# 7.91 April 1, 2004 Amy Keating Protein Structure

Outline of the next part of the course

- 4/1 Protein Structure Comparison & Classification
- 4/6 Principles of Molecular Mechanics
- 4/8 X-ray crystallography and NMR
- 4/13 Modeling Mutants and Homologs
- 4/15 Threading and Ab Initio Structure Prediction
- 4/22 Computational Protein Design

# 7.91 April 1, 2004 Amy Keating Introduction to Protein Structure & Classification

#### **Protein structures**

basics where to find them how to look at them what they can tell you structural and evolutionary comparisons



Schulze-Gahmen, U., J. Brandsen, H. D. Jones, D. O. Morgan, L. Meijer, J. Vesely, S. H. Kim. "Multiple Modes of Ligand Recognition: Crystal Structures of Cyclin-dependent Protein Kinase 2 in Complex with ATP and Two Inhibitors, Olomoucine and Isopentenyladenine." *Proteins* 22 (1995): 378.

The Protein Data Bank (PDB - http://www.pdb.org/) is the single worldwide repository for the processing and distribution of 3-D biological macromolecular structure data.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. *Nucleic Acids Research* 28 (2000): 235-242

(PDB Advisory Notice on using materials available in the archive: http://www.rcsb.org/pdb/advisory.html)

# Review of protein structure hierarchy

- Primary structure
   MAAAAAAGPEMVRGQVF
- 20 amino acids
  - hydrophobic/hydrophilic
  - acidic/basic
  - large/small
  - specialized (Gly, Pro, Cys)











# **Representations of Protein Structure**



# Review of protein structure hierarchy



SGAYGSVCAA FDTKTGHRVA VKKLSRPFQS IIHAKRTYRE LRLLKHMKHE EEEEEE EE EEE EEEE HHHHHHHHH HHHHHH

# Review of protein structure hierarchy

• Tertiary structure

• Quaternary structure



N-terminal domain of kinase

hemoglobin

Why do you get compact/globular tertiary structures?

# Other units of protein structure



EF hand



coiled coil





# Sequence determines structure. How?

- Secondary structure preferences (satisfy H bonds)
- Hydrophobic/polar patterning
- Steric complementarity
- Electrostatics

Interactions are both LOCAL and NONLOCAL in sequence



# Where do protein structures live? www.rcsb.org/pdb

DEPOSIT data DOWNLOAD files browse LINKS BETA TEST new features BETA XML files

#### SPD B PROTEIN DATA BANK

Welcome to the PDB, the single worldwide repository for the processing and distribution of 3-D biological macromolecular structure data.



Did you find what you wanted?

**Current Holdings** 

24785 Structures Last Update: 23-Mar-2004 PDB Statistics



Molecule of the Month: The Calcium Pump

The Protein Data Bank (PDB) is operated by Rutgers, The State University of New Jersey; the San Diego Supercomputer Center at the University of California, San Diego; and the Center for Advanced Research in Biotechnology of the National Institute of Standards and Technology -- three members of the <u>Research Collaboratory for Structural Bioinformatics</u> (RCSB). ABOUT PDB | NEW FEATURES | USER GUIDES | FILE FORMATS | DATA UNIFORMITY | STRUCTURAL GENOMICS | SOFTWARE | PUBLICATIONS | EDUCATION

#### Search the Archive

| Enter a PDB ID o                         | r keyword      | Query Tutorial  |
|------------------------------------------|----------------|-----------------|
|                                          | Search         |                 |
| C PDB ID C Authors<br>✓ match exact word | Full Text Sear | rch<br>equences |

SearchLite keyword search form with examples SearchFields customizable search form Status Search find entries awaiting release



pdb-I Archive Subscribe

#### 23-Mar-2004

<u>PDB Focus: XML Data Files</u> All released PDB entries are available in XML format from the PDB beta FTP site at <u>ftp://beta.rcsb.org/pub/pdb/uniformity/data/XML/</u>. The XML data files have been created by software translation of the mmCIF data files as part of the PDB Data Uniformity Project. [MORE...]

#### **PDB Mirrors**

\*\*Please bookmark a mirror site\*\* San Diego Supercomputer Center, UCSD\* Rutgers University\* Center for Advanced Research in Biotechnology, NIST\* Cambridge Crystallographic Data Centre, UK National University of Singapore Osaka University, Japan Max Delbrück Center for Molecular Medicine, Germany OCA / PDB Lite MORE...

\*RCSB partner

In citing the PDB please refer to:

H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne: <u>The Protein Data</u> <u>Bank.</u> *Nucleic Acids Research*, **28** pp. 235-242 (2000)

#### 24,785 structures now in the PDB! Compare: SwissProt 146,193, TrEMBL 1,070,786



# Finding structures in the PDB



#### **Query Result Browser**



Your query found 39 structures in the current PDB release and you have selected 0 structures so far. You can select specific structures by clicking on the checkbox next to their id. If you do not select any structures, certain options will default to all structures. To examine an individual structure select the Explore link!

| ⊲ 1-20 ► ►

Pull down to select option: New Search

\_\_\_\_ Go

**KEY: №** = Download compressed (GNU zipped) PDB file **■** = View PDB file **■** = Structure viewing options

| <b>1A9U</b>        | 🖸 🗐 📴 Deposited: 10-Apr-1998 Exp. Method: X-ray Diffraction Resolution: 2.50 Å                                                                                      | { EXPLORE }                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Title              | The Complex Structure Of The Map Kinase P38/Sb203580                                                                                                                |                                                       |
| Classification     | Transferase                                                                                                                                                         |                                                       |
| Compound           | Mol_Id: 1; Molecule: Map Kinase P38; Chain: Null; Synonym: Mitogen Activated Protein<br>Residues Inserted At N-Terminus; Other_Details: Sb203580 Pyridinylimidazole | Kinase; Ec: 2.7.1; Engineered: Yes; Mutation: 19      |
| 1BL6               | Deposited: 11-Jul-1998 Exp. Method: X-ray Diffraction Resolution: 2.50 Å                                                                                            | { EXPLORE }                                           |
| Title              | The Complex Structure Of The Map Kinase P38/Sb216995                                                                                                                |                                                       |
| Classification     | Transferase                                                                                                                                                         |                                                       |
| Compound           | Mol_Id: 1; Molecule: Map Kinase P38; Chain: A; Synonym: Mitogen Activated Protein k<br>At N-Terminus                                                                | GET MORE INFO                                         |
| <b><u>1BL7</u></b> | Deposited: 23-Jul-1998 Exp. Method: X-ray Diffraction Resolution: 2.50 Å                                                                                            | (RE)                                                  |
| Title              | The Complex Structure Of The Map Kinase P38/Sb220025                                                                                                                |                                                       |
| Classification     | Transferase                                                                                                                                                         |                                                       |
| Compound           | Mol_Id: 1; Molecule: Map Kinase P38; Chain: A; Synonym: Mitogen Activated Protein Ki                                                                                | nase; Engineered: Yes; Mutation: 19 Residues Inserted |
|                    | At N-Terminus                                                                                                                                                       |                                                       |
| 1 <u>BMK</u>       | 💽 🗐 😰 Deposited: 23-Jul-1998 Exp. Method: X-ray Diffraction Lesolution: 2.40 Å                                                                                      | { EXPLORE }                                           |
| Tille              | The Complex Structure Of The Map Kinase P38/Sb218655                                                                                                                |                                                       |
| Classification     | Transferase                                                                                                                                                         |                                                       |
| Compound           | Mol_Id: 1; Molecule: Map Kinase P38; Chain: A; Synonyn: Mitogen Activated Protein Ki<br>At N-Terminus: Other Details: Sb218655 Pyridinylimidazole                   | nase; Engineered: Yes; Mutation: 19 Residues Inserted |
| THE                | PDB CODE THE TECHNIQUE T                                                                                                                                            | HE RESOLUTION                                         |

# Exploring structures in the PDB

LOOK AT THE STRUCTURE

Structure Explorer - 1P38



# Exploring structures in the PDB



### **GET THE PDB FILE**



**(** )

#### Structure Explorer - 1P38

#### **Summary Information**



| Summary Information     | Title: The Structure Of Th                            | e Map Kinase P38 At 2.1 Angstoms Resolution                                                                                      |
|-------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| View Structure          | Compound: Mol_Id: 1; Molecule:<br>Ec: 2.7.1; Engineer | Map Kinase P38; Chain: Null; Synonym: Mitogen Activated Protein Kinase;<br>ed: Yes; Mutation: 19 Residues Inserted At N-Terminus |
| Download/Dienlay File   | Authors: Z. Wang, P. C. Hark                          | ins, R. J. Ulevitch, J. Han, M. H. Cobb, E. J. Goldsmith                                                                         |
| Dowmoad/Display The     | Exp. Method: X-ray Diffraction                        |                                                                                                                                  |
| Structural Neighbors    | Classification: Transferase                           |                                                                                                                                  |
| 0                       | EC Number: 2.7.1                                      |                                                                                                                                  |
| Geometry                | Source: Mus musculus 🗢                                |                                                                                                                                  |
| Other Sources           | Primary Citation: Wang, Z., Harkins, I                | P. C., Ulevitch, R. J., Han, J., Cobb, M. H., Goldsmith, E. J.: The structure of                                                 |
| Sequence Details        | mitogen-activated pr<br>(1997)                        | otein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci U S A 94 pp. 2327                                                       |
|                         | <b>(</b> )                                            |                                                                                                                                  |
| Explore                 | Deposition Date: 06-Jan-1997                          | Release Date: 21-Jan-1998                                                                                                        |
| SearchLite SearchFields | Resolution [Å]: 2 10                                  | R-Value: 0 212                                                                                                                   |
|                         | Space Group: P 2, 2, 2,                               | Nºvane. 0.212                                                                                                                    |
|                         |                                                       |                                                                                                                                  |
|                         | Unit Cell: dim [A]: a 45.76                           | b 84.93 c 123.91                                                                                                                 |
|                         | angles [°]:alpha 90.00                                | beta 90.00 gamma 90.00                                                                                                           |
|                         | Polymer Chains: 1P38                                  | Residues: 379                                                                                                                    |
|                         | Atoms: 2963                                           |                                                                                                                                  |
|                         | CATH: Structural Classificat                          | ion                                                                                                                              |
|                         | PDBSum: Summary of PDB St                             | ructure                                                                                                                          |
|                         | SCOP: Structural Classificat                          | ion                                                                                                                              |



#### Structure Explorer - 1P38



| Links           | The Mentiner Of The Map Kinase #38 At 2.1 Augsbone Revolution                                                                                             |       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Christin Arrest | Trankras                                                                                                                                                  |       |
| L'amption bat   | Mid [Jdr 1: Maire step Map Kimase P38; Chaon Soli: Newson on Minagen Activitied Protein Kinase: Ex (27, L.; Engeneree di Yes) Mananan 19 Residnes Inserts | 11 21 |
|                 | N ferminas                                                                                                                                                |       |
| 1.12 Water out  | X-ray Diffraction                                                                                                                                         |       |

| <b>()</b> (4)                                                                                                                                | Download/Display File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (* |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Summary Information                                                                                                                          | Save full entry to disk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~  |
| Nachi Sinutian<br>Berenhand Dingto, file<br>Soustaral Neighbors<br>Desinen<br>Souscas<br>Souscas Denaits<br>Explore<br>Emittidat SourceState | IFLACES       DFAINSTERASE       DFAINSTERASE         TITLE       TWE SERVETURE OF THE MAP KINASE PIR AT 2.1 ANGSTONS         TITLE       T RESOLUTION         SCREEN       WGL ID-11         COMPND 1       MOLECULE: RAP KINASE PIR;         COMPND 1       CONTON 1         COMPND 1       CONTROL 1         COMPND 1       CONTROL 2         COMPND 1       CONTROL 2         COMPND 1       CONTROL 2         COMPND 1       STEN;         COMPND 1       STEN;         COMPND 1       STEN;         COMPND 1       STEN;         COMPND 2       STEN;         COMPND 3       STEN;         COMPND 4       STEN;         COMPND 5       STEN;         COMPND 4       STEN;         COMPND 5       STEN;         COMPND 4       STEN;         COMPND 5       STEN;         COMPND 4       STEN;         SOURCE 2       SCREEN;         SCONTE 2       S |    |

# Useful information in the PDB header

REMARK 280 CRYSTAL REMARK 280 SOLVENT CONTENT, VS (%): 58.0 REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS\*\*3/DA): 2.92 REMARK 280 REMARK 280 **CRYSTALLIZATION CONDITIONS**: THE PROTEIN CRYSTALLIZED IN 18% REMARK 280 PEG 8000, 0.2M MG(OAC)2, 0.1M HEPES, **PH7.0**. THE PROTEIN REMARK 280 CONCENTRATION WAS ~ 10MG/ML IN A BUFFER OF 50MM NACL, REMARK 280 1MM EDTA, 10MM DTT, 1MM BENZAMIDINE, 1UM PEPSTATIN, 10UG/ML REMARK 280 LEUPEPTIN, 25MM HEPES, PH7.4.

REMARK 999 SEQUENCE

| REMARK | 999  | 1P38 |     | SWS  | ]   | P4781                | 11                   |     | 1 -   |      | 3 <b>NC</b>          | DT II | N ATO | oms : | LIST |
|--------|------|------|-----|------|-----|----------------------|----------------------|-----|-------|------|----------------------|-------|-------|-------|------|
| REMARK | 999  | 1P38 | ç   | SWS  | ]   | P4781                | 11                   | 35  | 55 -  | 36   | 50 <b>NC</b>         | DT II | N ATC | OMS   | LIST |
| DBREF  | 1P38 | 3 4  | 35  | 54 9 | SWS | P4                   | 17811                | L I | MP38_ | MOUS | SE                   |       | 4     | 35    | 4    |
| SEQRES | 1    | 379  | GLY | SER  | SER | HIS                  | HIS                  | HIS | HIS   | HIS  | HIS                  | SER   | SER   | GLY   | LEU  |
| SEQRES | 2    | 379  | VAL | PRO  | ARG | GLY                  | SER                  | HIS | MET   | SER  | $\operatorname{GLN}$ | GLU   | ARG   | PRO   | THR  |
| SEQRES | 3    | 379  | PHE | TYR  | ARG | $\operatorname{GLN}$ | GLU                  | LEU | ASN   | LYS  | THR                  | ILE   | TRP   | GLU   | VAL  |
| SEQRES | 4    | 379  | PRO | GLU  | ARG | TYR                  | $\operatorname{GLN}$ | ASN | LEU   | SER  | PRO                  | VAL   | GLY   | SER   | GLY  |

# Useful information in the PDB header

| REMARK | 3 | FIT TO DATA USED IN REFINEMENT.   |   |        |
|--------|---|-----------------------------------|---|--------|
| REMARK | 3 | CROSS-VALIDATION METHOD           | : | NULL   |
| REMARK | 3 | FREE R VALUE TEST SET SELECTION   | : | RANDOM |
| REMARK | 3 | R VALUE (WORKING SET)             | : | 0.212  |
| REMARK | 3 | FREE R VALUE                      | : | 0.244  |
| REMARK | 3 | FREE R VALUE TEST SET SIZE (%)    | : | 10.    |
| REMARK | 3 | FREE R VALUE TEST SET COUNT       | : | NULL   |
| REMARK | 3 | ESTIMATED ERROR OF FREE R VALUE   | : | NULL   |
|        |   |                                   |   |        |
| REMARK | 3 | RMS DEVIATIONS FROM IDEAL VALUES. |   |        |
| REMARK | 3 | BOND LENGTHS (A)                  | : | 0.010  |
| REMARK | 3 | BOND ANGLES (DEGREES)             | : | 1.58   |
| REMARK | 3 | DIHEDRAL ANGLES (DEGREES)         | : | NULL   |
| REMARK | 3 | IMPROPER ANGLES (DEGREES)         | : | NULL   |
|        |   |                                   |   |        |
|        |   |                                   |   |        |

REMARK 3 **B VALUES**.

| REMARK | 3 | FROM WILSON PLOT | (A**2)          | : | NULL |
|--------|---|------------------|-----------------|---|------|
| REMARK | 3 | MEAN B VALUE     | (OVERALL, A**2) | : | 29.7 |

# Atomic coordinates in the PDB file

|      |    |     |     |   | X      | Y     | Z      | OCC  | В     |
|------|----|-----|-----|---|--------|-------|--------|------|-------|
| ATOM | 1  | Ν   | GLU | 4 | 28.492 | 3.212 | 23.465 | 1.00 | 70.88 |
| ATOM | 2  | CA  | GLU | 4 | 27.552 | 4.354 | 23.629 | 1.00 | 69.99 |
| ATOM | 3  | С   | GLU | 4 | 26.545 | 4.432 | 22.489 | 0.00 | 67.56 |
| ATOM | 4  | 0   | GLU | 4 | 26.915 | 4.250 | 21.328 | 0.00 | 68.09 |
| ATOM | 5  | CB  | GLU | 4 | 28.326 | 5.683 | 23.680 | 0.00 | 72.34 |
| ATOM | 6  | CG  | GLU | 4 | 27.447 | 6.910 | 23.973 | 0.00 | 75.98 |
| ATOM | 7  | CD  | GLU | 4 | 28.123 | 8.247 | 23.659 | 0.00 | 78.43 |
| ATOM | 8  | OE1 | GLU | 4 | 29.375 | 8.299 | 23.604 | 0.00 | 79.32 |
| ATOM | 9  | OE2 | GLU | 4 | 27.393 | 9.251 | 23.468 | 0.00 | 79.58 |
| ATOM | 10 | Ν   | ARG | 5 | 25.274 | 4.610 | 22.852 | 1.00 | 63.77 |
| ATOM | 11 | CA  | ARG | 5 | 24.179 | 4.807 | 21.907 | 1.00 | 59.83 |
| ATOM | 12 | С   | ARG | 5 | 23.411 | 3.698 | 21.219 | 1.00 | 56.20 |
| ATOM | 13 | 0   | ARG | 5 | 23.987 | 2.808 | 20.596 | 1.00 | 57.33 |
| ATOM | 14 | CB  | ARG | 5 | 24.604 | 5.784 | 20.812 | 1.00 | 60.86 |
| ATOM | 15 | CG  | ARG | 5 | 23.926 | 7.127 | 20.866 | 1.00 | 61.89 |
| ATOM | 16 | CD  | ARG | 5 | 24.295 | 7.944 | 19.647 | 1.00 | 62.21 |

### **Looking at Protein Structures**

Quick and dirty Rasmol Chime Cn3D (NCBI)

<u>More powerful</u>

Swiss PDB Viewer, PyMol (free! Many platforms) Insight, Quanta (\$\$\$, nice interface, powerful)

Publication quality graphics, but not easy to manipulate Molscript/Raster3D

# **Comparing Protein Structures**

Why?

Reading: Mount, Chapter 9

# **Comparing Protein Structures**

# Why?

detect evolutionary relationships identify recurring motifs detect structure/function relationships predict function assess predicted structures classify structures - used for many purposes

# Structure is more conserved than sequence

28% sequence identity



# Detecting substructures is challenging

Please see figure 1 of

Ortiz, Angel R., Charlie E. M. Strauss, and Osvaldo Olmea. "MAMMOTH (Matching Molecular Models Obtained from Theory): An Automated Method for Model Comparison." *Protein Sci* 11 (2002): 2606-2621.

# **Recognizing Structural Similarity**

**GOAL:** Of all solved structures, find the structure or substructure most similar to a protein of interest

By eye - tried and true! requires an expert viewer with a GREAT memory!

Automated detection - good for database searching

How would you do this?

#### Features of automated structure comparison

- 1. What representation will you use for the protein?
- 2. How will you assess structural similarity?
- 3. How will you search the possible comparisons?
- 4. How significant is a "hit"?

#### **Example: Superposition to minimize RMSD**

- 1. Define measure of similarity RMSD =  $\{\Sigma | x_i - x_i |^2 \}/N \}^{1/2}$
- 2. Determine correspondence between residues of each protein (e.g. by sequence alignment, or a guess)
- 3. Align centers of mass
- 4. Use matrix methods to solve for the rotation that gives minimal RMSD (variety of methods available)
- 5. Evaluate the resulting number
- 6. Refine the alignment
- 7. iterate

Very useful. Commonly used for comparing similar structures. But...

#### **Example: Superposition to minimize RMSD**

- 1. Define measure of similarity RMSD =  $\{\Sigma | x_i - x_i |^2 \}/N \}^{1/2}$
- 2. Determine correspondence between residues of each protein (e.g. by sequence alignment, or a guess)
- 3. Align centers of mass
- 4. Use matrix methods to solve for the rotation that gives minimal RMSD (variety of methods available)
- 5. Evaluate the resulting number
- 6. Refine the alignment
- 7. iterate

Very useful. Commonly used for comparing similar structures. But...

Not a good choice when proteins are only partially similar. Why?

Also, points far from center of mass are weighted more heavily.

# Algorithms for detecting structure similarity

#### **Dynamic Programming**

- works on 1D strings reduce problem to this
- can't accommodate topological changes
- example: Secondary Structure Alignment Program (SSAP)

#### **3D Comparison/Clustering**

- identify secondary structure elements or fragments
- look for a similar arrangement of these between different structures
- allows for different topology, large insertions
- example: Vector Alignment Search Tool (VAST)

#### **Distance Matrix**

- identify contact patterns of groups that are close together
- compare these for different structures
- fast, insensitive to insertions
- example: Distance ALIgnment Tool (DALI)

#### **Unit vector RMS**

- map structure to sphere of vectors
- minimize the difference between spheres
- fast, insensitive to outliers
- example: Matching Molecular Models Obtained from Theory (MAMMOTH)

**DALI** represents proteins at the residue level; look for similarities using a <u>distance matrix</u>



#### **Compare contact patterns of different proteins**



#### Break distance matrix into hexapeptide regions

list of contact patterns



#### **Compare contact patterns of different proteins**



#### **Compare contact patterns of different proteins**



# How do you compare assemblies?

 $S = \Sigma_i \Sigma_j \phi(i,j)$ , where (i, j) is a pair of matches residues



#### Monte Carlo assembly of fragments







### Example of structural similarity detected by DALI

10-18% sequence identity



#### chloramphenicol acetyl transferase

Keating et al. Nat. Struct. Biol. (2002) 9, 522-526

#### Advantages of DALI 3D matrix similarity search

- Can accommodate:
  - gaps/insertions
  - altered connectivity
  - chain reversal
- Fast enough for database comparisons
- Coordinate-frame invariant
- Pre-processing of distance matrices gives fast alignment performance
- Sensitive and accurate, even in presence of distortions
- CONVENIENT WEB INTERFACE!!

# www.ebi.ac.uk/dali/



Fold classificatiion based on Structure-Structure Alignment of Proteins Pre-computed similarities of proteins in the pdb

### Dali database: select structural neighbours of 1bl6A

| Ple       | Please cite: L. Holm and C. Sander (1996) Science 273(5275):595-60. |             |          |         |                |                                                   |  |  |
|-----------|---------------------------------------------------------------------|-------------|----------|---------|----------------|---------------------------------------------------|--|--|
| st        | ructure alignme                                                     | ent   struc | ture+sec | uence a | alignment      | 3D superimposition   PDB format   Reset selection |  |  |
|           | -                                                                   |             |          |         |                |                                                   |  |  |
|           | neighbour                                                           | Z %ide      | rmsd     | lali    | lseq2 PDB      | compound                                          |  |  |
| <b>v</b>  | 0: <u>1b16A</u>                                                     | 58.0 100    | 0.0      | 351     | 351 <u>PDB</u> | MAP KINASE P38                                    |  |  |
| Γ         | 1: <u>lgol</u>                                                      | 38.4 46     | 5 2.4    | 329     | 357 <u>PDB</u> | EXTRACELLULAR REGULATED KINASE 2                  |  |  |
| Γ         | 2: <u>ljnk</u>                                                      | 37.5 50     | 2.6      | 326     | 346 PDB        | C-JUN N-TERMINAL KINASE                           |  |  |
| Γ         | 3: <u>lcm8A</u>                                                     | 36.8 60     | 3.0      | 320     | 329 <u>PDB</u> | PHOSPHORYLATED MAP KINASE P38-GAMMA               |  |  |
| Γ         | 4: <u>lblxA</u>                                                     | 29.1 34     | 2.9      | 276     | 305 <u>PDB</u> | CYCLIN-DEPENDENT KINASE 6                         |  |  |
| $\square$ | 5: lfinA                                                            | 28.7 37     | 2.6      | 276     | 298 PDB        | CYCLIN-DEPENDENT KINASE 2                         |  |  |
| Γ         | 29: <u>lkswA</u>                                                    | 21.0 23     | 3.5      | 240     | 450 <u>PDB</u> | PROTO-ONCOGENE TYROSINE-PROTEIN KINASE SRC        |  |  |
| ~         | 30: <u>lqpdA</u>                                                    | 20.9 24     | l 3.0    | 237     | 271 <u>PDB</u> | LCK KINASE                                        |  |  |
| Γ         | 31: <u>lvr2A</u>                                                    | 20.9 23     | 3 2.7    | 236     | 275 <u>PDB</u> | VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR       |  |  |

### 24% sequence ID, rmsd = 3.0 Å

http://www.ebi.ac.uk/dali/

# Dali database: multiple structure alignment

Please cite: L. Holm and C. Sander (1996) Science 273(5275):595-60.

| 0<br>1<br>2 | cons<br>1b16A<br>1qpdA | 100<br>75<br>54 | XERPTFYRQELNKTIWEPPERLKLLEPLGAGAAGEVCAAFDNGTGLKVAVKKLKQGFQSIIHADAFLAEANLLKHLKHENLIGLLAVFTPARSLEEFEDIYIITELMEXA<br>?ERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQSIIHAKRTYRELRLKHMKHENVIGLLOVFTPARSLEEFENDVYLVTHLMG-A<br>?kpwwedawevPRETLKLVERLGAGQAGEVWMGYYNG-HTKVAVKSLKQGsMSPDAFLAEANLMKQLQHQRLVRLYAVVTQEPIYIITEYMEnG |
|-------------|------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                        |                 |                                                                                                                                                                                                                                                                                                                                    |
| 0           | CODE                   | 100             |                                                                                                                                                                                                                                                                                                                                    |
| 1           | 1b16A                  | 94              |                                                                                                                                                                                                                                                                                                                                    |
| 2           | lqpdA                  | 84              | ?lllllllllllhhheeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                |

Home

#### structure-based sequence alignment



URMS = min\_over\_rotations( $\Sigma(\mathbf{V}_i - \mathbf{V}_j)^2$ )<sup>1/2</sup>

Chew et al, RECOMB (1999) Kedem et al. PROTEINS 37, 554 (1999)

# URMS advantages

- 1. Insensitive to outliers  $URMS_{max} = 2$
- 2. Weighs all parts of protein equally
- 3.  $URMS_{min}$  is bounded not very sensitive to length of protein
- 4. More compact representation O(n), compared to  $O(n^2)$  for distance matrices
- 5. Fast to compute: O(nlogn) for searching for substructures