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Abstract.
The intrinsic dimensionality of an inverse problem is affected by prior

information, the accuracy and number of observations, and the smoothing
properties of the forward operator. From a Bayesian perspective, changes from
the prior to the posterior may, in many problems, be confined to a relatively low-
dimensional subspace of the parameter space. We present a dimension reduction
approach that defines and identifies such a subspace, called the “likelihood-
informed subspace” (LIS), by characterizing the relative influences of the prior and
the likelihood over the support of the posterior distribution. This identification
enables new and more efficient computational methods for Bayesian inference with
nonlinear forward models and Gaussian priors. In particular, we approximate
the posterior distribution as the product of a lower-dimensional posterior defined
on the LIS and the prior distribution marginalized onto the complementary
subspace. Markov chain Monte Carlo sampling can then proceed in lower
dimensions, with significant gains in computational efficiency. We also introduce
a Rao-Blackwellization strategy that de-randomizes Monte Carlo estimates of
posterior expectations for additional variance reduction. We demonstrate the
efficiency of our methods using two numerical examples: inference of permeability
in a groundwater system governed by an elliptic PDE, and an atmospheric
remote sensing problem based on Global Ozone Monitoring System (GOMOS)
observations.

Keywords: Inverse problem, Bayesian inference, dimension reduction, low-rank
approximation, Markov chain Monte Carlo, variance reduction
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1. Introduction

Inverse problems arise from indirect observations of parameters of interest. The
Bayesian approach to inverse problems formalizes the characterization of these
parameters through exploration of the posterior distribution of parameters conditioned
on data [1, 2, 3]. Computing expectations with respect to the posterior distribution
yields not only point estimates of the parameters (e.g., the posterior mean), but
a complete description of their uncertainty via the posterior covariance and higher
moments, marginal distributions, quantiles, or event probabilities. Uncertainty
in parameter-dependent predictions can also be quantified by integrating over the
posterior distribution.

The parameter of interest in inverse problems is often a function of space or time,
and hence an element of an infinite-dimensional function space [3]. In practice, the
parameter field must be discretized, and the resulting inference problem acquires a
high but finite dimension. The computation of posterior expectations then proceeds
via posterior sampling, most commonly using Markov chain Monte Carlo (MCMC)
methods [4, 5, 6]. The computational cost and efficiency of an MCMC scheme can
be strongly affected by the parameter dimension, however. The convergence rates of
standard MCMC algorithms usually degrade with parameter dimension [7, 8, 9, 10, 11];
one manifestation of this degradation is an increase in the mixing time of the chain,
which in turn leads to higher variance in posterior estimates. Some recent MCMC
algorithms, formally derived in the infinite-dimensional setting [12, 13], do not share
this scaling problem. Yet even in this setting, we will argue that significant variance
reduction can be achieved through explicit dimension reduction and through de-
randomization of posterior estimates, explained below.

This paper proposes a method for dimension reduction in Bayesian inverse
problems. We reduce dimension by identifying a subspace of the parameter space
that is likelihood-informed ; this notion will be precisely defined in a relative sense, i.e.,
relative to the prior. Our focus is on problems with nonlinear forward operators and
Gaussian priors, but builds on low-rank approximations [14] and optimality results
[15] developed for the linear-Gaussian case. Our dimension reduction strategy will
thus reflect the combined impact of prior smoothing, the limited accuracy or number
of observations, and the smoothing properties of the forward operator. Identification
of the likelihood-informed subspace (LIS) will let us write an approximate posterior
distribution wherein the distribution on the complement of this subspace is taken to
be independent of the data; in particular, the posterior will be approximated as the
product of a low-dimensional posterior on the LIS and the marginalization of the prior
onto the complement of the LIS. The key practical benefit of this approximation will
be variance reduction in the evaluation of posterior expectations. First, Markov chain
Monte Carlo sampling can be restricted to coordinates in the likelihood-informed
space, enabling greater sampling efficiency—i.e., more independent samples in a
given number of MCMC steps or a given computational time. Second, the product
form of the approximate posterior will allow sampling in the complement of the
likelihood-informed space to be avoided altogether, thus producing Rao-Blackwellized
or analytically conditioned estimates of certain posterior expectations.

Dimension reduction for inverse problems has been previously pursued in several
ways. [16] constructs a low dimensional representation of the parameters by using the
truncated Karhunen-Lòeve expansion [17, 18] of the prior distribution. A different
approach, combining prior and likelihood information via low-rank approximations of
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the prior-preconditioned Hessian of the log-likelihood, is used in [14] to approximate
the posterior covariance in linear inverse problems. In the nonlinear setting, low-
rank approximations of the prior-preconditioned Hessian are used to construct
proposal distributions in the stochastic Newton MCMC method [19] or to make
tractable Gaussian approximations at the posterior mode in [20]—either as a Laplace
approximation, as the proposal for an independence MCMC sampler, or as the fixed
preconditioner for a stochastic Newton proposal. We note that these schemes bound
the tradeoff between evaluating Hessian information once (at the posterior mode)
or with every sample (in local proposals). In all cases, however, MCMC sampling
proceeds in the full-dimensional space.

The dimension reduction approach explored in this paper, by contrast, confines
sampling to a lower-dimensional space. We extend the posterior approximation
proposed in [15] to the nonlinear setting by making essentially a low-rank
approximation of the posterior expectation of the prior-preconditioned Hessian,
from which we derive a projection operator. This projection operator then yields
the product-form posterior approximation discussed above, which enables variance
reduction through lower-dimensional MCMC sampling and Rao-Blackwellization of
posterior estimates.

We note that our dimension reduction approach does not depend on the use of
any specific MCMC algorithm, or even on the use of MCMC. The low-dimensional
posterior defined on coordinates of the LIS is amenable to a range of posterior
exploration or integration approaches. We also note that the present analysis enables
the construction of dimension-independent analogues of existing MCMC algorithms
with essentially no modification. This is possible because in inverse problems with
formally discretization-invariant posteriors—i.e., problems where the forward model
converges under mesh refinement and the prior distribution satisfies certain regularity
conditions [21, 3]—the LIS can also be discretization invariant. We will demonstrate
these discretization-invariance properties numerically.

The rest of this paper is organized as follows. In Section 2, we briefly review the
Bayesian formulation for inverse problems. In Section 3, we introduce the likelihood-
informed dimension reduction technique, and present the posterior approximation
and reduced-variance Monte Carlo estimators based on the LIS. We also present an
algorithm for constructing the likelihood-informed subspace. In Section 4, we use an
elliptic PDE inverse problem to demonstrate the accuracy and computational efficiency
of our posterior estimates and to explore various properties of the LIS, including its
dependence on the data and its discretization invariance. In Section 5, we apply our
variance reduction technique to an atmospheric remote sensing problem. Section 6
offers concluding remarks.

2. Bayesian formulation for inverse problems

This section provides a brief overview of the Bayesian framework for the inverse
problems as introduced in [1, 2, 3]. Consider the inverse problem of estimating
parameters x from data y, where

y = G(x) + e . (1)

Here e is a random variable representing noise and/or model error, which appears
additively, and G is a known mapping from the parameters to the observables.
In a Bayesian setting, we model the parameters x as a random variable and, for
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simplicity, assume that the range of this random variable is a finite dimensional space
X ⊆ Rn. Then the parameter of interest is characterized by its posterior distribution
conditioned on a realization of the data, y ∈ Y ⊆ Rd:

π(x|y) ∝ π(y|x)π0(x). (2)

We assume that all distributions have densities with respect to Lebesgue measure.
The posterior probability density function above is the product of two terms: the prior
density π0(x), which models knowledge of the parameters before the data are observed,
and the likelihood function π(y|x), which describes the probability distribution of y
for any value of x.

We assume that the prior distribution is a multivariate Gaussian N (µpr,Γpr),
where the covariance matrix Γpr can be also defined by its inverse, Γ−1

pr , commonly
referred to as the precision matrix. We model the additive noise with a zero mean
Gaussian distribution, i.e., e ∼ N (0,Γobs). This lets us define the data-misfit function

η(x) =
1

2

∥∥∥Γ
− 1

2

obs (G(x)− y)
∥∥∥2

, (3)

such that the likelihood function is proportional to exp (−η(x)).

3. Methodology

3.1. Optimal dimension reduction for linear inverse problems

Consider a linear forward model, G(x) = Gx, with a Gaussian likelihood and a
Gaussian prior as defined in Section 2. The resulting posterior is also Gaussian,
π(x|y) = N (µpos,Γpos), with mean and covariance given by

µpos = Γpos

(
Γ−1

pr µpr +G>Γ−1
obsy

)
and Γpos =

(
H + Γ−1

pr

)−1
, (4)

where H = G>Γ−1
obsG is the Hessian of the data-misfit function (3). Without loss

of generality we can assume zero prior mean and a positive definite prior covariance
matrix.

Now consider approximations to the posterior distribution of the form

π̃(x|y) ∝ π (y|Prx)π0(x), (5)

where Pr = P 2
r is a rank-r projector and π (y|Prx) is an approximation to the original

likelihood function π (y|x). Approximations of this form can be computationally
advantageous when operations involving the prior (e.g., evaluations or sampling) are
less expensive than those involving the likelihood. As described in [15], they are also
the natural form with which to approximate a Bayesian update, particularly in the
inverse problem setting with high-dimensional x. In the deterministic case, inverse
problems are ill-posed; the data cannot inform all directions in the parameter space.
Equivalently, the spectrum of H is compact or decays quickly. Thus one should be able
to explicitly project the argument of the likelihood function onto a low-dimensional
space without losing much information in the process. The posterior covariance
remains full rank, but the update from prior covariance to posterior covariance will
be low rank. The challenge, of course, is to find the best projector Pr for any given
r. The answer will involve balancing the influence of the prior and the likelihood.
In the following theorem, we introduce the optimal projector and characterize its
approximation properties.
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Theorem 1. Let Γpr = LL> be a symmetric decomposition of the prior covariance
matrix and let (λi, vi) be the eigenvalue-eigenvector pairs of the prior-preconditioned
Hessian

(
L>HL

)
such that λi ≥ λi+1. Define the directions ui = Lvi and wi = L−>vi

together with the matrices Ur = [u1, . . . , ur] and Wr = [w1, . . . , wr]. Then, the
projector Pr given by:

Pr = UrW
>
r ,

yields an approximate posterior density of the form π̃(x|y) = N
(
µ

(r)
pos,Γ

(r)
pos

)
and is

optimal in the following sense:

(i) Γ
(r)
pos minimizes the Förstner distance [22] from the exact posterior covariance

over the class of positive definite matrices that can be written as rank r negative
semidefinite updates of the prior covariance.

(ii) µ
(r)
pos = A∗y minimizes the Bayes risk Ex,y

[
‖µ(y)− x‖2Γ−1

pos

]
over the class of all

linear transformations of the data µ(y) = Ay with rank(A) ≤ r.

Proof. We refer the reader to [15] for a proof and detailed discussion.

The vectors (u1, . . . , ur) span the range of the optimal projector; we call this
range the likelihood-informed subspace of the linear inverse problem. Note that the
(ui) are eigenvectors of the pencil (H,Γ−1

pr ). Hence, the jth basis vector uj maximizes
the Rayleigh quotient

R(u) =
〈u,Hu〉
〈u,Γ−1

pr u〉
(6)

over the subspace X \ span{u1, . . . , uj−1}. This Rayleigh quotient helps interpret the
(ui) as directions where the data are most “informative” relative to the prior. For
example, consider a direction w ∈ X representing a rough mode in the parameter
space. If the prior is smoothing, then the denominator of (6) will be large; also, if
the forward model output is relatively insensitive to variation in the w direction, the
numerator of (6) will be small. Thus the Rayleigh quotient will be small and w is
not particularly data-informed relative to the prior. Conversely, if w is smooth then
the prior variance in this direction may be large and the likelihood may be relatively
constraining; this direction is then data-informed. Of course, there are countless
intermediate cases, but in general, directions for which (6) are large will lie in the
range of Ur.

Note also that Ur diagonalizes both H and Γ−1
pr . We are particularly interested in

the latter property: the modes (ui) are orthogonal (and can be chosen orthonormal)
with respect to the inner product induced by the prior precision matrix. This property
will be preserved later in the nonlinear case, and will be important to our posterior
sampling schemes.

For nonlinear inverse problems, we seek an approximation of the posterior
distribution in the same form as (5). In particular, the range of the projector will
be determined by blending together local likelihood-informed subspaces from regions
of high posterior probability. The construction of the approximation will be detailed
in the following section.
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3.2. LIS construction for nonlinear inverse problems

When the forward model is nonlinear, the Hessian of the data-misfit function varies
over the parameter space, and thus the likelihood-informed directions are embedded
in some nonlinear manifold. We aim to construct a global linear subspace to capture
the majority of this nonlinear likelihood-informed manifold.

Let the forward model G(x) be first-order differentiable. The linearization of the
forward model at a given parameter value x, J(x) ≡ ∇G(x) where J(x) ∈ Rd×n,
provides the local sensitivity of the parameter-to-observable map. Inspired by the
dimension reduction approach for the linear inverse problem, we use the linearized
forward model J(x) to construct the Gauss-Newton approximation of the Hessian of
the data-misfit function, H(x) = J(x)>Γ−1

obsJ(x). Now consider a local version of the
Rayleigh quotient (6),

R(u;x) :=
〈u,H(x)u〉
〈u,Γ−1

pr u〉
.

Introducing the change of variable v = L−1u, we can equivalently use

R̃(v;x) :=
〈v, (L>H(x)L)v〉

〈v, v〉 = R(Lv;x), (7)

to quantify the local impact of the likelihood relative to the prior. As in the linear
problem, this suggests the following procedure for computing a local LIS given some
truncation threshold τloc:

Problem 1 (Construction of the local likelihood-informed subspace). Given the
Gauss-Newton Hessian of the data misfit function H(x) at a given x, find the
eigendecompostion of the prior-preconditioned Gauss-Newton Hessian (ppGNH)

L>H(x)Lvi = λivi. (8)

Given a truncation threshold τloc > 0, the local LIS is spanned by Ul = [u1, . . . , ul],
where ui = Lvi corresponds to the l leading eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥
λl ≥ τloc.

For a direction u with R(u;x) = 1, the local impact of the likelihood and the prior
are balanced. Thus, to retain a comprehensive set of likelihood-informed directions,
we typically choose a truncation threshold τloc less than 1.

To extend the pointwise criterion (7) into a global criterion for likelihood-informed
directions, we consider the expectation of the Rayleigh quotient over the posterior

Eπ [R(u;x)] = Eπ
[
R̃(v;x)

]
=
〈v, Sv〉
〈v, v〉 ,

where S is the expected ppGNH over the posterior,

S =

∫
X
L>H(x)Lπ(dx|y). (9)

Then we can naturally construct the global LIS through the eigendecomposition of S
as in the linear case. We consider approximating S using the Monte Carlo estimator

Ŝn =
1

n

n∑
k=1

L>H(x(k))L,

where x(k) ∼ π(x|y), k = 1 . . . n, are posterior samples. Since the local HessianH(x(k))
is usually not explicitly available and is not feasible to store for large-scale problems,
we use its prior-preconditioned low-rank approximation as defined in Problem 1. Thus
the global LIS can be constructed by the following procedure:
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Problem 2 (Construction of global likelihood-informed subspace). Suppose we have
a set of posterior samples X = {x(k)}, k = 1 . . .m, where for each sample x(k), the
ppGNH is approximated by the truncated low rank eigendecomposition

L>H(x(k))L ≈
l(k)∑
i=1

λ
(k)
i v

(k)
i v

(k)>
i ,

by solving Problem 1. We have λ
(k)
i ≥ τloc for all k = 1 . . .m and all i = 1 . . . l(k).

To construct the global LIS, we consider the eigendecompostion of the Monte Carlo
estimator of the expected Hessian in (9), which takes the form 1

m

m∑
k=1

l(k)∑
i=1

λ
(k)
i v

(k)
i v

(k)>
i

ψj = γjψj . (10)

The global LIS has the non-orthogonal basis Φr = LΨr, where the eigenvectors
Ψr = [ψ1, . . . , ψr] correspond to the r leading eigenvalues of (10), γ1 ≥ . . . ≥ γr ≥ τg,
for some truncation threshold τg > 0. Here we choose τg to be equal to the threshold
τloc in Problem 1.

In many applications we can only access the Gauss-Newton Hessian by computing
its action on vectors, which involves one forward model evaluation and one adjoint
model evaluation. In such a case, the ppGNH can be approximated by finding the
eigendecomposition (8) using either Krylov subspace algorithms [23] or randomized
algorithms [24, 25].

The number of samples required to construct the global LIS depends on the degree
to which H(x) (or its dominant eigenspace) varies over the posterior. In Section 3.5, we
present an adaptive construction procedure that automatically explores the directional
landscape of the likelihood.

3.3. Posterior approximation

By projecting the likelihood function onto the global likelihood-informed subspace
(LIS), we obtain the approximate posterior

π̃(x|y) ∝ π (y|Πrx)π0(x), (11)

where Πr is a projector onto the global LIS. This projector is self-adjoint with respect
to the inner product induced by the prior precision matrix, and leads to a natural
decomposition of the parameter space as X = Xr ⊕ X⊥, where Xr = range(Πr) is
the LIS and X⊥ = range(I −Πr) is the complement subspace (CS). This choice leads
to a factorization of the prior distribution into the product of two distributions, one
defined on the low-dimensional LIS and the other on the CS. This factorization is the
key to our dimension reduction technique.

Definition 1. We define the projectors Πr and I−Πr, and a corresponding parameter
decomposition, as follows:

(a) Suppose the LIS basis computed in Problem 2 is Φr = LΨr, where Ψr is
orthonormal. Define the matrix Ξr = L−>Ψr such that Ξ>r Φr = Ir. The projector
Πr has the form

Πr = ΦrΞ
>
r .
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Choose Ψ⊥ such that [Ψr Ψ⊥] forms a complete orthonormal system in Rn. Then
the projector I −Πr can be written as

I −Πr = Φ⊥Ξ>⊥,

where Φ⊥ = LΨ⊥ and Ξ⊥ = L−>Ψ⊥.

(b) Naturally, the parameter x can be decomposed as

x = Πrx+ (I −Πr)x,

where each projection can be represented as the linear combination of the
corresponding basis vectors. Consider the “LIS parameter” xr and the “CS
parameter” x⊥, which are the weights associated with the LIS basis Φr and CS basis
Φ⊥, respectively. Then we can define the following pair of linear transformations
between the parameter x and (xr, x⊥):

x = [Φr Φ⊥]

[
xr
x⊥

]
,

[
xr
x⊥

]
= [Ξr Ξ⊥]

>
x. (12)

Figure 1 illustrates the transformations between the parameter projected onto the
LIS, Πrx, and the LIS parameter xr. The same relation holds for the transformations
between (I −Πr)x and the CS parameter x⊥. And as Definition 1 makes clear, Πr is
an oblique projector.

�1

�2

X

Xr = span{�1, . . . ,�r}
�1

�2

⇧rx
xr

!!
!!

⌅>
r

�r

Figure 1. Illustration of the transformation between the parameter projected
onto the LIS, Πrx, and the LIS parameter xr.

Lemma 1. Suppose we have x = Φrxr + Φ⊥x⊥ as defined in Definition 1(b). Then
the prior distribution can be decomposed as

π0(x) = πr(xr)π⊥(x⊥),

where πr(xr) = N (Ξ>r µpr, Ir) and π⊥(x⊥) = N (Ξ>⊥µpr, I⊥).

Following Definition 1(b) and Lemma 1, the approximate posterior distribution
(11) can be reformulated as

π̃(x|y) ∝ π (y|Πrx)πr(xr)π⊥(x⊥)

= π (y|Φrxr)πr(xr)π⊥(x⊥).

Applying the linear transformation from x to (xr, x⊥) as defined in Equation (12), we
can rewrite the approximate posterior for the parameters (xr, x⊥) as

π̃(xr, x⊥|y) ∝ π̃(x|y) ∝ π̃(xr|y)π⊥(x⊥), (13)

which is the product of the reduced posterior

π̃(xr|y) ∝ π (y|Φrxr)πr(xr), (14)

and the complement prior π⊥(x⊥). To compute a Monte Carlo estimate of the
expectation of a function over the approximate posterior distribution (13), we only
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need to sample the reduced posterior π̃ (xr|y), since properties of the Gaussian
complement prior π⊥(x⊥) are known analytically.

One can also combine MCMC samples from the reduced posterior π̃ (xr|y) with
independent samples from the complement prior π⊥(x⊥) to provide samples that are
approximately drawn from the full posterior π(x|y). By correcting these samples
via importance weights or a Metropolis scheme, one would then obtain a sampling
algorithm for the original full-space posterior. This idea is not pursued further
here, and in the rest of this work we will emphasize the analytical properties of
the complement prior π⊥(x⊥), using them to reduce the variance of Monte Carlo
estimators.

3.4. Reduced-variance estimators

Suppose we have a function h(x) for which the conditional expectation over the
approximate posterior (11)

Eπ̃ [h(x)|xr] =

∫
X⊥

h(Φrxr + Φ⊥x⊥)π0(x⊥) dx⊥, (15)

can be calculated either analytically or through some high-precision numerical
quadrature scheme. Then variance reduction can be achieved as follows:

(i) Subspace MCMC. Use MCMC in the LIS to simulate a “subspace Markov
chain” with target distribution π̃(xr|y) (13). Any number of MCMC algorithms
developed in the literature can be applied off-the-shelf, e.g., adaptive MCMC
[26, 27, 28, 29, 30], the stochastic Newton algorithm of [19], or the Riemannian
manifold algorithms of [31]. Since the dimension of the LIS can be quite small
relative to the original parameter space, the subspace MCMC approach can yield
lower sample correlations (better mixing) than applying any of these MCMC
algorithms directly to the full posterior (2).

(ii) Rao-Blackwellization. We approximate Eπ[h] =
∫
X h(x)π(dx|y) by the

expectation of the function h(x) over the approximate posterior π̃(x|y), i.e.,

Eπ̃[h] =
∫
X h(x)π̃(dx|y). Given a set of subspace MCMC samples {x(1)

r , . . . , x
(N)
r }

where x
(k)
r ∼ π̃r(xr|y), a Monte Carlo estimator of Eπ̃[h] is given by

Q̃N =
1

N

N∑
k=1

Eπ̃
[
h(x)|x(k)

r

]
. (16)

As an application of the Rao-Blackwellization principle (see [32] and references
therein), the estimator (16) has a lower variance than the standard estimator

QN =
1

N

N∑
k=1

h(x(k)), (17)

where x(k) ∼ π(x|y).

This procedure mitigates many of the difficulties of posterior exploration in high
dimensions, provided that the prior-to-posterior update is reasonably low rank.
Variance reduction is achieved not only by increasing the effective sample size per
MCMC iteration (via subspace MCMC), but also by reducing the variance of Monte
Carlo estimators using Rao-Blackwellization. In effect, we argue that the Gaussian CS
can be explored separately and via a calculation (15) that does not involve sampling.
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Note that while this procedure necessarily reduces the variance of a Monte Carlo
estimator, it introduces bias since we replace the expectation over the full posterior
Eπ[h] with an expectation over the approximate posterior Eπ̃[h]. Thus this variance
reduction is particularly useful in situations where the variance of the estimator (17)
derived from full-space MCMC samples is large compared with the bias, which is often
the case for high-dimensional inverse problems.

Beyond variance reduction, subspace MCMC offers several additional computa-
tional advantages over MCMC methods applied to the full posterior directly: (i) The
storage requirement for saving subspace MCMC samples is much lower than that of
an MCMC scheme that samples the full posterior. (ii) For MCMC methods where
the proposal distribution involves operations with square root of the prior covariance
matrix (e.g., the stochastic Newton [19] and preconditioned Crank-Nicolson [12, 13]
techniques) the computational cost of handling the full prior covariance can be much
higher than the computational cost of handling the reduced prior πr(xr), which has
identity covariance.

The Monte Carlo estimator (16) can be further simplified if the function of interest
h(x) can be expressed as either the product or the sum of two separate functions,
hr(xr) and h⊥(x⊥), defined on the LIS and CS, respectively. In the multiplicative
case h(x) = hr(xr)h⊥(x⊥), the conditional expectation (15) can be written as

Eπ̃ [h(x)|xr] = hr(xr)

∫
X⊥

h⊥(x⊥)π0(dx⊥).

In the additive case h(x) = hr(xr) + h⊥(x⊥), it can be written as

Eπ̃ [h(x)|xr] = hr(xr) +

∫
X⊥

h⊥(x⊥)π0(dx⊥).

Thus the expectation Eπ̃[h] can be decomposed either into the product (in the
multiplicative case) or the sum (in the additive case) of the pair of expectations

Eπ̃[hr] =

∫
Xr
hr(xr)π(dxr|y), (18)

Eπ̃[h⊥] =

∫
X⊥

h⊥(x⊥)π0(dx⊥), (19)

which are associated with the LIS and CS, respectively. The expectation in (18) can be
computed by the subspace MCMC methods described above, whereas the expectation
in (19) is computed analytically or through high-order numerical integration.

Now we give two particularly useful examples of the analytical treatment of the
complement space.

Example 1 (Reduced variance estimator of the posterior mean). Suppose we have
obtained the empirical posterior mean µ̃r of the reduced parameter xr using subspace
MCMC. The resulting reduced-variance estimator of the posterior mean is

Eπ̃[x] = Φrµ̃r + Π⊥µpr = Φrµ̃r + (I −Πr)µpr.

Example 2 (Reduced variance estimator of the posterior covariance). Suppose we
have the empirical posterior covariance Γ̃r of the reduced parameter xr, estimated using
subspace MCMC. The resulting reduced-variance estimator of the posterior covariance
is

Covπ̃[x] = ΦrΓ̃rΦ
>
r + Π⊥ΓprΠ

>
⊥

= Γpr + Φr

(
Γ̃r − Ir

)
Φ>r .
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3.5. Algorithms for the LIS

Constructing the global LIS requires a set of posterior samples. Since the
computational cost of solving Problem 1 for any sample is much greater than the
cost of evaluating the forward model, we wish to limit the number of samples used in
Problem 2 while ensuring that we adequately capture the posterior variation of the
ppGNH. Thus we choose samples using the following adaptive procedure.

Algorithm 1 (Global LIS construction using subspace MCMC). First, compute the
posterior mode xmap ∈ X. Set the initial sample set for Problem 2 to X (1) = {xmap}.
Solve Problem 2 to find Ψ

(1)
r , the initial LIS basis Φ

(1)
r , and its left-inverse Ξ

(1)
r .‡

Initialize a subspace Markov chain with initial state Ξ
(1)>
r xmap, which is the posterior

mode projected onto the LIS. At any subsequent step k ≥ 1, the following procedure is
used to adaptively enrich the LIS:

(i) Subchain simulation. Simulate the r(k)-dimensional subspace MCMC chain
for L iterations, so that the last state of this chain, denoted by θ, is uncorrelated
with its initial state. Then θ transformed back to the original parameter space,

(Φ
(k)
r θ), is used as the next sample point. Enrich the sample set to X (k+1) =

X (k) ∪ {Φ(k)
r θ}.

(ii) LIS construction. Solve Problem 2 with the sample set X (k+1). Then update

the LIS basis to Φ
(k+1)
r and Ξ

(k+1)
r . Set the initial state of the next subspace

MCMC chain to Ξ
(k+1)>
r Φ

(k)
r θ.

(iii) Convergence checking. Terminate the adaptation if a pre-specified maximum
allowable number of Hessian evaluations is exceeded, or if the weighted subspace
distance in Definition 2 falls below a certain threshold. Otherwise, set k ← k + 1
and return to Step (i).

The convergence criterion in step (iii) is based on an incremental distance between
likelihood-informed subspaces. The distance penalizes changes in the dominant
directions (those with large eigenvalues γ) more heavily than changes in the less
important directions (those with smaller γ).

Definition 2 (Weighted subspace distance). At iteration k, define the basis/weights

pair Y(k) = {Ψ(k)
r , D(k)}, where Ψ

(k)
r is the orthonormal LIS basis from Problem 2 and

D
(k)
ij = δij(γ̂

(k)
i )

1
4 is a diagonal matrix consisting of normalized weights

γ̂
(k)
i =

γ
(k)
i∑r(k)

j=1 γ
(k)
j

, j = 1 . . . r(k),

computed from the eigenvalues {γ(k)
1 , . . . , γ

(k)
r(k)} of Problem 2. For two adjacent steps

k and k + 1, we compute the weighted subspace distance of [33], which has the form

D
(
Y(k),Y(k+1)

)
=

√
1−

∥∥∥∥(Ψ
(k)
r(k)D

(k)
)> (

Ψ
(k+1)
r(k+1)D

(k+1)
)∥∥∥∥2

F

. (20)

‡ The dimension of the global LIS can vary at each iteration. Let r(k) denote the dimension of the

global LIS at iteration k. To be precise, we should then write Φ
(k)
r(k)

and Ξ
(k)
r(k)

, but for brevity we

will simplify notation to Φ
(k)
r and Ξ

(k)
r when possible.
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Note that in Step (i) of Algorithm 8, we construct the global LIS by always
sampling in an adaptively enriched subspace. This offers computational benefits, since
the MCMC exploration is always confined to a lower dimensional space. However, a
potential problem with this approach is that it might ignore some directions that are
also data-informed. A more conservative approach would be to introduce a conditional
update at the end of each subchain simulation: perform Metropolized independence
sampling in the current CS using the complement prior as proposal. This would enable
the subchain to explore the full posterior, but would result in higher-dimensional
sampling when constructing the LIS. In our numerical examples, described below, no
conditional updates were required for good performance; constructing the LIS using
samples from the full posterior and using the subspace approach gave essentially the
same results. Of course, one could also simply employ a standard MCMC algorithm
to sample the full posterior, and then construct the LIS using the resulting posterior
samples. However, the efficiency of the MCMC algorithm in this case will be affected
by the dimensionality of the problem.

4. Example 1: Elliptic PDE

Our first example is an elliptic PDE inverse problem used to demonstrate (i)
construction of the LIS and the impact of mesh refinement; (ii) the application of
low-rank posterior mean and variance estimators; and (iii) changes in the LIS with
varying amounts of observational data.

4.1. Problem setup

Consider the problem domain Ω = [0, 3] × [0, 1], with boundary ∂Ω. We denote the
spatial coordinate by s ∈ Ω. Consider the permeability field κ(s), the pressure field
p(s), and sink/source terms f(s). The pressure field for a given permeability and
source/sink configuration is governed by the Poisson equation{

−∇ · (κ(s)∇p(s)) = f(s), s ∈ Ω
〈κ(s)∇p(s), ~n(s)〉 = 0, s ∈ ∂Ω

(21)

where ~n(s) is the outward normal vector on the boundary. To make a well-posed
boundary value problem, a further boundary condition∫

∂Ω

p(s)ds = 0, (22)

is imposed. The source/sink term f(s) is defined by the superposition of four weighted
Gaussian plumes with standard deviation (i.e., spatial width) 0.05, centered at four
corners [0, 0], [3, 0], [3, 1] and [0, 1], with weights {1, 2, 3,−6}. The system of equations
(21) is solved by the finite element method with 120× 40 bilinear elements.

The discretized permeability field κ is endowed with a log-normal prior
distribution, i.e.,

κ = exp(x), and x ∼ N (0,Γpr) , (23)

where the covariance matrix Γpr is defined through an anisotropic exponential
covariance kernel

Cov (x(s), x(s′)) = σ2
u exp

−((s− s′)>Σ−1(s− s′)
) 1

2

s0

 , (24)
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for s, s′ ∈ Ω. In this example, we set the anisotropic correlation tensor to

Σ =

[
0.55 −0.45
−0.45 0.55

]
,

the prior standard deviation to σu = 1.15, and the correlation length to s0 = 0.18.
The “true” permeability field is a realization from the prior distribution. The true
permeability field, the sources/sinks, the simulated pressure field, and the synthetic
data are shown in Figure 2.
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Figure 2. Setup of the elliptic inversion example. (a) “True” permeability field.
(b) Sources and sinks. (c) Pressure field resulting from the true permeability
field, with measurement sensors indicated by black circles. (d) Data y; circles
represent the noise-free pressure at each sensor, while crosses represent the
pressure observations corrupted with measurement noise.
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Figure 3. Prior samples and eigenspectrum of the prior covariance. (a) and (b):
Two samples drawn from the prior. (c) Prior covariance spectrum, eigenvalues
versus index number. (d) Cumulative energy (integrated prior variance) over a
subset of the eigenspectrum, shown in blue; the red line represents the 99% energy
truncation threshold.
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Partial observations of the pressure field are collected at 50 measurement sensors
as shown by the black dots in Figure 2(c). The observation operator M is simply the
corresponding “mask” operation. This yields observed data y ∈ R50 as

y = Mp(s) + e,

with additive error e ∼ N (0, σ2I50). The standard deviation σ of the measurement
noise is prescribed so that the observations have signal-to-noise ratio 10, where the
signal-to-noise ratio is defined as maxs{p(s)}/σ. The noisy data are shown in Figure
2(d).

Figure 3 shows two draws from the prior distribution, the eigenspectrum of
the prior covariance, and the cumulative prior variance integrated over Ω (i.e., the
running sum of the prior covariance eigenvalues). In order to keep 99% percent
of the energy in the prior, 2427 eigenmodes are required. Because of this slow
decay of the prior covariance spectrum, a priori dimension reduction based on a
truncated eigendecomposition of the prior covariance (as described in [16]) would be
very inefficient for this problem. Information carried in high-frequency eigenfunctions
cannot be captured unless an enormous number of prior modes are retained; thus, a
better basis is required.

4.2. LIS construction

Now we demonstrate the process of LIS construction using Algorithm 1, and the
structure of the LIS under mesh refinement. To compute the LIS, we run Algorithm
1 for 500 iterations, using adaptive MALA [28] to simulate each subchain with length
L = 200. We choose the truncation thresholds τloc = τg = 0.1. To explore the
dimensionality and structure of the LIS versus mesh refinement, we carry out the
same numerical experiment on a 60 × 20 coarse grid, a 120 × 40 intermediate grid,
and a 180 × 60 fine grid. The dimension of the LIS versus number of iterations, the
evolution of the convergence diagnostic (20), and the generalized eigenvalues after 500
iterations—for each level of grid refinement—are shown in Figure 4. Also, Figure 5
shows the first five LIS basis vectors for each level of discretization.

As shown in Figure 4(a), the dimension of the LIS changes rapidly in the first
100 iterations, then it stabilizes. Change in the dimension reflects the fact that the
log-likelihood Hessian H(x) varies locally in this non-Gaussian problem. We also
observe that the 60 × 20 grid has a slightly larger final LIS dimension than the two
refined grids: at the end of the adaptive construction, the LIS of the 60× 20 grid has
dimension 21, while the 120 × 40 grid and the 180 × 60 grid yield LIS dimensions of
20. This effect may be ascribed to larger discretization errors in the 60× 20 grid.

The weighted distance (20) between each adjacent pair of likelihood-informed
subspaces is used as the convergence diagnostic during the construction process. With
any of the three discretizations, the weighted subspace distance at the end of adaptive
construction is several orders of magnitude lower than at the beginning, as shown
in Figure 4(b). We also observe that the rates of convergence of this diagnostic are
comparable for all three levels of discretization. These figures suggest that while local
variation of the Hessian is important in this problem (e.g., the dimension of the LIS
doubles over the course of the iterations), much of this variation is well-explored after
100 or 200 iterations of Algorithm 1.

Since the forward model converges with grid refinement, we expect that the
associated LIS should also converge. The generalized eigenvalues for all three grids are
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Figure 4. The dimension of the LIS and the convergence diagnostic (20) versus
the number of samples used in the adaptive construction. Black, blue, and red
markers represent the 60 × 20 grid, the 120 × 40 grid, and the 180 × 60 grid,
respectively. Subplot (a) shows the dimension of the LIS; subplot (b) shows
the weighted distance between successive subspaces; and subplot (c) shows the

generalized eigenvalues γ
(k)
i after k = 500 iterations.

shown in Figure 4(c), where the spectra associated with all three subspaces have very
similar values. And as shown in Figure 5, the leading LIS basis vectors {ϕ1, . . . , ϕ5}
have similar shapes for all three levels of grid refinement. Refinement leads to slightly
more structure in ϕ5, but the overall mode shapes are very close.

4.3. Estimation of the posterior mean and variance

With an LIS in hand, we apply the variance reduction procedure described in Section
3.3 to estimate the posterior mean and variance of the permeability field. Calculations
in this subsection use the 120×40 discretization of the PDE and inversion parameters.

We first demonstrate the sampling performance of subspace MCMC, where we use
adaptive MALA [28] to sample the LIS-defined reduced posterior π̃(xr|y) (14). We
compare the results of subspace MCMC with the results of Hessian-preconditioned
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60 × 20 120 × 40 180 × 60

Figure 5. The first five LIS basis vectors (columns of Φ5) for different levels of
discretization of the inversion parameters x. In the figure, columns 1–3 correspond
to the 60 × 20 grid, the 120 × 40 grid, and the 180 × 60 grid, respectively. The
basis vectors in each column are ordered top to bottom by decreasing eigenvalue.

Langevin MCMC applied to the full posterior π(x|y) (2) (referred to as “full-space
MCMC” hereafter). The latter MCMC scheme results from an explicit discretization of
the Langevin SDE, preconditioned by the inverse of the log-posterior Hessian evaluated
at the posterior mode (see [34] for details). Note that we cannot precondition the
full-dimensional Langevin SDE by the empirical posterior covariance as in adaptive
MALA because of the high parameter dimension (n = 4800). In this setup, subspace
MCMC and full-space MCMC require the same number of forward model and gradient
evaluations for a given number of MCMC iterations.

To examine sampling performance, the autocorrelation of the log-likelihood
function and the autocorrelations of the parameters projected onto the first, third,
and fifth LIS basis vectors are used as benchmarks. These results are shown in Figure
6. We run both algorithms for 106 iterations and discard the first half of the chains
as burn-in. The top row of Figure 6 shows these benchmarks for both samplers. For
all four benchmarks, subspace MCMC produces a faster decay of autocorrelation as
a function of sample lag—i.e., a lower correlation between samples after any given
number of MCMC steps.

Furthermore, as discussed in Section 3.3, even though the same number of forward
model evaluations are required by subspace MCMC and full-space MCMC for a given
number of samples, the computational cost of operations involving the square root
of the prior covariance—used in sampling and evaluating the proposal distribution—
can be much higher for full-space MCMC than subspace MCMC. In this test case,
running subspace MCMC for 106 iterations cost 2.1× 104 seconds of CPU time, while
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running full-space MCMC for the same number of iterations took 2.6×105 seconds. To
incorporate this cost difference, the second row of Figure 6 shows the autocorrelation of
the four benchmark quantities as a function of CPU time rather than sample lag. Here,
we immediately observe that the autocorrelation per CPU time is further reduced by
using subspace MCMC.

Of course, recall that to construct the LIS we simulated Algorithm 1 for 500
iterations. This costs roughly 2.2 × 104 seconds of CPU time, which is only 8.5% of
the time required to run full-space MCMC for 106 steps. Therefore subspace MCMC,
including the cost of LIS construction, takes less time to produce a given number of
samples than full-space MCMC and these samples are less correlated—i.e., of higher
quality.
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Figure 6. Autocorrelations of various benchmarks: blue line is subspace MCMC
and red line is full-space MCMC. Column 1: log-likelihood function. Column
2: parameters projected onto the first LIS basis vector. Column 3: parameters
projected onto the third LIS basis vector. Column 4: parameters projected onto
the fifth LIS basis vector. Top row: Autocorrelation as a function of sample lag.
Bottom row: Autocorrelation as a function of sample lag, where the latter is
measured via CPU time.
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Figure 7. Estimates of posterior mean: (a) using subspace MCMC, (b) using
full-space MCMC.

We now compare reduced-variance estimates of the posterior mean and variance
(obtained with subspace MCMC) with estimates obtained via full-space MCMC. The
results are shown in Figures 7 and 8. Full-space MCMC and subspace MCMC yield
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Figure 8. Estimation of the posterior variance: (a) empirical estimate using
MCMC in the LIS; (b) analytical evaluation in the CS; (c) combined LIS + CS
estimate; (d) for comparison, estimation using full-space MCMC.

very similar mean and variance estimates. Figures 8(a) and (b) distinguish the two
components of the Rao-Blackwellized variance estimates described in Example 2.
Variance in the LIS, shown in Figure 8(a), is estimated from MCMC samples, while
variance in the CS, shown in Figure 8(b), is calculated analytically from the prior
and the LIS projector. The sum of these two variance fields is shown in Figure 8(c),
and it is nearly the same as the full-space result in Figure 8(d). In the central part
of the domain where measurement sensors are not installed, we can observe that the
variance is larger in the CS than in the LIS, and hence this part of the domain is prior-
dominated. In the right part of the domain, the variance is less prior-dominated, since
this region is covered by observations.

4.4. The influence of data

The amount of information carried in the data affects the dimension and structure of
the LIS. To demonstrate the impact of the data, we design a case study where different
likelihood-informed subspaces are constructed under various observational scenarios.
The same stationary groundwater problem defined in Section 4.1 is employed here.
For the sake of computational efficiency, the problem domain Ω = [0, 3] × [0, 1] is
discretized by a slightly coarser 72 × 24 mesh. And to provide a stronger impulse
to the groundwater system, the source/sink terms used in this example are different
from those used in Sections 4.1–4.3. Along the boundary of the domain Ω, we evenly
distribute a set of sources with a distance of 0.5 between the source centers. Two
sinks are placed in the interior of the domain at locations [0.5, 1] and [2, 0.5]. Each
source has weight 1, while each sink has weight 3.5. We distributed sensors evenly
over the domain [0, 1] × [0, 1] ∪ [2, 3] × [0, 1]; starting with an inter-sensor spacing of
1/3, we incrementally refine the sensor distribution with spacings of 1/6, 1/12, and
1/24. This results in four different data sets, containing the noisy readings of 32, 98,
338, and 1250 sensors, respectively. The true permeability field, the sources/sinks, the
simulated pressure field, and sensor distributions are shown in Figure 9.

As in Section 4.2, we run Algorithm 1 for 500 iterations to construct the LIS, using
subchains of length L = 200. For data sets 1–4, the resulting LISs have dimension
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Figure 9. Setup of the elliptic inversion example for testing the influence of data.
(a) True permeability field. (b) Sources and sinks. (c)–(f) Pressure field resulting
from the permeability field defined in (a), and sensor distributions (black dots)
for data sets 1–4.

24, 34, 50, and 83, respectively. The generalized eigenvalue spectrum for each LIS is
shown in Figure 10. We note that the eigenvalues decay more slowly with increasing
amounts of data. This behavior is expected; since the generalized eigenvalues reflect
the impact of the likelihood, relative to the prior, more data should lead to more
directions where the likelihood dominates the prior.

Since the sensors for all four data sets occupy the same area of the spatial domain,
we expect that the four likelihood-informed subspaces should share a similar low
frequency structure. However, the high frequency structures in each LIS might differ
from each other under refinement of the sensor distribution. Thus the LIS basis vectors
corresponding to the largest eigenvalues should share a similar pattern, while the LIS
basis vectors corresponding to the relatively small eigenvalues might have different
patterns. We observe this effect in the numerical experiments carried out here; Figure
11 shows the first and fifteenth LIS basis vector for each of the data sets.

5. Example 2: atmospheric remote sensing

In this section, we apply the dimension reduction approach to a realistic atmospheric
satellite remote sensing problem. The problem is to invert the concentrations of various
gases in the atmosphere using the measurement system applied in the GOMOS satellite
instrument, which stands for Global Ozone MOnitoring System.

GOMOS is an instrument on board ESA’s Envisat satellite, and was operational
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Figure 10. Generalized eigenvalues associated with the likelihood-informed
subspace under refinement of the observations. The black, blue, red, and green
lines show eigenvalues for data sets 1–4, with 32, 98, 338, and 1250 sensors,
respectively.
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Figure 11. The first and fifteenth LIS basis vectors for each of the four data
sets.

for about 10 years before the connection with the satellite was lost in May 2012. The
GOMOS instrument performs so-called star occultation measurements; it measures, at
different wavelengths, the absorption of starlight as it travels through the atmosphere.
Different gases in the atmosphere (such as ozone, nitrogen dioxide and aerosols) leave
fingerprints in the measured intensity spectra. The task of the inversion algorithm is
to infer the concentrations of these gases based on the measurements.

The GOMOS inverse problem is known to be ill-posed; the intensity spectra may
contain strong information about the major gases (like O3) at some altitudes, whereas
some minor gases (like aerosols) at some altitudes may be practically unidentifiable
and totally described by the prior. Thus, the GOMOS problem is a good candidate
for our approach: the dimension of the likelihood informed subspace is expected to be
small and the prior contribution large.

Next, we briefly present the GOMOS theory and the inverse problem setup. For
more details about the GOMOS instrument and the Bayesian treatment of the inverse
problem, see [35] and the references therein.

5.1. The GOMOS model

The GOMOS instrument repeatedly measures light intensities Iλ at different
wavelengths λ. First, a reference intensity spectrum Iref is measured above the
atmosphere. The so-called transmission spectrum is defined as Tλ = Iλ/Iref . The
transmissions measured at wavelength λ along the ray path l are modelled using
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Beer’s law:

Tλ,l = exp

(
−
∫
l

∑
gas

αgas
λ (z(s))ρgas(z(s))ds

)
, (25)

where ρgas(z(s)) is the density of a gas (unknown parameter) at tangential height z.
The so called cross-sections αgas

λ , known from laboratory measurements, define how
much a gas absorbs light at a given wavelength.

To approximate the integrals in (25), the atmosphere is discretized. The geometry
used for inversion resembles an onion: the gas densities are assumed to be constant
within spherical layers around the Earth. The GOMOS measurement principle is
illustrated in Figure 12 below.
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Figure 12. The principle of the GOMOS measurement. The reference intensity
is measured above the atmosphere. The observed transmission spectrum is the
attenuated spectrum (measured through the atmosphere) divided by the reference
spectrum. The atmosphere is presented locally as spherical layers around the
Earth. Note that the thickness of the layers is much larger relative to the Earth
in this figure than in reality. The figure is adopted from [35], with the permission
of the authors.

Here, we assume that the cross-sections do not depend on height. In the inverse
problem we have ngas gases, nλ wavelengths, and the atmosphere is divided into nalts

layers. The discretisation is fixed so that number of measurement lines is equal to
the number of layers. Approximating the integrals by sums in the chosen grid, and
combining information from all lines and all wavelengths, we can write the model in
matrix form as follows:

T = exp(−CB>A>), (26)

where T ∈ Rnλ×nalts are the modelled transmissions, C ∈ Rnλ×ngas contains the cross-
sections, B ∈ Rnalts×ngas contains the unknown densities and A ∈ Rnalts×nalts is the
geometry matrix that contains the lengths of the lines of sight in each layer.

Computationally, it is convenient to deal with vectors of unknowns. We vectorize
the above model using the identity vec(CB>A>) = (A⊗C)vec(B>), where ⊗ denotes
the Kronecker product and vec is the standard vectorization obtained by stacking the
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columns of the matrix argument on top of each other. Thus, the likelihood model is
written in vector form as follows:

y = vec(T ) + e = exp
(
−(A⊗ C)vec(B>)

)
+ e, (27)

where e is the measurement error, for which we apply an independent Gaussian model
with known variances.

Note that, in principle, the model (27) could be linearized by taking logarithms
of both sides, which is usually done for such tomography problems (like X-ray
computerized tomography). For this problem, linearisation can cause problems, since
the signal from the star is often smaller compared to the background noise in the
measurement.

5.2. Data and prior

Here, we generate synthetic data by solving the forward model (27) with known gas
densities x. In the example, we have 4 gas profiles to be inverted. The atmosphere
is discretized into 50 layers, and the total dimension of the problem is thus 200. The
simulated data are illustrated in Figure 13.
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Figure 13. GOMOS example setup: the true transmissions (black) and the
observed transmissions (red) for 6 altitudes.

We estimate the log-profiles x = log(vec(B>)) of the gases instead of the
densities B directly. We set a Gaussian process prior for the profiles, which yields
xi ∼ N(µi,Σi), where xi denotes the elements of vector x corresponding to gas i.
The elements of the 50 × 50 covariance matrices are calculated based on the squared
exponential covariance function

Ci(s, s
′) = σi exp(−(s− s′)2/2s2

0,i), (28)

where the parameter values are σ1 = 5.22, σ2 = 9.79, σ3 = 23.66, σ4 = 83.18, and
s0,i = 10 for all i. The priors are chosen to promote smooth profiles and to give
a rough idea about the magnitude of the density values. The prior is illustrated in
Figure 14.
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Figure 14. True log-profiles for the 4 gases (black solid lines), 50% and 95%
confidence envelopes for the prior (grey areas) and 5 samples from the prior (red
dashed lines).

5.3. Inversion results

In this particular synthetic example, we know that gas 1 is very well identified by the
data. The data also contain information about gases 2 and 3 at some altitudes. Gas
4, on the other hand, is totally unidentified by the data.

The LIS is constructed using 200 samples—i.e., 200 iterations of Algorithm 1—
starting with the Hessian at the posterior mode. The subspace convergence diagnostic
and the generalized eigenvalues are shown in Figure 15. We choose the truncation
thresholds τloc = τg = 0.5. The dimension of the LIS in the end was 22.
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Figure 15. Left: the convergence diagnostic (20) versus the number of samples
used to construct the LIS. Right: the generalized eigenvalues associated with the
final LIS.

We compute 106 samples in both the LIS and in the full 200-dimensional space
using the Hessian-preconditioned MALA algorithm. In Figure 16, the first two
columns show the mean gas profile and the mean ± 1 and 2 standard deviations in the
LIS and in the complement space (CS). The third column shows the combined posterior
from the LIS and the CS; for comparison, results from full-space MCMC are shown
in the fourth column. Note the different scales on the horizontal axes throughout the
figure. We observe that the subspace approach, where MCMC is applied only in a
22-dimensional space, yields results very similar to those of full MCMC. In addition,
comparing the contributions of the LIS and CS indicates that gas 1 is dominated by
the likelihood, whereas the posterior distribution of gas 4 is entirely determined by
the prior. Note that the CS contribution for gas 1 is tiny (check the scale), while the
LIS contribution for gas 4 is also very small. For gases 2 and 3, the lower altitudes
are likelihood-dominated, while the higher altitudes have more contribution from the
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prior. The full-space MCMC results for gas 4 show a slightly non-uniform mean, but
this appears to be the result of sampling variance. By avoiding sampling altogether
in the CS, the subspace approach most likely yields a more accurate posterior in this
case.
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Figure 16. Mean and ±1/±2 standard deviations for the 4 gas profiles computed
from the LIS samples alone (1st column), CS alone (2nd column) and when the
LIS and CS are combined (3rd column). The same quantities computed from
full-space MCMC are given in the 4th column.

To further illustrate the approach, we plot the first six basis vectors of the LIS in
Figure 17. One can see that the first basis vectors mainly include features of gas 1,
which is most informed by the data. The first basis vectors also contain some features
of gases 2 and 3 in lower altitudes. Gas 4 is not included in the LIS at all.

The dimension reduction obtained via the subspace approach is expected to
yield better mixing than the full-space MCMC. For the GOMOS case, the chain
autocorrelations for subspace and full-space MCMC are compared in Figure 18. The
subspace sampler shows much faster decay of the autocorrelations than full-space
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Figure 17. The first six LIS basis vectors for the remote sensing example.
The colors indicate the components of the unknown vector corresponding to the
different gases. In each subfigure, the x-axis denotes the index of the parameter
vector, and, for each gas, the components are ordered from low altitudes to high
altitudes. (For example, the black line in each figure shows gas 1 profiles from
low altitudes to high altitudes, etc.)

MCMC.
In this test case, the subspace MCMC also has lower computational cost compared

to full-space MCMC. To simulate a Markov chain for 106 iterations, the subspace
MCMC consumed about 2560 seconds of CPU time, while the full-space MCMC cost
3160 CPU seconds. We note that the CPU time reduction is not as significant as the
elliptic example, because the prior covariance is a 200×200 dimensional matrix, which
is much smaller than the covariance matrix used in the elliptic example. To construct
the LIS, we simulated Algorithm 1 for 200 iterations. This cost about 136 seconds of
CPU time, which is only about 4.3% of the CPU time used to run full-space MCMC
for 106 steps.

6. Conclusions

In this paper, we present a new approach for dimension reduction in nonlinear inverse
problems with Gaussian priors. Our approach is based on dividing the parameter
space into two subspaces: a likelihood-informed subspace (LIS) where the likelihood
has a much greater influence on the posterior than the prior distribution, and the
complement to the LIS where the Gaussian prior dominates. We explore the posterior
projected onto the LIS (the “difficult” and non-Gaussian part of the problem) with
Markov chain Monte Carlo while treating the complement space as exactly Gaussian.
This approximation allows us to analytically integrate many functions over the
complement space when estimating their posterior expectations; the result is a Rao-
Blackwellization or de-randomization procedure that can greatly reduce the variance
of posterior estimates. Particularly in inverse problems—where information in the
data is often limited and the solution of the problem relies heavily on priors—the
dimension of the LIS is expected to be small, and the majority of the directions in the
parameter space can be handled analytically.

The dimension reduction approach is based on theory developed for the linear
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the log-likelihood (1st column) and for the samples projected onto the first, third,
and fifth LIS basis vectors (2nd, 3rd and 4rd columns). Top rows shows the
autocorrelations computed per MCMC step and bottom row per CPU time.

case; in [15] it is shown that in linear-Gaussian problems, the eigendecomposition
of the prior-preconditioned log-likelihood Hessian yields an optimal low-rank update
from the prior to the posterior, which can be interpreted in terms of a projector
whose range is the LIS. Here, we generalize the approach to nonlinear problems,
where the log-likelihood Hessian varies over the parameter space. Our solution is to
construct many local likelihood-informed subspaces over the support of the posterior
and to combine them into a single global LIS. We show how the global LIS can be
constructed efficiently in an adaptive manner, starting with the LIS computed at the
posterior mode and iteratively enriching the global LIS until a weighted subspace
convergence criterion is met.

We demonstrate the approach with two numerical examples. First is an elliptic
PDE inverse problem, based on a simple model of subsurface flow. Though the
dimension of the parameter space in our experiments ranges from 1200 to 10800,
the dimension of the LIS remains only around 20 and is empirically discretization-
invariant. Exploring the LIS by MCMC and analytically treating the Gaussian
complement produces mean and variance fields very similar to those computed via
MCMC in the full space. Yet the mixing properties and the computational cost of
MCMC in the LIS are dramatically improved over those of full-space MCMC. Our
second demonstration is an atmospheric remote sensing problem, where the goal is to
infer the concentrations of chemical species in the atmosphere using star occultation
measurements, as on the satellite-borne GOMOS instrument. The dimension of the
full problem used here was 200 (four gaseous species and 50 altitudes for each), while
the dimension of the LIS was 22. Again, dimension reduction significantly improves
the mixing properties of MCMC without sacrificing accuracy.

To conclude, our dimension reduction approach appears to offer an efficient way
to probe and exploit the structure of nonlinear inverse problems in order to perform
Bayesian inference at a large scale, where standard algorithms are plagued by the
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curse of dimensionality. The approach also opens up interesting further research
questions: it may be useful, for instance, to apply reduced-order and surrogate
modeling techniques in the LIS, making them applicable to much larger problems
than before.
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