7.36/7.91/BE.490
Homework 2
Due March 11 at 1:00 PM

Note: Please see the class website for a handout describing how
to submit your programming problems electronically. Also a list
of useful programming hints is included at the end of this
assignment.

1. Paleogenomics I - BLAST searches with nucleotide sequences

Your lab has developed a revolutionary technology to extract DNA
from dinosaur fossils. In order to learn about the evolutionary
history of dinosaurs and the origins of flight, you extract and

sequence DNA from a fossilized pterodactyl.

This sequence is stored in the file dinol.fa.

a. Do a BLASTN search of the ‘dinol.fa’ sequence against the
nr database. What is the top hit with the default
settings? Does it look real? Why/why not?

b. Now change the mismatch penalty from the default (-3) to
—1 and do the same BLASTN search. What is the top hit
now? What is the E-value of this hit? Qualitatively, how
did the alignments change from part a? Is this what you
expect when reducing the magnitude of the mismatch
penalty?

c. Now do a BLASTX search with dinol.fa. What is the top
BLASTX hit? What are the E-values and bit scores of this
hit? Does it look real? What type of organism is this?
What could this mean for the evolution of flight in
dinosaurs?

d. Explain why the BLASTN and BLASTX results are so
different.

2. Paleogenomics II — the effect of introns on BLAST searches

You obtain a new pterodactyl sequence to study in the file
‘dino2.fa’. You try BLASTN and BLASTX but can’t find any related
sequence in the nr nucleotide and protein databases (do the
searches to convince yourself). Because this sequence comes from
a very gene-rich part of the pterodactyl genome, you suspect
that there may be a gene hidden in the sequence which for some
reason is undetectable by BLAST. To explore this possibility,
you decide to investigate the splice site motifs recognized by
the pterodactyl splicing machinery to see whether you can
extract the exons from the dino2.fa sequence. You do some more
sequencing and identify a set of 56 pterodactyl genomic DNA



fragments that have BLASTX hits to known proteins. You infer

these hits are likely to contain exons and splice sites.

Since

BLASTX hits often do not correspond precisely to the boundaries
of exons (e.g., because of amino acid changes near splice sites
resulting in truncated hits, or spurious hits to translates

splice sites/introns resulting in extended hits), you construct
a dataset including ~25 bases on each side of the START of the

BLASTX hit and call it ‘3primesplicesites.txt’

(for finding the

3’ splice site motif) and another dataset including ~25 bases on
each side of the END of the BLASTX hit, which you call

‘Sprimesplicesites.txt’

A.

(for finding the 5’ splice site motif).
Run MEME (http://meme.sdsc.edu/meme/website/meme.html) on
the two datasets to find a consensus motif common to the
56 sequences that dinosaurs may have used as 5’ and 3’
splice sites. What motifs are found? Write the consensus
for each motif using the standard one-letter code shown
below:

N=A,T,G,C Y=C,T R=G,A
K=G,T S=C,G W=A,T M=A,C
B=C,G,T v=a,C,G D=A,G,T H=A,C,T

Note: A glitch in the output from MEME for the 'Multilevel
consensus sequences' may not print the fourth nucleotide
at a given position in the motif. Therefore, examine the
'Simplified pos.-specific probability matrix' or the
'Information content' graph to determine whether any of
the positions in the motif can have all four nucleotides.
Write a Python program that reads in the two consensus
sequences, finds putative introns in your ‘dino2.fa’
sequence, and prints out the predicted spliced mRNA. Your
program should accept two file names as command line
arguments. The first is the name of a file with two
consensus sequences — each on a line by itself (the 5’ and
3’ splice site consensus sequences respectively). A
consensus sequence is any strings composed of characters
in the table above as well as A, G, C, and T. The second
argument is the name of a file containing the DNA sequence
of interest in FASTA format. You may not assume that the
sequence in this file will entirely be on one line (many
of you made this assumption in the last homework). See
http://ngfnblast.gbf.de/docs/fasta.html for a description
of the FASTA format. Your program should search for the
5’ and 3’ splice site consensus sequences and print out
the predicted spliced mRNA. Assume that, unlike many
modern organisms, in dinosaurs the first nucleotide of the
intron is the 5’ nucleotide of the 5’ splice site motif
and the last nucleotide of the intron is the 3’ nucleotide
of the 3’ splice site motif. Name your program




splicing.py and submit it online. Hint: from the spacing
of the BLASTX hits in pterodactyl genomic sequences, you
have inferred that pterodactyl introns are always ~300-600
bases long. It is always a good idea to implement error
checking in your programs, but it is not required for this
assignment. You can assume that your program will always
be called with exactly two file names and that the files
contain exactly what is outlined above. See the website
for a sample run of this program (splicing.run).

c. Perform a BLASTN with your predicted spliced exon
sequences. Do you find any plausible hits?

d. Perform a BLASTX search. Do you find any plausible hits
now? If so, explain why you didn’t find these hits in
your original search (before removing the introns).

3. Motif finding

Download the file ‘pombe.fa’ from the course website. This is a
file containing the 3’ ends of 75 introns from the fission yeast
Schizosaccharomyces pombe in FASTA format. Each sequence
represents the bases —35 to —6 relative to the 3’ splice
junction, the region of the intron that is expected to normally
contain the site of branch formation in this organism. (Part a
of question not graded.)

a. Examine the sequences in the file. Can you see any motifs
shared by most or all of the sequences by eye?

b. Now run the sequences through the Gibbs Motif Sampler at
http://bayesweb.wadsworth.org/gibbs/gibbs.html. Try a
motif width of 7 and leave the field specifying the number
of different motifs blank to engage the default Site
Sampler behavior (see the manual available at
http://bayesweb.wadsworth.org/gibbs/bernoulli.html for
details). What consensus motif does it find? Run the
same sequences through the server 4 more times. Does it
always produce the same consensus motif sequence? Are the
base frequencies always the same? Explain.

c. Now run the sequences through MEME at
http://meme.sdsc.edu/meme/website/intro.html. Use the
default parameters. How do the consensus motif(s) compare
to your results from the Gibbs Motif Sampler? Explain why
your results are either different or the same. Notice
that MEME gives the information content of the discovered
motif(s). What is/are the information content(s)?

d. Write a python program, which takes as input the name of a
file containing an alignment of arbitrary length
containing an arbitrary number of aligned occurrences of a
particular DNA motif and computes the weight matrix model
(position-specific base frequencies) as well as the




Shannon Entropy and the information content in bits at
each position. A sample input file is available on the
website as ‘motifs.txt’. Assume a uniform background
distribution of nucleotide frequencies (25% frequency for
each base). Also, calculate the total information content
of the entire motif.

e. Extend your python program so that it also computes the
‘bit score’ (see formula given in lecture) of each
provided motif sequences in the input file using the
frequencies in your weight matrix model. Print the
sequences and their scores. Also compute the mean score.
How does the mean bit score compare to the calculated
information content of your motif?

f. Based on your calculated information content of the motif,
how many times would you expect the motif to occur in a
random DNA sequence of length 500,000 base pairs? Search
for the motif in the random DNA sequence provided in
‘random.fa’ using a cutoff score of 9.8. How many times
do you find this motif? How do these two numbers compare?
Discuss the validity of your prediction. (We suggest that
you implement the search in your python program but we
will not be testing this aspect of your program
explicitly.)

Note:

For this problem you may assume that each line contains one DNA
sequence with no spaces. All sequences are of the same length
(since they are part of the same motif alignment derived from a
Gibbs sampler run) and there are an arbitrary number of lines.
It is always a good idea to perform error checking in your code,
but for this assignment it is not required. You can assume that
the program is called with exactly one argument, which is the
name of an existing file, which indeed contains a list of
aligned DNA sequences (i.e. no errors on the part of the user).
The following is a sample run of such a program. Name your
program ‘motif.py’ and submit it online.

[Computer:~/be490] user% python motif.py motifs.txt
Frequency Matrix:

A 0.067 0.627 0.000 0.000 0.893 1.000 0.000

T 0.773 0.240 0.120 1.000 0.027 0.000 0.133

G 0.093 0.120 0.000 0.000 0.080 0.000 0.000

C 0.067 0.013 0.880 0.000 0.000 0.000 0.867
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Sequence TACTAAC has score s = 12.401
Sequence TACTAAT has score s = 9.701
Sequence TACTAAC has score s = 12.401
Sequence TGCTAAC has score s = 10.017
Sequence TATTAAC has score s = 9.527
Sequence TTCTAAC has score s = 11.017
Sequence TTCTAAC has score s = 11.017
Sequence TGCTAAC has score s = 10.017
Sequence TTCTAAC has score s = 11.017
Sequence CACTAAC has score s = 8.865
Sequence TGCTAAC has score s = 10.017
Sequence GACTAAC has score s = 9.351
Sequence TATTAAC has score s = 9.527
Sequence CGCTAAC has score s = 6.481
Sequence AACTAAC has score s = 8.865
Sequence TACTAAT has score s = 9.701
Sequence AACTAAC has score s = 8.865
Sequence TACTAAC has score s = 12.401
Sequence TACTTAC has score s = 7.335
Sequence TACTAAT has score s = 9.701
Sequence TACTAAT has score s = 9.701
Sequence TTCTAAC has score s = 11.017
Sequence TTCTAAC has score s = 11.017
Sequence CGCTGAC has score s = 2.999
Sequence TACTAAT has score s = 9.701
Sequence TACTAAT has score s = 9.701
Sequence TACTGAC has score s = 8.920
Sequence TACTAAC has score s = 12.401
Sequence TACTGAC has score s = 8.920
Sequence TGCTAAC has score s = 10.017
Sequence AACTAAC has score s = 8.865
Sequence TTCTAAC has score s = 11.017
Sequence GACTAAC has score s = 9.351
Sequence AACTAAC has score s = 8.865
Sequence TTCTAAT has score s = 8.316
Sequence TTCTAAC has score s = 11.017
Sequence TATTAAC has score s = 9.527
Sequence TACTGAC has score s = 8.920
Sequence TTCTAAC has score s = 11.017
Sequence TACTAAT has score s = 9.701
Sequence TCCTAAC has score s = 6.847
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TTCTAAC has score s = 11.017
Sequence GACTAAC has score s = 9.351
Sequence TATTAAC has score s = 9.527
Sequence TACTGAC has score s = 8.920
Sequence TGCTAAC has score s = 10.017
Sequence TACTAAC has score s = 12.401
Sequence TTTTAAC has score s = 8.142
Sequence TTCTAAC has score s = 11.017
Sequence TACTAAC has score s = 12.401
Sequence TTCTAAC has score s = 11.017
Sequence TACTAAC has score s = 12.401
Sequence TTCTAAC has score s = 11.017
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TATTAAC has score s = 9.527
Sequence TACTAAC has score s = 12.401
Sequence GACTAAC has score s = 9.351
Sequence GACTAAC has score s = 9.351
Sequence TACTAAC has score s = 12.401
Sequence TACTTAC has score s = 7.335
Sequence TTCTAAC has score s = 11.017
Sequence TACTAAC has score s = 12.401
Sequence TACTAAC has score s = 12.401
Sequence TTTTAAC has score s = 8.142

Mean score = 9.834

4. Probability and Statistics

The genome of the mycoplasma Mesoplasma floracea is somewhat
unusual in that it has a very low G+C content (25%) and has a
very small (734 kb) circular genome. There is a convention for
which strand reads ‘clockwise’ and which strand reads
‘counterclockwise’. All questions refer to the clockwise
strand.

a. Assume that you start sequencing bases from the genome at
an arbitrary position in the genome. Sequencing
clockwise, how many bases would you expect to sequence
before seeing a G+C in the genome? Same question,
sequencing counterclockwise from the same position?



What is the average spacing between consecutive G+C bases
in the genome (i.e. average number of intervening A+T
bases)? Explain why this number is the same or different
from the sum of the two values you obtained in part a.
During the annotation of the genome, a gene finding
program was used to find 686 predicted coding regions in
the genome. Of the 686 putative coding regions, 432 of
these were confirmed on the basis of similarity to coding
regions in other species. The other predicted coding
regions remain unconfirmed. You had the idea that perhaps
coding regions have a higher G+C content than noncoding
regions in the genome because of the necessity of encoding
certain amino acids. Out of the 432 “confirmed” coding
regions, 337 have a G+C content higher than 25%. In a set
of 203 “confirmed” non-coding regions (regions which have
been experimentally shown not to express any transcripts),
only 17 have C+G content higher than 25%. If the G+C
content of a particular predicted coding region is above
25%, what is the probability that it is a true coding
region? Show your work including the joint probability
table. Assume that “unconfirmed” coding/non-coding
regions are similar in composition to confirmed
coding/non-coding regions, respectively.

In the next step of annotating the Mesoplasma florum
genome, you want to be able to find all transcriptional
terminators in the genome. Based on the number of
predicted coding regions and the size of the genome, a
very rough calculation suggests that about ~3% of the
genome consists of transcriptional terminators. Based on
previous tests, the TerminatorScan program is known to
predict a transcriptional terminator in a DNA sequence, if
one is present, with a probability of 0.79. 1If a
terminator is not present in the sequence, the program
will detect one falsely with a probability of 0.15. Use
Bayes rule to determine the probability that a terminator
is actually present if the program predicts a terminator
in an arbitrarily chosen segment of the genome. Show your
work. How useful will this program be in annotating the
Mesoplasma genome?

Another research group has published a paper that includes
estimates for the mutation probabilities between
nucleotides in Mesoplasma florum. Their analysis accounts
for the fact that transitions are more common than
transversions, that A+T nucleotides are more prevalent
than G+C nucleotides and that the organism lacks basic DNA
repair machinery. Based on these transition
probabilities, calculate the steady-state probabilities of
any given nucleotide in the genome being an A, T, G or C



assuming a first order Markov model for DNA mutation. Is
the base composition of Mesoplasma florum in equilibrium?
(Note: P,, denotes the probability of a nucleotide mutating
from X to Y.)
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5. Viterbi Algorithm

Your lab has developed a first order Hidden Markov Model for
predicting helical segments based on experimentally determined
amino acid helix propensities published by Karyn T. O'Neil and
William F. DeGrado in “A Thermodynamic Scale for the Helix-
Forming Tendencies of the Commonly Occurring Amino Acids”,
Science, New Series, Vol. 250, No. 4981. (Nov. 2, 1990), pp.
646-651. The model has two hidden states — helical (H) and non-
helical (N).

A.

b.

Which parameter(s) do you think was/were derived using the
amino acid helix propensity data?

The emission probabilities of the HMM for each amino acid
in each state are given below in Table 1. The transition
probabilities between states are given in Table 2. Assume
that the prior probabilities for the first position in the
sequence are P, = 0.3 and P, = 0.7. What is the joint
probability of generating the sequence FSRSNHLSPC and
parse HHHHHHHNNN using the given HMM? Show your answer and
how you arrived at it.



Amino Acid | Pemin H |Pemin N Transition Probabilities
A 0.1352 0.05 Helix non-Helix
C 0.0224 0.05 Helix 0.9 0.1
D 0.0247 0.05 non-Helix 0.17 0.83
E 0.0407 0.05 Table 2. Transition
F 0.0369 0.05 probabilities of the HMM.
G 0.0166 0.05
H 0.0224 0.05
| 0.0334 0.05
K 0.0907 0.05
L 0.0907 0.05
M 0.0742 0.05
N 0.0334 0.05
P 0.0001 0.05
Q 0.0742 0.05
R 0.1224 0.05 Table 1. Emission
S 0.0407 0.05 probabilities (Pem) in the
T 0.0247 0.05 Helix (H) state and the non-
V 0.0302 0.05 .
W 0.0498 0.05 Helix (N) state.
Y 0.0369 0.05

You are studying a protein, which you suspect to have a
helical segment. You would like to use the HMM developed
by your lab to find the most likely helical parts of your
protein. The sequence under consideration is: CGQALFAASP.
Use a trellis diagram to determine the optimal parse of
this sequence. Make two rows of 10 circles, one
immediately below the other. Label the top row ‘H’ and
bottom row ‘N’, and number the columns 1..10. Fill in the
probability of the optimal parse of the subsequence 1..k
(of the given sequence) that ends in a Helix state in
circle k of the Helix row, and the probability of the
optimal parse of the subsequence 1..k ending in an non-
Helix state in circle k of the non-Helix row. Start by
filling in the two circles in the first column using the
prior probabilities and the emission probabilities. To
fill in the Helix circle in the second column, compare the
probabilities of the of two parses: a) the optimal parse
up to position 1 ending in H, followed by a transition
from H — H; versus b) the optimal parse up to position 1
ending in N, followed by a transition from N — H. Fill in
the maximum of these two values in the H circle in the
second column, and draw an arrow from the circle in the
first column that contributed to this maximal probability
parse to the circle in the second column. Continue this
way, filling in the whole trellis diagram. What is the
joint probability of the optimal parse of the sequence
ending in state H? What is the joint probability of the
optimal parse of the sequence ending in state N? What is



the optimal parse overall? (Hint: backtrack through the
trellis diagram, following the arrows in reverse.)

After going through the above exercise, you find out that
someone in your lab has already implemented the Viterbi
algorithm in python. You use the program to evaluate a
1000 residue sequence and it completes in 0.1 seconds.
Based on this information and what you know about the
running time of the Viterbi Algorithm, what is your best
guess as to how long it would take to apply the above HMM
onto all the sequences in SwissProt (53,205,430
characters)? How long would it take if you added two new
states — beta strand and turn (assume that these states
are implemented in exactly the same way as the other two)?

Hints for Programming Problems:
see Peter’s python tutorial notes for information on reading in files,
command line arguments, and regular expressions

f

= open(“file.txt”);

lines = f.readlines()
f.close()f.readlines()

Reads the contents of the file “file.txt” and stores it as an array of
strings ending with newlines.

Regular expressions are useful for parsing fasta files since you can
parse on the ‘>’ character and then on the first newline character. To
use regular expressions you have to ‘import re’ at the top of your
script. Some useful regular expression functions:

o new_str = re.sub(regexp, subst, str). This takes the string str,
replaces every occurrence of regular expression regexp with
string subst. If you don’t want to replace every occurrence, you
can replace only the first n, by specifying n as the 4™ argument.

Examples:
= seq = re.sub(“>.*\n"”, “", fasta)
= seq = re.sub(“\n*", “", seq)

o match = re.match(regexp, str) — returns a match object if regular
expression regexp is found at the start of string str. Returns
false (python special value None) otherwise — you can check
whether the match exists or not with an if statement.

o match = re.search(regexp, str) — the same as re.match, but
succeeds if the regular expression regexp matches any position in
the string (not just the beginning).

o 1list = re.split(regexp, str) — splits the string str into sub-
strings delimited by the regular expression regexp. Returns the
sub-strings in a list.

o See http://www.amk.ca/python/howto/regex/ for a good explanation
of regular expressions. The split() function is useful.

One useful type of regular expressions for this assignment — character
class regular expression. “[ABC]” will match either A, B, or C. Thus,
“C[GT][CA]JGA” will only match CGCGA, CGAGA, CTCGA, and CTAGA.
nucleotides = { 'A':0, 'T':1, 'G':2, 'C':3 } -> This declares a
dictionary to convert between bases and array indices.

\4
\4
\4

= [] -> creates an empty array.

.append(0) -> appends the value 0 to the array v.
.append([]) -> append an empty array to the array v.



s.upper() -> returns a new string in which s has been converted to
uppercase.

range(m,n,p) -> creates an array of numbers between m and n-1 in
increments of p, which is useful in for loops.

math.log(x,b) -> return the log of x to the base b. Must “import math”
at the top of your script.

s.replace(‘\n’,’’) -> deletes the newlines in string s.

See http://www.python.org/doc/current/lib/typesseqg-strings.html#12h-206
for information on formatting strings for printing




