Section 20

Kantorovich-Rubinstein Theorem.

Let (S, d) be a separable metric space. Denote by $\mathcal{P}_1(S)$ the set of all laws on S such that for some $z \in S$ (equivalently, for all $z \in S$),

$$\int_S d(x, z)\mathbb{P}(x) < \infty.$$

Let us denote by

$$M(\mathbb{P}, \mathbb{Q}) = \{ \mu : \mu \text{ is a law on } S \times S \text{ with marginals } \mathbb{P} \text{ and } \mathbb{Q} \}.$$

Definition. For $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_1(S)$, the quantity

$$W(\mathbb{P}, \mathbb{Q}) = \inf \left\{ \int d(x, y)d\mu(x, y) : \mu \in M(\mathbb{P}, \mathbb{Q}) \right\}$$

is called the *Wasserstein* distance between \mathbb{P} and \mathbb{Q}.

A measure $\mu \in M(\mathbb{P}, \mathbb{Q})$ represents a *transportation* between measures \mathbb{P} and \mathbb{Q}. We can think of the conditional distribution $\mu(y|x)$ as a way to redistribute the mass in the neighborhood of a point x so that the distribution \mathbb{P} will be redistributed to the distribution \mathbb{Q}. If the distance $d(x, y)$ represents the cost of moving x to y then the Wasserstein distance gives the optimal total cost of transporting \mathbb{P} to \mathbb{Q}.

Given any two laws \mathbb{P} and \mathbb{Q} on S, let us define

$$\gamma(\mathbb{P}, \mathbb{Q}) = \sup \left\{ \int f d\mathbb{P} - \int f d\mathbb{Q} : \|f\|_L \leq 1 \right\}$$

and

$$m_d(\mathbb{P}, \mathbb{Q}) = \sup \left\{ \int f d\mathbb{P} + \int g d\mathbb{Q} : f, g \in C(S), \; f(x) + g(y) < d(x, y) \right\}.$$

Lemma 40 We have $\gamma(\mathbb{P}, \mathbb{Q}) = m_d(\mathbb{P}, \mathbb{Q})$.

Proof. Given a function f such that $\|f\|_L \leq 1$ let us take a small $\varepsilon > 0$ and $g(y) = -f(y) - \varepsilon$. Then

$$f(x) + g(y) = f(x) - f(y) - \varepsilon \leq d(x, y) - \varepsilon < d(x, y)$$

and

$$\int f d\mathbb{P} + \int g d\mathbb{Q} = \int f d\mathbb{P} - \int f d\mathbb{Q} - \varepsilon.$$

Combining with the choice of $-f(x)$ and $g(y) = f(y) - \varepsilon$ we get

$$\left| \int f d\mathbb{P} - \int f d\mathbb{Q} \right| \leq \sup \left\{ \int f d\mathbb{P} + \int g d\mathbb{Q} : f(x) + g(y) < d(x, y) \right\} + \varepsilon.$$

82
which, of course, proves that
\[\gamma(\mathbb{P}, \mathbb{Q}) \leq \sup \left\{ \int f d\mathbb{P} + \int g d\mathbb{Q} : f(x) + g(y) < d(x, y) \right\}. \]

Let us now consider functions \(f, g \) such that \(f(x) + g(y) < d(x, y) \). Define
\[e(x) = \inf_y (d(x, y) - g(y)) = -\sup_y (g(y) - d(x, y)) \]

Clearly,
\[f(x) \leq e(x) \leq d(x, y) - g(x) = -g(x) \]
and, therefore,
\[\int f d\mathbb{P} + \int g d\mathbb{Q} \leq \int e d\mathbb{P} - \int e d\mathbb{Q}. \]

Function \(e \) satisfies
\[e(x) - e(x') = \sup_y (g(y) - d(x', y)) - \sup_y (g(y) - d(x, y)) \]
\[\leq \sup_y (d(x, y) - d(x', y)) \leq d(x, x') \]
which means that \(||e||_1 = 1 \). This finishes the proof.

We will need the following version of the Hahn-Banach theorem.

Theorem 48 (Hahn-Banach) Let \(V \) be a normed vector space, \(E \) a linear subspace of \(V \) and \(U \) an open convex set in \(V \) such that \(U \cap E \neq \emptyset \). If \(r : E \to \mathbb{R} \) is a linear non-zero functional on \(E \) then there exists a linear functional \(\rho : V \to \mathbb{R} \) such that \(\rho|_E = r \) and \(\sup_U \rho(x) = \sup_{U \cap E} r(x) \).

Proof. Let \(t = \sup \{ r(x) : x \in U \cap E \} \) and let \(B = \{ x \in E : r(x) > t \} \). Since \(B \) is convex and \(U \cap B = \emptyset \), the Hahn-Banach separation theorem implies that there exists a linear functional \(q : V \to \mathbb{R} \) such that \(\sup_U q(x) \leq \inf_B q(x) \). For any \(x_0 \in U \cap E \) let \(F = \{ x \in E : q(x) = q(x_0) \} \). Since \(q(x_0) < \inf_B q(x) \), \(F \cap B = \emptyset \). This means that the hyperplanes \(\{ x \in E : q(x) = q(x_0) \} \) and \(\{ x \in E : r(x) = t \} \) in the subspace \(E \) are parallel and this implies that \(q(x) = \alpha r(x) \) on \(E \) for some \(\alpha \neq 0 \). Let \(\rho = q/\alpha \). Then \(r = \rho|_E \) and
\[\sup_U \rho(x) = \frac{1}{\alpha} \sup_U q(x) \leq \frac{1}{\alpha} \inf_B q(x) = \inf_B r(x) = t = \sup_{U \cap E} r(x). \]
Since \(r = \rho|_E \), this finishes the proof.

Theorem 49 If \(S \) is a compact metric space then \(W(\mathbb{P}, \mathbb{Q}) = m_d(\mathbb{P}, \mathbb{Q}) \) for \(\mathbb{P}, \mathbb{Q} \in \mathcal{P}_1(S) \).

Proof. Consider a vector space \(V = C(S \times S) \) equipped with \(|| \cdot ||_\infty \) norm and let
\[U = \{ f \in V : f(x, y) < d(x, y) \}. \]
Obviously, \(U \) is convex and open because \(S \times S \) is compact and any continuous function on a compact achieves its maximum. Consider a linear subspace \(E \) of \(V \) defined by
\[E = \{ \phi \in V : \phi(x, y) = f(x) + g(y) \} \]
so that
\[U \cap E = \{ f(x) + g(y) < d(x, y) \}. \]
Define a linear functional \(r \) on \(E \) by
\[
r(\phi) = \int f d\mathcal{P} + \int g d\mathcal{Q} \quad \text{if} \quad \phi = f(x) + g(y).
\]

By the above Hahn-Banach theorem, \(r \) can be extended to \(\rho : V \to \mathbb{R} \) such that \(\rho|_E = r \) and
\[
\sup_{U} \rho(\phi) = \sup_{U \cap E} r(\phi) = m_d(\mathcal{P}, \mathcal{Q}).
\]

Let us look at the properties of this functional. First of all, if \(a(x, y) \geq 0 \) then \(\rho(a) \geq 0 \). Indeed, for any \(c \geq 0 \)
\[
U \ni d(x, y) - c \cdot a(x, y) - \varepsilon < d(x, y)
\]
and, therefore, for all \(c \geq 0 \)
\[
\rho(d - ca - \varepsilon) = \rho(d) - c \rho(a) - \rho(\varepsilon) \leq \sup_U \rho < \infty.
\]

This can hold only if \(\rho(a) \geq 0 \). This implies that if \(\phi_1 \leq \phi_2 \) then \(\rho(\phi_1) \leq \rho(\phi_2) \). For any function \(\phi \), both
\[
-\phi, \phi \leq ||\phi||_\infty \cdot 1 \quad \text{and, by monotonicity of } \rho,
\]
\[
|\rho(\phi)| \leq ||\phi||_\infty \rho(1) = ||\phi||_\infty.
\]

Since \(S \times S \) is compact and \(\rho \) is a continuous functional on \((C(S \times S), || \cdot ||_\infty) \), by the Reisz representation theorem there exists a unique measure \(\mu \) on the Borel \(\sigma \)-algebra on \(S \times S \) such that
\[
\rho(f) = \int f(x, y) d\mu(x, y).
\]

Since \(\rho|_E = r \),
\[
\int (f(x) + g(y)) d\mu(x, y) = \int f d\mathcal{P} + \int g d\mathcal{Q}
\]
which implies that \(\mu \in M(\mathcal{P}, \mathcal{Q}) \). We have
\[
m_d(\mathcal{P}, \mathcal{Q}) = \sup_U \rho(\phi) = \sup \left\{ \int f(x, y) d\mu(x, y) : f(x, y) < d(x, y) \right\} = \int d(x, y) d\mu(x, y) \geq \mathcal{W}(\mathcal{P}, \mathcal{Q}).
\]

The opposite inequality is easy because for any \(f, g \) such that \(f(x) + g(y) < d(x, y) \) and any \(\nu \in M(\mathcal{P}, \mathcal{Q}) \),
\[
\int f d\mathcal{P} + \int g d\mathcal{Q} = \int (f(x) + g(y)) d\nu(x, y) \leq \int d(x, y) d\nu(x, y).
\]

This finishes the proof and, moreover, it shows that the infimum in the definition of \(W \) is achieved on \(\mu \).

Remark. Notice that in the proof of this theorem we never used the fact that \(d \) is a metric. Theorem holds for any \(d \in C(S \times S) \) under the corresponding integrability assumptions. For example, one can consider loss functions of the type \(d(x, y)^p \) for \(p > 1 \), which are not necessarily metrics. However, in Lemma 40, the fact that \(d \) is a metric was essential.

Our next goal will be to show that \(W = \gamma \) on separable and not necessarily compact metric spaces. We start with the following.

Lemma 41 If \((S, d) \) is a separable metric space then \(W \) and \(\gamma \) are metrics on \(\mathcal{P}_1(S) \).

Proof. Since for a bounded Lipschitz metric \(\beta \) we have \(\beta(\mathcal{P}, \mathcal{Q}) \leq \gamma(\mathcal{P}, \mathcal{Q}) \), \(\gamma \) is also a metric because if \(\gamma(\mathcal{P}, \mathcal{Q}) = 0 \) then \(\beta(\mathcal{P}, \mathcal{Q}) = 0 \) and, therefore, \(\mathcal{P} = \mathcal{Q} \). As in (20.0.1), it should be obvious that \(\gamma(\mathcal{P}, \mathcal{Q}) = m_d(\mathcal{P}, \mathcal{Q}) \leq \mathcal{W}(\mathcal{P}, \mathcal{Q}) \) and if \(\mathcal{W}(\mathcal{P}, \mathcal{Q}) = 0 \) then \(\gamma(\mathcal{P}, \mathcal{Q}) = 0 \) and \(\mathcal{P} = \mathcal{Q} \). Symmetry of \(W \) is obvious. It remains to show that \(\mathcal{W}(\mathcal{P}, \mathcal{Q}) \) satisfies the triangle inequality. The idea will be rather simple, but to have well-defined
conditional distributions we will need to approximate distributions on \(S \times S \) with given marginals by a more regular distributions with the same marginals. Let us first explain the main idea. Consider three laws \(\mathbb{P}, \mathbb{Q}, \mathbb{T} \) on \(S \) and let \(\mu \in \mathcal{M}(\mathbb{P}, \mathbb{Q}) \) and \(\nu \in \mathcal{M}(\mathbb{Q}, \mathbb{T}) \) be such that

\[
\int d(x, y)d\mu(x, y) \leq W(\mathbb{P}, \mathbb{Q}) + \varepsilon \quad \text{and} \quad \int d(y, z)d\nu(y, z) \leq W(\mathbb{Q}, \mathbb{T}) + \varepsilon.
\]

Let us generate a distribution \(\gamma \) on \(S \times S \times S \) with marginals \(\mathbb{P}, \mathbb{Q} \) and \(\mathbb{T} \) and marginals on pairs of coordinates \((x, y) \) and \((y, z) \) given by \(\mu \) and \(\nu \) by "gluing" \(\mu \) and \(\nu \) in the following way. Let us generate \(y \) from distribution \(\mathbb{Q} \) and, given \(y \), generate \(x \) and \(z \) according to conditional distributions \(\mu(x|y) \) and \(\nu(z|y) \) independently of each other, i.e.

\[
\gamma(x, z|y) = \mu(x|y) \times \nu(z|y).
\]

Obviously, by construction, \((x, y) \) has distribution \(\mu \) and \((y, z) \) has distribution \(\nu \). Therefore, the marginals of \(x \) and \(z \) are \(\mathbb{P} \) and \(\mathbb{T} \) which means that the pair \((x, z) \) has distribution \(\eta \in \mathcal{M}(\mathbb{P}, \mathbb{T}) \). Finally,

\[
W(\mathbb{P}, \mathbb{T}) \leq \int d(x, z)d\eta(x, z) = \int d(x, z)d\gamma(x, y, z) \leq \int d(x, y)d\gamma + \int d(y, z)d\gamma
\]

\[
= \int d(x, y)d\mu + \int d(y, z)d\nu \leq W(\mathbb{P}, \mathbb{Q}) + W(\mathbb{Q}, \mathbb{T}) + 2\varepsilon.
\]

Letting \(\varepsilon \to 0 \) proves the triangle inequality for \(W \). It remains to explain how the conditional distributions can be well defined. Let us modify \(\mu \) by 'discretizing' it without losing much in the transportation cost integral. Given \(\varepsilon > 0 \), consider a partition \((S_n)_{n \geq 1} \) of \(S \) such that \(\text{diameter}(S_n) < \varepsilon \) for all \(n \). This can be done as in the proof of Strassen’s theorem, Case C. On each box \(S_n \times S_m \) let

\[
\mu_{nm}^1(C) = \frac{\mu((C \cap S_n) \times S_m)}{\mu(S_n \times S_m)}, \quad \mu_{nm}^2(C) = \frac{\mu(S_n \times (C \cap S_m))}{\mu(S_n \times S_m)}
\]

be the marginal distributions of the conditional distribution of \(\mu \) on \(S_n \times S_m \). Define

\[
\mu' = \sum_{n,m} \mu(S_n \times S_m) \mu_{nm}^1 \times \mu_{nm}^2.
\]

In this construction, locally on each small box \(S_n \times S_m \), measure \(\mu \) is replaced by the product measure with the same marginals. Let us compute the marginals of \(\mu' \). Given a set \(C \subseteq S \),

\[
\mu'(C \times S) = \sum_{n,m} \mu(S_n \times S_m) \mu_{nm}^1(C) \times \mu_{nm}^2(S)
\]

\[
= \sum_{n,m} \mu((C \cap S_n) \times S_m) = \sum_{n} \mu((C \cap S_n) \times S) = \sum_n \mathbb{P}(C \cap S_n) = \mathbb{P}(C).
\]

Similarly, \(\mu'(S \times C) = \mathbb{Q}(C) \), so \(\mu' \) has the same marginals as \(\mu, \mu' \in \mathcal{M}(\mathbb{P}, \mathbb{Q}) \). It should be obvious that transportation cost integral does not change much by replacing \(\mu \) with \(\mu' \). One can visualize this by looking at what happens locally on each small box \(S_n \times S_m \). Let \((X_n, Y_m) \) be a random pair with distribution \(\mu \) restricted to \(S_n \times S_m \) so that

\[
\mathbb{E}d(X_n, Y_m) = \frac{1}{\mu(S_n \times S_m)} \int_{S_n \times S_m} d(x, y)d\mu(x, y).
\]

Let \(Y'_m \) be an independent copy of \(Y_m \), also independent of \(X_n \), i.e. the joint distribution of \((X_n, Y'_m) \) is \(\mu_{nm}^1 \times \mu_{nm}^2 \) and

\[
\mathbb{E}d(X_n, Y'_m) = \int_{S_n \times S_m} d(x, y)d(\mu_{nm}^1 \times \mu_{nm}^2)(x, y).
\]

Then

\[
\int d(x, y)d\mu(x, y) = \sum_{n,m} \mu(S_n \times S_m)\mathbb{E}d(X_n, Y_m),
\]

85
\[
\int d(x,y)d\mu'(x,y) = \sum_{n,m} \mu(S_n \times S_m) E_d(X_n, Y'_m).
\]

Finally, \(d(Y_m, Y'_m) \leq \text{diam}(S_m) \leq \varepsilon\) and these two integrals differ by at most \(\varepsilon\). Therefore,
\[
\int d(x,y)d\mu'(x,y) \leq W(\mathbb{P}, \mathbb{Q}) + 2\varepsilon.
\]

Similarly, we can define
\[
\nu' = \sum_{n,m} \nu(S_n \times S_m) \nu^1_{nm} \times \nu^2_{nm}
\]
such that
\[
\int d(x,y)d\nu'(x,y) \leq W(\mathbb{Q}, \mathbb{T}) + 2\varepsilon.
\]

We will now show that this special simple form of the distributions \(\mu'(x,y), \nu'(y,z)\) ensures that the conditional distributions of \(x\) and \(z\) given \(y\) are well defined. Let \(Q_m\) be the restriction of \(Q\) to \(S_m\),
\[
Q_m(C) = Q(C \cap S_m) = \sum_{n} \mu(S_n \times S_m) \mu^2_{nm}(C).
\]

Obviously, if \(Q_m(C) = 0\) then \(\mu^2_{nm}(C) = 0\) for all \(n\), which means that \(\mu^2_{nm}\) are absolutely continuous with respect to \(Q_m\) and the Radon-Nikodým derivatives
\[
f_{nm}(y) = \frac{d\mu^2_{nm}(y)}{dQ_m(y)} \text{ exist and } \sum_{n} \mu(S_n \times S_m)f_{nm}(y) = 1 \ a.s. \text{ for } y \in S_m.
\]

Let us define a conditional distribution of \(x\) given \(y\) by
\[
\mu'(A|y) = \sum_{n,m} \mu(S_n \times S_m)f_{nm}(y)\mu^1_{nm}(A).
\]

Notice that for any \(A \in \mathcal{B}\), \(\mu'(A|y)\) is measurable in \(y\) and \(\mu'(A|y)\) is a probability distribution on \(\mathcal{B}\), \(\mathbb{Q}\)-a.s. over \(y\) because
\[
\mu'(S|y) = \sum_{n,m} \mu(S_n \times S_m)f_{nm}(y) = 1 \ a.s.
\]

Let us check that for Borel sets \(A, B \in \mathcal{B}\),
\[
\mu'(A \times B) = \int_B \mu'(A|y)d\mathbb{Q}(y).
\]

Indeed, since \(f_{nm}(y) = 0\) for \(y \notin S_m\),
\[
\int_B \mu'(A|y)d\mathbb{Q}(y) = \sum_{n,m} \mu(S_n \times S_m)\mu^1_{nm}(A) \int_B f_{nm}(y)d\mathbb{Q}(y) = \sum_{n,m} \mu(S_n \times S_m)\mu^1_{nm}(A) \int_B f_{nm}(y)d\mathbb{Q}_m(y) = \sum_{n,m} \mu(S_n \times S_m)\mu^1_{nm}(A)\mu^2_{nm}(B) = \mu'(A \times B).
\]

Conditional distribution \(\nu'(|y)\) can be defined similarly.

Next lemma shows that on a separable metric space any law with the "first moment", i.e. \(\mathbb{P} \in \mathcal{P}_1(S)\), can be approximated in metrics \(W\) and \(\gamma\) by laws concentrated on finite sets.
Lemma 42 If \((S,d)\) is separable and \(\mathbb{P} \in \mathcal{P}_1(S)\) then there exists a sequence of laws \(\mathbb{P}_n\) such that \(\mathbb{P}_n(F_n) = 1\) for some finite sets \(F_n\) and \(W(\mathbb{P}_n, \mathbb{P}), \gamma(\mathbb{P}_n, \mathbb{P}) \to 0\).

Proof. For each \(n \geq 1\), let \((S_{nj})_{j \geq 1}\) be a partition of \(S\) such that \(\text{diam}(S_{nj}) \leq 1/n\). Take a point \(x_{nj} \in S_{nj}\) in each set \(S_{nj}\) and for \(k \geq 1\) define a function

\[
f_{nk}(x) = \begin{cases} x_{nj}, & \text{if } x \in S_{nj} \text{ for } j \leq k, \\ x_{n1}, & \text{if } x \in S_{nj} \text{ for } j > k. \end{cases}
\]

We have,

\[
\int d(x, f_{nk}(x))d\mathbb{P}(x) = \sum_{j \geq 1} \int_{S_{nj}} d(x, f_{nk}(x))d\mathbb{P}(x) \leq \frac{1}{n} \sum_{j \leq k} \mathbb{P}(S_{nj}) + \int_{S \setminus (S_{n1} \cup \cdots \cup S_{nk})} d(x, x_{n1})d\mathbb{P}(x) \leq \frac{2}{n}
\]

for \(k\) large enough because \(\mathbb{P} \in \mathcal{P}_1(S)\), i.e. \(\int d(x, x_{n1})d\mathbb{P}(x) < \infty\), and the set \(S \setminus (S_{n1} \cup \cdots \cup S_{nk}) \downarrow \emptyset\).

Let \(\mu_n\) be the image on \(S \times S\) of the measure \(\mathbb{P}\) under the map \(x \to (f_{nk}(x), x)\) so that \(\mu_n \in M(\mathbb{P}_n, \mathbb{P})\) for some \(\mathbb{P}_n\) concentrated on the set of points \(\{x_{n1}, \ldots, x_{nk}\}\). Finally,

\[
W(\mathbb{P}_n, \mathbb{P}) \leq \int d(x, y)d\mu_n(x, y) = \int d(f_{nk}(x), x)d\mathbb{P}(x) \leq \frac{2}{n}.
\]

Since \(\gamma(\mathbb{P}_n, \mathbb{P}) \leq W(\mathbb{P}_n, \mathbb{P})\), this finishes the proof.

We are finally ready to extend Theorem 49 to separable metric spaces.

Theorem 50 (Kantorovich-Rubinstein) If \((S,d)\) is a separable metric space then for any two distributions \(\mathbb{P}, \mathbb{Q} \in \mathcal{P}_1(S)\) we have \(W(\mathbb{P}, \mathbb{Q}) = \gamma(\mathbb{P}, \mathbb{Q})\).

Proof. By previous lemma, we can approximate \(\mathbb{P}\) and \(\mathbb{Q}\) by \(\mathbb{P}_n\) and \(\mathbb{Q}_n\) concentrated on finite (hence, compact) sets. By Theorem 49, \(W(\mathbb{P}_n, \mathbb{Q}_n) = \gamma(\mathbb{P}_n, \mathbb{Q}_n)\). Finally, since both \(W, \gamma\) are metrics,

\[
W(\mathbb{P}, \mathbb{Q}) \leq W(\mathbb{P}, \mathbb{P}_n) + W(\mathbb{P}_n, \mathbb{Q}_n) + W(\mathbb{Q}_n, \mathbb{Q}) = W(\mathbb{P}, \mathbb{P}_n) + \gamma(\mathbb{P}_n, \mathbb{Q}_n) + W(\mathbb{Q}_n, \mathbb{Q}) \leq W(\mathbb{P}, \mathbb{P}_n) + W(\mathbb{Q}_n, \mathbb{Q}) + \gamma(\mathbb{P}_n, \mathbb{Q}) + \gamma(\mathbb{Q}_n, \mathbb{Q}) + \gamma(\mathbb{P}, \mathbb{Q}).
\]

Letting \(n \to \infty\) proves that \(W(\mathbb{P}, \mathbb{Q}) \leq \gamma(\mathbb{P}, \mathbb{Q})\).

Wasserstein’s distance \(W_p(\mathbb{P}, \mathbb{Q})\). Given \(p \geq 1\), let us define the Wasserstein distance \(W_p(\mathbb{P}, \mathbb{Q})\) on \(\mathcal{P}_p(\mathbb{R}^n) = \{\mathbb{P} : \int |x|^p d\mathbb{P}(x) < \infty\}\) corresponding to the cost function \(d(x, y) = |x - y|^p\) by

\[
W_p(\mathbb{P}, \mathbb{Q})^p := \inf \left\{ \int |x - y|^p d\mu(x, y) : \mu \in M(\mathbb{P}, \mathbb{Q}) \right\} = \sup \left\{ \int fd\mathbb{P} + \int gd\mathbb{Q} : f(x) + g(y) < |x - y|^p \right\}.
\]

(20.0.2)

Even though for \(p > 1\) the function \(d(x, y)\) is not a metric, equality in (20.0.2) for compactly supported measures \(\mathbb{P}\) and \(\mathbb{Q}\) follows from the proof of Theorem 49, which does not require that \(d\) is a metric. Then one can easily extend (20.0.2) to the entire space \(\mathbb{R}^n\). Moreover, \(W_p\) is a metric on \(\mathcal{P}_p(\mathbb{R}^n)\) which can be shown the same way as in Lemma 41. Namely, given nearly optimal \(\mu \in M(\mathbb{P}, \mathbb{Q})\) and \(\nu \in M(\mathbb{Q}, \mathbb{T})\) we can construct \((X, Y, Z) \sim M(\mathbb{P}, \mathbb{Q}, \mathbb{T})\) such that \((X, Y) \sim \mu\) and \((Y, Z) \sim \nu\) and, therefore,

\[
W_p(\mathbb{P}, \mathbb{T}) \leq (E|X - Z|^p)^{\frac{1}{p}} \leq (E|X - Y|^p)^{\frac{1}{p}} + (E|Y - Z|^p)^{\frac{1}{p}} \leq (W_p^p(\mathbb{P}, \mathbb{Q}) + \varepsilon)^{\frac{1}{p}} + (W_p^p(\mathbb{Q}, \mathbb{T}) + \varepsilon)^{\frac{1}{p}}.
\]

Let \(\varepsilon \downarrow 0\).