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Boundary scattering of phonons: Specularity of a randomly rough surface
in the small-perturbation limit
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Scattering of normally incident longitudinal and transverse acoustic waves by a randomly rough surface of
an elastically isotropic solid is analyzed within the small-perturbation approach. In the limiting case of a large
correlation length L compared with the acoustic wavelength, the specularity reduction is given by 4η2k2, where
η is the rms roughness and k is the acoustic wave vector, which is in agreement with the well-known Kirchhoff
approximation result often referred to as Ziman’s equation [J. M. Ziman, Electrons and Phonons (Clarendon
Press, Oxford, 1960)]. In the opposite limiting case of a small correlation length, the specularity reduction is
found to be proportional to η2k4L2, with the fourth power dependence on frequency as in Rayleigh scattering.
Numerical calculations for a Gaussian autocorrelation function of surface roughness connect these limiting cases
and reveal a maximum of diffuse scattering at an intermediate value of L. This maximum becomes increasingly
pronounced for the incident longitudinal wave as the Poisson’s ratio of the medium approaches 1/2 as a result
of increased scattering into transverse and Rayleigh surface waves. The results indicate that thermal transport
models using Ziman’s formula are likely to overestimate the heat flux dissipation due to boundary scattering,
whereas modeling interface roughness as atomic disorder is likely to underestimate scattering.

DOI: 10.1103/PhysRevB.91.134306 PACS number(s): 43.35.+d, 62.30.+d, 66.70.−f

I. INTRODUCTION

Boundary scattering of phonons has a profound effect on
thermal transport in nanostructures [1]. In the simplest model
of a perfectly diffuse surface proposed by Casimir [2], a
phonon totally “forgets” where it came from and gets scattered
with equal probability into any direction. However, any surface
tends to become specular for long wavelengths or at grazing
incidence angles. The importance of surface specularity was
realized early on in studies of thermal conductivity of single
crystal rods at low temperatures [3,4]. Subsequently, the
specularity parameter, i.e., the probability for a phonon
to undergo a specular reflection rather than get diffusely
scattered by the surface, became ubiquitous in the analysis
of boundary-limited thermal transport [5–7]. More recently,
surface specularity at sub-THz frequencies has been studied
directly with laser-generated coherent phonons [8,9]. Despite
extensive literature on wave scattering from rough surfaces
[10–12], a comprehensive analysis of phonon scattering by
a randomly rough surface appears to be still lacking. Many
studies [13–20] rely on an analytical equation, often ascribed
to Ziman [5,21,22] albeit known earlier [23], that relates the
specularity parameter p to the rms roughness η, phonon wave
vector k, and the angle of incidence θ ,

p = exp(−4η2k2cos2θ). (1)

Equation (1) reduces the hard problem of wave scattering
from a rough surface to a very simple result [24], which,
conveniently, does not contain the correlation length of surface
roughness L. Moreover, it is surmised [5,22] that Eq. (1)
is valid for any L as far as specular reflection probability
is concerned, with the correlation length only affecting the
angular distribution of diffusely scattered phonons. However,
in the theory of wave scattering from rough surfaces [8–10] it
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is well established that Eq. (1) is only valid in the Kirchhoff
approximation which assumes that the correlation length is
much greater than the wavelength, kL � 1. Indeed, in the
opposite limiting case of deeply subwavelength scatterers,
kL � 1, one would expect the probability of diffuse scattering
to scale as k4 similarly to Rayleigh scattering, in contrast to
the k2 dependence according to Eq. (1).

In recent years, a number of advanced and sophisticated
models of boundary scattering have been applied to the
analysis of thermal transport in nanostructures [25–35]. Many
of these studies involve detailed models of a rough surface or
interface at the atomic level and use either lattice dynamics
calculations based on Green’s functions analysis [25–29] or
molecular dynamics simulations [32–35]. These advanced
studies heavily rely on numerical computations; hence it is
difficult to generalize their results beyond specific systems
considered in each particular paper. Despite recent advances
in atomistic-level modeling, the question of the specularity
of a rough surface as a function of the roughness height
and correlation length still remains open, and researchers not
possessing a sophisticated modeling apparatus still have no
tools beyond Eq. (1) at their disposal.

This report aims to address the issue of the surface
specularity for a weakly rough surface, i.e., within the small-
perturbation approach. The latter assumes that the height
of surface roughness is small compared to the wavelength,
and that the slopes of the surface are small [12], but puts
no restrictions on kL. In the perturbation approach, the
reduction of specularity from unity is assumed to be small,
which limits its practical applicability; however, it allows
one to make progress in the analytical analysis and helps in
understanding the main trends, which oftentimes hold even
beyond the domain of applicability of the small-perturbation
approximation.

The perturbation approach has been extensively used to
study scattering of scalar waves (such as sound waves in liquid)
and electromagnetic waves [10–12,23] as well as scattering of
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FIG. 1. (Color online) Geometry of the problem.

elastic waves from surfaces with a known profile [36] and
attenuation of Rayleigh surface waves on a randomly rough
surface [37]. However, very little has been done for the case of
elastic wave reflection from a randomly rough surface [12]. A
recent study [38] presented perturbation analysis of acoustic
wave scattering at rough solid-solid interfaces, but numerical
results presented therein hardly allow to draw conclusions
beyond the specific cases considered in the study, and the
role of the correlation length remained unexplored. Here,
we consider the simplest case of a normal incidence of a
longitudinal or transverse wave on a weakly rough surface
of an elastically isotropic solid which allows us to elucidate
general trends and obtain analytical results in limiting cases.
We start with a detailed analysis for a longitudinal incident
wave, which is compared to the case of a longitudinal wave in
liquid, and then extend the analysis to incorporate transverse
waves and provide a discussion of oblique incidence.

II. FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig. 1. In the case
of a smooth surface the elastic medium occupies the half-space
z > 0. A normally incident longitudinal wave reflecting from
the flat surface z = 0 results in a displacement field given by

u(0)
z = 1

ω

√
2

ρcl

(eiωt+iklz + eiωt−iklz), (2)

where ω is the angular frequency, cl is the longitudinal speed
of sound, and kl = ω/cl is the wave vector. The first term in
parentheses corresponds to the incident and the second term to
the reflected wave. The amplitude factor is chosen to make the
incident acoustic power per unit surface area equal to unity.

Let us now consider a rough surface described by a surface
profile ζ (x,y) = ζ (r) describing a small deviation from z = 0.
The perturbation approximation [12] requires that klζ � 1 and
∇ζ � 1. To simplify subsequent calculations, we assume that
roughness occupies a unit area, the surface being flat outside
this area. The Fourier transform (FT) of ζ (r) is given by

ζ̃ (k) =
∫

ζ (r) eikrdr. (3)

The rms roughness η is given by

η2 = ζ 2(r) = 1

4π2

∫
ζ̃ ∗(k)ζ̃ (k) dk, (4)

where * stands for complex conjugate. We introduce a
normalized autocorrelation function,

C(r1) = 1

η2
ζ (r)ζ (r − r1), (5)

whose FT is given by

C̃(k) = 1

η2
ζ̃ ∗(k)ζ̃ (k). (6)

A “well-behaved” autocorrelation function C(r) is charac-
terized by a correlation length L such that C(r) is significantly
nonzero at r � L and vanishes at r � L. The spectral auto-
correlation function C̃(k) is significantly nonzero at q � 1/L

and vanishes at q � 1/L. In numerical examples below we
will be using a Gaussian autocorrelation function,

C(r) = e−r2/L2
, C̃(k) = πL2e−k2L2/4. (7)

The surface roughness results in diffusely scattered waves
(i.e., waves, propagating in directions other than surface nor-
mal) as well as in a reduction in the amplitude (and, possibly, a
phase shift) of the specularly reflected wave. Our goal is finding
the specularity parameter, equal to the power of the specularly
reflected wave per unit area (considering that the power of
the incident wave is unity). However, finding the diffusely
scattered waves in the first-order perturbation approximation
is easier than finding a correction to the specularly reflected
field which corresponds to the second order in the perturbation
[10]. Therefore we adopt the following approach: We will find
the total power of diffusely scattered waves f , which has been
referred to as the roughness parameter [4], i.e., the probability
that an incident phonon is scattered diffusely. The specularity
parameter is then found as p = 1 − f .

III. PERTURBATION ANALYSIS FOR LONGITUDINAL
WAVE

We represent the displacement field as the sum of the
zeroth-order solution given by Eq. (2) and the scattered field
whose amplitude is proportional to the amplitude of the surface
roughness, u = u(0) + u(1). The boundary conditions require
that normal and tangential stress components at the free surface
z = ζ (r) vanish. We follow Gilbert and Knopoff [36] by
expanding stresses in a Taylor series at z = 0 and retaining
only terms of the first order in the perturbation, which leads
to the following boundary conditions for stress components at
z = 0:

σ (1)
zz = −ζ

∂σ (0)
zz

∂z
,

σ (1)
xz = −ζ

∂σ (0)
xz

∂z
− ∂ζ

∂x
σ (0)

xx − ∂ζ

∂y
σ (0)

xy , (8)

σ (1)
yz = −ζ

∂σ (0)
yz

∂z
− ∂ζ

∂y
σ (0)

yy − ∂ζ

∂x
σ (0)

xy .

For the zero-order solution given by Eq. (2), shear stresses
σ (0)

xz and σ (0)
xy are identically zero, and all stress components

σ
(0)
ij are zero at z = 0, which eliminates the right-hand sides

in the two bottom lines of Eq. (8), leading to the following
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boundary condition at z = 0:

σ (1)
zz = −ζ

∂σ (0)
zz

∂z
,

(9)
σ (1)

xz = σ (1)
yz = 0.

From Eq. (2), we find

σ (0)
zz = i

√
2ρcl(e

iωt+iklz − eiωt−iklz), (10)

which leads to

σ (1)
zz |z=0 = 23/2kl

√
ρclζ (r)eiωt . (11)

Thus the problem of finding the scattered field is reduced
to finding waves produced by a harmonic vertical force acting
on the flat surface. In order to find the total power of scattered
waves we only need to find the displacement field at z = 0.
The spatial Fourier transform of the surface displacement can
be expressed in terms of the spectral surface Green’s function
as follows:

ũ(1)
z |z=0 = −23/2kl

√
ρcl ζ̃ (k)G̃33(k,ω)eiωt , (12)

where G̃33(k,ω) is the Fourier transform of the surface Green’s
function G̃33(r,t) expressing the vertical surface displacement
response to an instantaneous vertical point force acting on the
surface. For an elastically isotropic half-space, spectral surface
Green’s functions G̃ij (k,ω) have been obtained in closed form
[37,39].

The total power f radiated into scattered waves is given
by the product of the effective force acting on the surface and
the surface velocity −σ (1)

zz (∂u(1)
z /∂t), taken at z = 0, averaged

over t and integrated over r,

f = 1

4π4
k3
l ρc2

l Re
∫ ∫ ∫

iG̃33(k1,ω)ζ̃ (k1)ζ̃ ∗(k2)

× e−ik1reik2rdk1dk2dr. (13)

Integrating over r yields a delta function δ(k1 − k2), which
leads to the following result:

f = 1

π2
η2k3

l ρc2
l

∫
C̃(k) ImG̃33(k,ω) dk. (14)

Here we have assumed that the autocorrelation function
possesses an inversion symmetry (a natural assumption for
random roughness); therefore its Fourier transform is a real
function. Thus the specularity parameter p = 1 − f can be
found from the spectral autocorrelation function C̃(k). Note
that Eq. (14) is equally applicable to random surfaces and
surfaces of known shape. For example, a single Gaussian
bump will yield the same scattered power as a randomly rough
surface with the same Gaussian autocorrelation function.

For an isotropic half-space, the spectral surface Green’s
function is given by [37,39]

G̃33 = 1

ρc2
t

k2
t

(
k2 − k2

l

)1/2

R(k)
+ iπF

ρc2
t

δ(k − kR), (15)

where

R(k) = 4k2
(
k2 − k2

t

)1/2(
k2 − k2

l

)1/2 − (
2k2 − k2

t

)2
, (16)

kl = ω/cl , kt = ω/ct , and kR = ω/cR are the longitudinal,
transverse, and Rayleigh wave vectors, respectively, with
the Rayleigh surface velocity cR found from the Rayleigh
equation R(kR) = 0, and F is a dimensionless parameter given
by

F = β2

2
(1 − α2)1/2

[
8(2 − α2 − β2)

(2 − β2)2 + β4 − 4

]−1

, (17)

where α = cR/cl, β = cR/ct . The imaginary branches of
square roots in Eqs. (15) and (16) are defined by(

k2 − k2
l,t

)1/2 ≡ −i
(
k2
l,t − k2

)1/2
, if kl,t > k. (18)

The delta function contribution at the pole k = kR has been
added to ensure the causality of the Green’s function [40].
Plugging Eq. (15) into Eq. (14) and assuming an isotropic
autocorrelation function, we obtain the final result,

f = 2

πs3
η2k4

l

[∫ s

0
C̃(xkt )

x(s2 − x2)
1/2

4x2(1 − x2)1/2(s2 − x2)1/2 + (2x2 − 1)2 dx

+
∫ 1

s

C̃(xkt )
4x3(1 − x2)

1/2
(x2 − s2)

16x4(1 − x2)(x2 − s2) + (2x2 − 1)4 dx + π

β
FC̃(kR)

]
. (19)

where s = ct/cl . The first two terms inside the brackets
represent the power scattered into bulk waves (with the second
term involving transverse waves only), whereas the third term
yields the contribution of Rayleigh surface waves.

A. Limiting cases

Let us consider limiting cases of large and small correlation
lengths. To analyze the case of a large correlation length
compared to the acoustic wavelength, klL � 1, it is convenient
to return to Eq. (14). Since C̃(k) is only nonzero at very small

wave vectors compared to kl,t , we can replace G̃33(k,ω) by its
value at k = 0,

G̃33(k = 0,ω) = i

ρclω
, (20)

which leads to the following result:

f∞ = 1

π2
η2k2

l

∫
C̃(k) dk, (21)

with the subscript “�” indicating the infinite correlation
length limit. According to the definition of the autocorrelation
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FIG. 2. (Color online) Dependence of dimensionless parameters
Ibulk and IR on the transverse-to-longitudinal velocities ratio s.

function,
∫

C̃(k) dk = 4π2; hence we obtain

f∞ = 4η2k2
l , (22)

yielding a specularity parameter p = 1 − 4η2k2
l , which per-

fectly agrees with Eq. (1). Thus in the limit of a large correla-
tion length the perturbation approach agrees with the Kirchhoff
approximation result, as has already been demonstrated for
scalar waves and electromagnetic waves [12,23,41].

In the opposite limiting case of a small correlation length,
klL, ktL � 1, we can replace C̃(k) by C̃(k = 0), with the
following result:

f0 = 2

πs3
η2k4

l C̃(k = 0)[Ibulk + IR], (23)

where Ibulk and IR are dimensionless constants on the order
unity determined by the velocities ratio s (see Fig. 2),

Ibulk =
∫ s

0

x(s2 − x2)
1/2

4x2(1 − x2)1/2(s2 − x2)1/2 + (2x2 − 1)2 dx

+
∫ 1

s

4x3(1 − x2)
1/2

(x2 − s2)

16x4(1 − x2)(x2 − s2) + (2x2 − 1)4 dx,

IR = π

β
F. (24)

In the case of a Gaussian autocorrelation given by Eq. (7)
we obtain

f0 = 2

s3
η2k4

l L
2(Ibulk + IR). (25)

Since for a well-behaved autocorrelation function C̃(k = 0)
is on the order of L2, this result is quite general even though the
numerical factor may vary. As expected, for a small correlation
length we come to the Rayleigh scattering limit with the
scattering power scaling as k4, as opposed to the k2 dependence
found in the limit of a large correlation length. Compared to
the Kirchhoff approximation limit given by Eq. (22), there is
an extra factor of k2

l L
2. Thus in the small klL limit the diffuse

scattering probability is much smaller than the Kirchhoff
approximation predicts. The relative values of Ibulk and IR

indicate relative contributions of bulk and Rayleigh waves to
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FIG. 3. (Color online) Normalized diffuse scattering probability
vs the product of the acoustic wave vector and the correlation length
for different values of the velocities ratio s. Contributions of scattering
into bulk and Rayleigh surface waves are shown as indicated in the
upper left panel.

the total scattered power, and we can see from Fig. 2 that
the Rayleigh wave contribution is greater than that of bulk
waves. We note that in the limit of a zero correlation length
the autocorrelation function turns into the Dirac delta function,
and the spectrum of the scattered waves is equivalent to the
well-studied case of the radiation by a vertical point force
[42]. In particular, it is known [42,43] that for s = 1/

√
3, the

fraction of energy radiated into Rayleigh waves amounts to
about 67.4%, which is in agreement with our results.

B. Numerical results for the general case

Let us now consider the general case which requires a
numerical evaluation of integrals in Eq. (19). Figure 3 shows
the behavior of the diffuse scattering probability f normalized
on the infinite correlation length limit f∞ for the Gaussian
autocorrelation function. One might expect the numerical
calculations to smoothly connect the limiting cases, with f

a monotonically increasing function of klL. However, the
results reveal a maximum at an intermediate value of klL,
which becomes increasingly pronounced at small values of
s (for an elastically isotropic medium s can vary between
zero and 1/

√
2 which corresponds to Poisson’s ratio range

from 0.5 to 0). This maximum results from scattering into
transverse and Rayleigh waves, which is absent in the limit of
large klL (i.e., in the Kirchhoff approximation). Indeed, if s is
small, the wavelengths of transverse and Rayleigh waves are
much smaller than the longitudinal wavelength; consequently,
even if the roughness height is very small compared to the
wavelength of the incident longitudinal wave, it may be not so
small compared to the wavelengths of the scattered transverse
and Rayleigh waves.

Even though for typical “hard” solids the velocities ratio
s normally exceeds 0.3, there are many examples of soft
materials with very low s (such as rubber), for which the
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FIG. 4. (Color online) Normalized diffuse scattering probability
for a solid with s = 0.5 vs a liquid as a function of klL.

maximum of f will occur at small values of klL and will
greatly exceed the value predicted by Ziman’s formula. In
particular, soft soils may have a very low transverse velocity
close to the surface [44]; hence the issue of increased scattering
at small klL may be relevant for seismic surveying.

C. Comparison with the case of a liquid medium

It is instructive to consider, for comparison, the case of a
liquid medium in which transverse and Rayleigh waves are
absent [45]. The surface Green’s function for a liquid half-
space is easily obtained from Eq. (15),

G̃33 = 1

ρω2

(
k2 − k2

l

)1/2
, (26)

which yields a known result [46] for a Gaussian autocorrelation
function,

f = η2k4
l L

2
∫ 1

0
e− k2

l
L2 t

4 (1 − t)1/2dt. (27)

In the limiting case klL � 1 we get the same result as
for a solid medium given by Eq. (22), whereas in the limit
klL � 1 we get f0 = (2/3)η2k4

l L
2. Numerical calculations

for the general case are shown in Fig. 4. In contrast to the
case of a solid medium, the maximum of diffuse scattering
in the liquid case occurs in the Kirchhoff approximation limit
klL → ∞. The comparison drives home the point that it is
only in the Kirchhoff approximation that the specularity, for
a given roughness and acoustic wavelength, is the same for
waves of any nature. In the opposite limiting case of a small
correlation length, the scaling of f as η2k4L2 is also universal,
but the numerical factor depends on the physical system. In
fact, for a solid with s = 0.5 the numerical factor is almost
20 times larger than for a liquid and will be larger yet for a
smaller s.

IV. TRANSVERSE INCIDENT WAVE

The analysis for a normally incident transverse wave
parallels the analysis for a longitudinal wave in Sec. III. We
consider an incident transverse wave polarized along x, in
which case the only nonzero stress component produced by

0.0
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
s

Jbulk
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FIG. 5. (Color online) Dependence of dimensionless parameters
Jbulk and JR from Eq. (30) on the transverse-to-longitudinal velocities
ratio s.

the flat-surface solution is σ (0)
xz . Following the same sequence

of steps as in Sec. III, we arrive to the following result for the
scattered power:

f = 1

π2
η2k3

t ρc2
t

∫
C̃(k)ImG̃11(k,ω) dk. (28)

which parallels Eq. (14), with the replacement of Green’s
function G33, describing the surface displacement response
to a vertical force, by G11,which describes the horizontal
displacement response to a horizontal force. The final result
that parallels Eq. (19) is presented in the Appendix.

In the limiting case of a large correlation length ktL � 1,
we get the familiar Kirchhoff approximation result

f∞ = 4η2k2
t , (29)

whereas in the opposite limiting case of a small correlation
length ktL � 1, we obtain a result that parallels Eq. (23) but
has a different numerical factor,

f0 = 1

π
η2k4

t C̃(k = 0)[Jbulk + JR]. (30)

The expressions for dimensionless factors Jbulk and JR

are presented in the Appendix and their dependence on the
velocities ratio s is shown in Fig. 5. This time the relative
contribution of scattering into Rayleigh waves is small. The
overall value of the numerical factor in Eq. (30) is also
smaller than that in Eq. (23) for the longitudinal wave (for
example, at s = 0.5 the difference amounts to almost an order
of magnitude). This may appear to indicate that a surface with
a small correlation length is more specular for transverse than
for longitudinal waves. It should be noted, however, that this
comparison is made at an equal wavelength. A comparison
made at an equal frequency, on the other hand, yields a larger
scattering power for the transverse incident wave since its
wavelength is smaller and we have to account for a factor
(kt/kl)4, equal to 16 in the example with s = 0.5.

Figure 6 shows general case results for the Gaussian auto-
correlation function. The main trends are similar to the case
of the incident longitudinal wave; however, the contribution
of scattering into the Rayleigh wave is now much smaller
and the dependence on s is less pronounced. In particular, no
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FIG. 6. (Color online) Normalized diffuse scattering probability
for the normally incident transverse wave vs the product of the
acoustic wave vector and the correlation length for different values
of the velocities ratio s. Contributions of scattering into bulk and
Rayleigh surface waves are shown as indicated in the upper left panel.

sharp maximum appears at small values of s. As discussed
above, the latter is due to the fact that scattered transverse
and Rayleigh waves have much smaller wavelengths than the
incident longitudinal wave. This phenomenon is unique to the
case of the incident longitudinal wave and does not arise in
the case of the incident transverse wave whose wavelength
is always smaller than that of the longitudinal wave and
just a bit larger than that of the Rayleigh wave at the same
frequency.

V. OBLIQUE INCIDENCE

It would be straightforward to extend the method described
in Sec. III onto the more general case of an obliquely incident
longitudinal or transverse wave. However, the calculations
become much more tedious because the flat-surface solution
will generally contain both transverse and longitudinal re-
flected waves and involve multiple nonzero components of
the stress tensor. Even for the simplest case of a horizontally
polarized transverse incident wave, where specular reflection is
not accompanied by mode conversion, the equation analogous
to Eq. (28) will contain multiple terms involving products
of real and imaginary components of G̃11, G̃22, G̃12, and a
Fourier component of the autocorrelation function C̃(k − k0),
where k0 is the in-plane wave vector component of the incident
wave. The oblique incidence breaks the symmetry that made it
possible to reduce the final result to one-dimensional integrals;
in the general case, two-dimensional numerical integration will
be necessary.

In order to avoid tedious mathematics, we will limit the
discussion of the oblique incidence to the case of a liquid
medium. Even though we have seen that beyond the Kirchhoff
approximation there are significant differences between the
cases of liquid and solid media, this discussion will still be

instructive in terms of looking into the effect of the oblique
incidence on the general trends discussed in previous sections.
We consider an acoustic wave incident on a rough surface
of a liquid half-space at an angle θ to the normal, with the
wave vector in the y-z plane, and follow the sequence of steps
described in Sec. III, which is made easy by the absence of
shear stresses in liquid. The result obtained for the scattered
power,

f = 1

π2
η2k3

l ρc2
l cos θ

∫
C̃(k − ĵkl sin θ )ImG̃33(k,ω) dk,

(31)

where ĵ is the unit vector along y, differs from Eq. (14) only
by a factor of cosθ and by a shift in the argument of the
spectral autocorrelation function by the in-plane component of
the incident wave vector. Using Green’s function from Eq. (26)
we get a known result [41],

f = 1

π2
η2kl cos θ

∫
k<kl

C̃(k − ĵkl sin θ )
(
k2
l − k2

)1/2
dk. (32)

The limiting case of a large correlation length is well
documented in the literature [10,41]. In this case, C̃ is a narrow
function compared to the square root in the integrand. If the
latter is changing slowly within ∼1/L from k0 = ĵkl sin θ ,
then we can replace k in the square root by kl sin θ , which
leads to a result that

f∞ = 4η2k2
l cos2θ, (33)

which, again, perfectly agrees with Ziman’s equation. The
condition for the square root to be a slowly varying function
within ∼1/L from k0 is klL � 1/(1 − sin θ ), which becomes
increasingly stringent for large incidence angles and necessi-
tates a special treatment of grazing incidence [10,41]. In the
opposite limiting case of a small correlation length, klL � 1,
the autocorrelation function in the integrand of Eq. (32) can
be replaced by its value at k = 0, yielding

f0 = 2

3π
cos θη2k4

l C̃(k = 0). (34)

This simple result does not appear to have been reported in
the literature even though it would be straightforward to obtain
it within the framework developed in Refs. [10,11,41]. For the
Gaussian correlation function we get

f0 = 2
3η2k4

l L
2 cos θ. (35)

Thus the observation that in the limit of a small correlation
length the scattered power scales as η2k4

l L
2 remains valid

for oblique incidence. However, the presence of cosθ will
make scattering vanish at grazing angles, consistent with the
intuitive notion that surfaces tend to become specular for
grazing incidence.

VI. DISCUSSION

As we have seen, Ziman’s formula is only accurate in
the Kirchhoff approximation limit of a large kL. However,
in this limit there is a caveat pertaining to using Eq. (1) in
thermal transport models [5]: If the correlation length is large,
the diffusely scattered field will form a narrow forward lobe
around the specular direction; as a result, calculations based
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on the assumption that the scattered field is isotropic will
overestimate dissipation of the heat flux due to the boundary
scattering. On the other hand, modeling interfacial roughness
as atomic disorder [26,27], which implies a small correlation
length, will typically underestimate boundary scattering. A
case in point is the attenuation of sub-THz coherent phonons
is GaAs-AlAs superlattices [47]: Experimentally measured
extrinsic scattering rates (i.e., scattering by interface roughness
and defects) were orders of magnitude greater than the
atomic disorder model predicted. Incidentally, the experimen-
tal scattering rate scaled with frequency as ω2.7, indicating an
intermediate case between the limits of ω2 and ω4 scaling.
It should be noted that scattering of sub-THz phonons by
interface roughness in a superlattice is one case where the
small-perturbation approach would be well justified as losses
in a single scattering event are typically small: For example,
one can see ∼0.3-THz coherent phonon wave packets cross
over 400 interfaces without much loss at 79 K [47]. A rigorous
analysis of phonon scattering by interfacial roughness in a
superlattice will require a separate treatment as the problem is
different from scattering by a free surface of a bulk material;
however, general trends are expected to be similar to the ones
discussed here.

Another point that has been made clear by our analysis
is that one should be very careful with using models for
scalar waves (essentially acoustic waves in liquid) [30,48] or
borrowing results from optics [49] when analyzing boundary
scattering of phonons. It is only in the Kirchhoff approximation
that the specularity is the same for waves of any nature.
Beyond the Kirchhoff approximation the specularity depends
on whether we are dealing with a longitudinal or transverse
wave, or a scalar wave in liquid; in particular, we have seen
that at small correlation lengths the scalar wave model yields
a diffuse scattering probability which is more than an order of
magnitude smaller than for a longitudinal wave in a solid.

A much harder question is what happens beyond the small-
perturbation approximation. While models going beyond the
Born approximation have been developed in the context
of thermal conductivity of nanowires [25,30], with analysis
conducted in terms of eigenmodes of nanowire waveguides,
the issue of the specularity of a rough surface for an incident
plane wave beyond the Born approximation remains open. An
intriguing issue is the so-called “diffuse mismatch” model of
the thermal boundary resistance [50] based on the conjecture
that a phonon arriving to a very rough interface forgets
which side it came from and gets scattered with probabilities
proportional to the densities of states in the materials to
either side of the boundary. The diffuse mismatch model is
obviously incompatible with the Kirchhoff approximation in
which the surface is locally flat and transmission and reflection
are determined by the impedance mismatch. Furthermore, this
model leads to a seemingly paradoxical result that an acoustic
wave incident on a rough solid-air interface from inside the
solid will be mostly scattered into the air, with a very small
fraction of the incident power scattered back into the solid. Can
this behavior be reproduced by any physically realistic model
of interface roughness? The author hopes that this report will
stimulate interest in this and other interesting problems of wave
scattering from rough surfaces arising in the thermal transport
context.

VII. SUMMARY

We have analyzed scattering of normally incident longi-
tudinal and transverse waves by a randomly rough surface
of an elastically isotropic solid within the small-perturbation
approach. For an isotropic autocorrelation function of the
surface roughness, the specularity reduction (i.e., the diffuse
scattering probability) has been expressed in the form of
straightforward one-dimensional integrals. In the limiting case
of a large correlation length compared with the acoustic
wavelength, the specularity reduction is equal to 4η2k2, in
agreement with the known Kirchhoff approximation result
given by Ziman’s formula, whereas in the opposite limiting
case of a small correlation length, the specularity reduction
has been found to be proportional to η2k4L2, with the fourth
power dependence on frequency as in Rayleigh scattering.
It has been found that beyond the Kirchhoff approximation
the specularity depends on whether the medium is solid or
liquid, and in the former case on whether the incident wave
is longitudinal or transverse. In particular, scattering into
Rayleigh surface waves has been found to play a large role in
the specularity reduction for the longitudinal incident wave. In
this case, scattering into transverse and Rayleigh waves results
in a distinct maximum of the diffuse scattering probability
at an intermediate value of L, which becomes increasingly
pronounced as the Poisson’s ratio of the medium approaches
1/2. It is hoped that the present study will help researchers
working in the fields of solid state acoustics, phonon physics,
and thermal transport in understanding issues related to
specularity of rough surfaces. In particular, the results have
indicated that thermal transport models based on Ziman’s
formula are likely to overestimate the heat flux dissipation due
to boundary scattering, whereas modeling interface roughness
as atomic disorder is likely to underestimate scattering.
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APPENDIX

This Appendix presents detailed results for the transverse
incident wave. For an isotropic half-space, the spectral surface
Green’s function G̃11 is given by [37,39]

G̃11 = 1

ρc2
t

[
k2
t k

2
x

(
k2 − k2

t

)1/2

k2R
+ k2

y

k2
(
k2 − k2

t

)1/2

]

+ iπH

ρc2
t

k2
x

k2
δ(k − kR), (A1)

where

H = β2

2
(1 − β2)1/2

[
8(2 − α2 − β2)

(2 − β2)2 + β4 − 4

]−1

. (A2)

Plugging this Green’s function into Eq. (28) and assuming
that the autocorrelation function is isotropic, we get the main
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result,

f = 1

π
η2k4

t

[ ∫ s

0

x(1 − x2)
1/2

C̃(xkt )

4x2(1 − x2)1/2(s2 − x2)1/2 + (2x2 − 1)2 dx

+
∫ 1

s

x(1 − x2)
1/2

(2x2 − 1)
2
C̃(xkt )

16x4(1 − x2)(x2 − s2) + (2x2 − 1)4 dx

+
∫ 1

0

xC̃(xkt )

(1 − x2)1/2 dx + π

β
HC̃(kR)

]
. (A3)

By setting the spectral autocorrelation function C̃ in the
above equation to its value at the zero argument, we find

expressions for dimensionless parameters Jbulk and JR in
Eq. (30),

Jbulk =
∫ s

0

x(1 − x2)
1/2

4x2(1 − x2)1/2(s2 − x2)1/2 + (2x2 − 1)2 dx

+
∫ 1

s

x(1 − x2)
1/2

(2x2 − 1)
2

16x4(1 − x2)(x2 − s2) + (2x2 − 1)4 dx + 1,

JR = πH

β
. (A4)
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