Section 19

Strassen’s Theorem. Relationships between metrics.

Metric for convergence in probability. Let \((\Omega, B, \mathbb{P})\) be a probability space, \((S, d)\) - a metric space and \(X, Y : \Omega \to S\) - random variables with values in \(S\). The quantity

\[
\alpha(X, Y) = \inf\{\varepsilon \geq 0 : \mathbb{P}(d(X, Y) > \varepsilon) \leq \varepsilon\}
\]

is called the Ky Fan metric on the set \(L^{0}(\Omega, S)\) of classes of equivalences of such random variables, where two r.v.s are equivalent if they are equal a.s. If we take a sequence \(\varepsilon_k \downarrow \alpha = \alpha(X, Y)\)

then \(\mathbb{P}(d(X, Y) > \varepsilon_k) \leq \varepsilon_k\) and since

\[I(d(X, Y) > \varepsilon_k) \uparrow I(d(X, Y) > \alpha),\]

by monotone convergence theorem, \(\mathbb{P}(d(X, Y) > \alpha) \leq \alpha\). Thus, the infimum in the definition of \(\alpha(X, Y)\) is attained.

Lemma 37 \(\alpha\) is a metric on \(L^{0}(\Omega, S)\) which metrizes convergence in probability.

Proof. First of all, clearly, \(\alpha(X, Y) = 0\) iff \(X = Y\) almost surely. To prove the triangle inequality,

\[
\mathbb{P}(d(X, Z) > \alpha(X, Y) + \alpha(Y, Z)) \leq \mathbb{P}(d(X, Y) > \alpha(X, Y)) + \mathbb{P}(d(Y, Z) > \alpha(Y, Z)) \leq \alpha(Y, Z) + \alpha(Y, Z)
\]

so that \(\alpha(X, Z) \leq \alpha(X, Y) + \alpha(Y, Z)\). This proves that \(\alpha\) is a metric. Next, if \(\alpha_n = \alpha(X_n, X)\) then for any \(\varepsilon > 0\) and large enough \(n\) such that \(\alpha_n < \varepsilon\),

\[
\mathbb{P}(d(X_n, X) > \varepsilon) \leq \mathbb{P}(d(X_n, X) > \alpha_n) \leq \alpha_n \to 0.
\]

Conversely, if \(X_n \to X\) in probability then for any \(m \geq 1\) and large enough \(n \geq n(m)\),

\[
\mathbb{P}\left(d(X_n, X) > \frac{1}{m}\right) \leq \frac{1}{m}
\]

which means that \(\alpha_n \leq 1/m\) so that \(\alpha_n \to 0\).

Lemma 38 For \(X, Y \in L^{0}(\Omega, S)\), the Levy-Prohorov metric \(\rho\) satisfies

\[
\rho(\mathcal{L}(X), \mathcal{L}(Y)) \leq \alpha(X, Y).
\]
\textbf{Proof}. Take $\varepsilon > \alpha(X,Y)$ so that $P(d(X,Y) \geq \varepsilon) \leq \varepsilon$. For any set $A \subseteq S,$
\[P(X \in A) = P(X \in A, d(X,Y) < \varepsilon) + P(X \in A, d(X,Y) \geq \varepsilon) \leq P(Y \in A^c) + \varepsilon \]
which means that $\rho(\mathcal{L}(X), \mathcal{L}(Y)) \leq \varepsilon$. Letting $\varepsilon \downarrow \alpha(X,Y)$ proves the result. \hfill \Box

We will now prove that, in some sense, the opposite is also true. Let (S,d) be a metric space and P,Q be probability laws on S. Suppose that these laws are close in the Levy-Prohorov metric ρ. Can we construct random variables s_1 and s_2, with laws P and Q, that are defined on the same probability space and are close to each other in the Ky Fan metric α? We will construct a distribution on the product space $S \times S$ such that the coordinates s_1 and s_2 have marginal distributions P and Q and the distribution is concentrated in the neighborhood of the diagonal $s_1 = s_2$, where s_1 and s_2 are close in metric d, and the size of the neighborhood is controlled by $\rho(P,Q).

Consider two sets X and Y. Given a subset $K \subseteq X \times Y$ and $A \subseteq X$ we define a K-image of A by
\[A^K = \{ y \in Y : \exists x \in A, (x,y) \in K \}. \]
A K-matching f of X into Y is a one-to-one function $f : X \to Y$ such that $(x,f(x)) \in K$. We will need the following well known matching theorem.

\textbf{Theorem 45} If X,Y are finite and for all $A \subseteq X,$
\[\text{card}(A^K) \geq \text{card}(A) \] \hfill (19.0.1)
then there exists a K-matching f of X into Y.

\textbf{Proof}. We will prove the result by induction on $m = \text{card}(X)$. The case of $m = 1$ is obvious. For each $x \in X$ there exists $y \in Y$ such that $(x,y) \in K$. If there is a matching f of $X \setminus \{x\}$ into $Y \setminus \{y\}$ then defining $f(x) = y$ extends f to X. If not, then since $\text{card}(X \setminus \{x\}) < m$, by induction assumption, condition (19.0.1) is violated, i.e. there exists a set $A \subseteq X \setminus \{x\}$ such that $\text{card}(A^K \setminus \{y\}) < \text{card}(A)$. But because we also know that $\text{card}(A^K) \geq \text{card}(A)$ this implies that $\text{card}(A^K) = \text{card}(A)$. Since $\text{card}(A) < m$, by induction there exists a matching of A onto A^K. If there is a matching of $X \setminus A$ into $Y \setminus A^K$ we can combine it with a matching of A and A^K. If not, again by induction assumption, there exists $D \in X \setminus A$ such that $\text{card}(D^K \setminus A^K) < \text{card}(D)$. But then
\[\text{card}\left((A \cup D)^K\right) = \text{card}(D^K \setminus A^K) + \text{card}(A^K) < \text{card}(D) + \text{card}(A) = \text{card}(D \cup A), \]
which contradicts the assumption (19.0.1). \hfill \Box

\textbf{Theorem 46} (Strassen) Suppose that (S,d) is a separable metric space and $\alpha,\beta > 0$. Suppose that laws P and Q are such that for all measurable sets $F \subseteq S$,\[P(F) \leq Q(F^\alpha) + \beta \] \hfill (19.0.2)
Then for any $\varepsilon > 0$ there exist two non-negative measures η,γ on $S \times S$ such that
1. $\mu = \eta + \gamma$ is a law on $S \times S$ with marginals P and $Q.$
2. $\eta(d(x,y) > \alpha + \varepsilon) = 0.$
3. $\gamma(S \times S) \leq \beta + \varepsilon.$
4. μ is a finite sum of product measures.
Remark. Condition (19.0.2) is a relaxation of the definition of the Levy-Prohorov metric, one can take any \(\alpha, \beta > \rho(\mathbb{P}, \mathbb{Q}) \). Conditions 1 - 3 mean that we can construct a measure \(\mu \) on \(X \times X \) such that coordinates \(x, y \) have marginal distributions \(\mathbb{P}, \mathbb{Q} \), concentrated within distance \(\alpha + \varepsilon \) of each other (condition 2) except for the set of measure at most \(\beta + \varepsilon \) (condition 3).

Proof. The proof will proceed in several steps.

Case A. We will start with the simplest case which is, however, at the core of everything else. Given small \(\varepsilon > 0 \), take \(n \geq 1 \) such that \(n\varepsilon > 1 \). Suppose that laws \(\mathbb{P}, \mathbb{Q} \) are uniform on finite subsets \(M, N \subseteq S \) of equal cardinality,

\[
\text{card}(M) = \text{card}(N) = n, \quad \mathbb{P}(x) = \mathbb{Q}(y) = \frac{1}{n} < \varepsilon, \quad x \in M, y \in N.
\]

Using condition (19.0.2), we would like to match as many points from \(M \) and \(N \) as possible, but only points that are within distance \(\alpha \) from each other. To use the matching theorem, we will introduce some auxiliary sets \(U \) and \(V \) that are not too big, with size controlled by parameter \(\beta \), and the union of these sets with \(M \) and \(N \) satisfies a certain matching condition.

Take integer \(k \) such that \(\beta n \leq k < (\beta + \varepsilon)n \). Let us take sets \(U \) and \(V \) such that \(k = \text{card}(U) = \text{card}(V) \) and \(U, V \) are disjoint from \(M, N \). Define

\[
X = M \cup U, \quad Y = N \cup V.
\]

Let us define a subset \(K \subseteq X \times Y \) such that \((x, y) \in K\) if and only if one of the following holds:

1. \(x \in U \),
2. \(y \in V \),
3. \(d(x, y) \leq \alpha \) if \(x \in M, y \in N \).

This means that small auxiliary sets can be matched with any points but only close points, \(d(x, y) \leq \alpha \), can be matched in the main sets \(M \) and \(N \). Consider a set \(A \subseteq X \) with cardinality \(\text{card}(A) = r \). If \(A \nsubseteq M \) then by 1, \(A^K = Y \) and \(\text{card}(A^K) \geq r \). Suppose now that \(A \subseteq M \) and we would like to show that again \(\text{card}(A^K) \geq r \). By (19.0.2),

\[
\frac{r}{n} = \mathbb{P}(A) \leq \mathbb{Q}(A^\alpha) + \beta = \frac{1}{n}\text{card}(A^\alpha \cap N) + \beta \leq \frac{1}{n}\text{card}(A^K \cap N) + \beta
\]

since by 3, \(A^\alpha \subseteq A^K \). Therefore,

\[
r = \text{card}(A) \leq n\beta + \text{card}(A^K \cap N) \leq k + \text{card}(A^K \cap N) = \text{card}(A^K),
\]

since \(k = \text{card}(V) \) and \(A^K = V \cup (A^K \cap N) \). By matching theorem, there exists a \(K \)-matching \(f \) of \(X \) and \(Y \). Let

\[
T = \{ x \in M : f(x) \in N \},
\]

i.e. close points, \(d(x, y) \leq \alpha \), from \(M \) that are matched with points in \(N \). Clearly, \(\text{card}(T) \geq n - k \) and for \(x \in T \), by 3, \(d(x, f(x)) \leq \alpha \). For \(x \in M \setminus T \), redefine \(f(x) \) to match \(x \) with arbitrary points in \(N \) that are not matched with points in \(T \). This defines a matching of \(M \) onto \(N \). We define measures \(\eta \) and \(\gamma \) by

\[
\eta = \frac{1}{n} \sum_{x \in T} \delta(x, f(x)), \quad \gamma = \frac{1}{n} \sum_{x \in M \setminus T} \delta(x, f(x)),
\]

and let \(\mu = \eta + \gamma \). First of all, obviously, \(\mu \) has marginals \(\mathbb{P} \) and \(\mathbb{Q} \) because each point in \(M \) or \(N \) appears in the sum \(\eta + \gamma \) only once with weight \(1/n \). Also,

\[
\eta(d(x, f(x)) > \alpha) = 0, \quad \gamma(S \times S) \leq \frac{\text{card}(M \setminus T)}{n} \leq \frac{k}{n} < \beta + \varepsilon.
\]

(19.0.3)
Finally, both η and γ are finite sums of point masses which are product measures of point masses.

Case B. Suppose now that \mathbb{P} and \mathbb{Q} are concentrated on finitely many points with rational probabilities. Then we can artificially split all points into "smaller" points of equal probabilities as follows. Let n be such that $n\varepsilon > 1$ and

$$n\mathbb{P}(x), n\mathbb{Q}(x) \in J = \{1, 2, \ldots, n\}.$$

Define a discrete metric on J by $f(i, j) = \varepsilon I(i \neq j)$ and define a metric on $S \times J$ by

$$e((x, i), (y, j)) = d(x, y) + f(i, j).$$

Define a measure \mathbb{P}' on $S \times J$ as follows. If $\mathbb{P}(x) = \frac{1}{n}$ then

$$\mathbb{P}'((x, i)) = \frac{1}{n} \text{ for } i = 1, \ldots, j.$$

Define \mathbb{Q}' similarly. Let us check that laws \mathbb{P}', \mathbb{Q}' satisfy the assumptions of Case A. Given a set $F \subseteq S \times J$, define

$$F_1 = \{x \in S : (x, j) \in F \text{ for some } j\}.$$

Using (19.0.2),

$$\mathbb{P}'(F) \leq \mathbb{P}(F_1) \leq Q(F_1^\circ) + \beta \leq \mathbb{Q}'(F^\alpha + \varepsilon) + \beta,$$

because $f(i, j) \leq \varepsilon$. By Case A in (19.0.3), we can construct $\mu' = \eta' + \gamma'$ with marginals \mathbb{P}' and \mathbb{Q}' such that

$$\eta'(e((x, i), (y, j)) > \alpha + \varepsilon) = 0, \quad \gamma'((S \times J) \times (S \times J)) < \beta + \varepsilon.$$

Let μ, η, γ be the projections of μ', η', γ' back onto $S \times S$ by the map $((x, i), (y, j)) \rightarrow (x, y)$. Then, clearly, $\mu = \eta + \gamma$, μ has marginals \mathbb{P} and \mathbb{Q} and $\gamma(S \times S) < \beta + \varepsilon$. Finally, since

$$e((x, i), (y, j)) = d(x, y) + f(i, j) \geq d(x, y),$$

we get

$$\eta(d(x, y) > \alpha + \varepsilon) \leq \eta'(e((x, i), (y, j)) > \alpha + \varepsilon) = 0.$$

Case C. (General case) Let \mathbb{P}, \mathbb{Q} be the laws on a separable metric space (S, d). Let A be a maximal set such that for all $x, y \in A, d(x, y) \geq \varepsilon$. The set A is countable, $A = \{x_i\}_{i \geq 1}$, because S is separable, and since A is maximal, for all $x \in S$ there exists $y \in A$ such that $d(x, y) < \varepsilon$. Such set A is usually called an ε-packing. Let us create a partition of A using ε-balls around $\{x_i\}$:

$$B_1 = \{x \in S : d(x, x_1) < \varepsilon\}, \quad B_2 = \{d(x, x_2) < \varepsilon\} \setminus B_1$$

and, iteratively for $k \geq 2$,

$$B_k = \{d(x, x_k) < \varepsilon\} \setminus (B_1 \cup \cdots \cup B_{k-1}).$$

$\{B_k\}_{k \geq 1}$ is a partition of S. Let us discretize measures \mathbb{P} and \mathbb{Q} by projecting them onto $\{x_i\}_{i \geq 1} :

$$\mathbb{P}'(x_k) = \mathbb{P}(B_k), \quad \mathbb{Q}'(x_k) = \mathbb{Q}(B_k).$$

Consider any set $F \subseteq S$. For any point $x \in F$, if $x \in B_k$ then $d(x, x_k) < \varepsilon$, i.e. $x_k \in F^\varepsilon$ and, therefore,

$$\mathbb{P}(F) \leq \mathbb{P}'(F^\varepsilon).$$

Also, if $x_k \in F$ then $B_k \subseteq F^\varepsilon$ and, therefore,

$$\mathbb{P}'(F) \leq \mathbb{P}(F^\varepsilon).$$

To apply Case B, we need to approximate \mathbb{P}' by a measure on a finite number of points with rationals probabilities. For large enough $n \geq 1$, let

$$\mathbb{P}''(x_k) = \frac{|n\mathbb{P}'(x_k)|}{n}.$$
Clearly, as \(n \to \infty \), \(\mathbb{P}'(x_k) \uparrow \mathbb{P}(x_k) \). Since only a finite number of points carry non-zero weights \(\mathbb{P}'(x_k) > 0 \), let \(x_0 \) be one of the other points in the sequence \(\{x_k\} \). Let us assign to it a probability

\[
\mathbb{P}'(x_0) = 1 - \sum_{k \geq 1} \mathbb{P}'(x_k).
\]

If we take \(n \) large enough so that \(\mathbb{P}'(x_0) < \varepsilon/2 \) then

\[
\sum_{k \geq 0} |\mathbb{P}'(x_k) - \mathbb{P}'(x_k)| \leq \varepsilon.
\]

All the relations above also hold true for \(Q, Q' \) and \(Q'' \) that are defined similarly. We can write for \(F \subseteq S \)

\[
\mathbb{P}'(F) \leq \mathbb{P}'(F) + \varepsilon \leq \mathbb{P}(F^c) + \varepsilon \leq Q(F^c) + \varepsilon \leq Q'(F^c) + \varepsilon \leq Q''(F^c) + \varepsilon + 2\varepsilon.
\]

By Case B, there exists a decomposition \(\mu'' = \eta'' + \gamma'' \) on \(S \times S \) with marginals \(\mathbb{P}'' \) and \(\mathbb{Q}'' \) such that

\[
\eta''(d(x, y) > \alpha + 3\varepsilon) = 0, \quad \gamma''(S \times S) \leq \beta + 3\varepsilon.
\]

Let us also assume that the points \((x_0, x_i) \) and \((x_i, x_0)\) for \(i \geq 0 \) are included in the support of \(\gamma'' \). Since the total weight of these points is at most \(\varepsilon \), the total weight of \(\gamma'' \) does no increase much:

\[
\gamma''(S \times S) \leq \beta + 5\varepsilon.
\]

It remains to redistribute these measures from sequence \(\{x_i\}_{i \geq 0} \) to \(S \) in a way that recovers marginal distributions \(\mathbb{P} \) and \(\mathbb{Q} \) and so that not much accuracy is lost. Define a sequence of measures on \(S \) by

\[
\mathbb{P}_i(C) = \frac{\mathbb{P}(C B_i)}{\mathbb{P}(B_i)} \quad \text{if} \quad \mathbb{P}(B_i) > 0 \quad \text{and} \quad \mathbb{P}_i(C) = 0 \quad \text{otherwise}
\]

and define \(\mathbb{Q}_i \) similarly. The measures \(\mathbb{P}_i \) and \(\mathbb{Q}_i \) are concentrated on \(B_i \). Define

\[
\eta = \sum_{i, j \geq 1} \eta''(x_i, x_j)(\mathbb{P}_i \times \mathbb{Q}_j)
\]

The marginals of \(\eta \) satisfy

\[
u(C) = \eta(C \times S) \leq \sum_{i,j \geq 1} \eta''(x_i, x_j)\mathbb{P}_i(C) = \sum_{i \geq 1} \eta''(x_i, S)\mathbb{P}_i(C) \leq \sum_{i \geq 1} \mathbb{P}''(x_i)\mathbb{P}_i(C) = \sum_{i \geq 1} \mathbb{P}(B_i)\mathbb{P}_i(C) = \mathbb{P}(C)
\]

and, similarly,

\[
u(C) = \eta(S \times C) \leq \mathbb{Q}(C).
\]

Since \(\eta''(x_i, x_j) = 0 \) unless \(d(x_i, x_j) \leq \alpha + 3\varepsilon \), the measure

\[
\eta = \sum_{i, j \geq 1} \eta''(x_i, x_j)(\mathbb{P}_i \times \mathbb{Q}_j)
\]

is concentrated on the set \(\{d(x, y) \leq \alpha + 5\varepsilon\} \) because for \(x \in B_i, y \in B_j \),

\[
d(x, y) \leq d(x, x_i) + d(x_i, x_j) + d(x_j, y) \leq \varepsilon + \alpha + 3\varepsilon + \varepsilon = \alpha + 5\varepsilon.
\]

If \(u(S) = v(S) = 1 \) then \(\eta(S \times S) = 1 \) and \(\eta \) has marginals \(\mathbb{P} \) and \(\mathbb{Q} \) so we can take \(\gamma = 0 \). Otherwise, take \(t = 1 - u(S) \) and define

\[
\gamma = \frac{1}{t}(\mathbb{P} - u) \times (\mathbb{Q} - v).
\]
It is easy to check that $\mu = \eta + \gamma$ has marginals \mathbb{P} and \mathbb{Q}. Also,
\[
\gamma(S \times S) = t = 1 - \eta(S \times S) = 1 - \eta''(S \times S) = \gamma''(S \times S) \leq \beta + 5\varepsilon.
\]

Relationships between metrics. The following relationship between Ky Fan and Levy-Prohorov metrics is an immediate consequence of Strassen’s theorem. We already saw that $\rho(\mathcal{L}(X), \mathcal{L}(Y)) \leq \alpha(X,Y)$.

Theorem 47 If (S,d) is a separable metric space and \mathbb{P}, \mathbb{Q} are laws on S then for any $\varepsilon > 0$ there exist random variables X and Y with distributions $\mathcal{L}(X) = \mathbb{P}$ and $\mathcal{L}(Y) = \mathbb{Q}$ such that
\[
\alpha(X,Y) \leq \rho(\mathbb{P}, \mathbb{Q}) + \varepsilon.
\]
If \mathbb{P} and \mathbb{Q} are tight, one can take $\varepsilon = 0$.

Proof. Let us take $\alpha = \beta = \rho(\mathbb{P}, \mathbb{Q})$. Then, by definition of the Levy-Prohorov metric, for any $\varepsilon > 0$ and for any set A,
\[
\mathbb{P}(A) \leq \mathbb{Q}(A^{\varepsilon}) + \rho + \varepsilon.
\]
By Strassen’s theorem, there exists a measure μ on $S \times S$ with marginals \mathbb{P}, \mathbb{Q} such that
\[
\mu(d(x,y) > \rho + 2\varepsilon) \leq \rho + 2\varepsilon.
\]
(19.0.4)
Therefore, if X and Y are the coordinates of $S \times S$, i.e.
\[
X, Y : S \times S \to S, \quad X(x,y) = x, \quad Y(x,y) = y,
\]
then by definition of the Ky Fan metric, $\alpha(X,Y) \leq \rho + 2\varepsilon$. If \mathbb{P} and \mathbb{Q} are tight then there exists a compact K such that $\mathbb{P}(K), \mathbb{Q}(K) \geq 1 - \delta$. For $\varepsilon = 1/n$ find μ_n as in (19.0.4). Since μ_n has marginals \mathbb{P} and \mathbb{Q}, $\mu_n(K \times K) \geq 1 - 2\delta$, which means that $(\mu_n)_{n \geq 1}$ are uniformly tight. By selection theorem, there exists a convergent subsequence $\mu_{n(k)} \to \mu$. Obviously, μ has marginals \mathbb{P} and \mathbb{Q}. Since by construction,
\[
\mu_n \left(d(x,y) > \rho + \frac{2}{n} \right) \leq \rho + \frac{2}{n}
\]
and \{ $d(x,y) > \rho + 2/n$ \} is an open set on $S \times S$, by portmanteau theorem,
\[
\mu \left(d(x,y) > \rho + \frac{2}{n} \right) \leq \liminf_{k \to \infty} \mu_{n(k)} \left(d(x,y) > \rho + \frac{2}{n(k)} \right) \leq \rho.
\]
Letting $n \to \infty$ we get $\mu(d(x,y) > \rho) \leq \rho$ and, therefore, $\alpha(X,Y) \leq \rho$.

This also implies the relationship between the Bounded Lipschitz metric β and Levy-Prohorov metric ρ.

Lemma 39 If (S,d) is a separable metric space then
\[
\frac{1}{2} \beta(\mathbb{P}, \mathbb{Q}) \leq \rho(\mathbb{P}, \mathbb{Q}) \leq 2\sqrt{\beta(\mathbb{P}, \mathbb{Q})}.
\]

Proof. We already proved the second inequality. To prove the first one, given $\varepsilon > 0$ take random variables X and Y such that $\alpha(X,Y) \leq \rho + \varepsilon$. Consider a bounded Lipschitz function f, $||f||_{BL} < \infty$. Then
\[
\left| \int f d\mathbb{P} - \int f d\mathbb{Q} \right| = |\mathbb{E}f(X) - \mathbb{E}f(Y)| \leq \mathbb{E}|f(X) - f(Y)|
\leq ||f||_{L}(\rho + \varepsilon) + 2||f||_{\infty} \mathbb{P}(d(X,Y) > \rho + \varepsilon)
\leq ||f||_{L}(\rho + \varepsilon) + 2||f||_{\infty}(\rho + \varepsilon) \leq 2||f||_{BL}(\rho + \varepsilon).
\]
Thus, $\beta(\mathbb{P}, \mathbb{Q}) \leq 2(\rho(\mathbb{P}, \mathbb{Q}) + \varepsilon)$ and letting $\varepsilon \to 0$ finishes the proof.