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Abstract—We consider an opportunistic communication
system in which a transmitter selects one of multiple channels
over which to schedule a transmission, based on partial
knowledge of the network state. We characterize a fun-
damental limit on the rate that channel state information
must be conveyed to the transmitter in order to meet a
constraint on expected throughput. This problem is modeled
as a causal rate distortion optimization of a Markov source.
We introduce a novel distortion metric capturing the impact
of imperfect channel state information on throughput. We
compute a closed-form expression for the causal information
rate distortion function for the case of two channels, as well
as an algorithmic upper bound on the causal rate distortion
function. Finally, we characterize the gap between the causal
information rate distortion and the causal entropic rate-
distortion functions.

I. INTRODUCTION

Consider a transmitter and a receiver connected by two
independent channels. The state of each channel is either
ON or OFF, where transmissions over an ON channel
result in a unit throughput, and transmissions over an OFF
channel fail. Channels evolve over time according to a
Markov process. At the beginning of each time slot, the
receiver measures the channel states in the current slot,
and transmits (some) channel state information (CSI) to
the transmitter. Based on the CSI sent by the receiver, the
transmitter chooses over which of the channels to transmit.

In a system in which an ON channel and OFF channel
are equally likely to occur, the transmitter can achieve an
expected per-slot throughput of 1

2 without channel state in-
formation, and a per-slot throughput of 3

4 if the transmitter
has full CSI before making scheduling decisions. How-
ever, the transmitter does not need to maintain complete
knowledge of the channel state in order to achieve high
throughput; it is sufficient to only maintain knowledge of
which channel has the best state. Furthermore, the memory
in the system can be used to further reduce the required
CSI. We are interested in the minimum rate that CSI must
be sent to the transmitter in order to guarantee a lower
bound on expected throughput. This quantity represents a
fundamental limit on the overhead information required in
this setting.
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The above minimization can be formulated as a rate
distortion optimization with an appropriately designed
distortion metric. The opportunistic communication frame-
work, in contrast to traditional rate distortion, requires
that the channel state information sequence be causally
encoded, as the receiver causally observes the channel
states. Consequently, restricting the rate distortion problem
to causal encodings provides a tighter lower bound on the
required CSI that must be provided to the transmitter.

Opportunistic scheduling is one of many network con-
trol schemes that requires network state information (NSI)
in order to make control decisions. The performance of
these schemes is directly affected by the availability and
accuracy of this information. If the network state changes
rapidly, there are more possibilities to take advantage of
an opportunistic performance gain, albeit at the cost of
additional overhead. For large networks, this overhead can
become prohibitive.

This paper presents a novel rate distortion formulation
to quantify the fundamental limit on the rate of overhead
required for opportunistic scheduling. We design a new
distortion metric for this setting that captures the impact
on network performance, and incorporate a causality con-
straint to the rate distortion formulation to reflect practical
constraints of a real-time communication system. We ana-
lytically compute a closed-form expression for the causal
rate distortion lower bound for a two-channel system.
Additionally, we propose a practical encoding algorithm
to achieve the required throughput with limited overhead.
Moreover, we show that for opportunistic scheduling, there
is a fundamental gap between the mutual information and
entropy-rate-based rate distortion functions, and discuss
scenarios under which this gap vanishes. Proofs have been
omitted for brevity.

II. PROBLEM FORMULATION

Consider a transmitter and a receiver, connected through
M independent channels. Assume a time slotted system,
where at time-slot t, each channel has a time-varying
channel state Si(t) ∈ {OFF,ON}, independent from all
other channels. The notation Si(t) ∈ {0, 1} is used
interchangeably.

Let X(t) = Xt = {S1(t), S2(t), . . . , SM (t)} represent
the system state at time slot t. At each time slot, the
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Fig. 1: Markov chain describing the channel state evolution of
each independent channel.

transmitter chooses a channel over which to transmit,
with the goal of opportunistically transmitting over an ON
channel. Channel states evolve over time according to a
Markov process described by the chain in Figure 1, with
transition probabilities p and q satisfying p ≤ 1

2 and q ≤ 1
2 ,

corresponding to channels with “positive memory.”
The transmitter does not observe the state of the system.

Instead, the receiver causally encodes the sequence of
channel states Xn

1 into the sequence Zn
1 and sends the

encoded sequence to the transmitter, where Xn
1 is used to

denote the vector of random variables [X(1), . . . , X(n)].
The encoding Z(t) = Zt ∈ {1, . . . ,M} represents the
index of the channel over which to transmit. Since the
throughput-optimal transmission decision is to transmit
over the channel with the best state, it is sufficient for
the transmitter to restrict its knowledge to the index of the
channel with the best state at each time.

The expected throughput earned in slot t is E[thpt(t)] =
SZ(t)(t), since the transmitter uses channel i = Z(t),
and receives a throughput of 1 if that channel is ON,
and 0 otherwise. Clearly, a higher throughput is attainable
with more accurate CSI, determined by the quality of
the encoding Zn

1 . The average distortion between the
sequences xn1 and zn1 is defined in terms of the per-letter
distortion,

d(xn1 , z
n
1 ) =

1

n

n∑
i=1

d(xi, zi), (1)

where d(xi, zi) is the per-letter distortion between the ith
source symbol and the ith encoded symbol at the transmit-
ter. For the opportunistic communication framework, the
per-letter distortion is defined as

d(xi, zi) , 1− E[thpt(t)] = 1− SZ(t)(t), (2)

where SZ(t) is the state of the channel indexed by Z(t).
Thus, an upper bound on expected distortion translates
to a lower bound on expected throughput. Note that the
traditional Hamming distortion metric is inappropriate in
this setting, since the transmitter does not need to know
the channel states of channels it will not transmit over.

A. Problem Statement

The goal in this work is to determine the minimum rate
that CSI must be conveyed to the transmitter to achieve
a lower bound on expected throughput. In this setting,
CSI must be conveyed to the transmitter casually, in other
words, the ith encoding can only depend on the channel
state at time i, and previous channel states and encodings.
Let Qc(D) be the family of causal encodings q(zn1 |xn1 )

satisfying

E[d(xn1 , zn1 )] =
∑
xn
1

∑
zn
1

p(xn1 )q(z
n
1 |xn1 )d(xn1 , zn1 ) ≤ D.

(3)
where p(xn1 ) is the PDF of the source, and the causality
constraint:

q(zi1|xn1 ) = q(zi1|yn1 ) ∀xn1 , yn1 s.t. xi1 = yi1, (4)

Mathematically, the minimum rate that CSI must be trans-
mitted is given by

RNG
c (D) = lim

n→∞
inf

q∈Qc(D)

1

n
H(Zn

1 ) (5)

where 1
nH(Zn

1 ) is the entropy rate of the encoded se-
quence in bits. Equation (5) is the causal rate distortion
function, as defined by Neuhoff and Gilbert [1], and
is denoted using the superscript NG. This quantity is
an entropy rate distortion function, in contrast to the
information rate distortion function [2], [3], [4], which will
be discussed in Section III. The decision to formulate this
problem as a minimization of entropy rate is based on the
intuition that the entropy rate should capture the average
number of bits per channel use required to convey channel
state information.

B. Previous Work

Among the earliest theoretical works to study commu-
nication overhead in networks is Gallager’s seminal paper
[5], where fundamental lower bounds on the amount of
overhead needed to keep track of source and destination
addresses and message starting and stopping times are
derived using rate-distortion theory. A discrete-time analog
of Gallager’s model is considered in [6]. A similar frame-
work was considered in [7] and [8] for different forms of
network state information.

The traditional rate-distortion problem [9] has been
extended to bounds for Markov Sources in [10], [11],
[12]. Additionally, researchers have considered the causal
source coding problem due to its application to real-time
processing. One of the first works in this field was [1],
in which Neuhoff and Gilbert show that the best causal
encoding of a memoryless source is a memoryless coding,
or a time sharing between two memoryless codes. Neuhoff
and Gilbert focus on the minimization of entropy rate, as
in (5). The work in [13] studied the optimal finite-horizon
sequential quantization problem, and showed that the
optimal encoder for a kth-order Markov source depends
on the last k source symbols and the present state of the
decoder’s memory (i.e. the history of decoded symbols).

A causal (sequential) rate distortion theory was intro-
duced in [3] and [14] for stationary sources. They show
that the sequential rate distortion function lower bounds
the entropy rate of a causally encoded sequence, but this
inequality is strict in general. Despite this, operational
significance for the causal rate distortion function is de-
veloped in [3]. Lastly, [4] studies the causal rate distortion
function as a minimization of directed mutual information,
and computes the form of the optimal causal kernels.



III. RATE DISTORTION LOWER BOUND

To begin, we review the traditional rate distortion
problem, and define the causal information rate distortion
function, a minimization of mutual information, which is
known to lower bound RNG

c (D) [14], and hence provides
a lower bound on the required rate at which CSI must
be conveyed to the transmitter to meet the throughput
requirement.

A. Traditional Rate Distortion

Consider the well known rate distortion problem, in
which the goal is to find the minimum number of bits per
source symbol necessary to encode a source while meet-
ing a fidelity constraint. Consider a discrete memoryless
source {Xi}∞i=1, where Xi’s are i.i.d. random variables
taking values in the set X , according to distribution pX(x).
This source sequence is encoded into a sequence {Zi}∞i=1,
with Zi taking values in Z . The distortion between a
block of source symbols and encoded symbols is defined in
(1) with per-letter distortion d(xi, zi). Define Q(D) to be
the family of conditional probability distributions q(z|x)
satisfying an expected distortion constraint (3).

Shannon’s rate-distortion theory states that the mini-
mum rate R at which the source can be encoded with
average distortion less than D is given by the information
rate distortion function R(D), where

R(D) , min
q(z|x)∈Q(D)

I(X;Z), (6)

and I(·; ·) represents mutual information.

B. Causal Rate Distortion for Opportunistic Scheduling

Consider the problem formulation in Section II. As
discussed above, the information rate distortion is a min-
imization of mutual information over all stochastic ker-
nels satisfying a distortion constraint. For opportunistic
scheduling, this minimization is further constrained to
include only causal kernels. Let Qc(D) be the set of all
stochastic kernels q(zn1 |xn1 ) satisfying (3) and (4). The
causal information rate distortion function is defined as

Rc(D) = lim
n→∞

inf
q(zn

1 |xn
1 )∈Qc(D)

1

n
I(Xn

1 ;Z
n
1 ). (7)

The function Rc(D) is a lower bound on the Neuhoff-
Gilbert rate distortion function RNG

c (D) in (5), and hence
a lower bound on the rate of CSI that needs to be conveyed
to the transmitter to ensure expected per-slot throughput
is greater than 1−D. In the traditional (non-causal) rate
distortion framework, this bound is tight; however, in the
causal setting this lower bound is potentially strict. Note
that for memoryless sources, Rc(D) = R(D), where
R(D) is the traditional rate distortion function; however,
for most memoryless sources, R(D) < RNG

c (D).
The optimization problem in (7) is solved using a

geometric programming dual as in [15]. The following
result gives the structure of the optimal stochastic kernel.
Note that this result is also obtained in the work [4] for a
similar formulation.

Theorem 1. The optimal kernel q(zn1 |xn1 ) satisfies

q(zi|zi−11 , xi1) =
Q(zi|zi−11 ) exp(−λd(xi, zi))∑
zi
Q(zi|zi−11 ) exp

(
− λd(xi, zi)

)
(8)

where for all zi1, Q(zi|zi−11 ) and λ satisfy

1 =
∑
xn
1

P (xn1 ) exp
(
−
∑n

i=1 λd(xi, zi)
)∏n

i=1

∑
zi
Q(zi|zi−11 ) exp

(
− λd(xi, zi)

) (9)

Equation (9) holds for all zn1 , and gives a system of
equations from which one can solve for Q(zi|zi−11 ). Note
this holds in general for any number of Markovian chan-
nels, and can be numerically solved to determine Rc(D).
Observe in (8) that q(zi|zi−11 , xi1) = q(zi|zi−11 , xi). In
other words, the solution to the rate distortion optimization
is a distribution which generates Zi depending only on the
source sequence through the current source symbol.
C. Analytical Solution for Two-Channel System

Consider the system in Section II with two channels
(M = 2), and a symmetric channel state Markov chain.

Theorem 2. For the aforementioned system, the causal
information rate distortion function is given by

Rc(D) = 1
2Hb

(
2p− 4pD + 2D − 1

2

)
− 1

2Hb

(
2D − 1

2

)
(10)

for all D satisfying 1
4 ≤ D ≤

1
2 .

This result follows from evaluating (8) and (9) for a
two channel system, and showing the stationarity of the
optimal kernel. The information rate distortion function in
(10) is a lower bound on the rate that information needs
to be conveyed to the transmitter. A distortion Dmin = 1

4
represents a lossless encoding, since 1

4 of the time slots,
both channels are OFF, and no throughput can be obtained.
Additionally, Dmax = 1

2 corresponds to an oblivious
encoder, as transmitting over an arbitrary channel requires
no rate, and achieves distortion equal to 1

2 . The function
Rc(D) is plotted in Figure 2 as a function of D.

IV. HEURISTIC UPPER BOUND

In this section, we propose an algorithmic upper bound
to the Neuhoff-Gilbert rate distortion function in (5). For
simplicity, assume that p = q, and that M = 2, i.e.
the transmitter has two symmetric channels over which to
transmit. Therefore, X(t) ∈ {00, 01, 10, 11}. Observe that
when X(t) = 11, no distortion is accumulated regardless
of the encoding Z(t), and a unit distortion is always
accumulated when X(t) = 00. The minimum possible
average distortion is Dmin = 1

4 , since the state of the
system is 00 for a fraction 1

4 of the time.

A. Minimum Distortion Encoding Algorithm
Recall that a causal encoder f(·) satisfies Z(t) =

f(Xt
1, Z

t−1
1 ). Consider the following encoding policy:

Z(t) =


Z(t− 1) if X(t) = 00 or X(t) = 11

1 if X(t) = 10

2 if X(t) = 01
(11)



Note that Z(t) is a function of Z(t− 1) and X(t), and is
therefore a causal encoding as defined in (4). The above
encoding achieves expected distortion equal to 1

4 , the
minimum distortion achievable. Note that the transmitter is
unaware of the channel state; conveying full CSI requires
additional rate at no reduction to distortion. Let K be a
random variable denoting the number of time slots since
the last change in the sequence Z(i), i.e.,

K = min
j
{j < i|Z(i− j) 6= Z(i− j − 1)}. (12)

Thus, the transmitter can infer the state of the system K
slots ago. Since the channel state is Markovian, the entropy
rate of the sequence Z∞1 is expressed as

lim
n→∞

1

n
H(Zn

1 ) = lim
n→∞

1

n

n∑
i=1

H(Z(i)|Zi−1
1 ) (13)

= H(Z(i)|Z(i− 1),K) (14)

=

∞∑
k=1

P(K = k)Hb(P(Z(i) 6= Z(i− 1)|K = k)) (15)

where Hb(·) is the binary entropy function. Note by
definition, Z(i − 1) = Z(i − K) in (14). Equation (15)
can be computed in terms of the transition probabilities of
the Markov chain in Figure 1.

B. Threshold-based Encoding Algorithm

In order to further reduce the rate of the encoded
sequence using the encoder in (11), a higher expected
distortion is required. A new algorithm is obtained by
introducing a parameter T , and modifying the encoding
algorithm in (11) as follows: If K ≤ T , then Z(i) =
Z(i− 1), and if K > T , then Z(i) is assigned according
to (11). As a result, for the first T slots after the Z(i)
sequence changes value, the transmitter can determine the
next element of the sequence deterministically, and hence
the sequence can be encoded with zero rate. After T slots,
the entropy in the Z(i) process is similar to that of the
original encoding algorithm. As expected, this reduction in
entropy rate comes at an increase in distortion. In the first
T slots after a change to Z(i) = 1, every visit to state
X(i) = 01 or X(i) = 00 incurs a unit distortion. The
accumulated distortion is equal to the number of visits to
those states in an interval of T slots.

Clearly, as the parameter T increases, the entropy rate
decreases, and the expected distortion increases. Conse-
quently, T parameterizes the rate-distortion curve; how-
ever, due to the integer restriction, only a countable
number of rate-distortion pairs are achievable by varying
T , and time sharing is used to interpolate between these
points. An example curve is shown in Figure 2. Note that
as T increases, the corresponding points on the R(D)
curve become more dense. Furthermore, for the region
of R(D) parameterized by large T , the function R(D)
is linear. The slope of this linear region is characterized
by the following result.

Proposition 1. Let R(T ) and D(T ) denote the rate
and expected distortion as functions of the parameter
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Fig. 2: Plots the causal information rate distortion function
Rc(D) (Section III) and the upper bound to the rate distortion
function (Section IV), computed using Monte Carlo Simulation.

T respectively. For large T , the achievable R(D) curve
for the above encoding algorithm, denoted by the points
(D(T ), R(T )) has slope

lim
T→∞

R(T + 1)−R(T )
D(T + 1)−D(T )

=
−H(M)

c+ 1
4E[M ]

, (16)

where M is a random variable denoting the expected
number of slots after the initial T slots until the Zi

sequence changes value, and c is a constant given by

c =

T∑
i=1

(
E[1(Xi = 00 or Xi = 01)]

− E[1(Xi = 00 or Xi = 01)|X0 = 10]

)
. (17)

The constant in (17) represents the difference in ex-
pected accumulated distortion over an interval of T slots of
the state processes beginning in steady state and X0 = 10.
Proposition 1 shows that the slope of R(D) is independent
of T for T sufficiently large, as illustrated in Figure 2.

V. CAUSAL RATE DISTORTION GAP

Figure 2 shows a gap between the causal information
rate distortion function, and the heuristic upper bound to
the Neuhoff-Gilbert rate distortion function computed in
Section IV. In this section, we prove that for a class of
distortion metrics including the throughput metric in (2),
there exists a gap between the information and Neuhoff-
Gilbert causal rate distortion functions, even at D = Dmin.

For example, consider a discrete memoryless source
{Xi}, drawing i.i.d. symbols from the alphabet {0, 1, 2},
and an encoding sequence {Zi} drawn from {0, 1, 2}.
Consider the following distortion metrics: d1(x, z) =
1z 6=x and d2(x, z) = 1z=x, where 1 is the indicator
function. The first metric d1(x, z) is a simple Hamming
distortion measure, used to minimize probability of error,
whereas the second is such that there exist two distortion-
free encodings for each source symbol. The causal rate
distortion functions Rc(D) for d1(x, z) and d2(x, z) are

R1(D) = −Hb(D)−D log 2
3 − (1−D) log 1

3

0 ≤ D ≤ 2
3 (18)

R2(D) = −Hb(D)−D log 1
3 − (1−D) log 2

3

0 ≤ D ≤ 1
3 . (19)



(a) Distortion d1(x, z). (b) Distortion d2(x, z).

Fig. 3: Rate distortion functions for example systems.

Additionally, Neuhoff and Gilbert [1] show that for a
memoryless source, RNG

c equals the lower convex enve-
lope of all memoryless encoders for this source. Thus,

RNG
c,1 (D) = (1− 3

2D) log 3 (20)

RNG
c,2 (D) = (1− 3D)Hb(

1
3 ). (21)

The information and Neuhoff-Gilbert rate distortion func-
tions for the two metrics are plotted in Figure 3. Note
that for both distortion metrics, the causal rate distortion
function is not operationally achievable. Furthermore, in
the lossless encoding case (D = Dmin), there is a gap in
between the Neuhoff-Gilbert and information rate distor-
tion functions when using the second distortion metric.
This gap arises when for a state x, there exist multiple
encodings z that can be used with no distortion penalty.
This observation is formalized in the following result.

Theorem 3. Let {Xi} represent an i.i.d. discrete memo-
ryless source from alphabet X , encoded into a sequence
{Zi} taken from alphabet Z , subject to a per-letter dis-
tortion metric d(xi, zi). Furthermore, suppose there exists
x1, x2, y ∈ X and z1, z2 ∈ Z , such that z1 6= z2 and

a) P(x1) > 0,P(x2) > 0,P(y) > 0,
b) z1 is the minimizer z1 = argminz d(x1, z),
c) z2 is the minimizer z2 = argminz d(x2, z),
d) d(y, z1) = d(y, z2) = minz d(y, z).

Then RNG
c (Dmin) > Rc(Dmin).

Proof: By [1], there exists a deterministic function
f : X → Z such that

RNG
c (Dmin) = H(f(X)) (22)

E[d(X, f(X))] = Dmin (23)

Define a randomized encoding q(z|x), where z = f(x)
for all x 6= y, and the source symbol y is encoded
randomly into z1 or z2 with equal probability. Conse-
quently, H(Z|X) > 0, and H(Z) > Iq(X;Z) under
encoding q(z|x). Note that the new encoding also satisfies
Eq[d(X,Z)] = Dmin. To conclude,

RNG(Dmin) = H(f(X)) > Iq(X;Z)

≥ R(Dmin) = Rc(Dmin) (24)

Theorem 3 shows that if there exists only one deter-

ministic mapping f : X → Z resulting in minimum
distortion, then there will be no gap between the Neuhoff-
Gilbert rate distortion function and the causal information
rate distortion function at Dmin. However, when there are
multiple deterministic mappings that achieve minimum
distortion, a randomized combination of them results in
lower mutual information, creating a gap between the
two rate distortion functions. Note that the throughput
distortion metric in (2) satisfies the conditions of Theorem
3, as well as any distortion metric such that there exists a
source symbol such that all per-letter encodings result in
the same distortion satisfies the theorem statement.

While the above result proves that the causal infor-
mation rate distortion function is not tight, it is still
possible to provide an operational interpretation to Rc(D)
in (10). In [3], the author proves that for a source {Xn,t},
which is Markovian across the time index t, yet i.i.d.
across the spatial index n, there exist blocks of suffi-
ciently large t and n such that the causal rate distortion
function is operationally achievable, i.e. the information
and Neuhoff-Gilbert rate distortion functions are equal. In
the opportunistic scheduling setting, this is equivalent to
a transmitter sending N messages to the receiver, where
each transmission is assigned a disjoint subset of the
channels over which to transmit. However, this restriction
can result in a reduced throughput.
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