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Abstract

A Thermal management simulation tool is required to rapidly and accurately evaluates and mit-
igates the adverse effects of increased heat loads in the initial stages of design in all electric
ships. By reducing the dimension of Navier-Stokes and energy equations, we have developed one-
dimensional partial differential equations models that simulate time-dependent hydrodynamics
and heat transport in a piping network system. Beside the steady-state response, the computa-
tional model enables us to predict the transient behavior of the cooling system, when the operating
conditions are time-variant. To accurately predict the impact of cooling system on temperature
distribution at different ship’s locations/components and vice versa, we coupled our computational
tool with vemESRDC developed at Florida State University. We verified our implementation with
several benchmark problems.

1 Problem Description

1.1 Task 3.2.1

Produce a reliable and validated thermal management simulation tool that can be used in the
initial stages of design to correctly evaluate and mitigate the adverse effects of increased heat
loads. The seeds of this project lie in previous ESRDC work that resulted in the initial develop-
ment of two complementary software tools: the Cooling System Design Tool (CSDT), developed
by MIT [1], and vemESRDC, developed by FSU. Continued development will merge these tools
into a cohesive whole and expand the capabilities, allowing the user to design a cooling system
using the state-of-the-art methods to study the impact of design decisions at the early stages
of design and allow flexibility to evaluate new equipment or new technologies. This cohesive
design tool will be validated using both higher-level modeling tools and experimental data from
physical cooling loops systems for operating equipment.

2 Summary of Accomplishments

Here are the list of accomplishments at MIT during the year of 2013-2014.

1. We developed and implemented one dimensional time-dependent partial differential equa-
tions from first principles to model hydrodynamics and heat transfer in cooling piping
networks. Besides the steady-state response of the system, the model can compute the
propagation of time-varying operating conditions throughout the cooling system. For in-
stance, the model is capable of quantifying the impact of failure of different components
such as chillers, pumps, valves, etc. on the overall cooling system performance. The com-
putational model is fast-to-evaluate, making it suitable for being utilized at early design
stages.

2. The computational model was verified with several benchmark problems.

3. In a collaborative effort with Florida State University (FSU), the 1D model was combined
with vem-ESRDC to form a single computational tool in which the interaction between the
cooling network and the heat loads is modeled. In this two-way coupling, the 1D model
simulates the coolant flow and temperature distribution in the network by acquiring the
dynamic heat load from vem-ESRDC. On the other hand, vem-ESRDC imports the coolant
water temperature and massflow rate from the 1D simulation. The implementation for this
task took place while Sam Yang from FSU visited MIT from June to August 2014.
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3 Task 3.2.1 System-Level Thermal Modeling

3.1 Development of 1D Transient Flow Model (MIT)

3.1.1 Modeling Assumptions

One dimensional models of flow in elastic pipes are derived by reducing the dimensionality of
the full Navier-Stokes equations under the following assumptions:

1. Quasi one-dimensional flow: this assumption assumes that the tangential and radial ve-
locity components are zero, i.e. ur(r, θ, x, t) = uθ(r, θ, x, t) = 0, adopting a cylindrical
coordinate system. As a result of this assumption, using full Navier-Stokes equation one

can show that
∂p

∂r
=
∂p

∂θ
= 0.

2. Axial symmetry: this assumes that any quantity such as u(r, θ, x, t) is independent of the
angular location θ, and therefore u := u(r, x, t). This assumption becomes more accurate
if the local curvature of the pipe becomes smaller. For instance, in cases where flow
undergoes a sharp turn, such as a 90◦ or a junction, the axial symmetry may not be a valid
assumption. In those cases, we model the component (i.e. bend, junction, ...) separately.

3. Fixed radial dependence: the axial velocity profile is assumed to be in the form of

ux(r, x, t) = u(x, t)g(r)

where u(x, t) is the mean of the profile and thus
∫ ri

0
πg(r)rdr = πr2

i , where ri is the
internal radius of the pipe. The choices for radial dependence functions depend on the
flow direction. For instance, Poiseuille flow profile may be assumed for a laminar flow
condition, or an experimental profile may be considered for a turbulent flow condition. As
it will be demonstrated later in the report, the explicit profile of g(r) does not appear in
the mathematical modeling. However g(r) directly affects the friction factor as different
choices of g(r) determines the shear stress at the pipe wall.

3.1.2 Mathematical Modeling

To model the propagation of transient flow in pipes, both the compressibility of the liquid and
the elasticity of the pipe must be modeled. Local increase in fluid pressure results in local
enlargement of the pipe cross section area. In general unknown variables exist: pressure p(x, t),
axial velocity u(x, t) and the cross sectional area A(x, t). A purely elastic model provides a
pressure-area relation. The Laplace’s law provides such a relation:

p = pext + β(
√
A−

√
A0), (1)

where

β =
2ρc2√
A

with

c2 =

K
ρ

1 + (KE )(De )
.

In the above equation, c is the speed of an acoustical wave through the pipe, e is the wall
thickness of the pipe, K is the bulk modulus of elasticity of the fluid, and E is the Young’s
modulus of the elasticity for the wall material. In order to close the system, two other equations
are required, which are provided by conservation of mass and momentum equations:

∂A

∂t
+
∂uA

∂x
= 0 (2)

∂u

∂t
+
∂u2/2

∂x
= −1

ρ

∂p

∂x
− fu2

2D
− g sin θ (3)
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In the above equations, f is the friction factor in the pipe and it depends on the state of the
flow (i.e. laminar or turbulent), and the roughness of the pipe wall. The variable θ is the angle
between the pipe axis and the horizon.

3.2 Development of 1D Transient Heat Transfer Model (MIT)

3.2.1 Modeling Assumptions

In general temperature is a scalar function in the form of T := T (r, θ, x, t) in the pipe network
system. Analogous assumptions to the ones used for hydrodynamics are applied to temperature.
Namely:

1. Axial symmetry: this assumption relaxes the temperature to the form T := T (r, x, t).

2. Fixed radial dependence: similar to the velocity, enforcing this assumption results in the
temperature profile in the form of T := T (x, t)h(r) with

∫ ri
0
πh(r)rdr = πr2

i .

3. Incompressible flow: we assume that the working fluid is incompressible. Therefore, the
internal energy e is expressed as:

e = cpT,

where cp is the specific heat capacity.

4. Negligible kinetic energy: the kinetic energy is neglected as it has significantly smaller
values compared to the internal energy of liquids such as water. Thus e+ u2/2 ' e.

5. Negligible axial conduction: In most realistic cases, the axial conduction is negligible to the
advection terms. Since our physical model has the capability of including axial conduction,
throughout the derivation the axial conduction is considered.

3.2.2 Mathematical Modeling

Following our assumptions, we consider the control volume as shown in figure 1. The control
volume expands to the pipe wall boundary, where energy is exchanged through conduction.
Moreover energy crosses the boundary of the control volume by means of axial conduction and
advection. The balance of energy for a generic control volume can be written as:

∂

∂t

∮
V
ρedV =

∮
S
ĖadvdS +

∮
S
ĖconddS (4)

The axial advection for the control volume shown in figure 1 is given by:∮
S
ĖadvdS ≡ Ėadv,x − Ėadv,x+dx = ρu(e+ u2/2)Ax (5)

−
{
ρu(e+ u2/2)Ax +

∂

∂x

[
ρu(e+ u2/2)Ax

]
dx

}
= − ∂

∂x

[
ρu(e+ u2/2)Ax

]
dx

Using Fourier’s law for the heat conduction, the axial conduction is given by:∮
S
ĖconddS ≡ (Ėcond,x − Ėcond,x+dx)− Ėcond,r = −k∂T

∂x
Ax (6)

= −
{
− k∂T

∂x
Ax +

∂

∂x

[
− k∂T

∂x
Ax
]
dx

}
− q′′

r dAr

=
∂

∂x

[
k
∂T

∂x
Ax
]
dx− q′′

r dAr
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Ėadv,x Ėadv,x+dx

Ėcond,x Ėcond,x+dx

Ėcond,r

Ėcond,r

Figure 1: Control volume for coolant water for an element inside the pipe.

In the above equation, the radial heat conduction is expressed as:

Ėcond,r = q′′dAr

where dAr = 2πridx. Substituting equations 5 and 6 into equation 4, and after re-arranging
results in:

ρcp
(∂(TAx)

∂t
+
∂(uTAx)

∂x

)
=

∂

∂x

[
k
∂T

∂x
Ax
]
− 2πriq

′′
r (7)

To close the system, the radial heat conduction must be modeled. A cross section of the pipe is
shown in figure 2, where the coolant water is shown in blue, pipe wall in gray and pipe insulation
in red. Along the heat path from the coolant water to the ambient, shown by subscript ∞, four
thermal resistance exits: (1) the forced convection resistance inside the pipe; (2) the conduction
resistance through the pipe wall; (3) the conduction resistance through the pipe insulation and (4)
the natural convection resistance with the ambient. The equivalent thermal resistance network
is shown in figure 2. As a result, the radial heat conduction can be expressed as:

Ėcond,r = q
′′
r dAr =

T − T∞
1

2πrihidx
+

ln (rp/ri)

2πkpdx
+

ln (ro/rp)

2πkinsdx
+

1

2πroh∞dx

. (8)

The above equation can be re-written as:

−2πriq
′′
r =

T∞ − T
Rt

, (9)

where

Rt =
1

2πrihi
+

ln (rp/ri)

2πkp
+

ln (ro/rp)

2πkins
+

1

2πroh∞
(10)
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ri

rp

ro

+T, hi

1
hi2⇡ridx

ln (rp/ri)
2⇡kpdx

ln (ro/rp)
2⇡kinsdx

1
h12⇡rodx

T1T
Ėcond,r

T1, h1

Figure 2: Pipe thermal resistance network.

6

Figure 2: Pipe thermal resistance network.

Therefore the energy equation becomes:

ρcp
(∂Γ

∂t
+
∂(uΓ)

∂x

)
=

∂

∂x

[
k
∂T

∂x
Ax
]

+
T∞ − T
Rt

(11)

If the axial conduction is neglected:

ρcp
(∂Γ

∂t
+
∂(uΓ)

∂x

)
=
T∞ − T
Rt

(12)

The system of partial differential equations for hydrodynamics and heat transfer can be
expressed as:

∂U

∂t
+ H

∂U

∂x
= F (13)

where:

U =

Au
Γ

 , (14)

H =

 u A 0
1

ρDA u 0

0 Γ u

 (15)

and

F =


0

− 1
ρ
∂p
∂x −

fu2

2D − g sin θ

∂
∂x

[
k ∂T∂xAx

]
+
T∞ − T
Rt

 , (16)
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Pump

pipe# 1 pipe# 2A1, u1, Γ1 A2, u2, Γ2

− +

Figure 3: The schematic of the pump model.

Given that A > 0, the matrix H has three real eigen-values. Thus the above system can be
diagonalized to the following form:

∂W

∂t
+ Λ

∂W

∂x
= S (17)

where:

W =

W1

W2

W3

 ,

with W1, W2 and W3 being the Riemann invariants given by:

W1(H) = u+ 4(c− c0) = u+ 4

√
β

2ρ
(A1/4 −A1/4

0 ) (18)

W2(H) = u− 4(c− c0) = u− 4

√
β

2ρ
(A1/4 −A1/4

0 ) (19)

W3(H) = Γ/A (20)

(21)

and Λ is diagonal matrix whose entries are:

λ1(H) = u+ c; λ2(H) = u− c; λ3(H) = u. (22)

In most piping network system, c >> u, and therefore u+ c > 0 and u− c < 0. As a result the
characteristic curve that is obtained from dx/dt = u+c is forward traveling and the characteristic
curve with dx/dt = u− c is backward traveling. The characteristic curve obtained by dx/dt = u
can be either forward traveling or backward traveling depending on the sign of u.

3.3 Component Modeling

3.3.1 Pump

A pump is modeled as a zero-dimensional component that connects two pipes, as shown in
figure 3. The six unknowns are shown in red. These variables are A1, u1 and Γ1 from pipe
#1 on the suction side of the pump, and A2, u2 and Γ2 from pipe #2 on the pressure side of
the pump. Hydrodynamic variables are independent of temperature and therefore they can be
solved independently of temperature. Forward traveling characteristic waves bring information
to the pump in pipe # 1, and traveling characteristic waves bring information to the pump in
pipe # 2. These two Riemann invariants provide two independent equations. Conservation of
mass provides the third equation. The fourth equation is obtained by incorporating the pump
characteristic curve, that results in a pressure jump for fluid traveling from pipe #1 to pipe #2.
The pressure jump is dependent on the massflow rate passing through the pump. In summary
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pipe# 1

pipe# 2

A1, u1, Γ1

A2, u2, Γ2

Figure 4: The schematic of the bend model.

these four equations are:

u1 + 4

√
β

2ρ
(A

1/4
1 −A1/4

0 ) = W1 (23)

u2 − 4

√
β

2ρ
(A

1/4
2 −A1/4

0 ) = W2 (24)

A1u1 = A2u2 (25)

(P2 +
1

2
u2

2)− (P1 +
1

2
u2

1) = Pp(A1u1) (26)

Note that the pressure is algebraically related to area through the constitutive model given by
equation 1. The above four equations form a nonlinear system of equations that are solved at
every time step using Newton-Raphson method.

We assume that the pump is an adiabatic component, thus balance of energy requires:

u1Γ1 = u2Γ2. (27)

After considering conservation of mass the above equation becomes:

T1 = T2. (28)

The other equation is provided by information (W3) propagated along the characteristic line.
The characteristic can be forward or backward traveling depending on the sign of u1 (u2 has the
same sign). Therefore:

if u ≥ 0, T1 = W3

if u < 0, T2 = W3

3.3.2 Bend

Similar to the pump, six unknowns exist that have to be solved for by modeling the bend. Bend
is modeled as a zero-dimensional component by considering pressure loss as the fluid passes
through the bend. The pressure loss can be modeled as:

∆ploss = KL,bend
1

2
ρu2

1

9



pipe# 1 pipe# 2A1, u1, Γ1 A2, u2, Γ2

Figure 5: The schematic of the valve model.

Heat exchanger

pipe# 1 pipe# 2A1, u1, Γ1 A2, u2, Γ2

Figure 6: The schematic of the heat exchanger model.

where KL,bend = φ(geometry, Re). Thus the hydrodynamic variables can be found using:

u1 + 4

√
β

2ρ
(A

1/4
1 −A1/4

0 ) = W1 (29)

u2 − 4

√
β

2ρ
(A

1/4
2 −A1/4

0 ) = W2 (30)

A1u1 = A2u2 (31)

P2 − P1 =
1

2
KL,bendu

2
1 (32)

The temperature is modeled in an identical fashion as that of the pump model, since bend is
assume to be an adiabatic component.

3.3.3 Valve

Valve modeled is analogous to that of the bend, with the only difference on the nature of the
pressure loss. The schematic is shown in figure 5. The pressure loss through the valve depends
on valve opening and Reynolds number. Thus KL,valve = φ(valve opening, Re).

u1 + 4

√
β

2ρ
(A

1/4
1 −A1/4

0 ) = W1 (33)

u2 − 4

√
β

2ρ
(A

1/4
2 −A1/4

0 ) = W2 (34)

A1u1 = A2u2 (35)

P2 − P1 =
1

2
KL,valveu

2
1 (36)

3.3.4 Heat Exchanger

The schematic of heat exchanger model is shown in figure 6. The hydrodynamic model for a heat
exchanger is similar to bend or valve, since we model the heat exchanger as zero-dimensional
component with friction pressure losses for the fluid as it passes through the heat exchanger.
Therefore:

∆ploss = KL,hx
1

2
ρu2

1

where KL,hx = φ(heat exchanger type, Re). As a result the four unknown A1, u1, A2 and u2 can
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be computed by solving the system following system of nonlinear equations:

u1 + 4

√
β

2ρ
(A

1/4
1 −A1/4

0 ) = W1 (37)

u2 − 4

√
β

2ρ
(A

1/4
2 −A1/4

0 ) = W2 (38)

A1u1 = A2u2 (39)

P2 − P1 =
1

2
KL,hxu

2
1 (40)

To compute Γ1 and Γ2 we use the balance of energy for the coolant fluid. This follows:

Q̇ = ṁcp(T2 − T1)

In this setting, Q̇ is the amount of heat absorbed from the heat load. The value of Q̇ depends
on the temperature difference between the coolant and the component that is being cooled, the
massflow rate of the coolant, and the type of heat exchanger. The value of Q̇ is obtained by
coupling the 1D model to vem-ESRDC, as it is explained in the next section.

Substituting for ṁ = ρu1A1 = ρu2A2 and the definitions of Γ1 = T1A1 and Γ2 = T2A2, we
arrive at:

Q̇ = ρcp(u2Γ2 − u1Γ1)

To close the system, we use the information that propagates along the characteristic dx/dt = u.
This follows:

if u ≥ 0, T1 = W3

if u < 0, T2 = W3.

3.4 Numerical Method

A brief outline of the numerical method introduced in [2] is presented here. For more details on
the numerical method see [3]. The system of equation solved is:

∂U

∂t
+
∂F(U)

∂x
= S(U) (41)

where

U =

[
U1

U2

]
=

[
A
u

]
, F =

[
F1

F2

]
=

[
uA

u2

2 + p
ρ

]
, S =

[
S1

S2

] [
0

−ufA

]
The computational domain Ω consists of arterial segments, which can be divided in Nel

elemental non-overlapping regions Ωe = (xLe , x
R
e ), such that xRe = xLe+1 for e = 1, .., Nel. The

discontinuous Galerkin formulation requires, for each element e = 1, . . ., Nel, the resolution of
the system:

Je
∂Ûpi,e
∂t

= −Je
∫

Ωe

Lp
∂Fi
∂x

dξ − Lp [Fui − Fi]
xR
e

xL
e

+ Je

∫
Ωe

LpSidξ, p = 0, . . . , P, i = 1, 2, (42)

where U has been discretized by Uδ written in terms of orthonormal Legendre polynomials
Lp(x):

Uδ|Ωe =

P∑
p=0

LpÛ
p
e

11



Each element is mapped onto a reference element Ωst = {−1 ≤ ξ ≤ 1} called the ”standard
element” and Je is the Jacobian of the corresponding affine mapping:

Je =
1

2
(xRe − xLe ), xe(ξ) = xLe

(1− ξ)
2

+ xRe
(1 + ξ)

2

Fu is the upwinded flux that propagates information between the elemental regions and the
bifurcations of the system. At the inlet and outlet boundary elements, the fluxes are upwinded
by means of the boundary conditions. The hyperbolicity of the system requires one boundary
condition at each terminal end.

An Adams-Bashforth scheme is used for the time integration:

∂Ûpi,e
∂t

= f
(
Ûpi,e

)
with, (

Ûpi,e

)
= −

∫
Ωe

Lp
∂Fi
∂x

dξ − 1

Je
Lp [Fui − Fi]

xR
e

xL
e

+

∫
Ωe

LpSidξ,

then, (
Ûpi,e

)n+1

=
(
Ûpi,e

)n
+

3∆t

2
f
((
Ûpi,e

)n)
− ∆t

2
f

((
Ûpi,e

)n−1
)

3.5 Coupling of N εκταr1d and vemESRDC: Collaboration between
MIT and FSU

In the current strategy, vemESRDC and N εκταr1d perform a “hand-shake” at every time step.
If the steady-state solution is sought, the time-steps perform the role of the iterations to reach
the steady-state solution. The algorithm of the coupling between the two codes is shown in figure
8. vemESRDC:
In vemESRDC, the transient balance of energy is solved, with the difference of the heat exchanger
absorbing part of the heat load. In fact, heat exchanger and the surrounding elements, through
convection or conduction or both, compete to absorb the heat load. The net amount of heat left
in the right hand side of the equation 43 will decrease or increase the element temperature Ti.
In equation 43:

• The inlet temperature of cooling water, Tcw,in, is provided to vemESRDC by N εκταr1d,
and is a known quantity at each time-step.

• The heat load Q̇gen is known and is provided by LEAPS.

• The interaction of temperature at element Ti with neighbor elements is done through
convection or conduction or the combination of the two, which forms a system of unknowns
already implemented at vemESRDC. For more details see [4].

dTi
dt

=
1

ρiVici

(
UHXAHX(Tcw,in − Ti) + Q̇gen +

∑
j=E,W,S,N,T,B

Qj

)
. (43)

N εκταr1d:
The calculation and book-keeping of cooling water (fresh water, sea water, ...) temperatures are
done in N εκταr1d. Once the solution of vemESRDC is obtained at each time-step, Ti’s for all
elements are obtained and a balance of energy, for the heat exchanger is used to calculate the
cooling water outlet temperature from the heat exchanger. The balance of energy for the heat
exchanger requires:

UHXAHX(Ti − Tcw,in) = ṁcwccw(Tcw,out − Tcw,in) (44)

12



Ti
Q̇gen

TW TE

TN

TS

HX

Tcw,in

Tcw,out

Figure 7: A 2D schematic of element-equipment arrangement of thermal systems in
All-Electric-Ships. The three-dimensional version is only the extension of the above
sketch by having a top (T) and bottom (B) elements in the perpendicular view. In
the above the following identifiers are used: HX: Heat Exchanger; CW: Cooling Water;
Q̇gen: the heat load at the volume element i; E: East; W: West; N: North; S: South.

From the above equation, Tcw,out can be calculated:

Tcw,out =
1

ṁcwccw
UHXAHX(Ti − Tcw,in) + Tcw,in (45)

The massflow rate in the cooling water network, ṁcw, is also calculated by N εκταr1d by solving
transient quasi one-dimensional Navier-Stokes equations.

Note:
In cases where the heat exchanger interaction with the heat load, not only requires Tcw,in, but
it also requires the cooling outlet temperature Tcw,out, at each time-step, iterations between
vemESRDC and N εκταr1d have to be performed.

3.6 Verification and Validation (MIT)

3.6.1 A Single Loop with a Pump

As a first verification example, we consider a single pipe loop as shown in figure 9. The fluid is
driven by a single pump. The fluid is considered to be sea water with the properties given in
table 1.

The pipe is chosen from ANSI Schedule 80, a steel pipe with 1′′ diameter and the thickness
of 1/8′′. The pipe characteristics are given in table 2. The characteristic curve of the pump is

13
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pump

pipe with friction losses

− +

Figure 9: The schematic of the verification problem: a single loop driven by a pump.

Table 1: Sea water physical properties for verification problem.

Density (Kg/m3) Bulk modulus of elasticity (Pa) Dynamic viscosity (Pa s)

1.028× 103 2.39× 109 1.88× 10−3

Table 2: Pipe properties for verification problem.

Length (m) Diameter (inch) Wall thickness (inch) Young’s modulus (Pa)

100 1′′ 1/8′′ 1.84× 1011
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Figure 10: Pump characteristic curve and network resistance. The intersection of the
two curve shows the steady state operating point of the pump/network.

assumed to be given by a polynomial-fitted curve given below:

Ppump(Q) = a− bQ2,

with
a = 1.42× 104, b = 2.30× 109,

where Q is the volumetric flowrate in m3/s, and P is the pressure increase across the pump in
Pa. We assume the flow in the pipe remains laminar and thus the friction factor can be obtained
analytically:

f =
64

Re
.

The network resistance curve is obtained by computing the friction loss versus different volumet-
ric flowrates. Thus:

Pres(Q) =
fL

D

ρQ2

2A2

After replacing the friction coefficient in the above equation, the resistance pressure versus vol-
umetric mass flowrate can be obtained:

Pres(Q) =
8πµQL

A2

In figure 10, the pump characteristic curve and the network resistance are shown. The exact
steady-state solution is obtained by finding the intersection of the pump characteristics curve
and the pipe resistance. Therefore the steady-state point can be obtained by:

Pres(Qss) = Ppump(Qss).

For the given parameters, the operating steady-state volumetric flowrate and pressure for the
pump become:

Qss = 7.079× 10−1Liter/sec; Pss = 13.028K Pa.
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Figure 11: The transient behavior of the axial velocity u(x, t) for single-loop network.
The axial velocity exponentially converges to the exact steady state variable.

Given that the pipe diameter is unchanged, the steady-state velocity is constant every in the
pipe and thus:

uss(x) =
Qss
A

= 1.397m/sec.

In figure 11 the evolution of axial velocity is shown. The axial velocity converges exponentially
to the steady state value. Since the pipe area variation during the transient period is very small,

conservation mass of requires that
∂u

∂x
' 0. Therefore transient axial velocity in the pipe in

independent of x.
Since the velocity is constant along the pipe, the pressure gradient along the pipe is constant

(dp/dx = c). Therefore pressure varies linearly along the pipe according to:

pss(x) = pref −
8πµQx

A2
.

Figure 12 shows the comparison of the steady state pressure calculated by N εκταr1d along with
the exact solution. An excellent match is observed.

3.6.2 N εκταr1d-vemESRDC Coupling (MIT-FSU)

To verify the strategy and the implementation of the coupling of N εκταr1d and vem-ESRDC,
we consider a nine-element volume discretization. The 2D schematic of the volume elements is
shown in figure 13.

All elements have equal size with ∆x = ∆y = ∆z = 1. The volume has adiabatic boundary
condition on all its surrounding faces. The middle element (element No. 5) has a time-varying
heat load as given by:

Qgen(t) = Q(
√
a2

1 + a2
2 + a2

3 − a1 sin(ω1t− φ1)− a2 sin(ω2t− φ2)− a3 sin(ω3t− φ3))
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Figure 13: The 2D schematic of volume discretization for vem-ESRDC.
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Table 3: Material properties of solid volume elements for vem-ESRDC calculations.

Density (Kg/m3) Specific heat capacity (J/Kg ·K) Thermal conductivity (W/m2 ·K)

7× 103 4.5 55

Pump

pipe# 1

pipe# 2pipe# 3

pipe# 4

pipe# 5

pipe# 6 − +

Heat exchanger

Chiller

Figure 14: The schematic of pipe network configuration for N εκταr1d-vemESRDC
Coupling.

Q = 5000W

a1 = 1, a2 = 0.5, a3 = 0.1

ω1 = 0.1, ω2 = 0.3, ω3 = 0.5(1/sec)

φ1 = 0, φ2 = π/4, φ3 = π/8

All the elements have the same material property as shown in table 3. Elements are assumed
to be solid and therefore they exchange heat with their neighbor elements merely through con-
duction. The element No. 5 exchanges heat with a heat exchanger, connected to a cooling water
network. The cooling water network is shown in figure 14 . The cooling network is comprised of
six pipes with dimensions given in table 4, and a pipe with the same specification as that of in
the previous verification case with characteristic curve shown in figure 10. the heat exchanger is
assumed to have a constant heat transfer coefficient with

UHXAHX = 500W/K.

The second heat exchanger is a chiller with time varying heat absorption capacity. The chiller is
assume to operate such that the temperature of the coolant water leaving the chiller is set to be
Tchiller,out = 250K. All pipes are assumed to have perfect insulations where kins ' 0 and thus
Rt →∞. We also assume that the axial heat conduction is neglected. The initial temperature
in all pipes is assumed to be T = 250K. The coolant is assumed to be water. The initial velocity
in all pipes is assumed to have the steady state values to avoid initial transient behavior.
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Table 4: Pipe properties used for the verification of N εκταr1d-vemESRDC coupling.

Pipe number Length (m) Diameter (inch)

1 40 1′′

2 20 1/8′′

3 20 1/8′′

4 40 1/8′′

5 20 1′′

6 20 1′′
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Figure 8: The 2D schematic of volume discretization for vem-ESRDC.

six pipes with dimensions given in table 4, and a pipe with the same specification as that of in
the previous verification case with characteristic curve shown in figure 5. the heat exchanger is
assumed to have a constant heat transfer coe�cient with

UHXAHX = 500W/K.
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assume to operate such that the temperature of the coolant water leaving the chiller is set to be
Tchiller,out = 250K. All pipes are assumed to have perfect insulations where kins ' 0 and thus
Rt ! 1. We also assume that the axial heat conduction is neglected.

The initial temperature in all pipes is assumed to be T = 250K. The coolant is assumed to
be water. The initial velocity in all pipes is assumed to have the steady state values to avoid
initial transient behavior.
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Figure 15: Comparison of the time-dependent temperature at volume elements with
two-way coupling between N ✏⌧↵r1d-vemESRDC: (a) Element No. 1; (b) Element No.
5.
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Figure 16: Experimental setup of pipe network at Florida State University.

4 Conclusion and Future Work

To this end, we have developed and implemented a one-dimensional model for cooling piping
networks and their components. We also combined the 1D model with vem-ESRDC in collabo-
ration with Florida State University. In the next year, we will focus on improving the component
model, and the experimental validation of our computational tool. More specifically:

1. We will improve the heat exchanger models, taking into account different types of heat ex-
changers, incorporating higher fidelity reduced order models, and integrating these models
with the 1D model.

2. We will improve models for valve, bend and pump by implementing more accurate approx-
imation for loss coefficients in the case of valve and bend. We model scenarios with revers
flow in pumps.

3. We will validate our piping and component models with experimental measurements carried
out at Florida State University. The drawing of the experimental pipe network built at
Florida State University is shown figure 16.

4. We will develop a Graphic User Interface (GUI) that provides an interactive environment
for users to use our computational tool.
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