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Review of Markov & HMM Models for DNA 

• Hidden Markov Models 

- looking under the hood 

Ch. 4 of Mount 

• Markov Models for splice sites 

• The Viterbi Algorithm 

• Real World HMMs 
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CpG Island HMM II
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CpG Island HMM III


… 

Want to infer 

A C T C G A G T A


Observe But HMM is written in the other direction 
(observable depends on hidden) 



Inferring the Hidden from the Observable 
(Bayes’ Rule)



P ( H = h 1, h 2 ,..., hn | O = o 1, o 2 ,..., on )	 Conditional Prob: 

P(A|B) = P(A,B)/P(B) 
P ( H = h 1,..., hn , O = o 1, ..., on )= 

P (O = o 1, ..., on ) 

P ( H = h 1,..., hn )P (O = o 1 ,..., on | H = h 1,..., hn )= 
P (O = o 1, ..., on ) 

P (O = o 1 ,..., on ) somewhat difficult to calculate 

But notice: 
P ( H = h 1, ..., hn , O = o 1,..., on ) > P ( H = h ′1, ..., h ′n , O = o 1, ..., on ) 

implies P (H = h 1, ..., hn | O = o 1,..., on ) > P (H = h ′1 ,..., h ′n | O = o 1, ..., on ) 

so can treat P (O = o 1 ,..., on ) as a constant 



Finding the Optimal “Parse” 
(Viterbi Algorithm) 

H opt optopt , h2

which maximizes joint probability: P( H = h1, ..., hn, O = o1,..., on) 
Want to find sequence of hidden states = h1

opt , h3 , ... 

(optimal “parse” of sequence) 

Solution: 

( h)= probability of optimal parse of theDefine Ri subsequence 1..i ending in state h 

( h)Solve recursively, i.e. determine R(
2
h) in terms of R1 , etc. 

A. Viterbi, an MIT BS/MEng student in E.E. - founder of Qualcomm 



“Trellis” Diagram for Viterbi Algorithm

Position in Sequence → 

1 … i i+1 i+2 i+3 i+4 … L 

T … A T C G C … A 

Run time for k-state HMM on sequence of length L? 
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Viterbi Algorithm Examples

What is the optimal parse of the sequence:


• (ACGT)10000


• A1000C80T1000C40A1000G60T1000 

Powers of 1.5:


N = 20 40 60 80 


(1.5)N = 3x103 1x107 3x1010 1x1014 




What else can you model with HMMs? 

ORF 

Start Stop 

Bacterial gene: Open Reading Frame 



HMMs
developed

Useful HMMs 
developed



Parameter Estimation for HMMs 

How many parameters for a k-state HMM over an 
alphabet of size 4? 

Initial probabilities: 

Transition probabilities: 

Emission probabilities: 



Pseudocounts

Courtesy of M. Yaffe


•If the number of sequences in the training set is both large and diverse, 
then the sequences in the training set represent a good statistical 
sampling of the motif….if not, then we have a sampling error! 

Correct for this by adding pseudocounts.  How many to add? 
→	 Too many pseudocounts dominate the frequencies… 

and the resulting matrix won’t work! 
→ Too few pseudocounts then we’ll miss many amino 

acid variations, and matrix will only find sequences 
that produced the motif! 

Add few pseudocounts if sampling is good (robust), and add 
more pseudocounts if sampling is sparse 
One reasonable approach is to add √N pseudocounts, where

N is the number of sequences…

As N increases, the influence of pseusocounts decreases since 
N increases faster than √N, but doesn’t add enough at low N 



Dealing With Small Training Sets 

Position: 1 2 3 4 5 Training Set
A 8 
C 1 ACCTG 

G 1 AGCTG 

T 0 ACCCG 
ACCTG 

If the true frequency of T at pos. 1 was 10%, ACCCA 

what’s the probability we wouldn’t see any Ts GACTG 

in a sample of 10 seqs? ACGTA 
ACCTG 

P(N=0) = (10!/0!10!)(0.1)0(0.9)10 = ~35% CCCCG 
ACATC 

So we should add pseudocounts




Pseudocounts (Ψcounts)

Nt Count Ψcount Bayescount ML est. Bayes est. 
A 8 + 1 9 0.80 0.64 
C 1 + 1 2 0.10 0.14 
G 1 + 1 2 0.10 0.14 
T 0 + 1 1 0.00 0.07 

10 14 1.0 1.0 

The ‘add 1 to each observed count’ rule can be 
derived analytically from the Bayesian posterior 
distribution under a Dirichlet prior - see Appendix A 
of statistics primer for details. 



Real World HMMs




Please see the following Web site: http://www.cbs.dtu.dk/services/TMHMM/

Reference for TMHMM: Krogh, A, B Larsson, G von Heijne, and EL Sonnhammer. "Predicting Transmembrane
Protein Topology with a Hidden Markov Model: Application to Complete Genomes." J Mol Biol. 305, no. 3 
(19 January 2001): 567-80.



Architecture of TMHMM 

Krogh, A, B Larsson, G von Heijne, and EL Sonnhammer. "Predicting Transmembrane Protein Topology
with a Hidden Markov Model: Application to Complete Genomes." J Mol Biol. 305, no. 3 (19 January  2001): 567-80.

Please see figures 1a and 1c of:
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Genscan Model


Incorporates:


Transcriptional signals 
Splicing signals 
Translational signals 
Composition of exons 
Composition of introns 
Other gene features 

Burge & Karlin, J Mol Biol 1997




Semi-Markov HMM Model




Genscan predictions in human CD4 gene 

region

Annotated exons Genscan predicted exons 

Overall: ~75% of exons exactly correct 

Burge and Karlin J. Mol. Biol. 1997




Genscan, GenomeScan Predictions in Human BRCA1 Region

Please see figures 1 of

Yeh, RF, LP Lim, and CB Burge. "Computational Inference of Homologous Gene Structures in the Human Genome."
Genome Res. 11, no. 5 (May 2001): 803-16.



DNA Sequence Evolution


Generation n-1 (grandparent)

5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTACGCCTAGCCCATGCGA 3’ 

|||||||||||||||||||||||||||||||||||||||||||||||||| 
3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATGCGGATCGGGTACGCT 5’ 

5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCCATGCGA 3’ 
|||||||||||||||||||||||||||||||||||||||||||||||||| 

3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGTACGCT 5’ 

Generation n (parent) 

Generation n+1 (child) 
5’ TGGCATGCACCCTGTAAGTCAATATAAATGGCTATGCCTAGCCCGTGCGA 3’


||||||||||||||||||||||||||||||||||||||||||||||||||

3’ ACCGTACGTGGGACATTCAGTTATATTTACCGATACGGATCGGGCACGCT 5’




What is a Markov Model (aka Markov 
Chain)? 
Classical Definition


A discrete stochastic process X1, X2, X3, … 
which has the Markov property:


P(Xn+1 = j | X1=x1, X2=x2, … Xn=xn) = P(Xn+1 = j | Xn=x )n 

(for all x , all j, all n)i

In words: 
A random process which has the property that the future 
(next state) is conditionally independent of the past given 
the present (current state) 

Markov - a Russian mathematician, ca. 1922 



DNA Sequence Evolution is 
a Markov Process 

No selection case ⎛ PAA PAC PAG PAT ⎞ 
PCC PCG PCT ⎟Sn = base at generation n P = 

⎜ 
⎜ 

PCA ⎟ 
⎜ PGA PGC PGG PGT ⎟

⎟
Pij = P (S = j |Sn = i ) ⎝⎜ 

PTA PTC PTG PTT ⎠ 
n +1 

Gq 
n =(q A ,qC ,q ,qT) = vector of prob’s of bases at gen. n
G 

Handy relations: 
G q 
n +1
 G

Pq 
n= 
G q 
n
+k = 

Gq 
n Pk




Limit Theorem for Markov Chains 

Sn = base at generation n Pij = P (Sn +1 = j |Sn = i ) 

If Pij >0 for all i,j (and ∑Pij =1 for all i) 
j G


then there is a unique vector 


PnG
Pr 


G 
r 


r such that 

G 
q 


G 
r 


G

lim
= q=and (for any prob. vector ) 
n →∞

G 
r 
is called the “stationary” or “limiting” distribution of P


See Ch. 4, Taylor & Karlin, An Introduction to Stochastic Modeling, 1984 for details




Stationary Distribution 
Examples



2-letter alphabet: R = purine, Y = pyrimidine 

Stationary distributions for: 

⎛ 1 0⎞ ⎛ 0 1⎞
I = ⎜ ⎟ Q = ⎜ ⎟
⎝ 0 1⎠ ⎝ 1 0⎠ 

⎛1 − p p ⎞
P = 

⎝⎜ p 1 − p⎠⎟ 0 < p < 1 

⎛1 − p p ⎞ 0 < p < 1, 0 < q < 1P′ = 
⎝⎜ q 1 − q⎠⎟ 



How does entropy change when 
a Markov transition matrix is 
applied? 

If limiting distribution is uniform, then entropy increases 

(analogous to 2nd Law of Thermodynamics) 

However, this is not true in general (why not?)




How rapidly is the stationary 
distribution approached? 



Jukes-Cantor Model Courtesy of M. Yaffe
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α 

α 
α 

α 

Assume each nucleotide equally likely 

to change into any other nt, 


with rate of change=α. 

α Overall rate of substitution = 3α 

…so if G at t=0, at t=1, PG(1)=1-3α 
α 

and PG(2)=(1-3α)PG(1) +α [1− PG(1) ] 

Expanding this gives PG(t)=1/4 + (3/4)e-4αt 

Can show that this gives K = -3/4 ln[1-(4/3)(p)] 

K = true number of substitutions that have occurred,

P = fraction of nt that differ by a simple count.


Captures general behaviour…
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