in table 9. The 1σ errors on the expected limits are

symmetrised to reduce the effect from bin by bin statistical fluctuations. For this scenario

the best limits are obtained for H±±
L in the e±e± channel with a limit around 550 GeV

and for H±±
R in the µ±µ± channel with a limit around 430 GeV. The limits are 10–20%

worse in the e±µ± channel due to the larger background at high invariant masses from

WZ production. The WZ gives approximately twice as many events in the e±µ± channel

than in the e±e± or µ±µ± channel whereas the signal contributions are similar in all three
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Figure 4. Upper limits at 95% CL on the cross-section as a function of the dilepton invariant

mass for the production of a doubly charged Higgs boson decaying into (a) e±e±, (b) e±µ±, and

(c) µ±µ± pairs with a branching ratio of 100%. The green and yellow bands correspond to the 1σ

and 2σ bands on the expected limits respectively. Also shown are the expected cross-sections as a

function of mass for left- and right-handed H±±. The mass range between 70 GeV and 110 GeV

is not included in the e±e± channel as this region is used to estimate the background from charge

misidentification.

channels. The mass limit on the singlet H±± predicted in the Zee-Babu model [23] is the

same as the one obtained for H±±
L as the cross-sections and decay kinematics are identical.

Compared to the results based on the 2011 data [27], the limits on the doubly charged

Higgs mass are increased by 30–40%. The mass limits vary with the branching ratio of the
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95% CL lower limit [GeV]

e±e± e±µ± µ±µ±

Signal Expected Observed Expected Observed Expected Observed

H±±
L 553± 30 551 487± 41 468 543± 40 516

H±±
R 425± 30 374 396± 34 402 435± 33 438

Table 9. Lower limits at 95% CL on the mass ofH±±

L
andH±±

R
bosons, assuming a 100% branching

ratio to e±e±, e±µ± and µ±µ± pairs. The 1σ variations are also shown for the expected limits.

H±± decay into lepton pairs. Figure 5 shows the mass limits as a function of the branching

ratio for H±±
L and H±±

R in the three final states.

9 Conclusion

In this paper a search for anomalous production of same-sign e±e±, e±µ±, and µ±µ± pairs

is presented using 20.3 fb−1 of
√
s = 8 TeV pp collision data recorded with the ATLAS

detector at the LHC. To make this search as inclusive as possible, there are no additional

requirements on missing transverse momentum, jets, or other final-state particles. The

data agree with the SM expectation and no significant deviations are observed. Fiducial

cross-section limits are derived for contributions from new physics beyond the SM, which

give rise to final states with two same-sign isolated leptons. The 95% CL upper limits

on the cross-section are given as functions of a threshold on the invariant mass of the

lepton pair. For invariant mass cuts ranging between 15 GeV and 600 GeV, the observed

fiducial cross-section upper limit varies between 0.48 fb and 32 fb depending on the dilepton

invariant mass and flavour combination. Limits are also set for a model of doubly charged

Higgs bosons, in which doubly charged Higgs bosons are pair produced. Assuming these

Higgs bosons decay exclusively into e±e±, e±µ± or µ±µ± pairs, 95% CL lower mass limits

for left-handed Higgs bosons between 465 GeV and 550 GeV are obtained depending on the

flavour of the lepton pair. The mass limits for right-handed Higgs bosons range between

370 GeV and 435 GeV. These results represent a significant improvement compared to the

previous ATLAS results based on
√
s = 7 TeV data.
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Figure 5. Observed and expected 95% CL limits on H±±

L
→ ℓ±ℓ± (left column) and H±±

R
→ ℓ±ℓ±

production (right column) in the branching ratio versus H±± mass plane for the e±e± (top), e±µ±

(middle) and µ±µ± (bottom) channel. The blue shaded area is excluded.
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M.I. Gostkin64, M. Gouighri136a, D. Goujdami136c, M.P. Goulette49, A.G. Goussiou139,
C. Goy5, S. Gozpinar23, H.M.X. Grabas137, L. Graber54, I. Grabowska-Bold38a,
P. Grafström20a,20b, K-J. Grahn42, J. Gramling49, E. Gramstad118, S. Grancagnolo16,
V. Grassi149, V. Gratchev122, H.M. Gray30, E. Graziani135a, O.G. Grebenyuk122,
Z.D. Greenwood78,m, K. Gregersen77, I.M. Gregor42, P. Grenier144, J. Griffiths8,
A.A. Grillo138, K. Grimm71, S. Grinstein12,n, Ph. Gris34, Y.V. Grishkevich98,
J.-F. Grivaz116, J.P. Grohs44, A. Grohsjean42, E. Gross173, J. Grosse-Knetter54,
G.C. Grossi134a,134b, J. Groth-Jensen173, Z.J. Grout150, L. Guan33b, F. Guescini49,
D. Guest177, O. Gueta154, C. Guicheney34, E. Guido50a,50b, T. Guillemin116, S. Guindon2,
U. Gul53, C. Gumpert44, J. Gunther127, J. Guo35, S. Gupta119, P. Gutierrez112,
N.G. Gutierrez Ortiz53, C. Gutschow77, N. Guttman154, C. Guyot137, C. Gwenlan119,
C.B. Gwilliam73, A. Haas109, C. Haber15, H.K. Hadavand8, N. Haddad136e, P. Haefner21,
S. Hageböck21, Z. Hajduk39, H. Hakobyan178, M. Haleem42, D. Hall119, G. Halladjian89,
K. Hamacher176, P. Hamal114, K. Hamano170, M. Hamer54, A. Hamilton146a,
S. Hamilton162, G.N. Hamity146c, P.G. Hamnett42, L. Han33b, K. Hanagaki117,
K. Hanawa156, M. Hance15, P. Hanke58a, R. Hanna137, J.B. Hansen36, J.D. Hansen36,
P.H. Hansen36, K. Hara161, A.S. Hard174, T. Harenberg176, F. Hariri116, S. Harkusha91,
D. Harper88, R.D. Harrington46, O.M. Harris139, P.F. Harrison171, F. Hartjes106,
M. Hasegawa66, S. Hasegawa102, Y. Hasegawa141, A. Hasib112, S. Hassani137, S. Haug17,
M. Hauschild30, R. Hauser89, M. Havranek126, C.M. Hawkes18, R.J. Hawkings30,
A.D. Hawkins80, T. Hayashi161, D. Hayden89, C.P. Hays119, H.S. Hayward73,
S.J. Haywood130, S.J. Head18, T. Heck82, V. Hedberg80, L. Heelan8, S. Heim121,
T. Heim176, B. Heinemann15, L. Heinrich109, J. Hejbal126, L. Helary22, I.R. Helgadottir80,
C. Heller99, M. Heller30, S. Hellman147a,147b, D. Hellmich21, C. Helsens30,
J. Henderson119, R.C.W. Henderson71, Y. Heng174, C. Hengler42, A. Henrichs177,
A.M. Henriques Correia30, S. Henrot-Versille116, C. Hensel54, G.H. Herbert16,
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L.J. Levinson173, M. Levy18, A. Lewis119, G.H. Lewis109, A.M. Leyko21, M. Leyton41,
B. Li33b,u, B. Li84, H. Li149, H.L. Li31, L. Li45, L. Li33e, S. Li45, Y. Li33c,v, Z. Liang138,
H. Liao34, B. Liberti134a, P. Lichard30, K. Lie166, J. Liebal21, W. Liebig14, C. Limbach21,
A. Limosani87, S.C. Lin152,w, T.H. Lin82, F. Linde106, B.E. Lindquist149,
J.T. Linnemann89, E. Lipeles121, A. Lipniacka14, M. Lisovyi42, T.M. Liss166,
D. Lissauer25, A. Lister169, A.M. Litke138, B. Liu152, D. Liu152, J.B. Liu33b, K. Liu33b,x,
L. Liu88, M. Liu45, M. Liu33b, Y. Liu33b, M. Livan120a,120b, S.S.A. Livermore119,
A. Lleres55, J. Llorente Merino81, S.L. Lloyd75, F. Lo Sterzo152, E. Lobodzinska42,
P. Loch7, W.S. Lockman138, T. Loddenkoetter21, F.K. Loebinger83,
A.E. Loevschall-Jensen36, A. Loginov177, T. Lohse16, K. Lohwasser42, M. Lokajicek126,
V.P. Lombardo5, B.A. Long22, J.D. Long88, R.E. Long71, L. Lopes125a,
D. Lopez Mateos57, B. Lopez Paredes140, I. Lopez Paz12, J. Lorenz99,
N. Lorenzo Martinez60, M. Losada163, P. Loscutoff15, X. Lou41, A. Lounis116, J. Love6,
P.A. Love71, A.J. Lowe144,e, F. Lu33a, N. Lu88, H.J. Lubatti139, C. Luci133a,133b,
A. Lucotte55, F. Luehring60, W. Lukas61, L. Luminari133a, O. Lundberg147a,147b,
B. Lund-Jensen148, M. Lungwitz82, D. Lynn25, R. Lysak126, E. Lytken80, H. Ma25,
L.L. Ma33d, G. Maccarrone47, A. Macchiolo100, J. Machado Miguens125a,125b, D. Macina30,
D. Madaffari84, R. Madar48, H.J. Maddocks71, W.F. Mader44, A. Madsen167, M. Maeno8,
T. Maeno25, E. Magradze54, K. Mahboubi48, J. Mahlstedt106, S. Mahmoud73,
C. Maiani137, C. Maidantchik24a, A.A. Maier100, A. Maio125a,125b,125d, S. Majewski115,
Y. Makida65, N. Makovec116, P. Mal137,y, B. Malaescu79, Pa. Malecki39, V.P. Maleev122,
F. Malek55, U. Mallik62, D. Malon6, C. Malone144, S. Maltezos10, V.M. Malyshev108,
S. Malyukov30, J. Mamuzic13b, B. Mandelli30, L. Mandelli90a, I. Mandić74,
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A. Zemla38a, K. Zengel23, O. Zenin129, T. Ženǐs145a, D. Zerwas116, G. Zevi della Porta57,
D. Zhang88, F. Zhang174, H. Zhang89, J. Zhang6, L. Zhang152, X. Zhang33d, Z. Zhang116,
Z. Zhao33b, A. Zhemchugov64, J. Zhong119, B. Zhou88, L. Zhou35, N. Zhou164,
C.G. Zhu33d, H. Zhu33a, J. Zhu88, Y. Zhu33b, X. Zhuang33a, K. Zhukov95, A. Zibell175,
D. Zieminska60, N.I. Zimine64, C. Zimmermann82, R. Zimmermann21, S. Zimmermann21,
S. Zimmermann48, Z. Zinonos54, M. Ziolkowski142, G. Zobernig174, A. Zoccoli20a,20b,
M. zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107, L. Zwalinski30

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University,

Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; (d)

Turkish Atomic Energy Authority, Ankara, Turkey
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