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Ab initio prediction


•	 Ab initio = “from the beginning”; in strictest sense uses 
first principles, not information about other protein 
structures 

•	 In practice, all methods rely on empirical observations 
about other structures 

–	 Force fields 

– Knowledge-based scoring functions


– Training sets 


–	 Fragment structures 

A good review:

Bonneau, R, and D Baker. "Ab Initio Protein Structure Prediction: Progress and Prospects." Rev Biophys Biomol Struct.
30 (2001): 173-89.



Approaches to ab initio folding


•	 Full MD with explicit solvation (e.g. IBM Blue Gene) 

– VERY expensive


– May not work 


•	 Reduced complexity models 

–	 No side chains (sometimes no main chain atoms either!) 

–	 Reduced degrees of freedom 

–	 On- or off-lattice 

–	 Generally have a solvation-based score and a knowledge-
based residue-residue interaction term 

–	 Sometimes used as first step to prune the enormous 
conformational space, then resolution is increased for later 
fine-tuning 



ROSETTA - the most successful approach to 

ab initio prediction


•	 David Baker, U. Washington, Seattle 

•	 Based on the idea that the possible conformations of 
any short peptide fragment (3-9 residues) are well-
represented by the structures it is observed to adopt in 
the pdb 

•	 Generate a library of different possible structures for 
each sequence segment 

•	 Search the possible combinations of these for ones that 
are protein-like by various criteria 



ROSETTA fragment libraries


•	 Remove all homologs of the protein to be modeled (>25% 
sequence identity) 

•	 For each 9 residue segment in the target, use sequence 
similarity and secondary structure similarity (compare 
predicted secondary stucture for target to fragment secondary 
structure) to select ~25 fragments 

•	 Because secondary structure is influenced by tertiary 
structure, ensure that the fragments span different secondary 
structures 

•	 The extent to which the fragments cluster around a consensus 
structure is correlated with how good a model the fragment is 
likely to be for the target 

LSERTVARS




ROSETTA search algorithm

Monte Carlo/Simulated Annealing


• Structures are assembled from fragments by: 

– Begin with a fully extended chain 

– Randomly replace the conformation of one 9 residue 

segment with the conformation of one of its 

neighbors in the library 

– Evaluate the move: 

Accept or reject based on an energy function 

– Make another random move… 

– After a prescribed number of cycles, switch to 3-

residue fragment moves 



ROSETTA scoring function


P(structure | sequence) = P(structure) × 
P(sequence | structure)


P( sequence) 

sequence is constant 
need to estimate for decoys built 
from fragments 

Main contributions to P(structure) 
- secondary structure packing 

(e.g. ensure β-strands form β-sheets) 
- VdW  packing  

Simons et al. PROTEINS (1999) 34, 82-95




Native-like structures have characteristic 
secondary structure packing

Example: b-strand
dipeptide vector

Simons, KT, I Ruczinski, C Kooperberg, BA Fox, C Bystroff, and D Baker. "Improved Recognition of Native-like
Protein Structures using A Combination of Sequence-dependent and Sequence-independent Features of
Proteins." Proteins 34, no. 1 (1 January 1999): 82-95.



Simons, KT, I Ruczinski, C Kooperberg, BA Fox, C Bystroff, and D Baker. "Improved Recognition of Native-like
Protein Structures using A Combination of Sequence-dependent and Sequence-independent Features of
Proteins." Proteins 34, no. 1 (1 January 1999): 82-95.

β-strand packing geometry can 
detect native-like structures



ROSETTA scoring function


P(structure | sequence) = P(structure) × 
P(sequence | structure)


P( sequence) 

sequence is constant 
need to estimate for decoys built 
from fragments 



ROSETTA scoring function


P( sequence | structure) = P(aa1,aa2 ,...aa | X)n 

P(aai ,aaj | X ) 
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ROSETTA Obstacles & Enhancements


• Problem 1: generate lots of unrealistic decoys 

– Filter based on contact order, quality of β-sheets, 
poor packing 

• Problem 2: large search space 

– Bias fragment picking by predicted secondary 
structure, faster computational algorithms 

• Problem 3: low confidence in the result 

– Fold many homologs of the target, cluster the 
answers, report the cluster with highest occupancy 



ROSETTA performance at CASP4 was very impressive 

•	 17/21 predictions had > 50 residue fragments with 

rmsd < 6.5Å


•	 Occasionally found structures better than the best 
representative in the pdb (i.e. better than best-possible 
fold recognition performance) 



new folds

4.9 Å rmsd

6.4 Å rmsd
5 Cys pairs correct

Bonneau, R, J Tsai, I Ruczinski, D Chivian, C Rohl, CE Strauss, and D Baker. "Rosetta in CASP4: Progress
in Ab Initio Protein Structure Prediction." Proteins Suppl 5 (2001): 119-26.



Flowchart for ROSETTA as used in CASP5


Bradley, P, D Chivian, J Meiler, KM Misura, CA Rohl, WR Schief, WJ Wedemeyer, O Schueler-Furman, P Murphy,
J Schonbrun, CE Strauss, and D Baker. "Rosetta Predictions in CASP5: Successes, Failures, and Prospects for
Complete Automation." Proteins 53, Suppl 6 (2003): 457-68.



CASP5 Rosetta Performance�


Bradley, P, D Chivian, J Meiler, KM Misura, CA Rohl, WR Schief, WJ Wedemeyer, O Schueler-Furman, P Murphy,
J Schonbrun, CE Strauss, and D Baker. "Rosetta Predictions in CASP5: Successes, Failures, and Prospects for
Complete Automation." Proteins 53, Suppl 6 (2003): 457-68.
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Protein Design as an Inverse Folding Problem


Goal: come up with a sequence that folds to give a protein-like 
structure with some desired properties 

Examples of design goals: 



Protein Design as an Inverse Folding Problem


Goal: come up with a sequence that folds to give a protein-like 
structure with some desired properties 

Examples of design goals: 

• a pre-defined structure/fold 
• a desired oligomerization state 
• enhanced thermal stability 
• ability to bind a given ligand 
• ability to catalyze a certain reaction 



PREDICTION


structure 
sequence &


function


Why is it hard? 
• many possible conformations for the protein 
• many may have similar energies 
• calculated energies are estimates 
• hard to tell the correct structure 
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DESIGN 

Why is it hard? 
• many possible sequences 
• don’t know what structure each sequence adopts 
• calculated energies are estimates 
• hard to tell the correct structure 



Goal 1: Design a protein sequence that adopts a given structure. 

MELKKARSTPAR… 

How to judge success? 
• what resolution is required?  

must have the correct fold 
do the side chains all have to have specific, predicted positions? 

• compare stability to native proteins 
• compare structural uniqueness to native proteins 
• must solve the structure to know how well you did! 



A formal statement of the problem: 

Given a target fold, specified by the atomic coordinates of a 
backbone structure, find a sequence that will fold to that 
structure. 

There may be many structures that adopt the fold. To increase 
your chances of success, try to find one of the most stable. 

Try to minimize the quantity ∆Gfold = Gfolded - Gunfold 

Need a way to: 
a. search through the different possible sequences 
b. evaluate ∆Gfold


Then pick the best sequence as the design.


What is ignored in this approach? 



Two big challenges in computational protein design:


1.	 SEARCH PROBLEM:  There are many possible sequences:  20N 

in general, these can’t be enumerated exhaustively 

2.	 ENERGY PROBLEM: To evaluate ∆Gfold for a sequence we need to 
know the energy in the folded and unfolded states 
a.	 what is the structure of the folded state? 

we know the backbone, but what about the side chain atoms? 
b.	 how should we model the unfolded state? 
c.	 it is hard to model the free energy, G 
d.	 we need a fast way to evaluate the energies because there 

are so many sequences to consider 



Assumptions made to address some of these problems: 

1.	 Replace ∆G with ∆E - assume that the large entropic 

contributions to protein folding mostly cancel when considering 

the folding of different sequences to a similar structure.


2.	 Model ∆E using molecular mechanics energy functions - do not 

include explicit solvent but instead use approximate empirical 

functions.


3.	 Assume that there are no specific interactions between residues 
in the unfolded state. 
Corollary: the energy of the unfolded states depends ONLY on 
the amino acid composition of the protein. 



What is the structure of the folded state? 
The side chain packing problem. 
Given the coordinates of the backbone, and the sequence of the 

protein, put the side chains on in their correct conformation.

This is a sub-problem of protein structure prediction.  

Note: Also useful for final model refinement in homology modeling.


How should we search side chain conformational space?




Side chain rotamer approach


•	 In theory, there are an infinite number of different possible 
side chain conformations, corresponding to small variations of 
the side chain bond lengths, bond angles and dihedral angles. 

•	 Only consider the most energetically-favorable possibilities. 
•	 Bond lengths and angles are assumed NOT to change. 

O 

N 

χ1 

χ2 -60 +60 180-180 

E 

χ 



“knowledge-based 
rotamers” 

O


www.fccc.edu/research/labs/dunbrack/confanalysis.html 

N 

χ1 

χ2 

Courtesy of Roland L. Dunbrack, Jr. Used with permission.



A rotamer library

http://dunbrack.fccc.edu/bbdep/ 

Res r1r2r3r4 n(r1) n(r1,r2) p(r1,r2) sig p(r2|r1) sig chi1 sig chi2 sig

=================================================================================

LEU 1 1 0 0 239 137 0.90 0.06 57.12 2.60 58.0 16.1 80.4 16.7 
LEU 1 2 0 0 239 93 0.61 0.05 38.87 2.56 69.8 18.9 162.8 20.3 
LEU 1 3 0 0 239 9 0.06 0.02 4.01 1.03 69.9 22.0 -65.4 30.5 
LEU 2 1 0 0 4936 4239 27.70 0.30 85.86 0.40 -177.4 13.1 63.1 11.0 
LEU 2 2 0 0 4936 553 3.62 0.12 11.21 0.37 -158.5 19.0 -179.5 29.9 
LEU 2 3 0 0 4936 144 0.95 0.06 2.93 0.20 -166.5 16.5 -75.8 23.1 
LEU 3 1 0 0 10124 1095 7.16 0.17 10.82 0.25 -91.2 15.3 43.9 26.9 
LEU 3 2 0 0 10124 8758 57.23 0.33 86.50 0.28 -65.4 10.4 175.4 10.0 
LEU 3 3 0 0 10124 271 1.78 0.09 2.68 0.13 -83.6 14.3 -47.9 25.1 

Courtesy of Roland L. Dunbrack, Jr. Used with permission.



Side chain packing is a large combinatorial problem 

•	 Rotamer libraries have ~ 3(# χ angles) entries per 
amino acid 

•	 Side chains have 0 (Ala, Gly) to 4 (Lys, Arg) 
dihedral angles 

•	 Proteins have ~ 100 amino acids per domain


•	 Total possible side chain conformations ~ 

10100




What to do?


1. Some rotamers are much more favorable than 
others 

2. Local backbone conformation strongly influences 
the side chain conformation 

3. Some rotamers clash with the (local or non-local) 
backbone 

BUT - the space left to search is still REALLY BIG! 



Search algorithms for large spaces


•	 Exhaustive search - TOO SLOW (but useful for testing 
small systems) 

•	 Stochastic searches 

–	 Monte Carlo 

–	 Genetic Algorithms 

•	 Pruning Algorithms 

–	 Branch and Bound 

–	 Dead End Elimination 



Dead End Elimination


Main idea: eliminate, one at a time, rotamer choices that 
CAN NOT UNDER ANY CIRCUMSTANCES be part of the 
minimum energy solution 

How can you know this? 

Desmet,De Maeyer, Hazes &  Lasters, Nature (1992) 356, 539

Goldstein, Biophys. J. (1994) 66, 1335




Dead End Elimination algorithm


identify and eliminate rotamers which can not be part of the best solution 

i i 

blue rotamer is always 
lower energy than red rotamer 

Energy 

configurations of residues j ≠ i 



What energy function to use?


Energy 
∆E 

Can’t afford to calculate energies at all these configurations! 

Use a pairwise energy function. 
The energies E are based on molecular 
mechanics and include the torsional, van der Waals and 
electrostatic energies that we have talked about. 

Etotal = ΣE(ir) + ΣΣjE(ir,js)i i



What is the least energy it could cost to 

replace is with ir?


min ∆E = E(ir) - E(is) + Σj[min t{E(ir,jt) - E(is,jt)}]


∆E 

only need to do p x r 
comparisons, not rp 

Energy = 
E(i) + ΣjE(i,j) 

rp configurations of residues j ≠ i 

Goldstein, RF. "Efficient Rotamer Elimination Applied to Protein Side-chains and Related Spin Glasses."
Biophys. J. 66 (1994): 1335-1340.



Dead End Elimination Criterion


if E(ir) - E(is) + Σj[min over t{E(ir,jt) - E(is,jt)}] > 0 

then eliminate ir 
Apply iteratively to all rotamer pairs 

As rotamers are eliminated the energy profile changes, 
leading to elimination of further rotamers 

When no more rotamers are eliminated, the algorithm can be 
generalized to identify pairs of rotamers that are not consistent 
with the global minimum solution 



Side chain repacking performance


Limitations come from: 

- the finite library from which side-chain positions are chosen 

- The fixed bond length and bond angle assumption 

- the ability of the energy function to discriminate which choice 
is best 

χ1 

correct 
(χ1+χ2) 
correct 

core ~90% ~80% 
sidechains 

all ~80% ~70% 
sidechains 



Pairwise energy functions for protein design


Etotal = ΣE(ir) + ΣΣjE(ir,js)i i

assume p design positions 

single residue term E(ir) 
r rotamers (on average) 

energy of interaction between a single residue i with rotamer r and the template; 
there are p*r of these 

the template consists of all atoms that don’t change position in the design 

pair energy terms E(ir,js) 
energy of interaction between residue i in rotamer r and residue j in rotamer s; 
there are p(p-1)r2/2 of these 

some terms are only single residue: bonds, angles (not usually used), torsions

some terms are easy to make pair-wise:

VdW interactions, Coulomb electrostatic interactions, H-bonds (if using)

some terms are harder to make pair-wise:

solvation energies, screened electrostatic interactions


PRE-COMPUTE all of the single residue and pair energy terms 



Two big challenges in computational protein design:


1.	 SEARCH PROBLEM:  There are many possible sequences:  20N 

in general, these can’t be enumerated exhaustively 

2.	 ENERGY PROBLEM: To evaluate �Gfold for a sequence we need to 
know the energy in the folded and unfolded states 
a.	 what is the structure of the folded state? 

we know the backbone, but what about the side chain atoms? 
b.	 how should we model the unfolded state? 
c.	 we know it is hard to measure the free energy, G 
d.	 we need a fast way to evaluate the energies because there 

are so many sequences to consider 



Generalizing the side chain packing problem to 

protein design


library now contains all choices of amino acids AND all choices of rotamers




Complications when generalizing side-chain repacking to design 

1.	 The conformational space gets MUCH larger

20N -> ~200N (for a moderate rotamer library)


2.	 Note that for side-chain repacking the sequence didn’t change, so 
the energy of the unfolded state was constant in our model.  This 
is NOT the case when doing design. 

Now E must represent Efolded - Eunfold and we need to estimate how 
the energies of both the folded AND unfolded states change when 
you change the sequence. 

THIS IS A HARD PROBLEM THAT HAS NOT BEEN GENERALLY SOLVED!


assume = 0 
Etotal = Efold - Eunfold


= ΣiEfold(ir) + ΣiΣjEfold(ir,js) - ΣiEunfold(ir) + ΣiΣjEunfold(ir,js)

= Σi{Efold(ir) - Eunfold(ir)} + ΣiΣjEfold(ir,js) 



Explicit model for the unfolded state

• tripeptide or pentapeptide 
• linear backbone or some other structure 
• lowest energy conformation for side chain or an average 

O O 

N NH 
2 

O 

N 

• one such peptide for every residue 
• no side chain-side chain interactions 
• calculate the energy using the same terms as for the folded state 
• which energy terms change the most when you change amino acids? 



An implicit model for the unfolded state - fit to some observable


Etot = Σi{Efold(ir) - Eunfold(ir)} + ΣiΣjEfold(ir,js)


treat as an adjustable parameter, one per amino acid 
How to optimize it? 

One possibility: parameterize Eunfold(ir) so that the native 
residue is the recognized as the best when all residues are 
tested at a given site. 

What might not be optimal about this approach? 

See, eg.,

Erratum in:
 
Kuhlman, B, and D Baker. "Native Protein Sequences are Close to Optimal for Their Structures."

Proc Natl Acad Sci U S A. 97, no 19 (12 September 2000): 10383-8.

Proc Natl Acad Sci U S A. 97, no. 24 (21 November 2000): 13460.



Dahiyat et al. design a zinc-less zinc finger

Please see Figure 2 of

Dahiyat, BI, and SL Mayo. "De novo Protein Design: Fully Automated Sequence Selection." Science
278, no. 5335 (3 October 1997): 82-7.



Dahiyat et al. design a zinc-less zinc finger

Please see Figure 5 and 6 of

Dahiyat, BI, and SL Mayo. "De novo Protein Design: Fully Automated Sequence Selection." Science
278, no. 5335 (3 October 1997): 82-7.

NMR structure of FSD-1

Compare experimental and designed structures



Kuhlman et al. design a new protein fold “Top7”

Please see figure 1 of

Kuhlman, B, G Dantas, GC Ireton, G Varani, BL Stoddard, and D Baker. "Design of A Novel Globular
Protein Fold with Atomic-level Accuracy." Science 302, no. 5649 (21 November 2003): 1364-8.



Kuhlman et al. design a new protein fold “Top7”

Science 302, 1364 (2003) 

Critical to their success: 

iterative use of design and prediction using ROSETTA


1. Choose starting backbones (172 of them) 
2. Design sequence to fit backbone 
3. Relax the backbone to fit the sequence 
4. Iterate 

Why do you need backbone relaxation? 



X-ray structure of “Top7” compared with the design

Please see figure 4 of

Kuhlman, B, G Dantas, GC Ireton, G Varani, BL Stoddard, and D Baker. "Design of A Novel Globular
Protein Fold with Atomic-level Accuracy." Science 302, no. 5649 (21 November 2003): 1364-8.



Why might protein design be easier than ab initio protein folding?


superfamily 

family 

fold 

1. There are more correct 
answers. 

2. 	Come up with a design that exploits those principles 
that you understand best to design the properties you 
want into a protein (e.g. hydrophobic packing). 

3. 	In design, you try to make all interactions as good as 
possible, and hope that this avoids computing subtle 
tradeoffs between different energy terms. 

4. More control over the problem - choose an easy goal! 



