Section 2

Random variables and their properties. Expectation.

Let \((\Omega, \mathcal{A}, \mathbb{P})\) be a probability space and \((S, \mathcal{B})\) be a measurable space where \(\mathcal{B}\) is a \(\sigma\)-algebra of subsets of \(S\). A \textit{random variable} \(X : \Omega \to S\) is a measurable function, i.e.
\[
B \in \mathcal{B} \implies X^{-1}(B) \in \mathcal{A}.
\]

When \(S = \mathbb{R}\) we will usually consider a \(\sigma\)-algebra \(\mathcal{B}\) of Borel measurable sets generated by sets \(\bigcup_{i \leq n} (a_i, b_i]\) (or, equivalently, generated by sets \((a_i, b_i]\) or by open sets).

\textbf{Lemma 3} \(X : \Omega \to \mathbb{R}\) is a random variable iff for all \(t \in \mathbb{R}\)
\[
\{X \leq t\} := \{\omega \in \Omega : X(\omega) \in (-\infty, t]\} \in \mathcal{A}.
\]

\textbf{Proof.} Only \(\Leftarrow\) direction requires proof. We will prove that
\[
\mathcal{D} = \{D \subseteq \mathbb{R} : X^{-1}(D) \in \mathcal{A}\}
\]
is a \(\sigma\)-algebra. Since sets \((-\infty, t] \in \mathcal{D}\) this will imply that \(\mathcal{B} \subseteq \mathcal{D}\). The result follows simply because taking pre-image preserves set operations. For example, if we consider a sequence \(D_i \in \mathcal{D}\) for \(i \geq 1\) then
\[
X^{-1}\left(\bigcup_{i \geq 1} D_i\right) = \bigcup_{i \geq 1} X^{-1}(D_i) \in \mathcal{A}
\]
because \(X^{-1}(D_i) \in \mathcal{A}\) and \(\mathcal{A}\) is a \(\sigma\)-algebra. Therefore, \(\bigcup_{i \geq 1} D_i \in \mathcal{D}\). Other properties can be checked similarly, so \(\mathcal{D}\) is a \(\sigma\)-algebra.

Let us define a measure \(\mathbb{P}_X\) on \(\mathcal{B}\) by \(\mathbb{P}_X = \mathbb{P} \circ X^{-1}\), i.e. for \(B \in \mathcal{B}\),
\[
\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P} \circ X^{-1}(B).
\]

\((S, \mathcal{B}, \mathbb{P}_X)\) is called the \textit{sample space} of a random variable \(X\) and \(\mathbb{P}_X\) is called the \textit{law} of \(X\). Clearly, on this space a random variable \(\xi : S \to S\) defined by the identity \(\xi(s) = s\) has the same law as \(X\).

When \(S = \mathbb{R}\), a function \(F(t) = \mathbb{P}(X \leq t)\) is called the cumulative distribution function (c.d.f.) of \(X\).

\textbf{Lemma 4} \(F\) is a c.d.f. of some r.v. \(X\) iff
1. \(0 \leq F(t) \leq 1\),
2. \(F\) is non-decreasing, right-continuous,
3. \(\lim_{t \to -\infty} F(t) = 0, \lim_{t \to +\infty} F(t) = 1. \)

Proof. The fact that any c.d.f. satisfies properties 1 - 3 is obvious. Let us show that \(F \) which satisfies properties 1 - 3 is a c.d.f. of some r.v. \(X \). Consider algebra \(A \) consisting of sets \(\bigcup_{i \leq n} (a_i, b_i] \) for disjoint intervals and for all \(n \geq 1 \). Let us define a function \(\mathbb{P} \) on \(A \) by

\[
\mathbb{P}\left(\bigcup_{i \leq n} (a_i, b_i]\right) = \sum_{i \leq n} (F(a_i) - F(b_i)).
\]

One can show that \(\mathbb{P} \) is countably additive on \(A \). Then, by Caratheodory extension Theorem 1, \(\mathbb{P} \) extends uniquely to a measure \(\mathbb{P} \) on \(\sigma(A) = B \) - Borel measurable sets. This means that \((\mathbb{R}, B, \mathbb{P})\) is a probability space and, clearly, random variable \(X : \mathbb{R} \to \mathbb{R} \) defined by \(X(x) = x \) has c.d.f. \(\mathbb{P}(X \leq t) = F(t) \). Below we will sometimes abuse the notations and let \(F \) denote both c.d.f. and probability measure \(\mathbb{P} \).

Alternative proof. Consider a probability space \((\{0, 1\}, B, \lambda)\), where \(\lambda \) is the Lebesgue measure. Define r.v. \(X : [0, 1] \to \mathbb{R} \) by the quantile transformation

\[
X(t) = \inf\{x \in \mathbb{R}, F(x) \geq t\}.
\]

The c.d.f. of \(X \) is \(\lambda(t : X(t) \leq a) = F(a) \) since

\[
X(t) \leq a \iff \inf\{x : F(x) \geq t\} \leq a \iff \exists a_n \to a, F(a_n) \geq t \iff F(a) \geq t.
\]

![Figure 2.1: A random variable defined by quantile transformation.](image)

Definition. Given a probability space \((\Omega, A, \mathbb{P})\) and a r.v. \(X : \Omega \to S \) let \(\sigma(X) \) be a \(\sigma \)-algebra generated by a collection of sets \(\{X^{-1}(B) : B \in B\} \). Clearly, \(\sigma(X) \subseteq A \). Moreover, the above collection of sets is itself a \(\sigma \)-algebra. Indeed, consider a sequence \(A_i = X^{-1}(B_i) \) for some \(B_i \in B \). Then

\[
\bigcup_{i \geq 1} A_i = \bigcup_{i \geq 1} X^{-1}(B_i) = X^{-1}\left(\bigcup_{i \geq 1} B_i\right) = X^{-1}(B)
\]

where \(B \in \bigcup_{i \geq 1} B_i \in B \). \(\sigma(X) \) is called the \(\sigma \)-algebra generated by a r.v. \(X \).

![Figure 2.2: \(\sigma(X) \) generated by \(X \).](image)

Example. Consider a r.v. defined in figure 2.2. We have \(\mathbb{P}(X = 0) = \frac{1}{2} \), \(\mathbb{P}(X = 1) = \frac{1}{2} \) and

\[
\sigma(X) = \{\emptyset, [0, \frac{1}{2}], (\frac{1}{2}, 1], [0, 1]\}.
\]
Lemma 5 Consider a probability space \((\Omega, \mathcal{A}, \mathbb{P})\), a measurable space \((\mathcal{S}, \mathcal{B})\) and random variables \(X : \Omega \to \mathcal{S}\) and \(Y : \Omega \to \mathbb{R}\). Then the following are equivalent:

1. \(Y = g(X)\) for some (Borel) measurable function \(g : \mathcal{S} \to \mathbb{R}\).
2. \(Y : \Omega \to \mathbb{R}\) is measurable on \((\Omega, \sigma(X))\), i.e. with respect to the \(\sigma\)-algebra generated by \(X\).

Remark. It should be obvious from the proof that \(\mathbb{R}\) can be replaced by any separable metric space.

Proof. The fact that 1 implies 2 is obvious since for any Borel set \(B \subseteq \mathbb{R}\) the set \(B' := g^{-1}(B) \in \mathcal{B}\) and, therefore,

\[
\{Y = g(X) \in B\} = \{X \in g^{-1}(B) = B'\} = X^{-1}(B') \in \sigma(X).
\]

Let us show that 2 implies 1. For all integer \(n\) and \(k\) consider sets

\[
A_{n,k} = \left\{ \omega : Y(\omega) \in \left[\frac{k}{2^n} , \frac{k+1}{2^n} \right) \right\} = Y^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n} \right) \right).
\]

By 2, \(A_{n,k} \in \sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}\}\) and, therefore, \(A_{n,k} = X^{-1}(B_{n,k})\) for some \(B_{n,k} \in \mathcal{B}\). Let us consider a function

\[
g_n(X) = \sum_{k \in \mathbb{Z}} \frac{k}{2^n} I(X \in B_{n,k}).
\]

By construction, \(|Y - g_n(X)| \leq \frac{1}{4^n}\) since

\[
Y(\omega) \in \left[\frac{k}{2^n} , \frac{k+1}{2^n} \right) \iff X(\omega) \in B_{n,k} \iff g_n(X(\omega)) = \frac{k}{2^n}.
\]

It is easy to see that \(g_n(x) \leq g_{n+1}(x)\) and, therefore, \(g(x) = \lim_{n \to \infty} g_n(x)\) is a measurable function on \((\mathcal{S}, \mathcal{B})\) and, clearly, \(Y = g(X)\).

\[\square\]

Discrete random variables.
A r.v. \(X : \Omega \to \mathcal{S}\) is called discrete if \(\mathbb{P}_X(\{S_i\}_{i \geq 1}) = 1\) for some sequence \(S_i \in \mathcal{S}\).

Absolutely continuous random variables.
On a measure space \((\mathcal{S}, \mathcal{B})\), a measure \(\mathbb{P}\) is called absolutely continuous w.r.t. a measure \(\lambda\) if

\[
\forall B \in \mathcal{B}, \lambda(B) = 0 \implies \mathbb{P}(B) = 0.
\]

The following is a well known result from measure theory.

Theorem 2 (Radon-Nikodym) If \(\mathbb{P}\) and \(\lambda\) are sigma-finite and \(\mathbb{P}\) is absolutely continuous w.r.t. \(\lambda\) then there exists a Radon-Nikodym derivative \(f \geq 0\) such that for all \(B \in \mathcal{B}\)

\[
\mathbb{P}(B) = \int_B f(s) d\lambda(s).
\]

\(f\) is uniquely defined up to a \(\lambda\)-null sets.

In a typical setting of \(\mathcal{S} = \mathbb{R}^k\), a probability measure \(\mathbb{P}\) and Lebesgue’s measure \(\lambda\), \(f\) is called the density of the distribution \(\mathbb{P}\).

\[\square\]

Independence.
Consider a probability space \((\Omega, \mathcal{C}, \mathbb{P})\) and two \(\sigma\)-algebras \(\mathcal{A}, \mathcal{B} \subseteq \mathcal{C}\). \(\mathcal{A}\) and \(\mathcal{B}\) are called independent if

\[
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \quad \text{for all } A \in \mathcal{A}, B \in \mathcal{B}.
\]
σ-algebras \(A_i \subseteq C \) for \(i \leq n \) are independent if
\[
P(A_1 \cap \cdots \cap A_n) = \prod_{i \leq n} P(A_i) \quad \text{for all } A_i \in A_i.
\]

σ-algebras \(A_i \subseteq C \) for \(i \leq n \) are pairwise independent if
\[
P(A_i \cap A_j) = P(A_i)P(A_j) \quad \text{for all } A_i \in A_i, A_j \in A_j, i \neq j.
\]

Random variables \(X_i : \Omega \to S \) for \(i \leq n \) are (pairwise) independent if σ-algebras \(\sigma(X_i), i \leq n \) are (pairwise) independent which is just another convenient way to state the familiar
\[
P(X_1 \in B_1, \ldots, X_n \in B_n) = P(X_1 \in B_1) \times \cdots \times P(X_n \in B_n)
\]
for any events \(B_1, \ldots, B_n \in B \).

Example. Consider a regular tetrahedron die, Figure 2.3, with red, green and blue sides and a red-green-blue base. If we roll this die then indicators of different colors provide an example of pairwise independent r.v.s that are not independent since
\[
P(r) = P(b) = P(g) = \frac{1}{2} \quad \text{and} \quad P(rb) = P(rg) = P(bg) = \frac{1}{4}
\]
but
\[
P(rbg) = \frac{1}{4} \neq P(r)P(b)P(g) = \left(\frac{1}{2}\right)^3.
\]

![Figure 2.3: Pairwise independent but not independent r.v.s.](image)

Independence of σ-algebras can be checked on generating algebras:

Lemma 6 If algebras \(A_i, i \leq n \) are independent then σ-algebras \(\sigma(A_i) \) are independent.

Proof. Obvious by Approximation Lemma 2.

Lemma 7 Consider r.v.s \(X_i : \Omega \to \mathbb{R} \) on a probability space \((\Omega, A, P) \).

1. \(X_i \)'s are independent iff
\[
P(X_1 \leq t_1, \ldots, X_n \leq t_n) = P(X_1 \leq t_1) \times \cdots \times P(X_n \leq t_n).
\]

2. If the laws of \(X_i \)'s have densities \(f_i(x) \) then \(X_i \)'s are independent iff a joint density exists and
\[
f(x_1, \ldots, x_n) = \prod f_i(x_i).
\]
Proof. 1 is obvious by Lemma 6 because (2.0.1) implies the same equality for intervals

\[\mathbb{P}(X_1 \in (a_1, b_1], \ldots, X_n \in (a_n, b_n]) = \mathbb{P}(X_1 \in (a_1, b_1]) \times \ldots \times \mathbb{P}(X_n \in (a_n, b_n]) \]

and, therefore, for finite union of disjoint such intervals. To check this for intervals (for example, for \(n = 2 \)) we can write \(\mathbb{P}(a_1 < X_1 \leq b_1, a_2 < X_n \leq b_2) \) as

\[
\mathbb{P}(X_1 \leq b_1, X_2 \leq b_2) - \mathbb{P}(X_1 \leq a_1, X_2 \leq b_2) - \mathbb{P}(X_1 \leq b_1, X_2 \leq a_2) + \mathbb{P}(X_1 \leq a_1, X_2 \leq a_2) \\
= \mathbb{P}(X_1 \leq b_1)\mathbb{P}(X_2 \leq b_2) - \mathbb{P}(X_1 \leq a_1)\mathbb{P}(X_2 \leq b_2) - \mathbb{P}(X_1 \leq b_1)\mathbb{P}(X_2 \leq a_2) + \mathbb{P}(X_1 \leq a_1)\mathbb{P}(X_2 \leq a_2) \\
= (\mathbb{P}(X_1 \leq b_1) - \mathbb{P}(X_1 \leq a_1))(\mathbb{P}(X_2 \leq b_2) - \mathbb{P}(X_2 \leq a_2)) = \mathbb{P}(a_1 < X_1 \leq b_1)\mathbb{P}(a_2 < X_2 \leq b_2).
\]

To prove 2 we start with "\(\Leftarrow \)".

\[
\mathbb{P}(\cap\{X_i \in A_i\}) = \mathbb{P}(X \in A_1 \times \cdots \times A_n) = \int_{A_1 \times \cdots \times A_n} \prod f_i(x_i)dx \\
= \prod \int A_i f_i(x_i)dx, \text{ \{by Fubini’s Theorem\}} = \prod_{i \leq n} \mathbb{P}(X \in A_i).
\]

Next, we prove "\(\Rightarrow \)". First of all, by independence,

\[
\mathbb{P}(X \in A_1 \times \cdots \times A_n) = \prod \mathbb{P}(X_i \in A_i) = \int_{A_1 \times \cdots \times A_n} \prod f_i(x_i)dx.
\]

Therefore, the same equality holds for sets in algebra \(A \) that consists of finite unions of disjoint sets \(A_1 \times \cdots \times A_n \), i.e.

\[
\mathbb{P}(X \in B) = \int_B \prod f_i(x_i)dx \text{ for } B \in A.
\]

Both \(\mathbb{P}(X \in B) \), \(\int_B \prod f_i(x_i)dx \) are countably additive on \(A \) and finite,

\[
\mathbb{P}(\mathbb{R}^n) = \int_{\mathbb{R}^n} \prod f_i(x_i)dx = 1.
\]

By the Carathéodory extension Theorem 1, they extend uniquely to all Borel sets \(B = \sigma(A) \), so

\[
\mathbb{P}(B) = \int_B \prod f_i(x_i)dx \text{ for } B \in B.
\]

Expectation. If \(X : \Omega \to \mathbb{R} \) is a random variable on \((\Omega, A, \mathbb{P}) \) then **expectation** of \(X \) is defined as

\[
\mathbb{E}X = \int_{\Omega} X(\omega)d\mathbb{P}(\omega).
\]

In other words, expectation is just another term for the integral with respect to a probability measure and, as a result, expectation has all the usual properties of the integrals. Let us emphasize some of them.

Lemma 8. 1. If \(F \) is the c.d.f. of \(X \) then for any measurable function \(g : \mathbb{R} \to \mathbb{R}, \)

\[
\mathbb{E}g(x) = \int_{\mathbb{R}} g(x)dF(x).
\]

2. If \(X \) is discrete, i.e. \(\mathbb{P}(X \in \{x_i\}_{i \geq 1}) = 1 \), then

\[
\mathbb{E}X = \sum_{i \geq 1} x_i \mathbb{P}(X = x_i).
\]
3. If $X : \Omega \to \mathbb{R}^k$ has a density $f(x)$ on \mathbb{R}^k and $g : \mathbb{R}^k \to \mathbb{R}$ then

$$\mathbb{E}g(X) = \int g(x)f(x)dx.$$

Proof. All these properties follow by making a change of variables $x = X(\omega)$ or $\omega = X^{-1}(x)$, i.e.

$$\mathbb{E}g(X) = \int g(X(\omega))d\mathbb{P}(\omega) = \int g(x)d\mathbb{P} \circ X^{-1}(x) = \int g(x)d\mathbb{P}_X(x),$$

where $\mathbb{P}_X = \mathbb{P} \circ X^{-1}$ is the law of X. Another way to see this would be to start with indicator functions of sets $g(x) = \mathbb{I}(x \in B)$ for which

$$\mathbb{E}g(X) = \mathbb{P}(X \in B) = \mathbb{P}_X(B) = \int_{\mathbb{R}} \mathbb{I}(x \in B)d\mathbb{P}_X(x)$$

and, therefore, the same is true for simple step functions

$$g(x) = \sum_{i \geq n} w_i \mathbb{I}(x \in B_i)$$

for disjoint B_i. By approximation, this is true for any measurable functions.

\square