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This paper presents a methodology to explore the architectural trade space of Earth 

observing satellite systems, and applies it to the Earth Science Decadal Survey. The 

architecting problem is formulated as a combinatorial optimization problem with three sets 

of architectural decisions: instrument selection, assignment of instruments to satellites, and 

mission scheduling. A computational tool was created to automatically synthesize 

architectures based on valid combinations of options for these three decisions, and evaluate 

them according to several figures of merit including satisfaction of program requirements, 

data continuity, affordability, and proxies for fairness, technical and programmatic risk. A 

population-based heuristic search algorithm is used to search the trade space. The novelty of 

the tool is that it uses a rule-based expert system to model the knowledge-intensive 

components of the problem, such as scientific requirements, and to capture the non-linear 

positive and negative interactions between instruments (synergies and interferences), which 

drive both requirement satisfaction and cost. The tool is first demonstrated on the past 

NASA Earth Observing System program and then applied to the Decadal Survey. Results 

suggest that the Decadal Survey architecture is dominated by other more distributed 

architectures in which DESDYNI and CLARREO are consistently broken down into 

individual instruments. 
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I. Nomenclature 

     = benefit metric (undiscounted) 

      = benefit of architecture   to panel     

        = benefit of architecture   to objective   from panel   

          = benefit of architecture   to requirement   from objective   from panel   

   = relative importance of panel    

     = relative importance of objective   from panel    

       = relative importance of requirement   from objective   from panel    

        = The nth Bell number 

     = cost metric (Small-Is-Better) 

   = an instrument 

             = a partition of the instrument set, i.e., a set of mutually exclusive and exhaustive subsets 

     = the set of non-dominated partitions of instruments in the benefit-cost space 

  = the empty set 

(
 
 
) = binomial coefficient with indexes        

   = random variable defining the number of instruments successfully put into orbit 

    = reliability of the launch vehicle 

     = operations cost 

     = total spacecraft cost (sum of non-recurring and recurring cost) 

    = risk of schedule slippage (%) 

           = programmatic risk metric for the instrument-to-spacecraft assignment metric (Small-Is-

Better) 

       =  launch risk metric for the instrument-to-spacecraft assignment metric (Small-Is-Better) 

     = technology readiness level of instrument   

     = entropy of a probability distribution p: ∑        (   )  



 

 

II. Introduction 

In 2004, the NASA Office of Earth Science, the National Oceanic and Atmospheric Administration (NOAA) 

National Environmental Satellite Data and Information Service, and the U.S. Geological Survey (USGS) Geography 

Division asked the National Research Council (NRC) Space Studies Board to “conduct a decadal survey to generate 

consensus recommendations from the Earth and environmental science and applications communities regarding a 

systems approach to space-based and ancillary observations that encompasses the research programs of NASA; the 

related operational programs of NOAA; and associated programs such as Landsat, a joint initiative of USGS and 

NASA.” [1] 

In response to this request, an ad-hoc NRC committee consisting of experts from different disciplines of the 

Earth sciences produced a report known as the Earth Science Decadal Survey, or simply the “Decadal Survey”. The 

Decadal Survey lays out a reference architecture for an integrated Earth Observing Satellite Systems (EOSS) for the 

next decade that will fulfill the needs of all the scientific communities in terms of space-based measurements, while 

also providing essential societal benefits [1].  

The Earth Science Decadal Survey is a program that consists of a sequence or campaign of Earth observing 

missions, i.e., an Earth Observing Satellite System (EOSS). Traditionally, the high-level design of EOSS has been 

done at the individual mission level. During the mission concept formulation phase, organizations conduct studies 

on the relative merit of different mission concepts. For example, different constellation designs are compared in 

terms of coverage, spatial resolution and temporal resolution versus cost. However, the emphasis of this paper is on 

program architecture rather than on mission architecture, where a program is defined as a sequence or campaign of 

related missions. Designing a program rather than designing missions individually is advantageous because there are 

numerous coupling between missions in a program. First, missions in the same program will typically consume 

resources from the same budget lines. Second, there are synergies between instruments across missions that impose 

constraints for example on the launch dates of the missions, so as to ensure some overlap between missions for 

calibration purposes, complete overlap to increase coverage, or to avoid a measurement gap between two similar 

instruments. Many other examples of couplings exist at all levels of the systems engineering triangle: performance, 

cost, schedule, and risk. See [2] for a thorough discussion of these issues.  

The Decadal reference architecture consists of 15 missions for NASA and 2 missions for NOAA. A total of 39 

instruments were assigned to these 17 missions on the basis of a variety of technical, scientific, and programmatic 



 

 

factors, including synergies between instruments, data continuity, orbit compatibility, different instrument maturity 

levels, and expected yearly budget. For each mission, the report provides a description of the scientific objectives 

fulfilled by the mission, the physical parameters measured, the instruments used, the orbit required, a rough 

estimation of the lifecycle mission cost, and the expected mission launch date.  

This reference architecture was created based on a series of assumptions that were deemed reasonable at the 

time, such as mission cost estimates, yearly budget, and precursor missions outside the scope of the Decadal Survey 

study that were expected to be flying by this decade. However, some of these assumptions are no longer true. First, 

mission cost estimates according to NASA have increased by 70% on average [3]; note that this number includes 

missions that have not yet started development and therefore have not yet had the opportunity to suffer any 

development-related cost overrun. Second, NASA budgets in the last few years show that the budget available for 

Decadal Survey mission development will be much lower than (about 50% of) the $750M/yr that was assumed in 

the Decadal Survey report. Finally, some of the precursor missions have failed, or have been severely delayed (e.g., 

the Orbiting Carbon Observatory mission or OCO was lost at launch; the National Polar-orbiting Operational 

Environmental Satellite System, or NPOESS, was delayed, reorganized, and descoped; and the Glory mission was 

also lost at launch). Therefore, the question arises whether the reference is still a good architecture given the current 

assumptions.  

One answer would be to redo the Decadal study, but that would require massive amounts of resources – the cost 

of the original study was $1.4M according to a personal conversation with NRC staff. Another option is to encode 

the knowledge that went into the first architecting process in a computational tool and then use the tool to find good 

architectures under a variety of scenarios. This is the approach adopted in this paper. A discussion of the limitations 

of the approach, in particular the knowledge elicitation process, is provided in the Conclusion. 

Since the publication of the foundational literature of the field of systems architecting [4], the interest in 

developing tools and methods to improve the process has grown [5], especially in the area of space systems [6], [7], 

[8], [9], [10], [11]. The motivation is clear: architectural decisions have unique leverage on the ability of the system 

to deliver value to stakeholders sustainably. The key example is that of the fraction of lifecycle cost that is 

committed after the system architecture is fixed, which has been proved to be around 70%, whereas only about 10-

20% of the lifecycle cost is actually spent during this phase [12].  



 

 

Computational tools, sometimes borrowed from other fields (e.g., software engineering, network analysis, formal 

design theory, optimization, heuristic search, decision analysis) have been used in the past to support several aspects 

of the system architecting process. UML and SysML are used to represent complex architectures using hierarchical 

models and different views of the architecture [13], [14], [15]. These and other tools such as Petri Nets are used to 

simulate the emergent behavior of architectures [13], [16]. Combinatorial optimization techniques and search 

algorithms are used to explore the architectural tradespace [17], [18], [19]. Multi-attribute utility theory and the 

Analytic Hierarchy Process amongst others are used to evaluate architectures under multiple conflicting objectives 

[20]. 

While architecture studies concerning large Earth observing programs of the nature of the Decadal Survey have 

been conducted in the past at NASA and other organizations, little has been published on the results or process of 

these studies. A few studies have been published by the NRC that look at architectural aspects in general of Earth 

Observing programs (see for example [21], [22]), although most of them are general as opposed to specific, 

descriptive as opposed to prescriptive, and qualitative as opposed to quantitative. 

The NASA Earth Observing System (EOS) is a notable exception, and several early program formulation studies 

have been published. Matossian applied mixed-integer optimization techniques to the design of the EOS 

constellation [23], [24], [25] for optimal cost, performance, and risk. The NOAA Polar Operational Environmental 

Satellite Systems (NPOESS) was also the object of architectural studies published by Rasmussen, who analyzed the 

differences in lifecycle cost and risk between architectures using large, medium, and small satellites [26], [27]. 

While Matossian analyzed a very large number of architectures with low fidelity, Rasmussen analyzed only a 

handful of architectures at a higher level of fidelity (although still far from the fidelity required for a point design).  

More recently, several architecture studies on the Global Earth Observing System of Systems have been 

published. Martin presents an architecture tool to assess the societal benefits of Earth observing assets [28].  Rao et 

al introduce a tool based on Petri nets that can simulate the operation of the GEOSS in a certain situation. However, 

such studies focus mostly on representing complex architectures or simulating their operation, but rarely on the trade 

space search process, on which this paper focuses.  

When attempting to apply state-of-the-art system architecting tools to the problem of architecting EOSS, two 

main challenges appear, both of them due to the large amount of expert knowledge needed to solve the problem. The 

first problem is related to the subjective expert judgment of requirement satisfaction. The second problem is related 



 

 

to the ability to model emergent behavior such as scientific synergies. These two challenges are introduced in the 

following paragraphs. 

Evaluating the ability of an EOSS architecture to meet program requirements necessitates a tremendous amount 

of expert knowledge. This assessment process is necessarily based on expert judgment, because more objective 

approaches such as end-to-end simulation [29] or Observing System Simulation Experiments [30] are too 

computationally expensive to be applied at the architecting level, where a large number of architectures are being 

considered. Since a program of the size of the Decadal Survey has several measurement requirements from each of 

many disciplines of the Earth sciences, and since each measurement requirement may itself consist of several 

requirements at the attribute level (e.g., spatial resolution, temporal resolution, accuracy, or combinations thereof), it 

follows that a very large number of assessments need to be made by experts. In the worst case, if there are N 

architectures being considered under M requirements, each requirement needs to be checked against each 

architecture, yielding a total of NM assessments that need to be made by experts, let alone recomputed under 

sensitivity analysis.  

Regardless of the data structure chosen to represent this knowledge, the resulting computational tool will in 

general have a large number of these data structures. This threatens the scalability of the tool, because as more 

knowledge is added to the tool, it becomes more difficult to modify the knowledge base. Furthermore, as the size of 

the knowledge base grows, it becomes increasingly hard to trace the results provided by such tool back to the 

reasoning behind expert knowledge judgments. This traceability problem is especially important for public systems 

developed with tax-payers money, as the organization is accountable for each decision made, and must be capable of 

explaining the rationale behind it.  

The need for increased scalability and traceability calls for the utilization of knowledge-based systems. In 

particular, rule-based expert systems (a.k.a. production systems) were chosen for this application due to their 

simplicity, natural flexibility and traceability.  

The rule-based approach also provides a good framework to model emergent behavior such as scientific 

synergies. When interviewing experts on the ability of a certain architecture to meet scientific requirements, the 

necessity of modeling these synergies became obvious, as they can potentially drive a large fraction of the scientific 

value of a mission. For example, the ability of a radar altimeter to meet accuracy requirements is not independent of 

the rest of architecture. Instead, it depends on orbital parameters, and on the presence of other instruments such as 



 

 

microwave radiometers or GNSS receivers, on the same spacecraft, or close enough to enable cross-registration of 

the datasets. This fact is extremely important because it precludes the utilization of most efficient algorithms (e.g., 

linear optimization, dynamic programming) which require some degree of additivity in the worth of an architecture, 

or equivalently, an independence between the worth of different elements in the architecture (e.g., instruments). 

Rule-based systems provide a scalable way of modeling these synergies with simple logical rules. In other words, 

one can either efficiently solve a (highly) simplified architecting problem, or attempt to do as good a job as possible 

in a much more representative problem formulation. This paper claims that rule-based systems can help solve 

architecting problems using the latter approach.  

An expert system is “a computer program designed to model the problem-solving ability of a human expert” 

[31]. In order to do that, an expert system uses large bodies of heuristic – expert – knowledge. In a rule-based expert 

system (RBES), expert knowledge is encapsulated in the form of logical rules. In the words of Feigenbaum, 

considered the major creator of the first expert system, these rules map the knowledge “over from its general form 

(first principles) to efficient special forms (cookbook recipes)” [32]. This is in opposition to other kinds of expert 

systems that primarily use different data structures to store expert knowledge, such as Minsky’s frames [33], which 

are more versatile data structures, intuitively similar to objects in object-oriented programming.  

In RBES, a logical rule is composed of a set of conditions in its left-hand side (LHS), and a set of actions in its 

right-hand side (RHS). The actions in the RHS are to be executed if the conditions in the LHS are all satisfied. An 

example of a logical rule is the following: ”if the car won’t start (LHS); then check the electrical engine (RHS)”.  

RBES consist of three major elements: a fact database, a rule database, and an inference engine. The fact 

database contains relevant pieces of information about the specific problem at hand called facts. Information in facts 

is organized according to predetermined data structures similar to C structures and Java Beans, with properties and 

values (e.g. a fact of type car may contain a property make, a property model, and a property price, amongst others). 

These data structures are called templates – and their properties, slots- in many RBES development tools. Facts can 

be asserted, modified, and retrieved from the database anytime. The rule database contains a set of logical rules that 

contain the domain knowledge. The LHS of these rules may match one or more facts in the working memory. The 

RHS of these rules define the actions to be executed for each of these matches, which typically include asserting 

new facts, modifying the matching facts, performing calculations, or showing some information to the user.  



 

 

The inference engine performs three tasks in an infinite loop: a) pattern matching between the facts and the LHS 

of the rules in the working memory and creation of activation records (also known as the conflict set); b) while there 

remain activation records, select the next rule to execute, or fire (conflict resolution); c) execute the selected rules’ 

RHS (deduction). Most current rule engines are based on the Rete algorithm, developed by Forgy [34]. The Rete 

algorithm is faster than other algorithms because it “remembers” prior activation records in a network in memory 

called the Rete network. The Rete network is very efficient in speeding up the search process because most of the 

time, the network does not change much between iterations. Note that the improvement in computational time 

comes at the price of increased use of memory. 

The goal of this research is two-fold. The first goal is to develop a methodology and tool to support the 

architecting process of EOSS. This methodology will use RBES to address the limitations of current tools handling 

knowledge-intensive problems. More precisely, the methodology must be capable of modeling interactions between 

instruments (e.g., synergies, interferences), and tracing the entire value delivery loop from stakeholder needs to 

instrument and mission attributes and data processing algorithms. The resulting tool is to be validated with a past 

EOSS, namely the NASA Earth Observing System. 

The second goal is to conduct an architectural study of the Earth Science Decadal Survey using this tool and 

method. The value of the reference architecture laid out in the NRC report will be assessed, and recommendations 

will be provided as to how to improve this architecture.    

III. Problem Formulation 

This section describes a simple architectural model for an EOSS, and then uses the model to formulate the 

architecting problem as an optimization problem. Architectural decisions, figures of merit, and constraints are 

identified. 

A. Model Overview 

The model consists of two hierarchical decompositions, one mainly in the domain of functions and processes, 

and one mainly in the domain of form and structure. Both hierarchies are linked at the level of measurements and 

data products.  The functional decomposition of the system assumes that most of the benefit provided by EOSS is in 

the measurements taken by the system, and the data products developed from these measurements. Stakeholder 

needs such as “reducing the uncertainty in the water cycle” are at the top level of the hierarchy. These needs are 



 

 

recursively decomposed into lower-level objectives up to the level of measurement requirements (e.g., “measuring 

soil moisture with an accuracy of 5%, a spatial resolution of 10km, and a temporal resolution of 2-3 days”).  

The form decomposition of the system is instrument-centric, as opposed to mission-centric, i.e., measurements 

are produced by instruments as opposed to missions. Instruments are gathered into missions, and the system or 

campaign is a collection of missions. Synergies between instruments on the same mission are explicitly captured by 

rules modeling the combination of multiple data products to create new data products. 

A pictorial summary of this architectural model is provided in Figure 1. When read from left to right, this 

diagram illustrates the architecting process; when read from right to left, this diagram suggests a method to assess 

how a certain architecture satisfies stakeholder needs.  

 

 

Figure 1: Architectural model for an EOSS 

Throughout this paper, it is assumed that the hierarchy in the functional domain, from stakeholder needs to 

measurement requirements, is available as an input to the architecting process, albeit with a certain degree of 

fuzziness (e.g., temporal resolution of “2-3 days”). See [35] for a detailed discussion on strategies related to eliciting 

ambiguous stakeholder needs. 

Based on the model presented in Figure 1, three main classes of architectural decisions for EOSS are identified, 

namely instrument selection (what is the best set of instruments to satisfy the measurement requirements?), 

instrument-to-spacecraft allocation (a.k.a. instrument packaging, how do we group instruments together in 

spacecraft?) and mission scheduling (what is the optimal launch sequence for the missions?). The architectural 

problem is formulated as a series of optimization problems based on these three classes of architectural decisions. 



 

 

B. Architectural Decisions 

The major architectural decisions for an EOSS have already been mentioned, namely instrument selection, 

instrument-to-spacecraft assignment, and mission scheduling. In the rest of this section, the instrument-to-spacecraft 

assignment class of decisions, for which results are presented, is more rigorously defined. The reader is referred to 

[36] for a detailed description of the instrument selection and mission scheduling decisions.  

Instrument-to-spacecraft assignment (a.k.a. instrument packaging) decisions deal with the assignment of 

instruments to spacecraft and orbits. For instance, given a set of   instruments, one option is to fly all the 

instruments on a large monolithic spacecraft; another option is to fly   dedicated spacecraft, and there are obviously 

many options in between. More formally, an instrument-to-spacecraft assignment architecture is represented by a 

partition of the set of   selected instruments into       subsets (spacecraft) such that the   subsets are 

mutually exclusive and exhaustive: 

                 ⋃     ⋂     (1) 

The representation chosen for   is an array of   integer variables    [          ] where        

                   , and where      indicates that instrument   is assigned to spacecraft  . This 

representation ensures by construction that the subsets are non-empty, mutually exclusive, and exhaustive. Thus, 

architectures generated by mutation or other means are ensured to be valid architectures. The size of this region of 

the trade space is given by the Bell Numbers |   |         , which are sums of Stirling numbers of the second 

kind       : 

        
 

  
∑      (

 
 
)        

    (2) 

         ∑        
    (3) 

A variant of this class of decisions is to have a predefined number of notional spacecraft           , which 

could for example represent orbits (e.g., a dawn-dusk orbit, a morning and orbit, and an afternoon orbit), and then 

assign instruments to any number of these spacecraft. In the most general case, the corresponding trade space has a 

size of    , as each instrument can be assigned to any subset of spacecraft, and there are    different subsets 

including the empty set. 



 

 

The instrument-to-spacecraft assignment problem can also be viewed as a clustering problem, as the goal is to 

group the instruments in clusters. Regardless of their representation, there are two main classes of forces driving 

these decisions: positive interactions between instruments (i.e. attractive forces that tend to create large satellites), 

and negative interactions between instruments (i.e. repulsive forces that tend to create small satellites). In the case of 

EOSS, these forces lie on three different domains: the science domain, engineering domain, and the programmatic 

domain. In the science domain, there are positive interactions through synergies between instruments, and negative 

interactions through the limitations in spacecraft resources (e.g., power, data rate) that may affect the science output 

of an instrument. In the engineering domain, most interactions are negative as instruments interfere with each other 

in a variety of ways (e.g., thermal interactions, mechanical interactions, electromagnetic interactions). A few 

examples of positive engineering interactions occur when two instruments can share common resources (e.g., two 

instrument operating on the same band can share a single dish). Finally, in the programmatic domain, most 

interactions are again negative in the form for instance of schedule slippages of a single instrument that drive the 

launch dates of many others. Positive programmatic interactions could be defined in terms of instruments that 

benefit from the same technological investments. A thorough discussion of these issues can be found in [2] or [36] 

(pp 136-141).  

C. Figures of Merit 

Seven figures of merit were used to compare EOSS architectures, namely scientific and societal benefit, lifecycle 

cost, programmatic risk, launch risk, discounted benefit, fairness, and data continuity. From these seven figures of 

merit, only scientific and societal benefit and lifecycle cost are used as metrics in the instrument-to-spacecraft 

assignment problem. Launch and programmatic risk are used as constraints to guide the search process. Normalized 

risk, the normalized average of launch and programmatic risk, is also used as a secondary metric to down-select 

architectures that have high scientific and societal value and are close to the science-cost Pareto frontier. These four 

figures of merit are described below. The remaining three figures of merit, namely discounted benefit, fairness, and 

data continuity are not used in the instrument-to-spacecraft assignment problem and therefore are not described in 

this paper for the sake of brevity. The interested reader can find a full description of these figures of merit, used in 

the instrument selection and mission scheduling problems, in [36].  



 

 

1. Scientific and societal benefit 

The scientific and societal benefit metric is based on assessing how well requirements from different 

stakeholders are satisfied. Requirement satisfaction by a given architecture is assessed using the VASSAR 

methodology. VASSAR is introduced in the next section and described in detail in [37]. The final score provided by 

VASSAR is an aggregation of the scores of satisfaction for each requirement. In the simplest case, this aggregation 

is just a composition of weighted averages: 

      ∑          ∑   ∑              ∑   ∑      ∑                    (4) 

where   is a subset of instruments; the subindex   indicates the panel (e.g., climate, weather), the subindex   

indicates an objective within a panel, and the subindex   indicates a requirement within an objective;    are relative 

weights of the panels (  ), objectives (    ), and requirements (      ); and       refers to the satisfaction of panels 

(     ), objectives (       ), and requirements (         ) by  . More sophisticated aggregation schemes are 

proposed in [37]. 

It is important to note that the scores for each requirement           cannot be decomposed in a sum of 

instrument-specific contributions (i.e.,           ∑            ), due to synergies and redundancies between 

instruments. 

2. Lifecycle cost 

The lifecycle cost metric has the following components: payload cost; bus cost; integration, assembly and testing 

cost; program overhead; launch cost; and operations cost. Some of these components are further divided in recurring 

and non-recurring cost. It is important to note that the goal of this metric is not to provide accurate absolute cost 

estimates, but rather to provide a metric that has enough sensitivity across different architectures.  

For non-recurring and recurring bus, integration and testing, and program overhead costs, cost estimation 

relationships are taken from [38]. Since cost estimating relationships (CERs) for bus cost are mass-based, an 

estimation of the mass budget of the satellite is required. This mass budget is obtained using a simplified iterative 

spacecraft design algorithm that utilizes physics-based equations and parametric relationships to design the 

satellite’s subsystems. The algorithm is introduced in the next section. See [39] or [36] (pp 151-159) for a full 

description of the algorithm.  



 

 

The payload cost model is based on the NASA Instrument Cost Model [40], which uses mass, power, and data 

rate as parameters. The launch cost model is based on the assumption that each spacecraft is launched individually, 

and that it falls into one of the launch vehicle categories defined in Table 4. The assignment of each spacecraft to 

one of these launch vehicle categories is done using two main criteria, namely launch vehicle performance and 

launch vehicle fairing dimensions. For operations cost, the NASA Mission Operations Cost Model was used
§
.  This 

model provides a rough order of magnitude estimate of the yearly cost of orbital operations for a spacecraft of a 

certain type and development cost. The cost estimating relationship used in this model for Earth observation 

satellites is provided below. The standard error and range of applicability of this CER are unknown. 

                                   
             (5) 

An expected cost overrun is systematically added to the total initial lifecycle cost because it is noted that the 

probability of schedule slippage and cost overrun is larger in larger missions. Some studies have suggested that the 

probability of schedule slippage is correlated with the maturity of the technology used in the mission, as described 

by the initial mission TRL [41]. The expected cost overrun is computed in two steps. First, given the initial TRLs of 

all the instruments in a given spacecraft, the expected schedule slippage (RSS) in % of total development time is 

computed as a function of the lowest instrument TRL in the spacecraft, using the findings by Saleh et al [41]: 

                            (6) 

This regression has an R
2
 =0.94 for 28 data points. While some recent articles have discussed the validity of 

using TRL as a quantitative metric for this purpose [42], the idea behind the study, namely that less mature 

technologies are more likely to suffer from schedule slippage, remains a fair assumption.  

Second, this expected schedule slippage is transformed into a cost overrun by applying the relationship found by 

Weigel and Hastings [43]: 

 cost overrun                      (7) 

                                                           

§
 The NASA Mission Operations Cost Model was retrieved from http://cost.jsc.nasa.gov/MOCM.html (last 

accessed Jan 24
th

 2012). 

http://cost.jsc.nasa.gov/MOCM.html


 

 

This regression has a much lower R
2
 =0.56 for 15 data points. This relationship was chosen because of its 

simplicity, even though it neglects other important sources of cost overrun.    

Finally, since different contributions to the overall lifecycle cost estimation come from different sources and are 

expressed in different years’ dollars, they are all corrected for inflation and translated into $FY00M.  

3. Programmatic risk 

In the context of this paper, programmatic risk refers to risk of schedule slippage and cost overrun. More 

precisely, it only refers to the components of this programmatic risk that are architecturally distinguishing. Hence, 

causes of programmatic risk that do not vary across architectures are not considered.  

Even though some programmatic risk is captured in the lifecycle cost metric, some users may find it clearer and 

preferable to have this information in a separate metric. Hence, two different metrics were developed for 

programmatic risk: one that is more appropriate for selecting instruments, and one that is more appropriate for 

assigning instruments to spacecraft. The programmatic risk metric used in the instrument-to-spacecraft assignment 

problem is described below. The reader can find a description of programmatic risk metric used in the instrument 

selection problem in [36].  

In the instrument-to-spacecraft assignment problem, the following definition of the programmatic risk metric is 

used: 

           
 

 
 ∑             (10) 

          {
               

            
      

           
 (11) 

The idea behind this programmatic risk metric is to avoid situations in which a high risk instrument could delay 

the deployment of important mature instruments. A high value of        indicates that there is an imbalance in the 

TRLs of the instruments, which could be improved if instruments with similar levels of maturity were binned 

together.  

4. Launch risk 

Distributed architectures are perceived as more desirable than monolithic architectures in terms of launch risk, 

because they are more robust to a single launch failure. Although “real” launch risk measured as the average number 

of instruments successfully put into orbit is independent of the assignment of instruments to satellites assuming 



 

 

identical launch vehicle reliabilities, perceived launch risk varies across architectures due to risk aversion [2]. The 

concept of entropy from information theory is used to model this risk aversion. Let   be an array containing the 

number of instruments in each satellite    |  |, and  ̂ be the convex normalization of   (i.e.   ̂  
  

∑    

).   ̂ can be 

interpreted as the probability of a random instrument to belong to satellite  . The risk metric can now be defined as 

one minus the entropy of this probability distribution: 

              ̂     ∑    ̂     (   ̂ )    (12) 

The entropy of a probability distribution of length N is a real value between 0 and      . The value of 0 is 

achieved by a delta probability distribution with all its weight in a single value. This is the equivalent of the 

monolithic architecture with only one satellite in the instrument packaging problem. The value of        where NS 

is the number of spacecraft in the architecture is achieved by a completely distributed architecture with as many 

instruments as satellites. Thus,       is a Small-Is-Better metric, as should intuitively correspond to a risk metric. 

D. Formulation as an Optimization Problem 

Given the three classes of architectural decisions defined previously, a straightforward problem formulation is to 

decompose the overall architecting problem in a sequence of three sub-problems: instrument selection problem, 

instrument-to-spacecraft assignment problem, and mission scheduling problem.  

For example, the instrument-to-spacecraft assignment problem that is highlighted in this paper is defined as the 

problem of finding the set of non-dominated partitions      that optimize the trade-off between benefit (i.e. 

requirement satisfaction) and cost, with controlled launch and programmatic risk.  

              
 

[         ] (19) 

subject to:  

            

                

The summary of metrics and constraints utilized in each problem is shown in Table 1. 



 

 

Table 1: Summary of the metrics utilized to architect EOSS 

Figure of Merit Description Selection Assignment Scheduling 

Science 
Undiscounted aggregated benefit to all panels 

with synergies between instruments. 
Metric Metric  

Lifecycle cost 

Payload, bus, integration, overhead, launch, and 

operations cost. Bus cost based on mass budget 

which incorporates interferences between 

instruments.  

Metric Metric  

Programmatic 

risk (SEL) 

% of instruments in program that require 

significant development (TRL < 5) 
Constraint   

Programmatic 

risk (PACK) 

Median over all spacecraft of the offset between 

min and median TRL over all instruments on 

the spacecraft 

 Constraint  

Launch risk 

Entropy of a pseudo-probability distribution 

given by the normalized number of instruments 

on each spacecraft.  

 Constraint  

Fairness (SEL) Minimum panel score Constraint   

Fairness (SCHED) 
Worst case deviation between curves of benefit 

delivery to panels over time 
  Constraint 

Data continuity 
Weighted increase of observations of critical 

measurements due to an architecture 
  Metric 

Discounted benefit 
Time-discounted aggregated benefit to all 

panels 
  Metric 

 

We perform the three tasks in the order selection-assignment-scheduling because it is essential to know the 

instruments selected in order to think about the packaging architecture, and it is essential to know what the missions 

are before scheduling them. However, the three sub-problems are also coupled in other ways: one cannot, as it has 

been pointed out, make an optimal decision in the instrument selection problem without thinking about the 

instrument-to-spacecraft assignment. Both the benefit and cost of a subset of instruments depend on how these 

instruments are distributed into missions (e.g., synergies, packaging efficiencies of buses and launch vehicles). 

Similarly, it is hard to make an optimal instrument-to-spacecraft assignment decision without thinking about the 

scheduling of the missions, since one may want to fly an instrument that closes an important data gap in the 

spacecraft that is to be launched first. These and other couplings are illustrated in the N
2
 diagram of Figure 2. 



 

 

 

Figure 2: N
2
 diagram showing coupling between instrument selection, instrument-to-spacecraft 

assignment, and mission scheduling problems 

As a consequence of this coupling, simply solving the individual sub-problems and combining the results will in 

general lead to suboptimal solutions, just as designing the aerodynamics of an airplane without coupling it to the 

structures dynamics leads to suboptimal designs.  

This problem can be treated in three different ways. The first option is to solve the global problem without 

decomposition. This would imply having a single optimization problem with an architectural vector containing the 

three types of decisions. However, in reality, this problem is intractable for relatively small numbers of instruments. 

Furthermore, this poses additional implementation problems, as it would require dealing with mixed types of 

variables and variable chromosome/design vector lengths. A second strategy consists in iteration. Sub-problems can 

be solved individually in a loop until a set of termination criteria are met. The problem with this approach is that 

there is no guarantee of convergence in general. Furthermore, iteration can also be extremely resource-consuming. 

Finally, heuristic rules can be used to guide the search in a sub-problem towards solutions that are likely to be good 

in the other sub-problems. For instance, one can include a constraint so that architectures that make it impossible to 

find a scheduling that covers a certain set of key data gaps are eliminated from further consideration in the selection 

or assignment problems. In the context of this study, the chosen strategy was a hybrid of iteration and heuristic rules 

capturing the couplings between the problems.  

IV. Methods 

This section describes the tools, methods, and algorithms used to solve the optimization problems formulated in 

the previous section. In particular, the VASSAR methodology - at the core of the scientific benefit metric -, the 



 

 

spacecraft design algorithm - the basis of the cost model -, and the rule-based heuristic search algorithm used to 

explore the trade space are succinctly described.  

A. Science assessment using VASSAR 

The VASSAR methodology was used to assess the relative benefit of different EOSS architectures. This 

methodology uses a rule-based system for increased traceability and scalability of the science valuation process. The 

input to VASSAR is an EOSS architecture as defined in the previous section, and the output is two-fold: one or 

more fuzzy numbers representing the level of satisfaction of different panels or stakeholders, and a set of 

explanations that show how these numbers are traced back to specific requirements, instruments, and data 

processing algorithms. The main steps of this methodology are illustrated in Figure 3.  

 

Figure 3: Application of the VASSAR methodology for assessing the scientific value of EOSS 

If read from left to right, Figure 3 loosely illustrates the process of architecting an EOSS, starting with the 

decomposition of stakeholder needs in a set of requirements, and continuing with the selection of a set of 

instruments and spacecraft to meet these requirements. If read from right to left, Figure 3 shows the process that 



 

 

VASSAR follows to assess the value of an architecture, starting with the missions and instruments, assessing how 

well each requirement is satisfied, and aggregating requirements into objectives and stakeholders. This process is 

described in more detail below. 

First, from the EOSS architecture in the top right corner, the corresponding mission and instrument facts are 

asserted, and their characteristics are inherited from information contained in upper levels in the hierarchy (e.g. 

instrument orbit is inherited from mission orbit) or from a database (e.g. instrument field of view is inherited from 

an instrument database). Second, instrument capability rules assert an initial set of measurement facts (M0 in Figure 

3) associated to each of the manifested instruments. Specific examples of instrument capability rules are given in the 

results section. Attribute inheritance rules are used again to regulate how attributes are inherited between missions, 

instruments, and measurements: measurement attributes are inherited from their instrument, their mission, or they 

are derived from combinations of other mission and instrument attributes, yielding a modified set of measurements 

(M1 in Figure 3). For instance, the ground spatial resolution of an instrument is computed from its orbital 

parameters, angular resolution, and viewing geometry. Third, the initial set of measurement capabilities is 

substantially changed with new and modified measurements through the synergy rules (M2 in Figure 3). Synergy 

rules are really at the core of this methodology, as full satisfaction of requirements usually comes from data products 

that originate from combinations of other data products from different instruments. A few examples of synergy rules 

are shown in Table 2. Synergy rules are applied only to instruments that are either on the same spacecraft or on 

different spacecraft in a train configuration, where satellites have very similar orbital parameters with small 

differences in mean anomaly (e.g., the NASA A-Train). Hence, synergies between spacecraft on different orbits are 

not taken into account.  

Table 2: A few representative examples of synergy rules 

Synergy rule IF (original data products) THEN (new data products) 

Soil moisture 

disaggregation data 

processing algorithm 

Soil moisture (high accuracy, low spatial 

resolution) from L-band radiometer 

 

Soil moisture (low accuracy, high spatial 

resolution) from L-band radar 

Soil moisture (high accuracy, medium 

spatial resolution) from combination 

Spatial resampling 
Any parameter (high spatial resolution, 

high variable error) 

Any parameter (lower spatial resolution, 

lower variable error) 

Altimetry error budget 

Sea level height (high tropospheric error, 

high orbit determination error, poor overall 

accuracy) from radar altimeter only 

 

Atmospheric sounding from microwave 

Sea level height (low tropospheric error, 

low orbit determination error, good overall 

accuracy) 



 

 

radiometer 

 

Orbit determination from GNSS receiver 

Cloud mask 

Many parameters (error due to presence of 

clouds) 

 

Cloud images  

Many parameters (low error due to 

presence of clouds) 

 

Fourth, a set of fuzzy attribute rules transform back and forth between fuzzy numbers (e.g., high spatial 

resolution) and crisp numbers (e.g., 0.5m) as required. Fuzzy attribute rules are based on Zadeh’s fuzzy sets and use 

simple triangular membership functions. Fifth, this new set of measurement capabilities is compared against 

measurement requirements defined in the requirement rules, which assert requirement satisfaction facts (full or 

partial satisfaction). Sixth, requirement satisfaction facts are logically combined to produce objective satisfaction 

facts, and objective satisfaction facts are combined to produce panel satisfaction metrics. These two steps occur 

through the value aggregation rules, which in the simplest case are weighted averages, but which may include any 

logical or arithmetic operator (e.g., an objective may be fully satisfied if at least 2 out of 3 requirements are fully 

satisfied). Finally, panel satisfaction metrics are weighted to produce an overall EOSS score. For a more detailed 

explanation of each step in the methodology, the reader is referred to [37] and [36] (pp 161-174). 

B. Spacecraft Design Algorithm 

The spacecraft design algorithm takes the payload characteristics as input and uses equations and rules-of-thumb 

to provide several outputs, including the optimal orbit in terms of the science and cost trade-off, a mass budget, 

power and volume estimates, and the less costly compatible launch vehicle. These data are fed to the lifecycle cost 

model to estimate different parts of the overall lifecycle cost. 

1. Orbit Selection using a Fuzzy Rule-based Classifier 

Orbit parameters affect both scientific performance and cost. Science changes with orbit through coverage, 

spatial resolution, swath, temporal resolution, illumination conditions, sensitivity to specific phenomena with local 

time, signal to noise ratio, and so forth. Cost is affected through varying illumination conditions (e.g., frequency and 

duration of eclipses), or disturbance torques (e.g. atmospheric drag). Furthermore, different instruments may have 

different preferred orbits. For example, high energy instruments such as lidars or synthetic aperture radars are 

typically placed in lower orbits in order to minimize power requirements, while passive optical imaging instruments 

are placed in higher orbits to maximize coverage. Thus, in general, the optimal orbit for a multi-instrument mission 



 

 

will result from a compromise between all these individual considerations, with some consideration to relative 

importance of instruments. If the orbit of a spacecraft is not provided by the user, an algorithm is needed to compute 

the optimal orbit for a given set of instruments. Such algorithm is presented in this section, and it takes the form of a 

fuzzy rule-based classifier, as opposed to other classification algorithms (e.g. k-nearest neighbors, Bayes classifier, 

linear classifier, and neural networks). 

The set of allowed orbits considered by the model is provided in Table 3. Note that only LEO circular orbits are 

considered. Eccentricity and argument of the perigee are thus irrelevant. Mean anomaly is only used in the definition 

of constellations with more than one satellite per plane. The algorithm uses a rule-based classifier to assign a set of 

instruments to an orbit Table 3. An example of fuzzy rule would be the following: “IF there is a lidar, then it is very 

likely that the altitude of the orbit is 400km”. Rules may assert membership or non-membership to an orbit with 

various degrees of certainty. After all rules have been executed, the orbit with the highest degree of certainty is 

chosen. Conflicts between rules are thus broken by degrees of certainty assigned to rules and set by experts and/or 

model training. It is also possible to declare primary and secondary instruments. An orbit by default (viz. a 600km 

SSO with an AM local time of the descending node) is assigned to cover an extremely unlikely case in which no 

rules were executed. While this approach cannot guarantee that the optimal orbit is assigned to each instrument set, 

its performance in practice is good enough for architecting purposes, as shown in Table 12. An exhaustive study of 

different orbit classifiers with a larger dataset is left for future work.  

Table 3: The set of orbits considered in the model 

Orbit parameter Allowed values 

Altitude Altitude = {275km, 400km, 600km, 800km, 1300km} 

Inclination 
Inclination = {SSO, polar, near-polar, near-tropical, 

equatorial} 

Local time of 

ascending node 
LTAN (for SSO) = {Dawn-dusk, AM, Noon, PM} 

 

2. Mass Budget 

The masses of the spacecraft and subsystems are important because they are used by the cost model to estimate 

non-recurring and recurring bus costs. The tool uses a bottom-up approach to estimate the mass of the power 

subsystem based on payload power requirements, as described in [44]. For the rest of subsystems, low-fidelity 

models typically use rules of thumb in the form of constant payload-to-subsystem mass ratios       to estimate the 

mass of the subsystem       given payload mass       [45]:  



 

 

                  (21) 

This approach captures one typical driving requirement in subsystem design, namely payload mass. However, 

other important requirements (e.g., payload data rate for the communications subsystem), are left out of 

consideration. Furthermore, a linear model does not capture non-additive interactions between instruments that are 

often the source of subsystem complexity and cost. The model presented here solves these two limitations by 

introducing complexity penalties that capture non-linear interactions between instruments. These complexity 

penalties are Boolean variables computed using logical rules in the rule-based framework. For example, a 

complexity penalty     is defined for cases in which the cumulative instrument data rate ∑       exceeds a given 

threshold       :  

     {
  if ∑              

  otherwise
 (22) 

In addition to    , other complexity penalties are defined to model instrument interactions, namely 

electromagnetic interference between instruments (    ), the presence of instruments requiring cryocooling (    ), 

the presence of large scanning instruments in platforms carrying instruments with stringent attitude control 

requirements (    ), and the need for mechanisms to deploy instruments, solar panels, or other structures (    ). 

While this may not be a complete list of non-linear interactions between instruments, seven interviews with senior 

system engineers at ESTEC did not identify any additional major source of complexity.  

These complexity penalties are used in two ways in the model. First, payload-to-subsystem mass ratios depend 

on complexity penalties. For example, the data rate complexity penalty     is used in the design of the 

communications subsystem: 

       {
         
         

 (23) 

This models the fact that after a certain data rate threshold, regardless of payload mass, a higher performance 

communications system (higher frequency, with directive antennas) will be required, with an impact on the mass 

and cost of the subsystem. 



 

 

Second, complexity penalties may be used to model mass penalties that are independent of payload mass. For 

instance, the mass of the structure subsystem will incur a fix relative mass penalty if there are active and passive 

instruments working in the same spectral region (e.g., 5%). This models the extra mass (e.g. long boom) or design 

effort (e.g., configuration) required to solve this problem.  

                                   (24) 

Complexity penalties are a simple way of capturing non-linear interaction between instruments in a quantitative 

way. Their main advantage is that they provide a basis for rigorous comparison between architectures of similar 

payload mass but different complexities. However, this comes in some cases at the expense of absolute accuracy in 

the estimation of spacecraft mass. Therefore, this approach should only be used to compare the cost of different 

architectures in a relative basis, and never as a means of forecasting spacecraft mass. Just for illustrative purposes, 

the absolute accuracy of the mass budget algorithm with a database of 17 satellites is provided in Figure 10. See [36] 

(pp 151-159) for a more thorough description of this model.   

3. Launch Vehicle Selection  

An important fraction of mission lifecycle cost for most Earth observing missions is taken by launch cost. 

Moreover, differences in instrument-to-spacecraft assignment architectures are sometimes driven by launch cost. 

Therefore, obtaining an accurate launch vehicle classification is important. The launch vehicle selection algorithm 

selects the less costly launch vehicle from a database of available launch vehicles that is compatible with the mission 

requirements (mass, orbit, volume). Several assumptions are used to check whether a launch vehicle is compatible 

with a spacecraft. First, the launch vehicle needs to have enough performance to put the spacecraft wet mass into the 

required orbit. Second, the maximum dimension of the spacecraft when folded needs to fit in the fairing height. 

Finally, the nadir area of the spacecraft when folded needs to fit in the launch vehicle fairing area, computed as 

fairing height times the diameter. Note that the last two rules require having an idea of the dimensions of the 

spacecraft when folded. These dimensions are calculated using very rough rules-of-thumb. For instance, the 

maximum dimension of the spacecraft is driven by the maximum dimension of the instrument, and the nadir area of 

the spacecraft is directly proportional to the sum of the instrument nadir areas. While these rules-of-thumb can only 

provide approximations of the real dimensions of the spacecraft, they are sufficient in practice to correctly assign 

launch vehicle classes (e.g., Atlas 5/Delta IV heavy/Ariane 5 versus Delta II/Soyuz versus Rockot/Vega/Taurus) to 



 

 

most spacecraft. The exact launch vehicle chosen within a class (e.g., Ariane 5 versus Atlas5 or Delta IV) has lower 

cost impacts, and is typically more driven by availability or political issues. The development of more sophisticated 

bus configuration models is left for future work. 

C. Trade Space Search using a Multi-Level Meta-heuristic Optimization Algorithm  

A population-based heuristic search algorithm is used to search the architectural tradespace. The algorithm is 

shown in Figure 4. First, an initial population is randomly created. Then, the algorithm evaluates the population of 

architectures, selects a subset of architectures using typical selection operators, and generates a new population by 

applying a set of operators to the selected architectures, including some elitism and fitness-based selection. These 

operators are encoded in the form of logical rules and include domain-independent genetic operators such as 

crossover and mutation [46], as well as domain-specific improvement or repair operators (e.g., improvement 

operators based on closing data gaps, or capturing synergies between instruments). The algorithm continues 

iteratively until a set of termination criteria (e.g., convergence in average distance between non-dominated solutions, 

or maximum number of iterations or simulation time), are met.  

 



 

 

Figure 4: Population-based search algorithm developed for the framework 

Like all heuristics search algorithms, this algorithm cannot guarantee that the global optima are found, nor can it 

prove any bound with respect to the global optima; the goal is rather to find “good” architectures that meet the 

requirements at reasonable cost and risk. The particularity of this algorithm is that the scalability of rule-based 

systems is leveraged in the search process, to use a large and variable number of heuristic operators simultaneously. 

The computational burden of wrapping the operators in search rules is negligible, as the computational complexity 

of the algorithm is completely dominated by the time required to evaluate architectures (a few seconds).  

D. Limitations 

A discussion of the limitations is appropriate for models of this complexity. Some of these limitations are related 

to the modeling of Earth observing systems, while others are inherent to the utilization of rule-based systems. On the 

modeling side, the most obvious limitation is the uncertainty in the instrument characteristics and scientific 

requirements. Moreover, the mass budget and cost estimation relationships are mostly based on regression models 

that are based on relatively few points. This is a problem that is common to most parametric models used in space 

systems engineering. Some models in the tool use rules-of-thumb instead of empirical data. These rules of thumb are 

particularly simple for the spacecraft configuration and launch vehicle selection algorithms and they should be 

improved if the goal were to apply them for specific launch vehicle selection, as opposed to launch vehicle class 

selection. On the side of rule-based systems for this application, the most salient limitations are related to the 

knowledge elicitation process. This process can be long and resource-consuming, and in the best case, there might 

be doubts about the quality of the knowledge base. Ensuring the completeness and consistency of such systems can 

be difficult. All these limitations require carefully following a verification and validation plan and/or the inclusion of 

dedicated layers of rules for quality control, with the subsequent penalty in computational performance.   

V. Validation with the NASA Earth Observing System 

During the 1990s, the EOS was de-scoped from 43 instruments to 25 instruments, and the architecture of EOS 

went from two extra-large Shuttle-class platforms to three mid-size satellites (Terra, Aqua, Aura) and several 

smaller satellites. The goal of this “validation case study” is to try to replicate these architectural decisions. While 

replication of these results does not imply validity of the model, it does provide some level of confidence to apply it 

to other EOSS.  



 

 

A. EOS Program Requirements: Aggregation and Requirement Rules 

Scientific objectives were identified and ranked in importance for each of seven panels (water and energy cycles 

(WAE), ocean circulation and productivity (OCE), tropospheric chemistry and greenhouse gases (GHG), land 

ecosystems and hydrology (ECO), cryospheric systems (ICE), ozone and stratospheric chemistry (OZO), and 

volcanoes and climate effects of aerosols (SOL)), based on the information available in [47], [48], [49], [50]. This 

information was contrasted with several experts that were involved in the early development of the EOS program. 

For example, eight objectives were identified for the WAE panel. They are listed in Table 6. These eight objectives 

were ranked in three groups of importance. Cloud radiative feedback and radiation budget were assigned higher 

priority (3/16) because of their very close relationship to key climate variables. Ice and snow and land surface water 

were assigned the lowest priority (1/16) because these objectives are primary objectives of other panels, namely the 

cryosphere and ecosystem panels. The other objectives were assigned medium priority (2/16). A similar process was 

followed for the other six panels, yielding a total of 4 objectives. Details about the decomposition of stakeholder 

needs for the other six panels are provided in [36] (p 384).  

Each of the 43 objectives was decomposed into as many measurements requirements as needed, which resulted 

in 121 requirements. An example of this decomposition is shown in Table 7 for the radiation budget objective of the 

WAE panel, which has 4 measurement requirements associated to it. In this case, short-wave and long-wave 

radiation measurements are assigned a higher priority than the total solar irradiance and albedo measurements (35% 

versus 15%), because they contain more information. Indeed, total solar irradiance and albedo can be inferred from 

the SW+LW outgoing flux assuming equilibrium, but the opposite is not true. A similar process was conducted for 

the other 42 objectives. See [36] (pp 385-391) for the details.  

For each of the 121 subobjectives, requirement rules were created that express the measurement requirements for 

full satisfaction, and several cases of degraded satisfaction Table 8 shows the full satisfaction rule for subobjective 

WAE1-1, as well as several partial satisfaction rules. Note that this table only includes a subset of the attributes used 

in the rule. The actual rules include additional requirements in terms of cloud mask, spectral sampling, and accuracy 

amongst others. Additional information about the EOS requirements rules is provided in [36] (pp 392). 

B. EOS Instrument Characterization: Instrument Capability Rules 

Forty-three instruments were considered in this case study. For each instrument, a rule was created that asserts 

the measurements that the instrument can take. For instance, it was assumed that the TES instrument it is capable - 



 

 

by itself - of providing measurements of atmospheric ozone, water vapor, methane, carbon monoxide, land surface 

and atmospheric temperature, and mononitrogen oxides. References [51], [52], [53], [54], [55], [56], [57], [58], [59], 

[60], [61], [62], [63], [64], [65], [66], [67], [68] describe the characteristics of these instruments that are relevant for 

the calculation of their capabilities, including mass, power, data rate, dimensions, spectral region, angular resolution, 

and so forth. More on information on the capability rules for the NASA EOS case study is provided in [36] (pages 

201-202, 392).  

C. Results 

The three problems (instrument selection, instrument-to-spacecraft assignment, and mission scheduling) were 

explored for the NASA EOS case study. Only results concerning the instrument-to-spacecraft assignment problem 

are presented in detail in this paper. Results for the instrument selection and mission scheduling cases are briefly 

summarized at the end of this subsection.  

Sixteen instruments were considered for the NASA EOS instrument-to-spacecraft assignment problem, namely 

those that were ultimately flown on the Terra, Aqua, and Aura spacecraft. The tradespace after 30 generations, 

including the reference architecture, is shown in Figure 5. One obvious feature of the tradespace is the existence of 

clusters of architectures that achieve the same scientific scores. These are different ways of capturing the same 

synergies between instruments. The chart on the left on Figure 6 contains the preliminary results, which assumed 

that a dedicated bus, designed with the spacecraft design algorithm presented earlier, was built for each spacecraft. 

These results identified a number of architectures that achieved the same scientific score as the reference 

architecture at a slightly lower cost, generally using a more distributed solution than the reference architecture - 

smaller spacecraft were used to leverage favorable relative prices of smaller buses and smaller launch vehicles.  

In reality however, only a few commercial buses were truly considered for the NASA EOS program, namely the 

T-330 (up to 1mt of payload), the BCP2000 (up to 300kg of payload), and the Pegastar (up to 70kg of payload). 

When the constraint to use one of these three buses was enforced, the shape of the entire tradespace changed as 

illustrated in the right side of Figure 5. While the average cost of architectures was reduced on average thanks to the 

use of a commercial bus instead of developing a dedicated bus, the relative cost of architectures changed. Some 

architectures that were the least costly in the dedicated case became noticeably more expensive because of this 

restriction, and the best architectures became much more similar to the reference architecture. The best architecture 

in this case is shown on Figure 6 (right), together with the reference architecture on the left. Small blue boxes on 



 

 

Figure 6 represent instruments. Spacecraft are marked with the larger black boxes. In addition to several 

instruments, spacecraft contain more information, namely: the orbit, dry mass of the spacecraft and the launch 

vehicle on top of the instruments, and information concerning the complexity penalties used in the cost model for 

the spacecraft below the instruments. In particular, six complexity penalties are shown: the presence of mechanisms 

(MEC), the presence of instruments with active cryocooling (THE), the presence of high data rate instruments 

(DAT), the presence of instruments with high attitude control requirements (ADC), the presence of scanning 

instruments (SCA), and the presence of active and passive instruments using the same frequency band (EMC). 

These penalties can be either active (red) or inactive (green). Active penalties increase the complexity and the cost 

of the spacecraft.  

The best architecture is thus a 3-satellite architecture, like the reference architecture, and the major difference 

with respect to the reference concerns MOPITT, which is assigned to the equivalent of the Aura spacecraft instead 

of the Terra spacecraft. This choice enables capturing potential synergies with other chemistry instruments, and the 

resulting reduction in the mass of Terra enables the use of a Delta-2 launcher instead of the more expensive Atlas 5. 

This incorrect assignment is explained because of a hard constraint by the Canadian partners behind MOPITT to fly 

their instrument on the first spacecraft to be launched, regardless of which one it was. Other minor differences in 

assignments between the two PM spacecraft are observed, due to the assumption that synergies between spacecraft 

in the same orbit are fully captured. This assumption makes the two PM spacecraft basically the same from the 

perspective of science synergies: it is effectively the A-train. 

This validation case shows that the model was able to accurately reproduce the logic behind the NASA EOS 

decision, choosing from millions of possible architectures. This end-state was not an input to the model; it is an 

emergent output resulting from synergies and interferences between instruments affecting science and cost.  



 

 

 

Figure 5: Results for the NASA EOS instrument-to-spacecraft assignment problem, with dedicated buses 

(left) and commercial buses only (right).  

 

Figure 6: EOS reference architecture (left) versus a good architecture found by tool in the standard bus 

case (right). 

Results concerning the instrument selection and mission scheduling problem are not presented in this paper for 

the sake of brevity. However, the tool did successfully replicate the EOS instrument selection decisions, with a few 

caveats that were identified and explained, mostly related to the EOS polarimeter (EOSP), a small, high performance 

instrument that was unique in its capabilities due to the multiple polarization measurements, which were very 

valuable to the cloud and aerosol communities, beyond the multi-angular measurements of MISR. Indeed, most non-

dominated architectures in the model carried this key instrument which was cancelled in the real program, arguably 

due to its low TRL. The results for the EOS mission scheduling problem were the least satisfactory. Model 

assumptions concerning the investment profile over time that have were successful in previous work were deemed 



 

 

inappropriate for the EOS case study, which led to a few clear differences between the reference architecture and the 

best architectures identified by the model. These differences have their origin in the uncertainty and ambiguity in the 

cost and budget information available. Overall, the results obtained were deemed satisfactory to proceed with the 

Decadal case study. 

VI. Application to the Earth Science Decadal Survey 

A. Decadal Program Requirements: Aggregation and Requirement Rules 

Measurement requirements were categorized in six panels for the Decadal case study, according to the Decadal 

Survey report [1]: climate (CLI), weather (WEA), water (WAT), land and ecosystems (ECO), human health (HEA), 

and solid Earth (SOL). These six panels were weighted in importance according to the findings of Sutherland’s 

thorough stakeholder analysis [69], which predicts the following relative panel importance:             

       . Scientific objectives were identified and ranked in importance for each of the six panels, based on the 

information available in the Decadal Survey report, and leveraging from previous work by Seher [3]. This 

information was also contrasted with several experts that were involved in the Decadal survey committees. For 

example, seven objectives were identified for the weather panel, as shown in Table 10. These seven objectives were 

ranked in four groups of importance and assigned scores according to Seher’s findings [3]. Atmospheric winds and 

GPS radio occultation were top priorities of the panel, followed by air pollution and tropospheric ozone 

measurements. All-weather atmospheric sounding and aerosol-cloud properties are tied third in importance, leaving 

tropospheric aerosols as the least important objective for the panel. For the details of how these scores were 

calculated, the reader is referred to [3] or [70]. Details about the first level of decomposition of stakeholder needs for 

the other six panels are provided in [36] (pp 393-396), yielding a total of 35 objectives.  

Each of the 35 objectives was decomposed into several measurement requirements, for a total of 188 

requirements. An example of this decomposition is shown in Table 11 for the atmospheric winds objective of the 

WEA panel. In this case, the capability to perform direct measurements of 3D atmospheric wind fields is given a 

higher priority than simpler indirect measurements of winds based for example on water vapor transport.  

For each of the 188 measurement requirements, requirement rules were created that express the measurement 

requirements for full satisfaction, and several cases of degraded satisfaction Details about the 2nd level 

decomposition of the rest of Decadal objectives are provided in [36] (pp 242, 397). 



 

 

B. Instrument Characterization 

Thirty-nine instruments were considered in this case study. Information about instruments comes from the 

Decadal Survey report and individual instrument or mission publications (e.g., [71], [72], [73], [74], [75], [76]), and 

was partially verified by experts at NASA.  

C. Results 

The three problems (instrument selection, instrument-to-spacecraft assignment, and mission scheduling) were 

explored for the Decadal Survey case study. Only results concerning the instrument-to-spacecraft assignment 

problem are presented in this paper. The reader is referred to [36] (pp 244-276) for the detailed results on the two 

other problems.  

For the instrument-to-spacecraft assignment problem, all instruments of the following missions are considered: 

SMAP, ICESAT-II, CLARREO, and DESDYNI (all Tier I missions), and ASCENDS, HYSPIRI (Tier-II missions). 

This represents a total of 13 instruments, or 27.6 million architectures (           ̇      ).  Other Tier-II 

missions were left out of the analysis for several reasons, such as the existence of very particular orbit requirements 

(e.g., GEO-CAPE and PATH are GEO missions and therefore are very unlikely to be combined with the other 

missions). The results after 30 generations, including the reference architecture, are shown in Figure 7. 

 

Figure 7: Fuzzy Pareto frontier of Decadal packaging architecture after 30 generations 

Figure 7 shows only the architecture on the fuzzy Pareto frontier. There are multiple definitions for a fuzzy 

Pareto frontier. In this case, we use the formulation in terms of Pareto ranking: architectures on the true Pareto front 
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are assigned a Pareto ranking of 1 and removed. A new Pareto front is computed, and architectures on this second 

Pareto front are assigned a Pareto ranking of 2 and removed. The procedure is repeated recursively until all 

architectures have been assigned a Pareto ranking, or a predetermined maximum Pareto ranking has been reached. 

Under this definition, the fuzzy Pareto front consists of the architectures with Pareto ranking below a certain 

threshold (which in this case was empirically set to 4).  

Three alternative architectures were identified on Figure 7 that achieve a higher scientific score than the 

reference architecture at a lower cost. These architectures are highlighted on the fuzzy Pareto frontier. Figure 8 

provides a pictorial representation of the reference architecture and the three alternative architectures. For each 

satellite, mass, orbit, lifecycle cost, and launch vehicle class are shown, in addition to the complexity penalties 

previously defined. 

In terms of science, alternative architecture 1 (top left on Figure 8) achieves a higher science score than the 

reference architecture because by separating the SAR and lidar portions of DESDYNI, the science output of both 

instruments increases. In the reference architecture, the SAR and the lidar fly together in a compromise dawn-dusk 

SSO at 600km. In alternative architecture 1, the SAR improves coverage by flying at a higher altitude (800km), and 

the lidar improves spatial sampling by flying at a lower orbit. The explanation facility shows that the improvement 

in coverage of the SAR provides benefits in terms of snow cover, hydrocarbon monitoring, and surface deformation 

data products. Flying the lidar lower has benefits in terms of vegetation data products. 



 

 

 

Figure 8: Three Decadal architectures and the reference architecture (bottom) 

In terms of cost, differences between the architectures on Figure 8 are driven by the DESDYNI lidar orbit 

altitude (600km versus 400km). Flying the lidar at 600km is much more costly due to the increase in power 



 

 

requirements to maintain SNR. The need for an Atlas-5 launch is also a driving factor. The reference architecture is 

the only one using the Atlas-5 launch vehicle, which results in higher launch costs than the alternative architectures 

by 7.5% ($20-$25M). Another factor concerns the use of large satellites at low orbits. Satellites flying at 400km 

suffer from high atmospheric drag that may drive the design of the ADCS. The larger and more massive the satellite 

is, the more stringent the requirements on the ADCS. In other words, the model suggests minimizing the mass that 

flies at this orbit altitude to the few instruments that have strong reasons to fly there (e.g., lidars), and distributing it 

in smaller spacecraft with favorable drag coefficients (i.e., smaller areas). Finally, the ability of the current NASA 

ground stations to downlink the required data volume is identified as a driving issue. The model penalizes 

architectures that require downlink data rates higher than 500Mbps because that is beyond the current capabilities of 

the current NASA Space Communication and Navigation Network. This is a strong penalty, as it increases the 

lifecycle cost of the architecture to include the cost of deploying a new ground asset to meet the demand. While the 

model may be too pessimistic – these costs could be assigned to multiple missions, and would come from a different 

part of the budget – this is a very real limitation often driving the architecture of Earth observation missions. 

The positions of the three architectures from Figure 9 on the fuzzy cost-risk iso-science Pareto frontier are 

shown. One can conclude that at this stage, alternative architecture #1 seems to be the most promising one, as it 

achieves the highest science score in the most efficient way, and it is also non-dominated in the cost-risk space.  

 

Figure 9: Iso-science, cost-risk space in the Decadal packaging problem  



 

 

VII. Conclusion 

This paper has presented a methodology to explore the architectural trade space of Earth observation satellite 

systems such as the NASA Earth Observing System or the Earth Science Decadal Survey. The methodology 

addresses limitations of current architecting tools for tackling real-life architecting problems in terms of the 

scalability and traceability of the tool when a large body of expert knowledge is required. The methodology is an 

implementation in the domain of Earth Observing Systems of a generic framework developed by the authors, named 

VASSAR, which uses a rule-based engine to provide a scalable and traceable framework for tackling knowledge-

intensive problems in system architecting.  

The problem of architecting EOSS was formulated as a set of coupled combinatorial optimization problems: an 

instrument selection problem, an instrument-to-spacecraft assignment problem, and a mission scheduling problem. 

Architectural variables and figures of merit were defined for these problems, and their coupling was discussed. 

The framework used to solve these optimization problems was described, focusing on the heuristic search 

algorithm, the spacecraft design algorithm, and a rule-based scientific benefit evaluator. The heuristic search 

algorithm uses multiple heuristics (mutation, crossover, improvement) to identify good architectures in large trade 

spaces using a mix of domain-specific and domain-independent information. The spacecraft design algorithm 

consists of a heuristic orbit classifier, a complexity-corrected mass budget model, and a simple launch vehicle 

selection model. The science evaluation component of the methodology consists of three major steps: computing the 

measurements and data products that the system architecture as a whole can provide; comparing measurements and 

data products with stakeholder measurement requirements; aggregating requirement satisfaction into stakeholder 

satisfaction.  

 The framework was first demonstrated on the NASA Earth Observing System for validation purposes. It was 

shown how decisions made concerning the allocation of instruments into three large spacecraft can be replicated if 

the constraints in terms of launch vehicles and buses available are correctly taken into account. While this does not 

validate the model in the strictest sense, it does provide some confidence about the ability of the model to produce 

useful results. Validation of complex models such as the one presented in this paper is very challenging, mostly 

because of the lack of a “truth” dataset with which the model results can be compared. This effort can thus be 

continued by obtaining a richer dataset on an increasing number of retrospective case studies, including programs 

from different sizes and organizations. Then, the framework was used to provide insight into architectures of the 



 

 

Earth Science Decadal Survey that are potentially better than the architecture outlined in the NRC report in terms of 

scientific and societal value, affordability, and programmatic risk. In particular, it is shown how splitting the 

DESDYNI mission in its lidar and radar component, and flying the CLARREO instruments as opportunity payloads 

in other missions have the effect of increasing scientific and societal value while lowering lifecycle cost and 

programmatic risk. 

The tool presented in this paper has the potential to radically improve the performance and lower the cost of 

large program architecting processes, such as the Decadal Survey NRC review. However, several components of the 

framework can be improved. More sophisticated heuristics, both domain-specific and domain-independent, can be 

added to the heuristic search algorithm in order to improve its efficiency. Better spacecraft design algorithms and 

cost models would increase the fidelity of the lifecycle cost metric. This new knowledge can be incorporated into the 

tool without changing the rest of the code, which is physically separated from the rule database. The bottleneck in 

this process continues to be the knowledge elicitation process. Modeling expert knowledge is itself an extremely 

time-consuming task. However, we argue that modeling expert knowledge is already an integral part of the systems 

engineering process. Most large space organizations have a knowledge management component, for example in the 

form of requirement databases, lessons learned databases, or engineering model databases, often managed by a 

Knowledge Management team.  Such roles can proactively manage knowledge in such a way to contribute to future 

robust architecture decision-making systems. For instance, these databases could be directly used by knowledge-

intensive architecting tools like the one presented in this paper. This requires however some effort to migrate these 

databases into data structures that are easier to interface. Finally, incorporating a machine learning layer on top of 

the rule-based system could exploit the datasets obtained as the model evaluates architectures to improve the 

performance of the search process.  

VIII. Appendix 

Data concerning different components of the framework is presented in this Appendix. 

Table 4: Launch vehicles considered in the model, with their assumed performance and characteristics 

Launch 

vehicle 

Performance to 

LEO polar 

400km (kg) 

Performance 

to SSO 

600km (kg) 

Performance 

to SSO 

800km (kg) 

Performance 

to GTO (kg) 

diameter(m) length(m) cost 

($M) 

Atlas-5 20000 15000 10000 10000 4.57 7.63 110 

Delta-7920 3642 3400 3200 500 2.69 7.53 65 

Delta-7420 2269 2123 1989 300 2.69 7.16 55 



 

 

Delta-7320 1982 1740 1620 250 2.51 6.82 45 

Minotaur-IV 1225 1110 1050 0 2 5.44 35 

Taurus XL 1015 961.5 870 0 1.98 5.71 30 

Taurus 1015 961.5 870 0 1.4 2.67 20 

Pegasus XL 300 240 190 0 1.18 2.13 15 

 

Table 5: Scientific panels for the NASA Earth Observing System 

Panel Id Description Weight 

Clouds and 

radiation 

WAE Cloud formation, dissipation, and radiative properties, which influence 

response of the atmosphere to greenhouse forcing 

2/13 

Oceans OCE Exchange of energy, water, and chemicals between the ocean and 

atmosphere, and between the upper layers of the ocean and deep ocean 

2/13 

Greenhouse 

Gases 

GHG Chemistry of the  troposphere and lower stratosphere 2/13 

Land & 

Ecosystems 

ECO Land hydrology and ecosystem processes 2/13 

Glaciers and 

Polar Ice Sheets 

ICE Glaciers, Sea Ice, and Ice Sheets 2/13 

Ozone and 

Stratospheric 

Chemistry 

OZO Ozone and Chemistry of the upper stratosphere 1/13 

Solid Earth SOL Volcanoes and Climate Effects of Aerosols 2/13 

 

Table 6: 1st level of decomposition of stakeholder needs for the WAE panel in the EOS case study 

Objective Description Weight 

WAE1 Atmospheric circulation 13% 

WAE2 Cloud radiative feedback 19% 

WAE3 Precipitation patterns 13% 

WAE4 Water vapor 13% 

WAE5 Aerosols 13% 

WAE6 Radiation budget 19% 

WAE7 Ice and snow 6% 

WAE8 Land Surface Water 6% 

 

 

Table 7: 2nd level of decomposition of needs for one objective of the WAE panel in the EOS case study 

Requirement Description Weight 

WAE6-1 Total solar irradiance 15% 

WAE6-2 Short-wave radiation (solar reflected) 35% 

WAE6-3 Long-wave radiation (thermal emission) 35% 

WAE6-4 Albedo and reflectance 15% 

 

Table 8: Requirement satisfaction rule for atmospheric temperature fields for the EOS case study 

Attribute Target Threshold Justification 

Temporal Resolution Highest(~12h) High(~24h) Operational weather 

Horizontal Spatial Resolution Low(10-30 km) Very-Low(30-50 km) Grid size of NWP models 



 

 

Vertical Spatial Resolution Medium (~1km) Low (~2km) Vertical transport 

Absolute Accuracy High (~0.5K) Medium (~1K) NWP models 

 

Table 9: Scientific panels for the Decadal case study 

Panel Id Description Weight 

Weather WEA Weather (including space weather and chemical weather) 21% 

Climate CLI Climate variability and change 21% 

Land ECO Land-use change, ecosystems dynamics, and biodiversity 21% 

Water WAT Water resources and the global hydrological cycle 16% 

Health HEA Human health and security 11% 

Solid Earth SOL Solid Earth hazards, resources, and dynamics 11% 

 

Table 10: 1st level of decomposition of stakeholder needs for the Decadal case study: WEA panel objectives 

Objective Description Weight 

WEA1 Atmospheric winds 19% 

WEA2 High temporal resolution air pollution 15% 

WEA3 All-weather temperature and humidity profiles 12% 

WEA4 Comprehensive global tropospheric aerosol characterization 8% 

WEA5 Radio Occultation 19% 

WEA6 Comprehensive global tropospheric O3 measurements 15% 

WEA7 Aerosol-cloud discovery 12% 

 

Table 11: 2nd level of decomposition of needs for the Decadal case study: atmospheric winds subobjectives 

Requirement Description Weight 

WEA1-1 Atmospheric wind speed 20% 

WEA1-2 Atmospheric wind direction 20% 

WEA1-3 Ocean surface wind speed 30% 

WEA1-4 Ocean surface wind direction 20% 

WEA1-5 Water vapor transport winds 10% 

Table 12: Validation of orbit selection rules with a set of real multi-instrument missions 

Mission Actual orbit class
**

 Best orbit class 

according to classifier 

Justification for difference 

ACRIMSAT SSO-600-SSO-AM LEO-600-polar-NA Radiation budget wants true polar 

AQUA SSO-800-SSO-PM SSO-800-SSO-PM OK 

AURA SSO-800-SSO-PM SSO-800-SSO-PM OK 

ICESAT LEO-600-polar-NA LEO-400-polar-NA Lidar wants to fly low 

JASON-1 LEO-1300-near-polar-NA LEO-1300-near-polar-NA OK 

SEAWIFS SSO-800-SSO-AM SSO-800-SSO-AM OK 

QUIKSCAT SSO-800-SSO-DD SSO-800-SSO-DD OK 

SORCE LEO-600-equat-NA LEO-800-equat-NA Passive imager wants to fly high 

TERRA SSO-800-SSO-AM SSO-800-SSO-AM OK 

LANDSAT-7 SSO-800-SSO-AM SSO-800-SSO-AM OK 

SMAP SSO-600-SSO-DD SSO-800-SSO-DD Passive imager wants to fly high 

ICESAT-2 LEO-400-polar-NA LEO-400-polar-NA OK 

DESDYNI-LID SSO-400-SSO-DD SSO-400-SSO-DD OK 

                                                           

**
 The true orbit class is the orbit from the set of available orbits that is closest to the true orbit 



 

 

DESDYNI-SAR SSO-800-SSO-DD SSO-800-SSO-DD OK 

ASCENDS SSO-400-SSO-AM SSO-400-SSO-AM OK 

ACE SSO-400-SSO-PM SSO-400-SSO-DD DD minimizes cost (more power) 

HYSPIRI SSO-800-SSO-AM SSO-800-SSO-AM OK 

GRACE LEO-500-polar-NA LEO-275-polar-NA Max sensitivity to gravity  

GPSRO LEO-800-polar-NA LEO-800-polar-NA OK 

LIST SSO-400-SSO-DD SSO-400-SSO-DD OK 

SCLP LEO-800-polar-NA LEO-800-polar-NA OK 

XOVWM SSO-800-SSO-DD SSO-800-SSO-DD OK 

3DWINDS SSO-400-SSO-DD SSO-400-SSO-DD OK 

GACM SSO-800-SSO-AM SSO-800-SSO-AM OK  

 

 

 

Figure 10: Statistical performance of the mass budget model for illustrative purposes 
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