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Reading:

This lecture: Mount pp. 8-9, 65-89, 96-115, 140-155, 161-170


Michael Yaffe



Outline

• Recursion and dynamic programming

•	 Applied dynamic programming: global 

alignments: Needleman-Wunsch 
•	 Applied dynamic programming: local alignments 


– Smith-Waterman 
•	 Substitution matrices: PAM, BLOSUM, Gonnet 
•	 Gaps - linear and affine 
•	 Alignment statistics 
•	 What you need to know to optimize an 

alignment 



Outline (cont)

• Multiple sequence alignments: MSA, Clustal

• Block analysis 
• Position-Specific Scoring Matrices (PSSM)




Examples


O(nk) is “polynomial time” as long as 
K<3 …..tractable 

Consider our un-gapped dot matrix 

Global alignment:


1 n 
1 

12345678….
12345678…. 

12345678….
12345678…. 

12345678….

m 
12345678…. 

….essentially an O(mn) problem 



O.K. Examples

O(n) better than O(n log(n)), better than 
O(n2), better than O(n3) 

Terrible Examples 

O(kn) = exponential time….horrible!!!! 

NP problems- no known polynomial time 
Solutions = non-deterministic polynomial 
Problems. 



Recursion and Dynamic 

Programming


Aligning two protein sequences without gaps – roughly an O(mn) problem. 
With gaps – becomes computationally astronomical, and cannot be done 
by direct comparison methods. (= 22L/√(2πL); L=sequence length) 

Alternative is to compare all possible pairs of characters (matches and 
mismatches, and also take gaps into account as well, while keeping 
the number of comparisons manageable. The approach is called 
dynamic programming. Mathematically proven to produce optimal alignment 

Need a substitution or similarity matrix and some way to account for gaps. 

Example of how to score an alignment: Write down two sequences:
sequence#1 V  D  S  – C  Y

sequence#2 V  E  S  L  C  Y


Score from sub. Matrix  4  2  4 -11 9 7


Score = Σ(AA pair scores) – gap penalty = 15 



C 9 

S
T 5 

P
A 0 1 0 

G 6 

N 6 

D 6 

E 2 5 

Q 0 2 5 

H 0 0 8 

R 0 1 0 5 

K 1 5 

M 0 

I 4 

L 2 4 

V 3 1 4 

F 0 

Y 2 7 

W
C S T P A G N D E Q H R K M I L V F Y W  

BLOSUM 62 Scoring Matrix 

-1 4 

-1 1 

-3 -1 -1 7 

-1  4  

-3 0 -2 -2 0 

-3 1 0 -2 -2 0 

-3  0  -1 -1 -2 -1  1  

-4  0  -1 -1 -1 -2  0  

-3  0  -1  -1  -1  -2  0  

-3 -1 -2 -2 -2 -2 1 -1 

-3 -1 -1 -2 -1 -2 0 -2 

-3  0  -1 -1 -1 -2  0  -1  1  -1  2  

-1 -1 -1 -2 -1 -3 -2 -3 -2 -2 -1 -1 5 

-1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 

-1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 

-1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 

-2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 -1 6 

-2 -2 -2 -3 -2 -3 -2 -3 -2 -1 -2 -2 -1 -1 -1 -1 3 

-2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11 



Scoring system should: favor matching identical or related amino acids

Penalize for poor matches and for gaps.


To get a good scoring system need to know: how often a particular amino acid 
Pair is found in related proteins compared with its occurence by chance.  This 
Is the information contained in the substitution matrix 
…..….and when a gap would be a better choice 

Deriving realistic substitution matrices: 
First need to know frequency of one amino acid substituting for another 
In related proteins [=P(ab)] c/w the chance that substituting one for the other 
occurred by chance, based on the relative frequencies of each amino acid 
in proteins, q(a) and q(b). Call this the “odds ratio”: P(ab)/q(a)q(b) 

If we do this for all positions in an alignment, then the total probablilty will 
be the product of the odds ratios at each position….but multiplication is 
computationally expensive….so….take the log (odds ratio) and add them instead. 

Matrices like PAM and BLOSUM matrices are derived from these log odds ratios 
And contain positive and negative numbers reflecting likelihood of amino 
Acid substitutions in related proteins. 



To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

Gap V D S C Y 


Gap 0 1 gap 2 gaps


V 1 gap


E 2 gaps


S


L


C


Y


Note – linear gap penalty: γ(n)=nA, where A=gap penalty




1

2

3

4

5

6

To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 

sij 

-8 -16 -24 -32 -40 

V -8 

E -16 So scoring Sij requires that we know 
S(i-1, j-1) and S(i, j-1) and S(i-1, j)… 

S -24 Therefore recursive. We use the solutions 
Of smaller problems to solve larger ones. 

L -32 AND we store how we got to the Sij score, 
i.e. the intermediate solutions in a tabular

C -40 matrix. Computer scientists call this dynamic 
programming, where “programming” means 

Y -48 the matrix, not some kind of computer code. 
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 

sij 

-8 -16 -24 -32 -40


V -8


E -16

Global alignments: Needleman-Wunsch-Sellers 

S -24 O(n2) using linear gap penalty 

L -32 Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal) 

C -40 Si-1, j – A  (from left to right) 

Y -48 Si, j-1– A  (from top to bottom) 
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

Gap V 

0 

-8 sij 

4 
4 -8 

D S C Yj = 

0 Gap -16 -24 -32 -40 
-8 

V 
-8 

E -16 
Global alignments: Needleman-Wunsch-Sellers 

S -24 O(n2) using linear gap penalty 

L -32 Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal) 

C -40 Si-1, j – A  (from left to right) 

Y -48 Si, j-1– A  (from top to bottom) 
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

Gap V 

0 

-8 4 

4 
4 

-8 

-8 

D S C Yj = 

0 Gap -16 -24 -32 -40 
-8 

V 

E -16 

S -24


L -32


C -40


Y -48
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 -8 

4 
4 -3 

-8 

-16 -24 -32 -40 
-8


V -8
 sij 
E -16 

Global alignments: Needleman-Wunsch-Sellers 
S -24 O(n2) using linear gap penalty 

L -32 Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal) 

C -40 Si-1, j – A  (from left to right) 

Y -48 Si, j-1– A  (from top to bottom) 
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 -8 -16 

4 
4 

-4 
-3 

-8 

-24 -32 -40 
-8 

V -8


E


S


L


C


Y
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To do Dynamic Programming: 

First write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 4 -8 

-4
-3

-8 

-16 -24 -32 -40 
-8 

V -8 4 -12 -20 -28 
-1E -16 -6 -9
7
 -172 

S 1 -7-24 -14 

3

-6 9 
L -32 -22 -14 

-30 
3 0 

C -40 -22 -7
1 

313 
Y -48 -38 -30 -15 5 23 



The Traceback:

After the alignment square is finished, start at the lower right and 
work backwards following the arrows to see how you got there… 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 4 -8 -16 -24 -32 -40 

1 V -8 

2 E -16 

3 S -24 

4 L -32 

5 C -40 

6 Y -48 

-8 

4 -4 
-3 

-8 -12 -28 

-6 

-14 

-22 
-30 

-38 

7 
3 

-6 

-14 
-22 

-30 

9 
2 -1 

1 
-7 

-15 

-9 

1 

3 
13 
5 

-17 
-7 

0 
3 

23 

-20 



Y -48

1

2

3

4

5

6 -38 -30 -15 5 23

The Traceback V D S – C Y

V E S L C Y

gives the alignment: 
i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 0 -8 -16 -24 -32 -40

-8 

Gap 

V 

E 

S 

L 

C 

-8 

-16 

-24 

-32 

-40 

4 
4 

-4 
-3 

-8 -12 -28 

-6 

-14 

-22 
-30 

7 
3 

-6 

-14 
-22 

9 
2 -1 

1 
-7 

-9 

1 

3 
13 

-17 
-7 

0 
3 

“Life must be lived forwards and understood backwards.” 

-20 

- Søren Kierkegaard 



Local Alignment

•	 Temple Smith and Michael Waterman, 1981 – modified 


Needleman-Wunsch-Sellers


Local alignment is the best scoring alignment of a substring 
in sequence x to a substring in sequence y. 
KEY ELEMENT IS NOT TO FORCE THE ALIGNMENT TO GO TO

THE ENDS OF THE SEQUENCES.


For sequence x, residues 1, 2, 3…..N, can pick up to ~N2 substrings, 
i.e. start point a= 1,2….N and end point b= 1, 2….n.  Same for 
sequence y, ~M2 substrings. For any two substrings, we have the 
old O(mn) alignment problem, so the total number of possible 
alignments is ~ N2M2(NM)=O(M3N3)- UGLY!!!!  Solveable in polynomial 
time, but a big polynomial!!! 



Local Alignment

• Again, dynamic programming comes to the rescue!


Same basic scheme for dynamic programming as before 
except…. 

Similarity matrix MUST include negative values for mismatches 

--AND–


****When the value calculated for a position in the scoring matrix is 

Negative, the value is set to zero.   

THIS TERMINATES THE ALIGNMENT




Smith-Waterman: 

Write one sequence across the top, and one down along the side 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 Gap 0 0 

sij 

0 0 0 0 

1 V 0 

2 E 0 
Local alignments: Smith-Waterman 

3 S 0 
Sij = max of: Si-1, j-1 + σ(xi, yj) (diagonal) 

S
4 L 0 

i-1, j – A  (from left to right)
5 C 0 

6 Y Si, j-1– A  (from top to bottom)
0 

0 



Programs for Global and Local alignments: 
Biology workbench 
http://workbench.sdsc.edu/ 

Bill Pearson’s Web Page 
http://fasta.bioch.virginia.edu/


NCBI, Expassy 



Amino Acid Substitution Matrices

Margaret Dayhoff, 1978, PAM Matrices


**Evolutionary model **based on a small data set.

Assumes symmetry: A → B = B → A

Assumes amino acid substitutions observed over

short periods of time can be extrapolated to long

periods of time


71 groups of protein sequences, 85% similar

1572 amino acid changes.

Functional proteins →”Accepted” mutations by natural 


selection


PAM1 matrix means 1% divergence between proteins - i.e. 
1 amino acid change per 100 residues. Some texts re-state 
this as the probability of each amino acid changing 
into another is ~ 1% and probability of not changing is ~99% 



Construction of a Dayhoff Matrix: PAM1

Step 1: Measure pairwise substitution frequencies for each 


amino acid within families of related proteins


….GDSFHYFVSHG…..

….GDSFHYYVSFG…..

….GDSYHYFVSFG…..

….GDSFHYFVSFG…..

….GDSFHFFVSFG…..


900 Phe (F)….+ another 100 probable Phe but…


100 Phe (F) → 80 Tyr (Y), 3 Trp (W), 2 His (H)….

Gives fab, i.e. fFY=80 

fFW=3 
….by evolution! 



C 

Do this for all 20 amino acids


D 

E 

F 

G 

C D E F G H I …… 
fCC fCD fCE 

fDC 

fEC 
Gives fab = pairwise exchange 

frequency 

Implicit assumption - 1st order Markov chain transition model




Step 2: Calculate the relative probabilities of pairwise 
exchange of a→b 

Pa = Probability of amino acid a 

fab = number of substitutions between a and b 

fa = total number of substitutions involving amino acid a 

fa =  Σ fab 
a≠b 

f = total number of mutations in the group of related sequences = Σ fa a 

Define relative probability M’ab as: 

M’ab=Pr(a→b)=fab/f 



Step 3: Scale relative probabilities to obtain

a 1% total chance of any amino acid changing into


a different amino acid


i.s. scale M’ to ensure that:
Σ Pa Mab = .01


a≠b 

i.e. ΣPa Maa=.99 



Step 4: This involves defining a “relative mutability” 


index ma for each amino acid


m Number of mutations 
a = fa involving amino acid a 

100 f Pa

“exposure of ‘a’ to mutation” 
Prob(a)* total number of 
mutations weighted per 100 sites 

Set adjusted probability Mab= M’abma 



Step 5: Calculate evolutionary distance scale 
so that only 1/100 amino acids change 

Maa reflects amino acid conservation 

Maa = 1- ∑ Mab 

b 

example 

= 1- (adjusted probability of Phe mutations) MFF 

**Use a scale factor λ so that Maa is ~ 0.99 
i.e. chance of it mutating is ~ 1%



i.e. this defines a PAM1 matrix…. 


Maa = 1- λ∑ Mab = ~ 0.99 
a≠b 

λ is our evolutionary scale factor 

… and for any particular mutation probability, 
λMab reflects the normalized measure of how likely 
amino acid b will replace amino acid a over 1 PAM 



Real PAM1 values

Amino Acid Change

F→A 
F→R 
F→N 
F→D 
F→C 
F→Q
F→E 
F→G 
F→H 
F→I 
F→L 
F→K 
F→M 
F→F 
F→P 
F→S 
F→T 
F→W 
F→Y 
F→V 

PAM 1 Probability Score
0.0002 
0.0001 Note – this is really just 
0.0001 
0.0000 1 column in a much bigger 

0.0000 probability matrix
0.0000 
0.0000 
0.0001 
0.0002 
0.0007 
0.0013 
0.0000 
0.0001 
0.9946 
0.0001 
0.0003 
0.0001 
0.0001 
0.0021 
0.0001 

SUM = 1.0


….. E F G …… 

A 0.0002 

C 0.0000 

D 0.0000 

E 0.0000 

F 0.9946 

G 0.0001 



Next, assume that mutations at each site are independent of previous 
mutations. Therefore, calculate changes predicted for more distantly related 
proteins that have undergone N mutations/100 amino acids by multiplying 
the PAM1 matrix against itself N times. 

Example: PAM2 matrix: 

aa1 aa2 aa3 aa1 aa2 aa3 

aa1 a b c aa1 a b c 

aa2 d e f x aa2 d e f 

aa3 g h i aa3 g h i 

aa1 aa2 aa3 A=a2+bd+cg+… 
aa1 A B C B=ab+be+ch+… 

D E Faa2 C=ac+bf+ci+… 
G H Iaa3 D=da+ed+fg+… 



PAM 250 matrix


• Multiply PAM1 matrix by itself 250 times!

(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 
(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1)(PAM1) 



Amino Acid Change
F→A 
F→R 
F→N 
F→D 
F→C 
F→Q
F→E 
F→G 
F→H 
F→I 
F→L 
F→K 
F→M 
F→F 
F→P 
F→S 
F→T 
F→W 
F→Y 
F→V 

PAM 1 Score 
0.0002 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0002 
0.0007 
0.0013 
0.0000 
0.0001 
0.9946 
0.0001 
0.0003 
0.0001 
0.0001 
0.0021 
0.0001 

PAM 250 Score 
0.04 
0.01 
0.02 
0.01 
0.01 
0.01 
0.01 
0.03 
0.02 
0.05 
0.13 
0.02 
0.02 
0.32 
0.02 
0.03 
0.03 
0.01 
0.15 
0.05 

These are the Mab values! 
i.e. the chance that one
amino acid will replace 
another at 250 PAMs in 
two proteins that are 
evolutionarily related 
to each other! 

SUM = 1.0




PAM 250 matrix – 250% expected change


Sequences still ~ 15-30 % similar, i.e. Phe will match Phe ~ 32% of the time 
Ala will match Ala ~ 13% of the time 

Expected % similarity


Other PAM matrices: 	 PAM 120 – 40% 
PAM 80 – 50% Use for similar sequences
PAM 60 – 60% 

PAM250 – 15-30% similarity. 





Where do the numbers in the 

PAM250 Matrix table come from?


Step 6: Calculate relatedness odds


Chance that two amino acids in a sequence alignment come from 
related proteins via evolution versus the chance that they are from 
two unrelated proteins aligned by chance. 

Mab = prob. that b replaces a in related proteins 
-vs – 

Pa
ran = prob. that b replaces a because the proteins are 

completely unrelated…i.e. a was there by chance 

Now, Pa
ran = fa, the frequency of occurrence of amino acid a 



Where do the numbers in the 

PAM250 Matrix table come from?


Step 6: Calculate relatedness odds 

Relative odds of evolution rather than chance: 

f
Rij = Mij 

i 



Where do the numbers in the 

PAM250 Matrix table come from?


Step 7: Calculate log (relatedness odds) and 
multiply by 10 to clear fractional values 

Example: Phe→Tyr (which must = Tyr→ Phe)


Rij = Mij 

fi 

MFY = 0.15 
fPhe=0.04 
So RFY=0.15/0.04 = 3.75 
Log10RFY=Log10 (3.75)=0.57 
10 x 0.57 = 5.7 

Likewise 
MYF = 0.20 
fTyr=0.03 
So RYF= 6.7 
Log10 (6.7)=0.83 
10 x 0.57 = 8.3 

So average = (5.7+8.3)/2 = 7….the number in the PAM250 table!






Remember…


Saw last time how to use these 
numbers + dynamic 

programming in order to “score” 
an alignment… 



But we have to use the right matrix!!!


PAM 250 matrix – 250% expected change


Sequences still ~ 15-30 % similar, i.e. Phe will match Phe ~ 32% of the time 
Ala will match Ala ~ 13% of the time 

Expected % similarity 

Other PAM matrices: 	 PAM 120 – 40%

PAM 80 – 50%
 Use for similar sequences
PAM 60 – 60% 

PAM250 – 15-30% similarity. 

Use the correct PAM matrix for alignments based on how similar the 
sequences to be algned are!  But wait…..how do we know that in the 
first place?  Usually don’t!!!!.  
So…… try PAM200, PAM120, PAM60, PAM80, and 
PAM30 matrix and use the one that gives the highest ungapped 
aligment score 



Alternative amino acid matrices

Problems with Dayhoff: 
• Based on amino acids, not nucleotides. 
• Assumes evolutionary model with explicit phylogenetic relationships, and 
circular arguments: alignment → matrices; matrices → new alignments. 
• Based on a small set of closely related molecules. 

• Gonnett, Cohen & Benner 
-All against All database matching using DARWIN 
1,700,000 matches 

Compile mutation matrices at different PAMs DIRECTLY 

• BLOSUM = Blocks Amino Acid Substitution Matrices-Henikoff&Henikoff 1992 
-based on a much larger dataset from ~500 Prosite families identified by 
Bairoch using conserved amino acid  patterns “blocks” that define each family. 

Typically used for multiple sequence alignment. 

AA substitutions noted, log odds ratios derived.


for example…Block patterns 60% identical give rise to Blosum60 matrix, 
etc….i.e. conservation of functional blocks based on un-gapped alignments. 
Blosum62 - best match between information content and amount of data 
Not based on explicit evolutionary model 



GAPS AKHFRGCVS

AKKF--CVG 

• Linear Gap Penalty 
Wn = nγ, 

n= # of gaps, γ = gap penalty 

• Affine gap penalty


Wn = g + nγ, 

=# of gaps, γ = gap extension penalty, 
and g = gap opening penalty 







Simplified Alignment Statistics


•	 How can we tell how good an alignment is based on its score?  What 
are the chances that two random sequences would give a similar 
score when they were aligned? 

•	 Consider an easier problem – what is the longest run of heads I 
will get in a random series of coin tosses? 
Fair coin p=0.5, Erdös and Rényi – longest run = log1/p(n)

here this is log2(n). If n=100, longest run is 6.65


•	 For two sequences of length n and m, we’re doing nm 
comparisons, so the longest length of the predicted match 
would be log1/p(mn) 

•	 More precisely, the expectation value, or the mean of the 
longest match turns out to be E(M)~=log1/p(Kmn) where K is a 
constant that depends on amino acid composition. 

….OK, this is really only true for ungapped local alignments 
and I’m neglecting edge effects and mismatches 



A few notes…

•	 E(M)~=log1/p(Kmn) means that the match length

gets bigger as the log of the product of the sequence
lengths. Using the amino acid substitution matrices,
we can turn these match lengths into alignment
scores, S. 

•	 More commonly see two parameters used: λ =ln(1/p)
and the parameter K we already talked about. 

•	 We want to know the number of High-Scoring Pairs,
HSP, (i.e. high scoring runs of amino acids). 

•	 This number of HSPs, E, that exceed some score S 

-λSis given by E=Kmne 

•	 So we can evaluate how good a sequence scores,
(i.e. its S) by looking at how many HSPs (i.e. E value) 
we would expect for that score. 



Notes (cont).


•	 Where do we get that distribution 
function that tells us how E and are 
related? Need to look at the scores in 
some model of aligned random 
sequences…. 



Notes (cont)


•	 The random sequence alignment 
scores would give rise to an 
“extreme value” distribution – like 
a skewed gaussian. 

•	 Called Gumbel extreme value 
distribution 

For a normal distribution with a mean m and a variance σ, the height of the 
curve is described by Y=1/(σ√2π) exp[-(x-m)2/2σ2] 

For an extreme value distribution, the height of the curve is described by 
Y=exp[-x-e-x] …and P(S>x) = 1-exp[-e-λ(x-u)] where u=(ln Kmn)/λ 

Can show that mean extreme score is ~ log2(nm), and the probability of 
getting a score that exceeds some number of “standard deviations” x is: 
P(S>x)~ Kmne-λx. ***K and λ are tabulated for different matrices **** 

-λSFor the less statistically inclined: E~ Kmne

-2 -1

0.2

Yev

0.4

-4 4

0.4

B.

Yn

Probability values for the extreme value distribution (A) and the 
normal distribution (B). The area under each curve is 1.

0 1 2
X X

A.

3 4 5



• Two ways to get the K and λ parameters:


1- For many amino acid substitution matrices,

Altschul and Gish have tabulated their score 

distribution for 10,000 random amino acid 
sequences using various gap penalties


2- Even better!  Calculate the distribution for the 
two sequences you are aligning by keeping one 
of them fixed and scrambling the other one – this 
preserves BOTH sequence length and amino acid 
composition! 



Example


SEQ1: FWLEVEGNSMTAPTG

SEQ2: FWLDVQGDSMTAPAG


USE BLOSUM62 MATRIX 



Raw score = 67 
Bit score: S=λR-lnK 

ln(2) 

S=(.267)(67)-ln(.0410) = 30.4
0.693 

E~ Kmne-λS which is 
Equivalent to: 

E=mn2-s 

E=(24)(15)(2-30.4)=2.54e-07




Multiple Sequence Alignments 

•	 Sequences are aligned so as to bring the 
greatest number of single characters into 
register. 

•	 If we include gaps, mismatches, then even 
dynamic programming becomes limited to 
~ 3 sequences unless they are very 
short….need an alternative approach… 

Why?




Consider the 2 sequence comparison

…..an O(mn) problem – order n2 

i =0 1 2 3 4 5 

j = Gap V D S C Y 

0 0 4 -8 

-4
-3

-8 

-16 -24 -32 -40

-8 

1 -8 4 -12 -20 -28 
-12 -16 -6 -9
7 -172 

1 -73 -24 -14 

3

-6 9 
4 -32 -22 -14 

-30 
3 0 

5 -40 -22 -7


1 
313 

6 -48 -38 -30 -15 5 23 



For 3 sequences….


ARDFSHGLLENKLLGCDSMRWE

.::. .:::. .:::: :::.

GRDYKMALLEQWILGCD-MRWD
.::. ::.: .. :. .:::

SRDW--ALIEDCMV-CNFFRWD


An O(mnj) problem ! 

Consider sequences each 300 amino acids


Uh Oh !!! 

2 sequences – (300)2 Our polynomail problem 


3 sequences – (300)3 Just became exponential!


but for v sequences – (300)v 



Consider pairwise alignments 

between 3 sequences


Se
qu

en
ce

 B
 

Seq
uen

ce
C 

A-C 

A-B 

B-C 

A-B-C 

Carillo and Lipman – Sum of Pairs method 

Do we need to 
Score each node? 

Sequence A 

Get the multiple alignment score within the cubic lattice by 
Adding together the scores of the pairwise alignments… 



In practice, doesn’t give optimal alignment…But we’re close! 

Seems reasonable that the optimal alignment won’t be far from 
the diagonal we were on…so we just set bounds on the location 
of the msa within the cube based on each pairwise-alignment. 

Then just do dynamic programing within the volume defined by the 
pre-imposed bounds 





Still takes too long for more than three 

sequences…need a better way!


•	 Progressive Methods of Multiple Sequence 
Alignment 

Concept – simple:  


1-Use DP to build pairwise alignments of most closely 
related sequences 

2- Then progressively add less related sequences or 
groups of sequences… 



ClustalW

Higgins and Sharp 1988


• 1- Do pairwise analysis of all the sequences  
(you choose similarity matrix). 

•	 2- Use the alignment scores to make a 

phylogenetic tree.


•	 3- Align the sequences to each other guided 
by the phylogenetic relationships in the tree. 

New features: Clustal ⌦ClustalW (allows weights) ⌦ ClustalX (GUI-based 

Weighting is important to avoid biasing an alignment by many sequence 
Members that are closely related to each other evolutionarily! 



Pairwise Alignment

Steps in Multiple Alignment

Multiple alignment following the tree from A

S1

S1

S1

6 pairwise comparisons
then cluster analysis

similarity

align most similar pair

Gaps to optimize alignment

New gap to optimize
alignment of (S2S4) with (S1S3)

align next most similar pair

align alignments-preserve gaps

Example - 4 sequences S1 S2 S3 S4

S2

S2

S2

S3

S3

S3

S4

S4

S4

S1

S2

S3

S4



Progressive Alignments


Note that the final msa is EXTREMELY DEPENDENT on 
the initial pairwise sequence alignments! 

If the sequences are close in evolution, and you can see 
the alignment – GREAT! 

If the sequences are NOT close in evolution, and you CANNOT 
See the alignment – errors will be propogated to the final msa 

Has led to other approaches to do msa’s that aren’t so 
Dependent on initial states….i.e. genetic algorithm 



Finding patterns (i.e. motifs and 

domains) in Multiple Sequence Analysis


Block Analysis, Position Specific Scoring Matrices (PSSM) 

BUILD an msa from groups of related proteins 

BLOCKS represent a conserved region in that msa 
that is LACKING IN GAPS – i.e. no insertions/deletions 

The BLOCKS are typically anwhere from 3-60 amino acids long, 
based on exact amino acid matches – i.e. alignment will tolerate 
mismatches, but doesn’t use any kind of PAM or 
BLOSUM matrix…in fact they generate the BLOSUM matrix! 

A single proteins contain numerous such BLOCKS 
separated by stretches of intervening sequences that can 
differ in length and composition. 

These blocks may be whole domains, short sequence motifs, 
key parts of enzyme active sites etc, etc. 
BLOCKS database….so far exploration limited. Lots of stuff to probe! 



Can use these conserved BLOCKS 

to derive a PSSM


• The dirty secret behind prosite! Scansite! And in a 

12345………….11 

twised way Psi-BLAST! 

….GDSFHYFVSHG…..

….GDAFHYYISFG…..

….GDSYHYFLSFG…..

….SDSFHYFMSFG…..

….GDSFHFFASFG…..


Now build a matrix with 20 amino acids as the columns, and 11 rows 
For the positions in the BLOCK 



Each matrix entry is the log(frequency of the amino acid occurance) 
at that position in the BLOCK. 

….GDSFHYFVSHG…..

….GDAFHYYISFG…..

….GDSYHYFLSFG…..

….SDSFHYFMSFG…..

….GDSFHFFASFG…..


A C D E F G H I K…. 
1 Log(4) 

2 Log(5) 

3 
4 
5 



We can now use the PSSM to search a database for other proteins that 
have the BLOCK (or motif). 

Problem 1 – We need to think about what kind of information is 

Contained within the PSSM.

→Leads to concepts of Information Content & Entropy (next time) 

….GDSFHYFVSHG…..
….GDAFHYYISFG…..
….GDSYHYFLSFG….. 
….SDSFHYFMSFG…..
….GDSFHFFASFG….. 

Problem 2 –The PSSM must accurately represent the expected BLOCK 
Or motif….and we have only limited amounts of data!  Is it a good statistical 
Sampling of the BLOCK/motif? Is it too narrow because of small dataset? 
Should we broaden it by adding extra amino acids that we choose using 
Some type of randomization scheme (called adding pseudocounts).  If so, 
How many should we add? 


