Section 13

Let \((\Omega, \mathcal{B}, \mathbb{P})\) be a probability space and let \((T, \leq)\) be a linearly ordered set. Consider a family of \(\sigma\)-algebras \(\mathcal{B}_t, t \in T\) such that for \(t \leq u\), \(\mathcal{B}_t \subseteq \mathcal{B}_u \subseteq \mathcal{B}\).

Definition. A family \((X_t, \mathcal{B}_t)_{t \in T}\) is called a martingale if

1. \(X_t : \Omega \rightarrow \mathbb{R}\) is measurable w.r.t. \(\mathcal{B}_t\); in other words, \(X_t\) is adapted to \(\mathcal{B}_t\).
2. \(\mathbb{E}|X_t| < \infty\).
3. \(\mathbb{E}(X_u|\mathcal{B}_t) = X_t\) for \(t \leq u\).

If the last equality is replaced by \(\mathbb{E}(X_u|\mathcal{B}_t) \leq X_t\) then the process is called a supermartingale and if \(\mathbb{E}(X_u|\mathcal{B}_t) \geq X_t\) then it is called a submartingale.

Examples.

1. Consider a sequence \((X_n)_{n \geq 1}\) of independent random variables such that \(\mathbb{E}X_1 = 0\) and let \(S_n = \sum_{i \leq n} X_i\). If \(\mathcal{B}_n = \sigma(X_1, \ldots, X_n)\) is a \(\sigma\)-algebra generated by the first \(n\) r.v.s then \((S_n, \mathcal{B}_n)_{n \geq 1}\) is a martingale since
 \[
 \mathbb{E}(S_{n+1}|\mathcal{B}_n) = \mathbb{E}(X_{n+1} + S_n|\mathcal{B}_n) = 0 + S_n = S_n.
 \]
2. Consider a sequence of \(\sigma\)-algebras
 \[
 \ldots \subseteq \mathcal{B}_m \subseteq \mathcal{B}_n \subseteq \ldots \subseteq \mathcal{B}
 \]
 and a r.v. \(X\) on \(\mathcal{B}\) and let \(X_n = \mathbb{E}(X|\mathcal{B}_n)\). Then \((X_n, \mathcal{B}_n)\) is a martingale since for \(m < n\)
 \[
 \mathbb{E}(X_n|\mathcal{B}_m) = \mathbb{E}(\mathbb{E}(X|\mathcal{B}_n)|\mathcal{B}_m) = \mathbb{E}(X|\mathcal{B}_m) = X_m.
 \]

Definition. If \((X_n, \mathcal{B}_n)\) is a martingale and for some r.v. \(X, X_n = \mathbb{E}(X|\mathcal{B}_n)\), then the martingale is called right-closable. If \(X_\infty = X, \mathcal{B}_\infty = \mathcal{B}\) then \((X_n, \mathcal{B}_n)_{n \leq \infty}\) is called right-closed.

3. Let \((X_i)_{i \geq 1}\) be i.i.d. and let \(S_n = \sum_{i \leq n} X_i\). Let us take \(T = \{\ldots, -2, -1\}\) and for \(n \geq 1\) define
 \[
 \mathcal{B}_- = \sigma(S_n, S_{n+1}, \ldots) = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots).
 \]
 Clearly, \(\mathcal{B}_{-(n+1)} \subseteq \mathcal{B}_-\). For \(1 \leq k \leq n\), by symmetry,
 \[
 \mathbb{E}(X_1|\mathcal{B}_-) = \mathbb{E}(X_k|\mathcal{B}_-).
 \]
 Therefore,
 \[
 S_n = \mathbb{E}(S_n|\mathcal{B}_-) = \sum_{1 \leq k \leq n} \mathbb{E}(X_k|\mathcal{B}_-) = n\mathbb{E}(X_1|\mathcal{B}_-) \implies Z_n := \frac{S_n}{n} = \mathbb{E}(X_1|\mathcal{B}_-).
 \]
Thus, \((Z_{-n}, \mathcal{B}_{-n})_{-n \leq -1}\) is a right-closed martingale.

\[\square\]

Lemma 28 Let \(f : \mathbb{R} \to \mathbb{R}\) be a convex function. Suppose that either one of two conditions holds:

1. \((X_t, \mathcal{B}_t)\) is a martingale,
2. \((X_t, \mathcal{B}_t)\) is a submartingale and \(f\) is increasing.

Then \((f(X_t), \mathcal{B}_t)\) is a submartingale.

Proof.

1. For \(t \leq u\), by Jensen’s inequality,
 \[
 f(X_t) = f(E(X_u|\mathcal{B}_t)) \leq E(f(X_u)|\mathcal{B}_t).
 \]
2. For \(t \leq u\), since \(X_t \leq E(X_u|\mathcal{B}_t)\) and \(f\) is increasing,
 \[
 f(X_t) \leq f(E(X_u|\mathcal{B}_t)) \leq E(f(X_u)|\mathcal{B}_t),
 \]
where the last step is again Jensen’s inequality.

\[\square\]

Theorem 30 *(Doob’s decomposition)* If \((X_n, \mathcal{B}_n)_{n \geq 0}\) is a submartingale then it can be uniquely decomposed \(X_n = Z_n + Y_n\),

where \((Y_n, \mathcal{B}_n)\) is a martingale, \(Z_0 = 0, Z_n \leq Z_{n+1}\) almost surely and \(Z_n\) is \(\mathcal{B}_{n-1}\)-measurable.

Proof.

Let \(D_n = X_n - X_{n-1}\) and

\[
G_n = E(D_n|\mathcal{B}_{n-1}) = E(X_n|\mathcal{B}_{n-1}) - X_{n-1} \geq 0
\]

by the definition of submartingale. Let,

\[
H_n = D_n - G_n, \quad Y_n = H_1 + \ldots + H_n, \quad Z_n = G_1 + \ldots + G_n.
\]

Since \(G_n \geq 0\) a.s., \(Z_n \leq Z_{n+1}\) and, by construction, \(Z_n\) is \(\mathcal{B}_{n-1}\)-measurable. We have,

\[
E(H_n|\mathcal{B}_{n-1}) = E(D_n|\mathcal{B}_{n-1}) - G_n = 0
\]

and, therefore, \(E(Y_n|\mathcal{B}_{n-1}) = Y_{n-1}\). Uniqueness follows by construction. Suppose that \(X_n = Z_n + Y_n\) with all stated properties. First, since \(Z_0 = 0, Y_0 = X_0\). By induction, given a unique decomposition up to \(n-1\),

we can write

\[
Z_n = E(Z_n|\mathcal{B}_{n-1}) = E(X_n - Y_n|\mathcal{B}_{n-1}) = E(X_n|\mathcal{B}_{n-1}) - Y_{n-1}
\]

and \(Y_n = X_n - Z_n\).

\[\square\]

Definition. We say that \((X_n)_{n \geq 1}\) is uniformly integrable if

\[
\sup_n E|X_n| < \infty \quad \text{and} \quad \sup_n E|X_n|I(|X_n| > M) \to 0 \quad \text{as} \quad M \to \infty.
\]

Lemma 29 The following holds.

1. If \((X_n, \mathcal{B}_n)\) is a right-closable martingale then \((X_n)\) is uniformly integrable.
2. If \((X_n, \mathcal{B}_n)_{n \leq \infty}\) is a submartingale then for any \(a \in \mathbb{R}\), \((\max(X_n, a))\) is uniformly integrable.
Proof. 1. If $X_n = \mathbb{E}(Y|\mathcal{B}_n)$ then

$$|X_n| = |\mathbb{E}(Y|\mathcal{B}_n)| \leq \mathbb{E}(|Y|\mathcal{B}_n) \quad \text{and} \quad \mathbb{E}|X_n| \leq \mathbb{E}|Y| < \infty.$$

Since $\{|X_n| > M\} \in \mathcal{B}_n$,

$$X_nI(|X_n| > M) = I(|X_n| > M)\mathbb{E}(Y|\mathcal{B}_n) = \mathbb{E}(Y1(|X_n| > M)|\mathcal{B}_n)$$

and, therefore,

$$\mathbb{E}|X_n|I(|X_n| > M) \leq \mathbb{E}Y|I(|X_n| > M) \leq K\mathbb{P}(|X_n| > M) + \mathbb{E}|Y|I(|Y| > K)$$

$$\leq K\mathbb{E}|X_n|/M + \mathbb{E}|Y|I(|Y| > K) \leq K\mathbb{E}|Y|/M + \mathbb{E}|Y|I(|Y| > K).$$

Letting $M \to \infty$, $K \to \infty$ proves that $\sup_n \mathbb{E}|X_n|I(|X_n| > M) \to 0$ as $M \to \infty$.

2. Since $(X_n, \mathcal{B}_n)_{n < \infty}$ is a submartingale, for $Y = X_\infty$ we have $X_n \leq \mathbb{E}(Y|\mathcal{B}_n)$. Below we will use the following observation. Since a function $\max(a, x)$ is convex and increasing in x, by Jensen’s inequality

$$\max(a, X_n) \leq \mathbb{E}(\max(a, Y)|\mathcal{B}_n). \quad (13.0.1)$$

Since,

$$|\max(X_n, a)| \leq |a| + X_nI(X_n > |a|)$$

and $\{|X_n| > |a|\} \in \mathcal{B}_n$ we can write

$$\mathbb{E}|\max(X_n, a)| \leq |a| + \mathbb{E}X_nI(X_n > |a|) \leq |a| + \mathbb{E}Y1(X_n > |a|) \leq |a| + \mathbb{E}|Y| < \infty.$$

If we take $M > |a|$ then

$$\mathbb{E}|\max(X_n, a)|I(|\max(X_n, a)| > M) = \mathbb{E}X_nI(X_n > M) \leq \mathbb{E}Y1(X_n > M)$$

$$\leq K\mathbb{P}(X_n > M) + \mathbb{E}|Y|I(|Y| > K)$$

$$\leq K\mathbb{E}\max(X_n, 0) + \mathbb{E}|Y|I(|Y| > K)$$

by (13.0.1) \quad \leq K\frac{\mathbb{E}\max(Y, 0)}{M} + \mathbb{E}|Y|I(|Y| > K).$$

Letting $M \to \infty$ and $K \to \infty$ finishes the proof.

Uniform integrability plays an important role when studying the convergence of martingales. The following strengthening of the dominated convergence theorem will be useful.

Lemma 30 Consider r.v.s (X_n) and X such that $\mathbb{E}|X_n| < \infty, \mathbb{E}|X| < \infty$. Then the following are equivalent:

1. $\mathbb{E}|X_n - X| \to 0$,

2. (X_n) is uniformly integrable and $X_n \to X$ in probability.

Proof. 2\Rightarrow1. We can write,

$$\mathbb{E}|X_n - X| \leq \varepsilon + \mathbb{E}|X_n - X||I(|X_n - X| > \varepsilon)$$

$$\leq \varepsilon + 2K\mathbb{P}(|X_n - X| > \varepsilon) + 2\mathbb{E}|X_n||I(|X_n| > K) + 2\mathbb{E}|X||I(|X| > K)$$

$$\leq \varepsilon + 2K\mathbb{P}(|X_n - X| > \varepsilon) + 2\sup_n \mathbb{E}|X_n||I(|X_n| > K) + 2\mathbb{E}|X||I(|X| > K).$$

Letting $n \to \infty$ and then $\varepsilon \to 0, K \to \infty$ proves the result.

1\Rightarrow2. By Chebyshev’s inequality,

$$\mathbb{P}(|X_n - X| > \varepsilon) \leq \frac{1}{\varepsilon} \mathbb{E}|X_n - X| \to 0$$
as \(n \to \infty \) so \(X_n \to X \) in probability. To prove uniform integrability let us first show that for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
P(A) < \delta \implies E[X|I_A] < \varepsilon.
\]

Suppose not. Then, for some \(\varepsilon > 0 \) one can find a sequence of events \(A(n) \) such that

\[
P(A(n)) \leq \frac{1}{2^n} \quad \text{and} \quad E[X|I_{A(n)}] > \varepsilon.
\]

Since \(\sum_{n \geq 1} P(A(n)) < \infty \), by Borel-Cantelli lemma, \(P(A(n) \text{ i.o.}) = 0 \). This means that \(|X|I_{A(n)} \to 0 \) almost surely and by the dominated convergence theorem \(E[X|I_{A(n)}] \to 0 \) - a contradiction.

Given \(\varepsilon > 0 \), take \(\delta \) as above and take \(M > 0 \) large enough so that for all \(n \geq 1 \)

\[
P(|X_n| > M) \leq \frac{E|X_n|}{M} < \delta.
\]

Then,

\[
E|X_n|I(|X_n| > M) \leq E|X_n - X| + E|X|I(|X_n| > M) \leq E|X_n - X| + \varepsilon.
\]

For large enough \(n \geq n_0 \), \(E|X_n - X| \leq \varepsilon \) and, therefore,

\[
E|X_n|I(|X_n| > M) \leq 2\varepsilon.
\]

We can also choose \(M \) large enough so that \(E|X_n|I(|X_n| > M) \leq 2\varepsilon \) for \(n \leq n_0 \) and this finishes the proof. \(\square \)