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ABSTRACT

This dissertation explores the relationship between our experience and knowledge of
the infinite. The first chapter is a critical examination of Shaughan Lavine's project in
Understanding the Infinite. Lavine argues that although we do not experience the infinite,
we can explain how we acquire knowledge of the infinite by appeal to our experience of
the indefinitely large. I argue that Lavine's proposal fails.

In the second chapter I argue that, contrary to what Lavine and others have claimed,
we can have "experiences of the infinite." In particular, I argue that we can have a
perceptual illusion of an infinite sequence when we see certain pictures.

In the third chapter, I argue that the experiences of the infinite discussed in the second
chapter help us defend a central tenet of modal structuralism, namely the claim that there
could exist infinitely many objects. In order to show that we have evidence for this modal
claim, I explain how, in general, we can use pictures to establish that the depicted object
could exist. I argue that upon seeing a picture, we can obtain evidence that a picture
represents a "coherent" rather than an "incoherent" spatial configuration, and furthermore,
that if we obtain evidence that a picture represents a coherent spatial configuration, we
thereby obtain evidence that the depicted object could exist. I then use this "picture
method" to show that by seeing a picture of an infinite sequence, we can obtain evidence
for the modal claim that an infinite sequence could exist.

Thesis Supervisor: Robert Stal naker
Title: Professor of Philosophy
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Introduction

We have a tremendous amount of knowledge about the infinite. We know that

there are infinitely many primes, that the set of natural numbers is smaller than the set of

reals, that every bounded infinite set of reals has a least upper bound. Or so it seems. For,

some philosophers argue that it seems impossible to know propositions about the infinite

because we do not experience the infinite.

John Locke, for example, wonders how we could come to the idea of the infinite

and so know propositions about the infinite if "the objects we converse with are so much

short of any approach or proportion to that largeness."1 David Hume in A Treatise of

Human Nature concludes that we cannot form concepts of the infinite and consequently

obtain knowledge of the infinite. As he writes,

'Tis universally allow'd, that the capacity of the mind is limited, and can never
attain a full and adequate conception of infinity: And tho' it were not allow'd,
'twou'd be sufficiently evident from plainest observation and experience. 2

More recently, Shaughan Lavine, in his book Understanding the Infinite,3 presents an

epistemological puzzle about the infinite by arguing that knowledge of the infinite seems

impossible because the infinite is "remote from our experience," in the sense that we do

1 John Locke, An Essay Concerning Human Understanding, vol. 1, Ed., Alexander Fraser, Dover
Publication, inc., New York, 1959. p. 277.

2 David Hume, A Treatise of Human Nat ure, 2nd edition. Ed. L.A. Selby-Bigge. Oxford

University Press, Oxford, 1978. p. 26.
3 Shaughan Lavine, Understanding the Infinite. Harvard University Press, Cambridge,

Massachusetts and London, England, 1994.



not experience anything suitably like "infinite mathematical objects." In this dissertation I

will investigate responses to this epistemological puzzle about the infinite. In so doing, I

will investigate the relationship between experience and knowledge of the infinite.

The first chapter is a critical examination of Lavine's project in Understanding the

Infinite. Lavine provides a response to the epistemological puzzle by arguing that our

knowledge of the infinite is grounded in our experience of the indefinitely large. More

specifically, he proposes that we can justifiably extrapolate from a finite version of

Zermelo-Frankel set theory with Choice-which I will call Fin(ZFC)-to full-fledged

ZFC, and furthermore he argues that our experience of the indefinitely large provides us

with grounds for believing the axioms of Fin(ZFC). I argue that Lavine's project fails at its

second step because it seems impossible to show that both the finite version of

Extensionality and the "appropriate" finite version of the Axiom of Infinity are true

principles about finite sets.

Since I argue that Lavine's program fails, we are left with a puzzle about the

infinite. The rest of the thesis takes steps to resolve this puzzle. In the second chapter I

argue that we can have a perceptual illusion of an infinite sequence. In particular, I argue

that we can see certain sequences as having a property that only an infinite sequence has.

One benefit of showing that we can have a perceptual illusion of the infinite is that

it helps clarify the relationship between experience and beliefs formed on the basis of

experience. For, to sustain the claim that we can have an illusion of the infinite, 1 argue that

even though an object appears to us in a certain way, we do not always believe nor are we

disposed to believe that the object is that way. Furthermore, in some cases--in particular,

in cases where we see pictures--we are disposed to believe the opposite of what we see.

INTRODUCTION10



A further benefit of showing that we can have illusions of the infinite is that these

illusions ultimately provide us with modal knowledge of the infinite. In the third chapter, I

argue that the experiences of the infinite discussed in the second chapter provide evidence

for the modal claim that there could exist infinitely many objects.

To show that these experiences provide evidence for this modal claim about the

infinite, I introduce machinery for establishing modal claims. I show how, in general, we

can use pictures to support the contention that the depicted object could exist. I argue that

upon seeing a picture, we can provide evidence for the claim that a picture represents a

"coherent" rather than an "incoherent" spatial configuration. I then argue that if we have

evidence that a picture represents a coherent spatial configuration, we thereby obtain

evidence that the depicted object could exist. To support these claims, I provide an account

of coherence and explain why coherence provides grounds for possibility. I also present a

test of coherence which enables us to determine whether a picture represents a coherent or

an incoherent spatial configuration.

After presenting the "picture method," I use it to show that by seeing pictures of an

infinite sequence we obtain evidence for the modal claim that an infinite sequence could

exist. To make my case, I appeal to the fact that we have a perceptual illusion of the

infinite when we look at certain pictures. Showing that we have evidence that an infinite

sequence could exist provides a partial solution to the puzzle about the infinite.

In addition to providing a partial solution to the epistemological puzzle, showing

that we have evidence for this modal claim is critically important to modal structuralism, a

position in the philosophy of mathematics. Indeed, the modal structuralist must hold that

an infinite sequence of concrete objects could exist, and, at present, the leading proponent
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of modal structuralism does not provide a convincing defense of this claim. Furthermore,

in a recent article,4 Bob Hale argues that the modal structuralist faces a serious

epistemological puzzle because it does not appear that the modal structuralist can defend

the claim that infinitely many concrete objects could exist. My defense of the claim that

infinitely many concrete objects could exist not only supplies modal structuralism with a

defense of one of its central tenets but also helps point out certain difficulties with Hale's

arguments.

4Bob Hale, "Structuralism's Unpaid Epistemological Debts." Philosophia Matlhenmatica 3 Vol. 4
(1996) pp. 124-147.
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Chapter 1

Lavine on Understanding the Infinite

We know all sorts of trivial and not so trivial claims about infinite sets, functions

with infinite domains, and geometrical objects consisting of infinitely many points. Or so

it seems. For, Shaughan Lavine in his book Understanding the Infinite poses a puzzle

about our knowledge of "infinite mathematical objects":

In sharp contrast to the situation about '2+2=4', many of those who are
skeptical about the existence of infinite combinatorial collections would want
to doubt or deny the Axiom of Choice-not only its truth, but its acceptability
in any form whatever. General facts about the infinite are not robust in the same
way that the facts of counting, computing, and bookkeeping are. Moreover, it is
not at all clear what we can fall back on as a source of mathematical knowledge
concerning the infinite-what can play the role that bunches and sequences of
moments, objects, or words seems so well suited to play for small finite
mathematical objects. It is that lack that raises the problem posed by the
remoteness of the infinite: it seems that we cannot have grounds to know what
we find we actually do know about the infinite.I

According to Lavine, then, we have experiences that could possibly lead to an account of

our knowledge of "finite mathematical objects." We see finite patterns and finite groups of

objects; we see pairs and triples and so forth. In the case of the infinite, however, no

experiences appear to provide a basis for our extensive knowledge of infinite mathematical

objects. We do not see infinitely many things. We do not see patterns of infinite

Shaughan Lavine, Understanding the Infinite. Harvard University Press, Cambridge,
Massachusetts and London, England, 1994. p. 164.

13



complexity. In short, we do not appear to have any kind of experience of the infinite. So,

although it appears that we can appeal to experience to ground our knowledge of the finite,

we have no such luxury in the case of the infinite. We thus wonder how we can know what

we appear to know about the infinite.

This puzzle about the infinite provides a focal point for this thesis. In the rest of this

thesis I will examine and propose responses to this puzzle. In the first chapter, I will

criticize Lavine's response to the puzzle. In the second and third chapters I will work

towards a partial response to the puzzle. In particular I will argue that we can have a

perceptual illusion of an infinite sequence when we look at certain pictures, and

furthermore, we can appeal to this illusion to show that we have modal knowledge about

an infinite sequence.

Lavine responds to the puzzle about the infinite by arguing that our knowledge of

the infinite is grounded in our experience of the indefinitely large. More specifically, he

introduces the theory he calls "The Theory of Zillions." The Theory of Zillions is a finite

version of Zermelo-Fraenkel Set Theory with Choice (ZFC). The Theory of Zillions is a

version of ZFC because we obtain the central axioms of the Theory of Zillions by suitably

relativizing the quantifiers in the axioms of ZFC. It is afinite version of ZFC because

every finite subset of the axioms of Fin(ZFC) has a model whose domain contains only a

finite number of finite sets. I will call the Theory of Zillions 'Finite Zermelo-Fraenkel Set

Theory' or, for short, 'Fin(ZFC)'. By appeal to Fin(ZFC), Lavine argues that our

knowledge of ZFC originates from our experience of the indefinitely large.

His argument proceeds in two steps. He contends that our knowledge of the axioms

of ZEC is derived-through a process of "extrapolation"-from our knowledge of the
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axicois of Fin(ZFC). He then argues that our knowledge of the axioms of Fin(ZFC) is in

turn derived from our experi uce of the indefinitely large. This two-step procedure

supplies an explanation of how our knowledge of the infinite, in particular our knowledge

that the axioms of ZFC are true, is derived from our experience of the indefinitely large.

In this first chapter, I will criticize Lavine's positive proposal that our experience

of the indefinitely large provides intuitive evidence for the axioms of Fin(ZFC). In

particular, I will concentrate on two axioms of Fin(ZFC): Zillion, which is the finite

version of the Axiom of Infinity, and Relativized Extensionality, which is the finite

version of the Axiom of Extensionality. I will argue that Lavine fails to show that Zillion

is a self-evident principle about finite sets and furthermore that we have reason to prefer a

finite set theory that contains a generalized version of Zillion over one that contains

Zillion. I will then argue that "Generalized Zillion" and Relativized Extensionality

undermine one another. In particular, there appears to be no way to sustain the claim that

both Relativized Extensionality and Generalized Zillion are self-evident principles about

finite sets.

Establishing these claims requires familiarizing ourselves with some of the

machinery on which Lavine relies and also with some of the special notions he introduces.

The first part of this chapter, then, will be spent laying some of the necessary groundwork.

L. Fin(ZFC): An Overview

First, I need to be more explicit about Fin(ZFC). 2 We obtain the language of

Fin(ZFC) by adding to the language of first-order set theory 3 the constant '0', the

2 I will follow Lavine's presentation of Fin(ZFC) as given in Understanding the lInfinite. Lavine
bases his mathematical work on Jan Mycielski's. Mycielski introduces finite versions of theories
in his paper "Locally Finite Theories," Journal of Symbolic Logic 51 (1986). pp. 59-62.

3 The only non-logical symbol in the basic language of first-order set theory is 'E'.
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two-place function-symbol 'A', ('A(x,y)' has the intuitive meaning of 'x u {y)'), and

infinitely-many one-place predicates of the form 'Q' where 'p' is replaced by a

numeral. 4'5 Although the Q's are predicates, I will abbreviate 'n2,(x)' as 'x e 0,'

We can give a straightforward inductive specification of the terms of Fin(ZFC):

any variable is a term; the constant '0' is a term; and whenever t1 and t2 are replaced by

terms, 'A(ti,t 2 )' is a term. As for the formulas of Fin(ZFC), every sentence of the form

'Q,(x)', 't1 e t2 ', or 't, = t2 ', where t, and t2 are replaced by terms of Fin(ZFC), is a

formula. If $ and y are formulas, then -,$) and $ A y are formulas. As for the existential

quantifier, if $ is a formula, then Ex E QP and 3x4 are formulas.

Before stating the axioms of Fin(ZFC), I want to indicate briefly how Lavine wants

us to understand these axioms. In giving this summary, I will rely on the notion of

availability and the notion of an object's being available in virtue of the availability of

another object. I will discuss these notions later. For now, we can suppose that an object is

available if it is somehow given to the mind.

4 Lavine relies on Fin(ZFC) to explain how we come to know about the infinite. Accordingly, we
should be able to come to know the axioms of Fin(ZFC) and understand the language of Fin(ZFC)
without a prior understanding of or knowledge of the infinite. However, given the above
description of the language of Fin(ZFC), one might question whether Lavine can accomplish this.
In particular, since that the subscripts can be replaced by any numeral, the language appears to
contain infinitely many symbols. As a result, one might worry that to understand the language of
Fin(ZFC), we must have a prior understanding of the infinite because we cannot describe the
language of Fin(ZFC) without reference to an infinite or a potentially infinite number of objects.
Lavine thinks he can avoid this problem by providing a schematic specification of the language
of Fin(ZFC). As he writes, "I have not said anything characterizing all symbols of the language;
I gave a test for whether an antecedently given symbol is a symbol of the language. That is, the
specification of the predicate symbols is itself schematic." (Footnote 20, Understanding the
Infinite. p. 269) Because the specification of the language is schematic, Lavine believes that not
only can we avoid commitment to an infinite number of symbols but also we can understand the
language of Fin(ZFC) without a prior understanding of or knowledge of the infinite. For more
information on these issue see §VI.4 and the rest of Footnote 20 in §VIII.3.l.

5 Officially, Lavine contends that the subscripts are replaced by signs for rational numbers. This
allows him to insert a new D. between any other two. We can replace the subscripts by numerals
because, according to Lavine, we employ, in any given context, only finitely many formulas of
Fin(ZFC) and so employ only finitely many a's. We can thus renumber the fl's so that the largest
fi has a subscript less than in, for some natural number n. See see §VI.4 and footnote 20 in
Understanding the Infinite.
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As I mentioned, Lavine claims that the axioms of Fin(ZFC) codify some of our

intuitions about indefinitely large sets. In particular, the Q's bounding the quantifiers in

the axioms are supposed to represent indefinitely large finite sets. We should think of £0

as an indefinitely large set that contains objects that are "available to the first degree."

From Ko we form a larger indefinitely large set £2, which not only contains all objects in

Q0 but also contains every object that is "available in virtue of the availability of an object

in 00." Similarly, from £2, we form a larger indefinitely large set Q2 which not only

contains all objects in 01 but also contains every object that is "available in virtue of the

availability of an object in Q1." And so forth. The £'s thus form a hierarchy of indefinitely

large sets.

All the quantifiers in the axioms of Fin(ZFC) are bounded by Q's, and these

bounds increase as quantifiers appear deeper inside the axiom. As a result, many axioms

tell us what objects are available in virtue of the availability of other objects. In reading the

axioms of Fin(ZFC), the reader should keep in mind the intuitive meanings of the Q's.

In stating the axioms, we will have occasion to refer to a special class of the well-

formed formulas, namely the regular relativizations of ZFC formulas. If $ is a formula of

ZFC, $' is a regular relativization of $ if $' is obtained from $ by bounding all the

quantifiers in $ with 92's in accord with the following constraint: whenever a quantifier

bound by f, occurs within the scope of a quantifier bound by £2q, then p>q. 6 For

example, the formula VwVx~yVz(z e y ++> (z=w) v (z=x)) has regular relativizations

6 Note that most of the axioms of Fin(ZFC) are semniregular relativizations of formulas of ZEC. A
semiregular relativization is like a regular relativization except that bounds on alike quantifiers
can be the same, but bounds must be increased when the quantifiers are different. For example,
the formula VwVx~yVz(z e y 4-- (Z=w) v (z=x)) has regular relativizations
Vw eflVX efl,3y eQVz EQ(z Ey (Z=w) V(z=x)) and
Vw e Q2VX E '2 3Y E £ 5VZ E '1 7(Z E y " (Z=w) V (Z=X)).
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Vw e L21Vx e 2 ye f 3Vz e G4(ze y - (z=w) v (z=x)) and

Vw e Q2VX E Y QEQ5Vz e Q7(z E y (=W) V (z=x)).

The axioms of Fin(ZFC) fall into four categories:

- Relativizations of the Axioms of Equality

* Axioms Governing '0' and 'A'

- Axioms of Indefinitely Large Size

- Relativizations of the Axioms of ZFC

The axiom schemata in the first category are as follows:

where 'p' is replaced by a numeral. 7

(2) Vxy e ( --+ y=x)

(3) Vxyz e (x=y A y=Z -4 x=z)

(4) (Vx,y,z,u e Q,)(x=y A Z=U -> A(x,z)=A(y,u))

(5) (Vx,y,z,u e Q,)(x=y A Z=U A x e z -> yE u)

Next come the axioms governing '0' and 'A'.

(6) VxEQ00(X 0 0)

(7) Vxyz e Q0(z e A(x,y) E-> z e x V z=y).8

The third category of axioms, the Axioms of Indefinitely Large Size, tells us a bit

about the Q's. As I mentioned, the (Y's are supposed to be indefinitely large sets. The

following axiom schemata give us some information about how they are built up:

7 From now on I will assume that the subscripts 'p', 'q', 'r', and 't' are replaced by numerals in
all instanhx s of schemata.

SNote that Lavine restricts his attention to models where the range of A(x,y) is in .Q, and not in
Q.o. In these models £2o need not be infinite for (7) to hold. We should also note that these axioms
are not schemata. I believe Lavine does not use the schema
FCxyz E O2,(Z E A(X,y) 4-> z E X V ~)in place of axiom (7) because every instance of this
schema besides axiom (7) is derivable from axiom (II).
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(8) 0 E fiU

(9) Vx,y(x,yEf, ->A(x,y) E fq)

where p <q.

Axiom (9) tells us how the U's grow. For p<q, the adjunction of any two sets in Up is in

fq. Or similarly, we can understand this axiom as saying that the adjunction of two sets x

and y is available in virtue of the availability of x and y.

(10) Vx(x efl2-4->X Cflq)

where p <q.

Axiom (10) tells us that the Q's are such that Qy lqg r,.... where p<q<r<....

where p<q andp <r and (Vx e flq)$ and (Vx E r)@ are regular relativizations of for-

mulas of ZFC.

Axiom (11) tells us that the f's are in some sense indiscernible. In particular, the f's are

so large that we cannot distinguish between them using regular relativizations of formulas

of ZFC.

The final category of axioms consists of relativizations of the axioms of ZFC. For

simplicity I will state the axioms using numerical subscripts for the f's. The subscripts

can be replaced by any numerals that respect the ordering of the original subscripts. For

example, if 'fli', 'fl 2 ', 'fl 3 ', and 'fl 4 ' are the only fl-symbols occurring in the axiom, then

the subscripts '1', '2', '3', and '4' can respectively be replaced by '1', '7', '9', and '10', by

'2', '5', '6', and '7', and so forth. To aid in the understanding of these axioms, I will say

that x is a flp-member to indicatu that x is in flp. The axioms are as follows:
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Relativized Extensionality

(12) (Vxy e-QO)(VzE Q1 (Z E x <-> ZEy)-> X=y) 9

In words, for all Qo-members x and y, if every Q1-member z is in x just in case it is in y,

then x = y. Equivalently, if x and y are distinct members of Q0, then there is a Q,-member

z that witnesses that x and y are different, i.e., there is a Q1-member z that is either in x but

not in y or in y but not inx.

Intuitively, we can understand this axiom as stating that, whenever distinct sets x

and y are available, there is a witness set which is available in virtue of the availability of

both x and y. So, notice that the existential quantifier signals that some object is available

in virtue of the availability of other objects.

Relativized Foundation

(13) (Vx e QO)(x 0-> (]y e Q1)(y e X A (VZE i2)(ZE x -+Z 0 y)))

Every non-empty Q0-member x has, as a member, a Q1-member y that is, as far as 02

knows, an e -least element of x, i.e., no element in Q2 is both in x and in y. Note that the set

that witnesses the existential quantifier here might change when different O's are

substituted. For instance, if we replace '0 2 ' by 'Q3' then the axiom reads that every non-

empty Q0-member x has as a member a Q,2-member y that is, as far as 3 knows, an

e -least element of x.

Relativized Weak Union

(14) (Vx e %)(By e Q,)(VZu e Q2)(zE u Au E x-*zcE y)

9 The '->' in the axiom can he replaced by '+-+'.
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For every Qo-member x there is a Q-member y that contains all Q2-members z that satisfy

the following: z is a member of some %2-member u of x. So, y contains every member of

a member of x only if Q2 contains every member of x and every member of a member of x.

Relativized Choice

(15) (Vxe fl0 )(Vyzu e 1)[(y e XA ZE x Ay#z--+i(u E y Au e z))] ->

(Bye i2)(Vze 2)(z eCx Az# 0 -+

(Bu e 3 )(u ezAU e z) A(Vuv e Q2)(u e z A U E y AV E Z A VE y -+ u=v)))

If Ql thinks that all members of a t20-member x have no members in common, then there

is some Q2-member "choice" set y of x. This choice set y contains, for each Q2 -member z

of x, exactly one 923-member u of z.

Relativized Power Set

(16) (Vx eQD0 )(]y e Q)(VZ E Q2)(ZCEy <->+(VU E Q 3)(UE Z -4U EX))

For every 0 -member x there is a Qi-member y that contains all and only Q2 -members z

that Q3 thinks are subsets of x.

Relativized Replacement

(17) (VxO, ... .,xn e Q0)((Vxyz e 1 j)(f(x,y,xo,.0. .,x) A f(x,z,xO,...,x,) -> y=z) -+

(Vxre= 1)(3y eQ 2)(Vz eQ' 3)(z ey -4(3u E-' 4 )(u exA f(u,z,xo,...,x?,))))

where ' $(x,y,xO, ... I,x) ' is replaced by any regular formula 10 with the following proper-

ties: any 'Q,' that appears in the formula has a subscripts greater than 3; only the variables

x,y,x0 , .. .,x, occur free in the formula; the variables us and v do not occur in the formula.

10 Recall that a regular formula is any formula whose quantifiers are bound according to the

following constraint: whenever a quantifier bound by £Z, occurs within the scope of a quantifier
bound by 9 2q then p>q
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Unrelativized, the antecedent of the axiom says thaty in the formula $(x,y,xo,...,x,) is a

function of x,x 0 ,...,x,, i.e., for every x,x 0,...,x,, there is exactly one output

g(x,x 0 , --a,Xn) such that $(x,g(x,xO,0... ,x)x 0 ,n...,x,). Relativized, the antecedent says that

Q, thinks that y in the formula *(x,y,x 0,...,x,) is a function of x,x0,...,x,. The

consequent of the axiom says that for all Q1-members x there is a Q2-member y that

contains all and only those 23-members z that satisfy the following condition:

z = g(u,x0 ,...,x,) for some Li 4-member u of x. So, y is the image of the set x under g

unless K23 or £24 is missing members of x or certain members of the range of g.

Relativized Infinity (Zillion)

(18) (3xe Q0)(Oe xA(Vye fl)(yEx->yu{y} e x))

Zillion says that there is a Q0-member x that contains 0 and contains the "successor" of

every Qi-member y of x. Intuitively, this axiom says that there is a set that is available to

the first degree which contains the "successors" of certain members of x. As I will explain

in detail later, a finite set can witness the truth of Zillion. Off hand, this might seem

plausible since Zillion does not require that the successor of every member of x be in x.

Rather it requires only that the successor of every Q1-member of x be in x.

II. "Extrapolation"

Now that we have reviewed the formal machinery, we can get a better idea of how

Lavine attempts to solve the problem of the infinite. As I noted, his project has two steps.

In the first step, he tries to provide a link between ZFC and Fin(ZFC) by claiming that

ZFC, in some sense, arose from the Fin(ZFC). In particular, he claims that ZEC arose for
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Fin(ZFC) by a process he calls "extrapolation."" In this section I will briefly explain this

first step of Lavine's response to the problem of the infinite.

Clearly, some straightforward manipulations transform Fin(ZFC) into ZFC. We

eliminate the axioms governing the Q's, i.e., axioms (8)-(l 1), and we omit all predicates

of the form 'Q,' in the rest of the axioms. From this we can obtain ZFC, the standard

axioms of equality, and the axioms governing '0' and 'A'. 2 Lavine, however, has a more

elaborate story to tell about how ZFC arose from Fin(ZFC). He contends that ZFC and all

its infinitary commitments arose by extrapolation from Fin(ZFC).

To understand Lavine's notion of extrapolation, we first must explain the notion of

the indefinitely large. According to Lavine, a set is indefinitely large if we think that it is

too large to count. Off hand, this characterization appears to suggest that only infinite sets

are indefinitely large, as no finite set seems too large to count: given enough time, space,

and memory, we can count any finite number of things. Lavine concurs. However, he

emphasizes that, in certain circumstances, we deem some finite sets too large to count.

When I look at my friend's thick mane of hair, I realize that counting how many hairs she

has is out of the question. There are just too many. So, relative to certain contexts we deem

certain finite sets too large to count. These sets are not too large to count in all contexts.

Change our interests and resources, and we can count a previously "uncountable" set. So,

" Lavine believes that "the notion of infinite size that results from extrapolating from the notion of

indefinitely large size is the one that actually was operative in the development of modern
axiomatic set theory." And he believes that "the picture of the infinite-of the use of
ellipsis-with which the founders of set theory started was one that developed out of their
experience of indefinitely large size, even though the source was largely unconscious." Lavine,
Understanding the infinite, p 251l.

12 I say that we can obtain ZFC plus the standard axioms of equality because when we drop the Q's,
we do not obtain full Leibniz Law. We obtain only the sentence
'Vxyzu(x=y A Z=U -+ A(x,y)=A(y,u))'. However, all instances of Leibniz Law are provable
by induction of the complexity of formulas.
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if we deem a set too large to count in a particular context, then this set is indefinitely large

in that context.

Extrapolation, put simply, is just "dropping the dependence on context."1 3 When

we extrapolate, we contemplate sets that are too large to count, simpliciter, i.e., sets that

are too large to count independent of any context. In this way, we contemplate infinite sets.

For, "Infinite is nothing more than too large to count-too large to count in a context-

independent sense." 14 So, we come to the infinite via the finite by extrapolating.

So far, I have indicated how extrapolation supposedly leads us from the concept of

the indefinitely large to the concept of the infinite. But how does extrapolation lead us

from Fin(ZFC) to ZFC? According to Lavine, the Q's that show up in the axioms of

Fin(ZFC) represent indefinitely large sets. Indeed, he argues that the axioms governing the

O's, axioms (8)-(l11), simply codify some of our intuitions that arise from our experience

of the indefinitely large. Because the Q's are indefinitely large, contextual features play a

role in our understanding of axioms that contain symbols for them. For, it is only relative

to some context that we view a set as indefinitely large. When we extrapolate (or

equivalently, drop the dependence on context), our interpretation of the axioms of

Fin(ZFC) changes.

As I noted, dropping the dependence on context appears to have a straightforward

formal interpretation: we simply drop the bounds on the Q's. Lavine suggests, however,

that we should interpret the dropping of the bounds as a way of setting the bounds equal.

As he writes,

13 Lavine, Understanding the infinite, p. 249.
14 Ibid., p. 248.
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The process of extrapolation-of dropping the Q's that serve as bounds-is
my proposed formal analysis of what we actually do: we fail to attend to the
differences between the bounds, the indefinitely large quantities. There is a
trivial sense in which dropping the bounds is nothing more than a matter of
convenience, since they can be resupplied in a simple and automatic way, but
how should the effect of dropping the bounds be understood when we take the
theory without them seriously, not as a mere abbreviation. I think the effect of

droppin the bounds is best understood as the result of setting the bounds

So, we extrapolate from Fin(ZFC) to ZFC by setting the bounds equal, or equivalently

accepting the schema ,= Q,. Accepting this schema appears to have the same effect as

dropping the bounds on the quantifiers. For, in setting the bounds equal we assume that the

quantifiers all have the same domain, and so the bounds become superfluous. Overall,

then, extrapolation allows us to eliminate the Q's in Fin(ZFC); we thus obtain ZFC. 16

III. The Axioms of Indefinitely Large Size

To show that our knowledge of ZFC is grounded in our experience of the

indefinitely large, Lavine must explain not only how ZFC arises from Fin(ZFC) but also

how our knowledge of the principles of Fin(ZFC) are grounded in our experience of the

indefinitely large. In the rest of the chapter I will be concerned with this second step of

Lavine's project. I will concentrate mainly on Lavine's discussion of Zillion and

Relativized Extensionality.

Before examining these axioms, however, it is helpful to discuss Lavine's

arguments in support of the Axioms of Indefinitely Large Size, i.e., axioms (8)-(1II). For,

in these arguments Lavine relies on three crucial notions: a notion of the indefinitely large,

15 Ibid., p. 257.
16 Note that when we eliminate the fl's in the axioms of Fin(ZFC), we obtain the axioms of ZFC,

the axioms of equality (without full Leibniz Law), and we obtain six additional axioms. Two of
these six additional axioms govern '0' and 'A'. The rest are the unrelativized axioms of
indefinitely large size. None of the six additional axioms enables us to prove theorems that we
could not already prove in ZFC.
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a notion of the "availability" of a mathematical object, and a notion of availability

function. These notions play a central role in Lavine's justification of Zillion and

Relativized Extensionality. The discussion of axioms (8)-(11) will provide an

introduction these notions.

Given that Lavine thinks axioms (8)-(l1) systematize intuitions arising from our

experience of the indefinitely large, we should think of the Q's that show up in the axioms

as indefinitely large sets.

Axiom (8) states that 0 e Q,. That is, it states that if 0 is an indefinitely large set

of sets, then 0 is in Q,. Lavine appears to justify this axiom with the following two claims.

(19) An indefinitely large set contains whatever is available.17

(20) Denoting an object by a closed term, i.e., a term with no free variables, makes that
object available.18

Axiom (8) follows from these two claims. We have used the closed term '0' to denote 0,

so 0 is available. And since indefinitely large sets contain whatever is available, 0 is in

UP.

As for (19), it is difficult to see why Lavine holds it. He first mentions the notion of

availability about one-hundred pages before setting out his theory of the indefinitely large.

He discusses Charles Parsons's examination of a central tenet of the iterative conception of

set, namely that sets are formed at stagzs from certain available sets. Parsons ultimately

adopts a modal notion of availability to explain this tenet of the iterative conception. As

Parsons writes,

S"All that follows from our conception of fl0 as indefinitely large is that if something is available,
then it is in 00..." Lavine, Understanding the infinite, p. 262.

S"We make the plausible assumption that objects we actually do denote by closed terms in our
basic notation are available." Lavine, Understanding the Infinite, p. 262.
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The idea that any available objects can be formed into a set is, I believe,
correct, provided that it is expressed abstractly enough, so that 'availability'
has neither the force of existence at a particular time nor of giveness to the
human mind, and formation is not thought of as an action or Husserlian Akt.
What we need to do is to replace the language of time and activity by the more
bloodless language of potentiality and actuality. 19

Given that Lavine initially cites Parsons, one might think that Lavine's notion of

availability is connected to Parsons's. This thought, however, is incorrect. Parsons

explains what it is for a mathematical object to be available without requiring that

availability be an epistemic notion. Lavine, however, is interested in "epistemically

availability." As he writes, "The main sort of availability we shall consider for

motivational purposes is epistemic availability with respect to a particular purpose,

discourse, state of knowledge, or the like." 20

But the mere restriction to epistemic availability does not support the connection

between availability and the indefinitely large stated in (19). For, many indefinitely large

sets do not contain whatever is epistemically available. For instance, the set of even

numbers is indefinitely large, but 2, which I assume is an epistemically available number,

is not in this set.

I believe it is best to assume that Lavine holds (19) because he has restricted his

attention to "closed indefinitely large sets," where a closed indefinitely large set is an

indefinitely large set that contains whatever is available.

Lavine provides an example of a closed indefinitely large set. He imagines a child

who has a huge bucket of beans which she relies on to display numbers and perform

19 Charles Parsons, "What is the Iterative Conception of Set." In Philosophy of Mathematics:
Selected Readings, Second Edition. Edited by Paul Benacerraf and Hilary Putnam. Cambridge
University Press. Cambridge, 1983. p. 526.

20 Lavine, Understanding the Infinite, p. 261.
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various operations on numbers. The child's counting out, say, nine beans or seeing nine

beans makes the number nine available to the child. Furthermore, in the child's present

circumstance, the child considers the total number of beans in the bucket as far too many

to count. Here, then, we have an example of a closed indefinitely large set. The set of beans

is an indefinitely large set because the child thinks it is far too large to count. This

indefinitely large set of beans contains every available number because the only numbers

that the child has available in these circumstances are numbers she can form using beans in

the buckets. So, the only numbers available to the child are numbers that are less than the

number of beans in the bucket. In what follows, when I speak of indefiniiely large sets, I

will have in mind closed indefinitely large sets.

As for (20), Lavine provides further information about epistemic availability that

helps us see why he believes that it holds. As he writes,

We make the plausible assumption that objects [i.e., mathematical objects] we
actually do denote by closed terms in our basic notation are available. In our
prime example of availability, epistemic availability, that assumption is clearly
reasonable. Thus, for example, schema (6) [XO<coO] brings with it the
assumption that any number whose notation we do employ is available, that is,
in A [an indefinitely large set]. 21

Here Lavine provides conditions under which it is permissible to say that a mathematical

object is epistemically availability. He contends that if we write down the name of a

mathematical object using standard notation, then the object is made epistemically

available.

The above passage suggests that Lavine believes that we can see that (20) is true by

reflecting on the notion of epistemic availability. However, this defense of (20) is

21 Lavine, Understanding the Infinite, p. 262.
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questionable. I take it that an object is epistemically available as long as we have some sort

of mental access to the object or it is somehow given to our mind. If this is the case, why

should writing down a sign for an object ensure that the object is available to us? For the

most part, signs do not resemble what they signify. And, certainly someone could

accidently write down a '1' followed by an '2' and yet have no mental access to 12.

I believe, however, that we can provide some motivation for a slightly revised

version of (20). In particular, consider the following:

Denotation Condition: A mathematical object is epistemically available in a context, if we,
in that context, employ as well as understand sentences containing a closed
term in standard notation that denotes that object.

We might also say that a mathematical object is epistemically available in a context, if we,

in that context, employ a closed term in standard notation that denotes that object and also

know how to use this term. The denotation condition differs from (20) in that it requires us

to understand the sentence containing the term or similarly know how to use the term in

question.

The denotation condition has some plausibility in the case of natural numbers.

Arabic numerals are the canonical notation for small natural numbers. Because this

notation is standardly taught, we expect any competent English speaker to know which

number we are talking about when we use an Arabic numeral. And if the speaker knows

which number is under discussion, it seem plausible to say that this number is available to

her.

Notice that in making the denotation account plausible, the use of Arabic numerals

is key. We do not believe that we make a number available when we use definite

descriptions, such as 'the number of boys in the yard', or when we write out complicated
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expressions involving function symbols, such as '2 + 324 + 7 - 6 + 132 + 16,867 - .1'.

For, if we use either of these expressions, a competent speaker might legitimately wonder

which number we are referring to. However, something seems to be amiss if an English

speaker wonders which number 5 is. 22 So, if we suppose that a mathematical object is

epistemically available so long as we know which object is under discussion, then small

numbers are made available when we employ an Arabic numeral to refer to them.

Lavine's discussion of the rest of the axioms governing the Q's bring out further

features of the notion of availability. The form of axioms (9), (10) and (1l) is different

from that of axiom (8): in particular, axioms (9), (10) and (11) have more than one

occurrence of 'Q' in them.

Lavine extends the bean scenario to provide support for these axioms. So, we again

imagine a child who has a huge bucket of beans that she considers, in her present

circumstances, as much too large to count. And again we imagine that the child makes a

number available to herself by seeing or by counting out that number of beans. In such a

situation, it is clear that if the child starts out with 0o beans in her bucket, she may at some

point run out of beans. In particular, she may perform a bean-operation whose value is

larger than oo. For example, she may try to add numbers whose sum is bigger than o0. The

motivated child responds by getting more beans and thus increasing the number of

available beans. The child can always get enough beans, say r. beans, to calculate the sum

of any two numbers less than oo. Similarly, for many other simple operations,23 the child

is able to get enough beans to perform the desired calculation. In general, the following

22 Someone might wonder whether 5 is Lucy's favorite number or Cathy's. This case can be
distinguished from the case where we wonder which number 5 is, simpliciter.

23 We must restrict what sorts of bean-operations are permissible. If the operation is too complex,
it is implausible to say that the child will not be able to get enough beans to perform it.
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"bean-principle" appears to be true: from our original pile of beans, we can create a new

pile of beans that allows us to calculate the result of relatively simple operations performed

with the original pile.

If we suppose that 0 contains numbers less than co and Q, contains numbers less

than oi, then we can see how the story is relevant to axiom (9). Axiom (9) states that

Vx,y(x,y e 00--> A(x,y) e Q,). That is, it states that £ contains all objects that can be

obtained by applying A to objects in 92. Because adjunction is a simple operation, axiom

(9) appears to be supported by the bean-principle.

The bean-principle also provides support for axiom (10). Axiom (10) states that

Vx(x EL00 -> X E Q,). That is, it states that L2o is a subset of Q1. Since the identity

function is an elementary operation, axiom (10) also appears to be supported by the bean-

principle.

Axioms (9) and (10) bring out further features of the notion of availability. The

axioms illustrate two related notions that Lavine relies on, the notion of degrees of

availability and, in connection with it, the notion of an "availability function." As for the

notion of degrees of availability, Lavine contends that objects are not just available

simpliciter. Rather objects are available to different degrees. In particular, o contains all

objects that are "available to the first degree." 92 contains all things that are "available to

the second degree," i.e., all objects that are available in virtue of the fact that certain

objects in t4o are available. £22 contains all things that are "available to the third degree,"

i.e., all objects that are available in virtue of the fact that certain objects in £2i are available.

And so forth.
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I take it that an object y is available in virtue of another object x, if x's availability

somehow facilitates y's availability. For example, suppose we make an object available by

seeing it. Then, y is available in virtue of the availability of x if it is in virtue of seeing x

that we are able to see y. Lavine provides an example that suggests that this is how he

wants us to understand the notion of "availability to the nth degree." 24 He supposes that

stars are made available by seeing them and that stars that are directly pointed out to us are

available to the first degree. Other stars are then made available in virtue of these initially

selected stars. For example, suppose we are told about the stars that are directly beneath

stars that are available to the first degree. Then, the stars beneath the stars available to the

first degree are available to the second degree. Indeed, seeing stars that are available to the

first degree puts us in the position to see the stars that are beneath them.

The notion of an availability function is the formal counterpart to the notion of

degrees of availability. Availability functions are functions that map objects in Q; to

objects in isi. The notion of an availability function is meant to capture the idea that the

things in 92, are available because the things in Qo are. As Lavine writes, "The things

available in virtue of the availability of the members of Q0 are just those things that can be

obtained from members of Lo via the availability functions."25 In the star example above,

the relevant availability function is the function that takes a star to a star directly beneath

it. Later we will examine the notion of an availability function in more detail as it is

important in assessing Lavine' s argument for both Zillion and Relativized Extensionality.

24 Lavine, Understanding the Infinite, p. 263. The example I present is a simplified version of
Lavine's.

21 Ibid., p. 261.
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The notion of degrees of availability and that of an availability function are

relevant to axioms (9) and (10) because these axioms require that certain functions are

availability functions. In particular, (9) tells us that A is an availability function and (10)

tells us that the identity function is an availability function.

Axioms (9) and (10) also bring out features of the models of Fin(ZFC). In models

of Fin(ZFC) the Q's form a hierarchy. That is, the U's are such that L0g lC -2... , and

for any set of availability functions ! the range off; e F when i is restricted to Up, is

contained in Q for p<q, i.e., rang(fj r [p) Clq. So, we start out with an initial set of

things, CIO, and we build up a larger set by applying functions to the things in no. We

continue this process by applying functions to the things in Ell. We thereby generate a

larger set U2. By continuing this process, we obtain a hierarchy of f's.

Others have proposed models of mathematical theories that are similar to this. In

"Mathematics Without Foundations" 26 Hilary Putnam supplies a modal interpretation of

set theoretic sentences that has properties similar to those of Lavine's interpretation of

Fin(ZFC). Putnam start with models of set theory that are well-founded physical graphs.

The points of the graph are physical points, each point representing a set. The points are

related by arrows that indicate membership. Putnam suggests that we interpret sentences

of set theory by starting with a physical graph and then considering possible extension of

it. For example, if 'VxyPxy' is a sentence of set theory and 'P' has no quantifiers, then

'Vx~lyPxy ' is interpreted as follows. If G is a physical graph and b is a point on G, then it

is possible that there is an extension, G', of G and a point c in G' such that P(b,c).

26 Hilary Putnam, "Mathematics Without Foundations." In Pailosophy of Mathenmatics: Selected

Readings, Second Edition, Edited by Paul Benacerraf and Hilary Putnam. Cambridge University
Press. Cambridge. 1983. pp. 295-311.
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Putnam's G's are similar to Lavine's Q's. The deeper the quantifiers are imbedded the

more G's we need to find such that G c G' c G" c.... Also the notion of an accessibility

function is present. We get from G to a larger graph G' by an accessibility relation that

holds between graphs and their extensions.

We can also view Charles Parsons work in "Ontology and Mathematics" as a

precursor to Lavine's theory.27 Parsons gives a modal interpretation of arithmetic. He

introduces a model of arithmetic which consists of finite possible worlds. The worlds are

related by an accessibility relation that ensures that, for each world, there is a world

accessible from it which contains one more thing. Again, there are similarities with

Fin(ZFC). The worlds are progressively larger, and we get from one possible world to a

larger one by an accessibility relation that holds between possible worlds.

We now turn to the last axiom governing the Q's, axiom (I1):

(VX1,...,X,, e f,)((VX E Qq)#0<-> (VX E ,.)4). Axiom (11) states that for p < q < r, we

can replace an occurrence of 'flq' with the larger 'er' without a change in truth value.

Another observation about the child's indefinitely large pile of beans helps provide

grounds for axiom (11). Even though we have stipulated that there are oo beans in the

original pile, the child does not know how many beans are in the pile. The child knows

only that there are a lot of beans. As far as she is concerned, there could be oi beans in the

original pile. As she sees it, coo and (o1 are indiscernible. We can characterize this situation

more formally as follows. If we replace every occurrence of 'fl0 ' in '$(fl 0 )' by 'fl1 ', then

'$(Q)' and '$(fl 1)' do not differ in meaning in any way that matters. Axiom (1 1) captures

the idea that the fl's are indiscernible in the manner suggested.

27 Charles Parsons, "Ontology and Mathematics." In Mathematics in Philosophy: Selected Essays.
Cornell University Press. Ithaca, New York. 1983. pp.37-62.
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IV. Zillion: Some Preliminaries

Now that I have introduced the special notions on which Lavine relies, I will begin

my critique of his project. I will examine his support for certain relativizations of the

axioms of ZFC, in particular axiom (18), Zillion, and axiom (12), Relativized

Extensionality. In the rest of the chapter, I will point out weaknesses in Lavine's argument

that Zillion is a self-evident principle about finite sets and argue that he ultimately needs to

support a more general version of Zillion. I will then argue that "Generalized Zillion" and

Relativized Extensionality undermine each other. In particular, I will argue that no

plausible interpretation of the notion of availability or availability function enables us to

show that both Relativized Extensionality and Generalized Zillion are true principles about

finite sets.

As we have seen, Zillion says that there is a set x in CIO that contains 0 and

contains the "successor" of every 1-member of x, or in symbols,

(18) (3Xe %2)(Oe x A (Vye Q)(y e x-y u y} Gx))

Axiom (18) is a principle about sets. Indeed, Fin(ZFC) is a theory about indefinitely large

finite sets, so we assume that the members of the U's are sets and that the quantifiers range

over sets. But even though (18) is about sets, we can plausibly view (18) as a principle

about numbers. We can do this because we can identify the set 0 and sets formed from 0

by adj unction with numbers. Furthermore, if we make this identification, we can plausibly

assume that members of the Q's are numbers and so assume that the quantifiers in (18)

range over numbers.

More specifically, we can identify the natural numbers with "the von Neumann

numbers," i.e., the sets 0, (0},(0,(0), (0,(0),{(0,(0))),... and so forth. We
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identify 0 with 0 and I with (0),2 with (0,(0}},3 with (0,(0,{0,(0}}), etc., and

the successor function with the function that takes a set x to the set x u (x). Once such an

identification is made, it is plausible to assume that the Q's contain only numbers and so

assume that the quantifiers in (18) range over numbers. So, we can read (18) as follows:

there is a number x in Q2 that contains 0 and contains the successor of every number that

is less than x and that is in Li1. In what follows, I will often rely on this identification of the

von Neuman numbers with the natural numbers in order to explain under what conditions

(18) is true.

Axiom (18) is the relativized version of the following Axiom of Infinity:

(21) 3x(O e x A Vy(y e x-->y u {y} E X))

In some respects, (18) and (21) are similar. An infinite set witnesses the truth of (21), and

if we choose the Q's appropriately, an infinite set also witnesses the truth of (18). In

particular, the infinite set (0,(0), (0,(0)), (0,(0),{(0,{0)1),...}, which is identified

with the first infinite number and standardly called co, witnesses the truth of (21), and it is

the smallest set that does. Furthermore, if QO = 01 = (0,{0), (0,10)}),...j}, then o0

also witnesses the truth of (18).28

Although an infinite set can witness the truth of both (18) and (21), these axioms

are critically different. (21) is true only if an infinite set exists. 29 On the other hand, we can

choose the fl's so that a finite set witnesses the truth of (18). For example, let fl0 = (0, 1,3)

and fi = (0, 1,3}. (Assume that a numeral here is an abbreviation for the appropriate set

term that denotes the corresponding von Neumann number.) 3 witnesses the truth of

28 Note that the axioms governing the .l's do not preclude oc from being in the .l's.
29 (21) does not entail that cc exists. We also need the Axiom of Separation.
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Zillion. For 0 e 3, and since 1 e 3 and 2 e 3, the successor of every number that is in both

3 and Ql is iri 3. Observe that 3 witnesses the truth of (18) here because 2 is not in Q1, and

since 2 is not in K21, the successor of 2 need not be in the number that witnesses the truth of

Zillion.

In general, the following principle is true:

(22) A finite von Neumann number witnesses the truth of Zillion only if the predecessor
of that number is not in Ki.

We can see that this principle is true as follows. Suppose x is finite von Neumann number

in 0o. And suppose that the predecessor of x is in Q1. We know that since x witnesses the

truth of (18), it must contain the successor of every number that is both in x and in Q1. But

since the predecessor of x is both in x and in 921, then x must be in the number that

witnesses the truth of (18). So, x cannot witness the truth of (18).

An even more general way of stating this condition is as follows:

(23) A finite von Neumann number witnesses the truth of Zillion only if the predecessor
function is not an availability function.

To see this, suppose that the predecessor function is an availability function. In this case,

the predecessor of every member of L2o would be in Q1. In particular, for all x, if x is a

finite von Neumann number in 00, then the predecessor of x is in Q1. By (22), then, no

finite von Neumann number witnesses the truth of (18).

So far, we have seen that a finite set can witness the truth of (18). But Lavine needs

more than this because he wants to establish that Zillion is self-evident principle about

indefinitely large finite sets. To make his case, he relies on intuitions that supposedly arise

from our experiences of indefinitely large numbers. As he writes,
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It seems self-evident that in any fixed context there will be a number whose
predecessor is not available to any degree employed in that context, and that is
all the Axiom of Zillion says.30

Lavine provides an example to bolster his claim. He contends that in certain contexts the

indefinitely large number 10110' is available, but not all of its predecessors are available.

As he writes,

It seems clear, for example, that 1010'"0' is epistemically available in many
actual contexts even though there is no actual context in which all of the natural
numbers below it are epistemically available. 1

So to show that Zillion is self-evident principle about finite sets, Lavine appeals to

intuitions that arise from our experiences of indefinitely-large, finite numbers.32

V. Two Accounts of Availability

We have seen that Lavine claims that it is self-evident that a number may be

available even though not all of its predecessors are available. But why are certain

numbers available and others not? To determine the merit of Lavine's contention, we need

an account of availability. I will offer two accounts of availability and argue that, with

certain caveats, both accounts appear to make it plausible that a number is available

although not all its predecessors are available.

In connection with axiom (8), I discussed what I called the denotation condition for

availability: a number is available in a context, if, in that context, we understand and write

down a sentence containing a term, in standard notation, that denotes it.

30 Lavine, Understanding the Infinite, p. 299.
3Ibid., p. 294. For further relevant comments, see p. 298.

32 We should note that in these passages Lavine claims that an indefinitely large number is in an
indefinitely large set. So, not only are the (2s indefinitely large but the Qs contain objects that are
indefinitely large.
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The denotation account supplies one way of filling in Lavine's argument for

Zillion. In almost any given context, we will write down a relatively small number of

symbols and always fewer than 1010010. So, if '101010 ' is one of the numerals we write

down, then, because 1010'"1 is so large, we will not write down all of its predecessors.

However, there appear to be difficulties with relying on the denotation account to

argue for Zillion. First, in Section III, I suggested that the denotation account seems

plausible when our notation is restricted to Arabic numerals. For, when we use an Arabic

numeral to denote a number, we appear to know which number is under discussion, and so

it appears that the number is made available. Lavine, however, employs terms that contain

function symbols as well as Arabic numerals. This is problematic because we do not

always know which number is under discussion when we use terms containing function

symbols. Indeed, a competent speaker might not know which number is denoted by '8 +6-

10+346+12,345-Jl5h'. So, Lavine appears to rely on a less plausible version of the

denotation account because he assume that we make numbers available when we employ

terms containing function symbols.

However, even though employing some terms containing function symbols does

not make a number available, employing others appears to. Because it is practically

impossible to use Arabic numerals to denote extremely large numbers, we have devised

standard ways of representing large numbers. One technique is the use of scientific

notation. Another is the use of a symbol for exponentiation. Because such notation is

standardly employed and because we cannot employ Arabic numerals to denote truly huge

numbers, perhaps numbers are made available when we use such notation. Afterall, we

cannot give an informative answer to the question 'Which number is 10100 ?,
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But this observation brings us to another worry about employing the denotation

account in support of (18). Lavine claims that he can provide motivation for Fin(ZFC) that

is acceptable to finitists as well as non-finitists. However, many finitists and even some

non-finitists would reject a denotation account that allows for terms containing function

symbols.

One problem is that compact notation, which is standardly used, does not always

deliver numbers that we think are intuitively available. For example, suppose we add a

symbol for the Ackermann function.33 The Ackermann function K is defined as follows:

K(O,y) = n + I

K(x + 1,0)= K(x,l)

K(x + l,y + 1)= K(x,K(x + l,y))

Some of the values on the diagonal are as follows:

K(0,0) = I

K(1,1) = 3

K(2,2) = 7

K(3,3) = 61

2'

K(4,4) = 222', where n =7, i.e., K(4,4)= a stack of 2's that is 7 high.

As for K(5,5), it is quite large. To ge t an idea of how large, consider that

K(5,3) = 222 }n, where n = 222 m where m = 25,536.

Richard Crandall gives us a sense of just how big this is:

" The Ackermann function is the standard example of a computable function that is not primitive
recursive.
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The fifth [Ackermann number K(5,5)] is so large that it could not be written on
a universe-sized piece of paper, even using exponential notation! Compared
with the fifth Ackermann number, the mighty googolplex [=I1010'"0] is but a

spit in the proverbial bucket.34

By adding a symbol for the Ackermann function, then, we can denote truly huge numbers

using fewer than five symbols.

Many might doubt that such huge numbers are made available when we write

down and understand the relevant terms. For, these numbers are so incomprehensibly large

that it does not seem plausible to say that these huge numbers are made available just

because we write down and understanding the relevant terms. Furthermore, at least some

finitists would deny that the Ackermann function delivers available numbers. W. W. Tait,

for instance, explicitly defends the thesis that finitistic methods are encapsulated in

primitive recursive arithmetic. 35 The Ackermann function, however, is not primitive

recursive.

But even if Lavine admits only primitive recursive functions, some finitists will

still find his claims controversial. In his paper "Finitisin and Intuitive Knowledge," 36

Charles Parson argues that exponentiation may not be an acceptable finitist function. He

contends that even though we can intuit that some primitive recursive functions are well-

defined, in particular addition and multiplication, we cannot do the same for

exponentiation.

So, the difficulty with using the denotation account to defend (18) is that compact

notation does not always deliver what many would think of as available numbers. In

34 Richard E. Crandall, "The Challenge of Large Numbers." Scientific American, February 1997. p.
78.

* W. W. Tait, "Finitism", The Journal of Philosophy 78, 1981. p. 524-546.
36 Charles Parsons, "Finitism and Intuitive Knowledge," Forthcoming in Matthias Schirn (Ed.),

Philosophy of Mathematics Today, Oxford University Press.
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response, Lavine can simply restrict his notation accordingly. In particular, he can restrict

himself to Arabic numerals. For, in almost any given context, we will write down a

relatively small number of symbols and always fewer than 1,346,231. So, if '1,346,231' is

one of the numerals we write down, then, because 1,346,231 is so large, we will not, in any

one context, write down every one of its predecessors.

We can provide a different way of understanding Lavine's argument for Zillion by

supplying a different account of availability, an account which comes from Lavine's bean

example. In the bean example, 7, for example, is available to the child because she can see

a pile of seven beans. So, let us say a number n is available relative to a context, if in that

context a person sees n objects. If we rely on this account, it seems correct to suppose that

in certain contexts an indefinitely large number is available but not all of its predecessors

are. For in certain contexts we see n objects, for sufficiently large n, but we do not see m

objects for every m less than n. For example, perhaps looking into the sky ensures that the

number of stars in the sky is available to us. But in this context not all numbers less than

the number of stars are available. For, in this context, although we see a differentiable

group of n stars, we do not see a group of m stars for all m less than n.

More generally, we have reason to believe that given any context, an indefinitely

large number and its predecessor are never both available in that context. Axiom (1 1) tells

us that the indefinitely large Q's that bound the quantifiers are indiscernible. It is also

reasonable to claim that indefinitely large numbers that are in these indefinitely large Li's

are also indiscernible. The reason is that experiences of indefinitely large quantities appear

phenomenologically indiscernible to us. For example, seeing 10,067 pebbles does not

appear to be phenomenologically different from seeing 10,068 or 10,066 pebbles. When I
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look up into the sky I experience some number of stars, but it makes no difference whether

I experience 10,068 or 10,066 stars as I can detect no difference between these

experiences.

This indescirnibility has implications about what numbers are available in any one

context. Since my experience of an indefinitely large number and its predecessor are

indiscernible, in any one context it is not the case that both an indefinitely large number

and its predecessor are available in that context. To see this, consider the following

example. Suppose that from my window I see John running around the Charles, and I see

no other person running around the Charles. In such a circumstance, it seems plausible to

say that John is made available to me, even though my view of him would not enable me

to conclude that it is John that I see rather than his twin. However, if I not only see John but

also see his twin running around the Charles, one begins to doubt that, in this context,

either man is made available to me. For even though I need not be able to distinguish an

object from all others in order for it to be available to me, I should be able to distinguish it

from other objects in the immediate context. Accordingly, since my experience of 12,983

objects appears the same to me as my experience of 12,982 objects, in one context both

numbers cannot be made available.

One might, however, have certain reservations about the contention that a large

number n is made available by seeing n things. If there are three apples before me, it seems

reasonable to say that seeing these apples makes the number three available to me. For, I

can see the apples as three in number. My experience makes me aware of the number of

apples before me. But how can looking at 109,843 pebbles make the number 109,843

available? My experience does not appear to make we aware of the number of pebbles.
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Indeed, when I see a large quantity of things, I am not aware of how many things are

before me.

To respond to this criticism, we need to distinguish between being aware of a

number because we form beliefs about it on the basis of experience and being aware of a

number because we are somehow conscious of that many things. If we cash out awareness

in terms of belief, then I am not aware of 109,843 pebbles when I see them because I do

not form the belief that there are 109,843 pebbles before me. However, if we cash out

awareness in terms of consciousness, then arguably I am aware of 109,843 pebbles

because seeing them is a way of making me conscious of them. If we appeal to this second

sense of awareness, then seeing 109,843 pebbles does make me aware of them, and so

perhaps is a way of making the number 109,843 available.

VI. A Problem with Lavine's Support of Zillion

So far we have tried to substantiate Lavine's argument for (18) by presenting two

accounts of availability. However, even if one believes that these accounts are plausible,

we have reason to question Lavine's argument in support of (18).

To see this, recall principle (23) which says a finite von Neumann number

witnesses the truth of (18) only if the predecessor function is not an availability function.

The critical question is whether the intuition Lavine cites in support of Zillion--i.e., the

intuition that an indefinitely large number is available but not all of its predecessors are

available-ensures that the predecessor function is not an availability function. That is, is

it the case that if an indefinitely large number is available but not all of its predecessors are

available, then the predecessor function is not an availability function?
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The answer is no. 37 For, even if the predecessor is an availability function, there

can be an available indefinitely-large number whose predecessors are not all available. For

example, let 0 = {0, 1,2, 1010-1, 1010) andQ ig {0,1,2,I100-2,l1010-1, 1010}. In this

case, the predecessor is an availability function because the predecessor of every member

of 0 is in Q1. If 1010 is an available number, then it is clear that in every context, i.e., in

every Q, not all of its predecessors are available. So, it appears that this choice of the P's

is consistent with Lavine's intuition about indefinitely large numbers. For, there is a

available number not all of whose predecessors are available. But since the predecessor

function is an availability function, by (23), we know that a finite number cannot witness

the truth of (18). So, in this example, no finite number witnesses the truth of (18), even

though there is an available indefinitely-large number whose predecessors are not all

available.

Lavine has a response to this problem. As he writes,

Thus, sentence (25) [Vx e O(x 0 ->]y e 1(e X A y u {y} x))] has
the effect of adding the predecessor function to the availability functions.38

Sentence (25) is not plausible in a theory that allows indefinitely large sets into
DO, since it imposes restrictions on what may be found to be a member of any
[hereditarily finite set] in O; for any x, it asserts that there is a y such that
[y u {y}] is not in x, and that exclusion is contrary to the possibility that x is
indefinitely large. 39

So, Lavine contends that our intuitions about indefinitely large sets support the claim that

the predecessor function is not an availability function. In particular, he relies on the

2" Vann McGee pointed this problem out to me.
38 To see how (25) adds the predecessor function to the availability functions, suppose some

number, say 4, is in Q0, where the numeral '4' here denote the corresponding von Neumann
number. Since 4 is in no, (25) tells us that there must be a y in fli such that y is in 4 but
y u (y) e 4. Since the only member of 4 that satisfies this requirement is 3, (25) requires that
3EQK1.

9 Lavine, Understanding the Infinite, p. 299.
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intuition that if x is an indefinitely large set, then we should not add an axiom that restricts

sets from being in x.

The problems with relying on this intuition is that we can just as plausibly use it to

argue for the opposite conclusion, namely that the predecessor function is an availability

function. By excluding the predecessor function from the set of availability function, we

bar sets from being in the indefinitely large Q's. In particular, not every predecessor of a

member of Q0 can be in Q1. According to the above passage, barring these sets from the

indefinitely large set L2, would be contrary to the fact that Q1 is indefinitely large.

Although Lavine fails to show that the predecessor function is not an availability

function, he at least realizes that to defend the claim that a finite set witnesses the truth of

Zillion he must give reasons for believing that the predecessor is not an availability

function. So, as it stands, Lavine has not succeeded in showing that we have reason to

believe that a finite set witnesses the truth of Zillion. However, the option appears to be

open to him to defend this claim by arguing that predecessor is not an availability function.

Indeed, a promising argument along these lines is to appeal to the indescirnibility of

indefinitely large numbers. As I argued in the last section, we have reason to believe that

in any context, it is not the case that both an indefinitely large number and its predecessor

is available. We can use this fact to argue that predecessor is not an availability function.

However, even if such a defense of Zillion is possible, it is ultimately of little use.

For, in the next section, I will argue that there is little point in defending Zillion because

Lavine needs to defend a more general claim than Zillion.
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VII. Why Zillion?

As we have seen, Lavine argues for Zillion, i.e., (18) by appealing to intuitions we

have about indefinitely large numbers. This argument in support of (18) is plausible

because we can find a finite von Neumann number that witnesses the truth of (18). It is

natural to wonder whether Lavine's argument still works if we identify numbers with other

(o-sequences of sets.

For example, suppose we identify numbers with Zermelo numbers, i.e., suppose

we identify 0 with 0, 1 with (0), 2 with ((0), 3 with {{{011, and so forth. The

Axiom of Infinity associated with this identification is

(24) x(O0e x AVy(y eCx-+ {y} ex))

This axiom coupled with the Axiom of Separation guarantees the existence of the set

(0,(0){((0)}},{((0)},...), which we identify with the first infinite number and, for

present purposes, dub '63'. The relativized version of (24) is

(25) (3x eQ90 )(0e x A (Vy EQ 1)(y e x -+ {y} Ex))

As in the case of (18) and (21), an infinite set witnesses the truth of both (24) and (25), as

long as the Q's are chosen appropriately. In particular, 0 witnesses the truth of both (24)

and (25).

However, (25) is critically different from (18). In particular, even though we can

choose the t's so that a finite set witnesses the truth of (25), the witness set will not be a

Zermelo number. No finite Zermelo number witnesses the truth of (25). Indeed, any set

satisfying (25) must contain 0 and (0), but no finite Zermelo number contains both these

sets.
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This observation has implications for Lavine's argument in support of (18). If we

use (25) in Fin(ZFC) rather than (18), Lavine's intuitions about numbers will not lend

support to (25). Since the set that (25) postulates is not a Zermelo number, we cannot

translate (25) into a statement about numbers. For, it is not plausible to read the quantifiers

in (25) as ranging over numbers. Accordingly, intuitions about numbers have no bearing

on the truth of (25).

One might respond that this discovery does not pose a problem for Lavine. One

might argue that as long as he can provide justification for (18), it does not matter that he

cannot provide justification for (25). It is enough to provide justification for one finite set

theory. He need not provide a justification for all the competing finite set theories.

This response works as long as (25) or some other relativization of an axiom of

infinity does not provide a "less arbitrary" finite set theory than the one obtained using

(18). For, if there is a finite set theory that is less arbitrary than Fin(ZFC) and Lavine

cannot defend this less arbitrary theory, then I believe Lavine's choice of Fin(ZFC) is

questionable.

I have in mind here a certain way one set theory is less arbitrary than another. I

believe that one set theory is less arbitrary than another if the first posits all sets of a

"similar" sort whereas the other posits the existence of only some sets of this particular

kind. For example, a set theory that posits the existence of the sets (0) and (0,{(0)), but

does not posit ((0)) is more arbitrary than a set theory that posits the existence of all

three of these sets. For, these sets are all similar in that all have less than two members, all

are hereditarily finite, and all are of low rank. In fact, there seems to be no important

difference between these sets that would justify positing some but not all of them. I also
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take it that one theory is less arbitrary than another theory if a fragment of the one theory

is less arbitrary than the corresponding fragment of the other.40 So, if T- (A) is the theory

T without axiom A and if T-(A) is less arbitrary than 7-(A') where A' corresponds to A,

then T is less arbitrary than 7.

To show that there is a finite set theory that is "less arbitrary" than Fin(ZFC),

which contains (18), I will argue that there is set theory less arbitrary than the set theory

containing (21), the unrelativized version of (18). To see this, let us recall the different

Axioms of Infinity from which the relativizations are obtained. As we have seen, (18) is

the relativization of,

(21) 3x(0 E xAVy(y e x -> y u{y} e x))

whereas,

(25) (3x e L 0)(0 e x A(Vy e Q 1)(y e x -> {y} e x))

is a relativization of a different Axiom of Infinity:

(24) 3x(O0e x A Vy(y eCx->f{y} e x))

There is yet another Axiom of Infinity,

(26) 3x(OeixAVyVz(yexAzex->yu{z}ex))

which has as its relativization,

(27) (Bx eQ)(O0ex A(Vy e Q)(VZ EQ)(y ex ̂z ex-+>y u{z} Ex))

'* Theories have corresponding fragments, if a version of each axiom of the one theory is contained
in the other theory.
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I believe that we have reason to prefer the finite theory containing (27) over the

finite theory containing (18) or the finite set theory containing (24). The reason is that we

have some reason to prefer the unrelativized theory containing (26) over both the theory

containing (21) or that containing (24). For, let Z* be the theory containing all of the

axioms of ZFC except Replacement, Choice and Infinity. I contend that Z* u ((26)) is

less arbitrary and therefore a better theory than both Z* u 1(24)1 and Z* u ((21)1.

To see this, observe that Z* u ((24)) and Z* u ((21)) fail to postulate the

existence of the most basic infinite sets. Neither ensures the existence of the set containing

all the finite well-founded sets. Furthermore, Z* u ((24)) fails to guarantee the existence

of a set containing all the finite von Neumann numbers, and similarly, Z* u ((21)) fails to

guarantee the existence of a set containing all the finite Zermelo numbers. 41 Z* u ((26)),

on the other hand, guarantees the existence of all of these sets.

If we adopt Z* u ((24)), then we seem to state a preference for some infinite sets

over others, for we end up with a theory that postulates the existence of the Zermelo set,

but not the Von Neumann set. But why should we think that the Zermelo set exists, but the

von Neumann set does not? Similarly why should we think that the Zermelo set exists, but

a set containing all hereditarily finite sets does not? If we postulate one of these infinite

sets, why not the other? In what way are these sets importantly different? In adding (26) to

Z* rather than (21) or (24), we avoid postulating some of these infinite sets but not others.

Accordingly, Z* u ((26)) seems to be the least arbitrary of the lot.42

41 Gabriel Uzquiano discusses these claims in his MIT thesis. He also discusses the merit of each of
these theories.

42 One might also claim that Z* u ((26)) is preferable because its natural model is V2w whereas the
models of Z* u ((24)) and Z* u ((21)) are not identifiable with a Va. Lavine, however, would
argue against such a contention because he does not believe that the iterative hierarchy provides
the basis for our conception of sets. Accordingly, he would not take this as reason to prefer
Z* u ((26)). My argument in the text avoid appealing to the iterative hierarchy. I simply point
out that a theory that posits some infinite sets but not other similar infinite sets seems more
arbitrary than a set theory that posits all similar infinite sets.
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If Z* u ((26)) is a less arbitrary theory than Z* u ((24)1 or Z* u ((21)), then

ZFC* u ((26)1 is a less arbitrary theory than ZFC* u ((24)) or ZFC* u ((21)), where

ZFC* is the theory containing all of the axioms of ZFC except Infinity. Since the

relativized version of ZFC* u ((21)) is simply Fin(ZFC), it follows that a finite set theory

containing (27) is less arbitrary than Fin(ZFC).

This observation appears to pose a problem for Lavine. For, he cannot rely on

intuitions about indefinitely large numbers to support (27). For, just as we cannot read the

quantifiers in (24) as ranging over numbers, we cannot read the quantifiers in (27) as

ranging over numbers.

However, even though intuitions about numbers are no help with respect to (27),

we might be able to appeal to intuitions about sets, In particular, the following holds:

(28) A finite set witnesses the truth of (27) only if membership is not an availability
function. 43

That is, a finite set winesses the truth of (27) only if it is not the case that for any set x in

92 all the members of x are available in Q1. To show that (28) holds, suppose that x is

finite set in 910 that witnesses the truth of (27). If membership is an availability function,

then x must contain every von Neumann number and so, contrary to our hypothesis, must

be infinite. For, 0 is in x, so x contains the successor of 0. And if a von Neumann number

n is in x, then since membership is an availability function, n is in ta, and by (27) the

successor of n is in x. So, x contains all finite von Neumann numbers.

Overall, then, we have some reason to prefer a finite set theory with (27) over one

with Zillion. But if this is the case, Lavine cannot appeal to intuitions about numbers to

43 I have followed Lavine and used the term 'availability function' to talk about relations as well as
functions.
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defend this preferred finite set theory. Rather, to defend (27), or what I will call

"Generalized Zillion," he must establish the more general claim about the membership

relation, that membership is not an availability function.

In what follows I will argue that the requirement that membership is not an

availability function conflicts with Lavine's support of Relativized Extensionality. I will

argue that no plausible interpretation of the notion of availability or availability function

enables us to show that Generalized Zillion and Relativized Extensionality are true

principles about finite sets.

As a final note, I will indicate how the results of this section highlight the

difference between Lavine's notion of availability and the notion of availability employed

iterative account.44 The iterative conception provides a story about the set formation

process. At the first stage, all non-collection are available. From these available object all

collections are formed. At the second stage, then, all non-collections as well as all

collections of non-collections are available. From all available objects at the second stage,

all collections are formed. At the third stage, then all collections of available objects from

the second stage are available. And so the story goes. So, on the iterative conception a set

is available at a stage, only if all its members are available at the proceeding stage.

We can now see that the notion of availability at work in the iterative conception is

quite different from the notion of availability at work in Lavine's conception. Accordingly

to Lavine, certain sets must be available before all of their members are. Indeed, as (28)

indicates, some sets must be available at an earlier "stage" than any of their members.

* See George Boolos, "The iterative Conception of Set," Journal of Philosophy 68 (1971). pp. 215-231. And
also his "Iteration Again," Philosophical Topics 26 (1989). pp. 5-21.
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VIII. Relativized Extensionality: Some Preliminaries

To establish that there appears to be no way to support both Generalized Zillion

and Relativized Extensionality, we need to examine Relativized Extensionality. Let us

recall that Relativized Extensionality reads as follows.

(12) (Vxy e QO)(Vz e Q,(z e x <->+z e y) -> x=y)

We can understand this axiom as stating that if x and y are distinct members of 0 , then

there is a z in Q1 that witnesses that x and y are different, i.e., there is a z in Q1 that is either

in x but not in y or in y but not in x. In the rest of the chapter I will examine Lavine's

argument for this principle and argue that it does not seem possible to show that both

Relativized Extensionality and Generalized Zillion are true principles about finite sets.

Lavine claims that Relativized Extensionality is a self-evident principle about sets.

No doubt that unrelativized Extensionality is self-evident. But saying why it is self-evident

is delicate matter. We can first observe that the justification of Extensionality is different

from that of other set theoretic axioms. We may try to justify other axioms by arguing that

if we think of sets in such and such a manner, then the axioms are easily seen to be true. In

this way, we argue that the axioms, in some sense, follow from a certain conception of set,

and so the axioms are self-evident with respect to this conception. However, we do not

justify the Axiom of Extensionality by showing that it follows from some conception of

set. Rather it is a constraint on any conception of set that Extensionality should be true of

it. If a conception of set fails to ensure the truth of other axioms besides Extensionality,

many will be dismayed, but it is arguable that we are not required to discard the

conception. However, if someone offers a conception of set for which Extensionality fails,

we suspect that she is not offering a conception of set. As George Boolos writes, "But a
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theory that did not affirm that the objects with which it dealt were identical if they had the

same members would only by charity be called a theory of sets alone."4 5 So, a conception

of set is unacceptable if Extensionality is not true of it.

What, then, is an acceptable justification for the Extensionality? Boolos gives a

plausible characterization in the following passage:

It seems probable, nevertheless, that whatever justification for accepting the
axiom of Extensionality there may be, it is more likely to resemble the
justification for adopting most of the classical examples of analytic sentences,
such as 'bachelors are unmarried' or 'siblings have siblings' than is the
justification for accepting any other axioms of set theory. That the concepts of
set and being a member of obey the axiom of Extensionality is a far more
central feature of our use of them than is the fact that they obey any other
axiom.46

So, Extensionality is self-evident because it is true in virtue of facts about how we use

certain words.

Lavine's justification of Relativized Extensionality is very different from that

given for Extensionality. He claims that Relativized Extensionality "reflects the intuition

that a set that distinguishes two sets is available in virtue of the fact that the two sets are." 47

However, although there is something incoherent about denying Extensionality, off hand,

it appears that we do not do a disservice to the concepts of set or availability by holding

that two sets are available even though no witness set is available.

But what, then, is the justification of this axiom? The justification for Relativized

Extensionality employs the notion of degrees of availability, a notion we first discussed in

connection with axioms (9) and (10). In discussing those axioms, I noted that when Lavine

45 Boolos, "The Iterative Conception of Set," p. 229.
'* Boolos, "'The Iterative Conception of Set," p. 229.
47 Lavine, Understanding the Infinite, P. 295.
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says that the set c is available in virtue of thefact that sets a and b are, he takes it that c is

the value of an availability function on arguments a and b, where the relevant availability

function is a function that takes members of Q; to Qi. 1 . If we rephrase Lavine's

justification of Relativized Extensionality using the notion of availability functions, we get

the following: Relativized Extensionality reflects the intuition that there is an availability

function that takes two sets in Q; to a set in Qi+1 that witnesses their difference.

We again face the notion of availability. This time, however, it does not seem that

we have to give an account of the availability of a mathematical object. Rather we need to

give an account of the notion of an availability function. In the next section I will examine

the notion of an availability function. I will argue that no plausible account of availability

function ensures that both Relativized Extensionality and Generalized Zillion are true

principles about finite sets.

Let me end this section by commenting on why one might begin to sense a tension

between Relativized Extensionality and Generalized Zillion. We have seen that a finite set

x witnesses the truth of Generalized Zillion only if membership is not an availability

function, i.e., only if certain members of a set in Q0 are barred from being in Q1. In this

way, Generalized Zillion requires that some members of some sets are not available in Q1.

Relativized Extensionality, on the other hand, requires that some members of some sets

are available in Q0. It tells us that whenever we have two sets, some member of one of

them must be available. So, Generalized Zillion tells us that certain members of sets are

not available while Relativized Extensionality tells us that certain members of sets are

available. Of course, these two requirements are not inconsistent. However, it looks as if

generating intuitions that will support both these claims may be a lot to ask. How can we
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ensure that certain special members of a set are available but not all of its members are

available? The challenge in the next section is to find an account of the notion of an

availability function that has the right hit and miss feature.

IX. Availability Functions

In what follows I will examine two accounts of the notion of availability function

and argue that each either classifies membership as an availability function or fails to

classify a witness function as an availability function. The first account comes from

Lavine's discussion of the Axioms of Indefinitely Large Size. In this discussion, Lavine

presents an example that provides us with one interpretation of the notion of an availability

function. In particular, Lavine observes that a child who has only seventy beans but wants

to know what 10 x 10 is can always get more beans and then calculate the answer. In

general, a child can always enlarge her original pile of beans in order to calculate simple

operations performed with the original pile. In the example, the larger and larger piles of

beans correspond to the larger and larger Q's, and the operations the child perform can be

taken to represent availability functions.

If these operations represent availability function, then, this example suggests a

way to flesh out the notion of availability function. Since the child is performing

operations with a pile of beans, the sorts of operations she performs can be represented

physically. Perhaps availability functions are functions that have some sort of physical

interpretation.

The star example fosters this interpretation of the notion of an availability function.

In this example, Lavine supposes that stars that are directly pointed out to us are available

to the first degree. Other stars are ffhen made available in virtue of these initially selected
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stars. For example, perhaps we are told about the stars that are directly beneath stars that

are available to the first degree. These stars are then available to the second degree. The

relevant availability function here is the function that takes every star to the star directly

below it. Again Lavine employs a physical model, and the functions he discusses have a

physical representation.

It is a bit of a stretch, but we might be able to provide a physical interpretation for

a witness function. Suppose that red marbles are tokens of set a, blue marbles are tokens of

the set b, and so forth. When presented with two sets we simply need to get rid of matching

elements on the sets. Any leftover marble will be an appropriate witness to the difference

of the two sets.

But even though this account of availability function might lend some plausibility

to Relativized Extensionality, it appears to undermine the claim that a finite set witnesses

the truth of Generalized Zillion. As I stated in (28), a finite set witnesses the truth of

Generalized Zillion only if the membership relation is not an availability function. Since

membership has a simply physical interpretation-any bean in the pile is a member-this

account suggests that membership is an availability function.

This brings me to the second account of the notion of availability function.

Perhaps, we can flesh out the notion of an availability function by adopting a version of the

denotation account for availability functions. Perhaps, a function is an availability function

if we write down a name for it using "standard notation."

On this account, it appears that a finite set does not witness the truth of Generalized

Zillion. Indeed, the membership relation is standard notation, so membership appears to be

an availability function.
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We can alter the denotation account to avoid this conclusion. Perhaps, a function is

available if using standard notation, we can write down the name of its output, or in the

case of a relation, its outputs. In this case, membership is not an availability function

because if we are just given the name of a set, we often cannot write down the names of all

the set's members.

But even though this new condition might lend some plausibility to Zillion, this

new condition does not appear to make it plausible that a witness function is an availability

function. For, to make that claim plausible, it appears that we need a general way of

specifying the output of a witness function. The following comment of Yannis

Moschovakis helps us see why this approach is fruitless:

The Axiom of Choice is the only Zermelo axiom other than Extensionality
which is not a special case of the General Comprehension Principle. This is
misstated on occasion, to make the claim that the axiom of Choice is the only
one which demands the existence of objects for which it does not supply a
definition, which is not true: the Extensionality and Power Set Axioms do the
same, in a more fundamental if indirect manner.48

Moschovakis's comments tell us that, in general, for any two sets Extensionality does not

provide us with a formula in the language of first-order set theory that gives the entrance

condition for a unique set that distinguishes them. In the case of Extensionality we cannot

provide a formula which is such that given any two sets, this formula defines a witness

set.49

One might think that we can get around this feature of Extensionality. If we appeal

to the Axiom of Choice, then for any two sets we can posit the existence of a function that

48 Yiannis Moschovakis, Notes on Set Theory. Springer-Verlag, New York, 1994. p. 120.
49 on the constructible universe, we can define a well-ordering on the universe. For any two

constructible sets, we can write down a formula that defines the least member of their symmetric
deference. So, for any two constructible sets, we have a formula that is true of a set witnessing
their difference.
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takes these sets to a unique member of their symmetric difference. However, since we

appeal to the Axiom of Choice, we do not generate a name for this witness set. Indeed, all

we know is that for every two sets there is some function for which a witness set is a value.

In general, we can provide a name for neither the function nor its output.

Overall then, neither the physical or the denotation account of an availability

function enables us to argue that both Relativized Extensionality and Generalized Zillion

are true principles about finite sets. In general, it seems doubtful that any account of

availability functions will have the needed features. The account must ensure that

membership is not an availability function and simultaneously ensure that a restriction of

membership is an availability function. Indeed, the account must ensure that not all the

members of the symmetric difference of the available sets x and 0 are available. However,

it must also ensure that a member of the symmetric difference of x and 0 is available. But

what principled reason could we have for thinking that the symmetric difference is not an

availability function, yet believe that a restriction of it is an availability function? On the

face of it, the symmetric difference is more familiar and far simpler than the needed

restriction. Furthermore, the symmetric difference is part of standard set-theoretic notation

whereas the needed restriction is not. All these facts suggest that we have more reason to

believe that the symmetric difference is an availability function than we have to believe

that a restriction of it is.

X. The Final Conflict

I believe that there is a further conflict between Generalized Zillion and

Relativized Extensionality. As I noted previously, Lavine claims that Relativized

Extensionality "reflects the intuition that a set that distinguishes two sets is available in
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virtue of the fact that the two sets are." 50 He then fleshes out the notion of 'in virtue of'

phrase here in terms of availability functions. In the previous section, we saw that there

appears to be no account of the notion of availability function that provides us with a way

of showing that both Relativized Extensionality and Generalized Zillion are true principles

about finite sets.

One might think, however, that to understand Lavine's defense, we must employ

the intuitive notion on which the notion of availability function rests. As I noted, the notion

of availability function is the formal counterpart to the notion of degrees of availability.

In this section I will argue that relying on the intuitive reading of the notion of

availability function also does not provides us with a way of showing that both Relativized

Extensionality and Generalized Zillion are true principles about finite sets. According to

the intuitive reading, Generalized Zillion is a true principles about finite sets only if it is

not the case that all the members of a set x are available in virtue of the availability of x.

And Relativized Extensionality holds only if in virtue of the availability of two sets, a set

witnessing their difference is available. I will argue that no account of set availability

appears to support the contention that these axioms are true principles about finite sets and,

furthermore, that certain accounts serve to undermine these axioms.

So far we have examined two ways of spelling out availability, an experiential

account and a denotation account. Thinking about set availability in some experiential way

is not promising. On such an account, a set is available if we see a group of tokens of its

members. Relativized Extensionality appears to hold on this account because in virtue of

making two set available, we make all their members available, for we see each member of

50 Lavine, Understanding the Infinite, p. 295.
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the group. However, this account of set availability clearly undermines Generalized

Zillion. For, in making a set available, we thereby make all of its members available.

As for the denotation account, the denotation account says that a set is available if

we write down and understand a sentence that contains a standard name for the set.

But what is standard notation for sets? We encountered this question in connection

with Zillion. At that point we assumed that we could employ Arabic numerals. Now we

need names for a variety of sets, not just the von Neumann numbers. I assume, then, that

our standard notation comes from the language of ZFC.51 The language of ZFC contains

the language of first-order logic plus the two place predicate 'C'.

With only these basic resources, however, we have no names. We can follow

Lavine's lead here. When discussing Fin(ZFC), he adds the constant '0' and the function

symbol 'A' where 'A(x,y)' means the same as 'x u fy)'. In this way, we can form the

names '0', 'A(A(0,0),0)', 'A(0,A(A(0,0),0))', and so forth.

But if we only have these names, then it is not the case that both Relativized

Extensionality and Generalized Zillion are true principles about finite sets. For, suppose I

have written down and understood the symbols

'A(A(A(0,0),A(0,0)),A(A(O,0),A(0,0)))' and '0'. The sets A(0,0) and

A(A(0,0),A(0,0)) are the only sets that witness the difference between these two sets.

Are either of these witnesses available in virtue of the availability of

A(A(A(0,0),A(0,0)),A(A(O,0),A(0,0))) and 0? To answer this question we must

consider two options: either 'A(0,0)' and 'A(A(0, 0),A(0, 0))' do not occur

syncategormatically within 'A(A(A(0, 0),A(0, 0)),A(A(0, 0),A(0, 0)))' or they do.

51 We can also assume that the notation comes from Fin(ZFC). The Appendix shows how to

introduce new symbols to the language of Fin(ZFC)
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If 'A(0,0)' and 'A(A(0,0),A(0,0))' do not occur syncategormatically within

'A(A(A(0,0),A(0, 0)),A(A(0, 0),A(0,0)))' but rather have independent significance,

then in writing down and understanding sentences containing

'A(A(A(0, 0),A(0, 0)),A(A(0, 0),A(0, 0)))' we also write down and understand a

sentence containing 'A(0,0)' and 'A(A(0,0),A(0,0))'. However, if we assume that the

parts of these terms have independent significance, then a finite set cannot witness the

truth of Generalized Zillion. For, when we write down any set using this notation, we write

down the names of all of its members. So, it appears that in virtue of making a set available

we make all its members available. On the other hand, if 'A(0, 0)' and

'A(A(0, 0),A(0, 0))' occur syncategormatically within

'A(A(A(0,0),A(0,0)),A(A(0,0),A(0,0)))', then in writing down these two sets we

do not succeed in making a witness set available. So, in this case, Relativized

Extensionality turns out to be a false principle about finite sets.

The situation is even worse than this example suggests. For, there is no principled

reason to limit the language in this way, i.e., to include only one constant and one function

symbol.52 This constant and function symbol are no different than other standard constants

and function symbols that can be or have been added to the language of ZFC. Indeed, we

can and do expand the language of ZFC by adding standard names for functions, relations,

and constants. Adding these symbols does not increase the expressive power of the

52 There is a slight problem with axiom (8). Lavine originally sttes axiom (8) as follows: c c 57,
where 'c' is replaced by any constant in the language of set theory. I stated axiom (8) as 0 e 0
since '0' is the only constant that Lavine adds to the language of Fin(ZFC). However, if we are
allowed to expand the language of Fin(ZFC), it appears that we cannot assume that the original
form of axiom (8) holds for all new constants. For, since we can introduce infinitely many
constants, there would be no finite models of Fin(ZFC). I suppose we can just use axiom (8) as I
stated it. For all Lavine needs from axiom (8) is to ensure that the fl's are non-empty. Indeed, in
his paper "Locally Finite Theories," Mycielski does not include axiom (8). Instead he simply
requires that the Q's be non-empty.
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language or the deductive power of the theory. Once we expand the language of Fin(ZFC),

however, it is completely implausible to say that for any two available sets x and y, there is

a witnesses set that is available in virtue of the availability of x and y.

To see this, first I will describe how to introduce a function or a constant to ZFC.

To make such introductions, we must find some formula 4(x,...,xn,y) in the basic

language of set theory and with no free variables other than x,...,x,,,y. Additionally,

$(x ,...,x,y) must be such that ZFC entails Vx 1,...,x,,!y$(xI1,...,xn,y). If these criteria

are satisfied, we can let F(x1,...,x,) be the unique y such that $(x1 ,...,x,,y). For example,

we introduce '0' with the formula $(y): Vz(z e y). Using the Extensionality and

Separation Axioms, we can prove that there is a unique y such that $(y). We then let 0 be

the y such that $(y).

In certain respects it does not matter what new symbols we introduce by this

method. For, we have introduced the functions and constants in such a way that any

formula containing a function symbol or a constant is equivalent to a formula in the basic

language of set theory. However, since the denotation account requires standard notation,

we rely on standard function symbols and constants to name sets. The following names are

standard: 2 N, (S(0),SS(0)),co+ I.

Class terms of the form '{x14(x 1,... .,xn,x)}', where $(x,4...,xnx) is replaced by a

formula of the language of ZEC, are another standard device to name sets. The class term

'{yl(xi .. , x, x)}I' refers to a set as long as ZEC proves that

Vx1, . ..,x,]yVx(x e y <-+ @(x1, ... ,x,,x)). We can use this device to name sets only if we

add class terms to the language of ZFC. As in the case of defined function syrnbols and
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constants, adding class terms to the language does not increase the expressive power of the

language or the deductive power of the theory. 53 ' 54

Once we expand the language of Fin(ZFC), it is completely implausible to say tht

for any two available sets x and y, there is a witness set that is available in virtue of the

availability of x and y. Terms of the form '{x1$(x))' provide a nice example. No $'s need

be available for us to understand a sentence containing the term '{xI(x))'. Indeed this is

one of the benefits of class abstracts. When a set has lots of members, it is impossible to

think about it by somehow running through its members. Class abstracts allow us to think

about a set without thinking about its members, as the set is presented to us via an open

formula. If we employ class abstracts, then it looks as if a witness set for two sets is not

made available in virtue of the availability of those two sets.

As for other symbols, it is not always clear whether they denote the same set. For

example, without a computation, we do not know whether V4 is identical to the set

(0,(0},{0{0) 1{10) ),0,{0) ) 0,0{0)}}},{{10)(0)}}, where V4 is the

fourth level of the iterative hierarchy.

In sum, then, if we add only the constant '0' and the function symbol 'A' to the

basic language of ZFC, we cannot ensure both that Relativized Extensionality and

Generalized Zillion are true principles about finite sets. And once we expand the language,

it is no longer obvious when two terms denote the same or different sets. So, it just seems

patently false to say that in virtue of two sets being available a set that witnesses their

difference is available.

2 See Azriel Levy, Basic Set Theory. Springer-Verlag, Berlin Heidelberg New York, 1979. p. 13
Theorems 4.5 and 4.6.

54 This similarity between class terms and functions is not surprising. We can view class terms as
simply a convenient way of introducing functions. If for all x1,...,x,~ there is a set y such that
y=(xI@(xI,...,x,,x)), then by appeal to Extensionality we know that for all xi,...,x,
(xl$(xI,...,x,,,x)) is the unique y such that %(y), where y(y) is Vx(x e y-+ $(xI,...,x,x)).
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XI. Summary

The course of the argument has been as follows. I argued that Lavine fails to

establish that it is self-evident that a finite set witnesses the truth of Zillion. I then pointed

out that even if Lavine could establish this, the maneuver is insufficient to motivate the

"appropriate" finite version of ZFC. For, the appropriate version of finite set theory

contains Generalized Zillion rather than Zillion. To motivate a finite set theory containing

Generalized Extensionality, he must make it plausible that membership is not an

availability function. I then turned to Relativized Extensionality. My overall point in

connection with Relativized Extensionality was that it does not seem possible to show that

both Relativized Extensionality and Generalized Zillion are true principles about finite

sets. No account of availability functions enabled us to make the case. Furthermore, when

we understand the notion of availability function more intuitively, Lavine's defense of

Relativized Extensionality turns out to be highly implausible.

XII. Appendix

We have examined how to add constants and function symbols to the language of

ZFC. Using this as a guide, we can see how we add them to Fin(ZFC). Since we are

making such introductions in Fin(ZFC), we must rely on the axioms of Fin(ZFC) to ensure

that the open formulas in our definitions are satisfied by a unique set. We add such

notation to Fin(ZFC) as follows. Suppose we have shown in ZFC that F(x,...,x.) is the

unique y such that $(x1, . .. ,xa,y) where $(x1, . ..,xa,y) is a formula in the basic language

with no free variables other than x1, .. .,x,.,y. That is we have introduced 'F' to the

language of ZFC by proving from ZFC that Vx, ,. ..,x,,3!y$(x1 ,...x,)
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We can introduce a corresponding 'F' in Fin(ZFC) as follows. First, we suppose

that 'i''2,--'n' are the only Qs that we have written down. We then let

F1(x1 ... ,xn) be the unique y such that $I(x 1,...,xny) where $ 1(x1,...,x ,y) is a regular

relativization of 5 obtained by bounding the first quantifier that occurs in $ with Q2-55 We

can define FI(x1 , ... ,x,) in this way because we can prove

Vx X, . E.Q.,x 3 e !Ye Q 1 (x1,.a.a.,x,y) from the axioms of Fin(ZFC). We can carry out

this proof since Vx,...,x,3!y$,(x,...,x,,y) follows from ZFC just in case

VxI,...,xe Q!y e Q$14 1(xI,...,x,,y) follows from Fin(ZFC).56 We have thus defined

a function that corresponds to 'F', but this function is restricted to members of Qo and its

values are members of L21. We can continue this process, however, and define

F2(xI.--Xn.,) as $2(xI,.---,xn,-y) where $2(x1, ---,xny) is the regular relativization of $

obtained by increasing the subscripts of the Q's that show up in $1 by 1. So, we now have

a function corresponding to 'F' except this function is restricted to members of i, and it

outputs members of Q2 . We can consolidate the above information by adding an 'F' to the

language such that for x1 ,...,x, in QP, F(x,...,xn) is the unique y such that

01; I(xl,...,xny) .5

Through arguments resembling those in the previous paragraph, we can also show

that if 5 is a formula of the language of ZFC and '{xl$(x))' names a set, then '(xl$*(x))'

names a set in the language of Fin(ZFC) where $* is a relativization of $. So, if we add

class terms to the language of Fin(ZFC), we can name sets in Fin(ZFC) using them.

55 We could single out a unique relativization by requiring that we use the regular relativization that
contains the fl's with the smallest subscripts. We can do this because at any one time we have
written down only finitely many fl's.

56 For a proof of this, see Theorem 3.3 in Understanding thet Infinite (p. 273).
57 Note that each function in ZFC can be associated with more than one function in Fin(ZFC). If we

start out with different regular relativizations of $ we end up with different functions in Fin(ZFC).
So, for each function in ZFC, there is a family of functions in Fin(ZFC) that we can associate with
it. Also note that if more fl's are written down, our definition of F must be updated.
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Chapter 2

Experience of the Infinite

It is often taken as a datum that we do not experience the infinite. For example, in

his An Essay Concerning Human Understanding John Locke claims that we cannot form a

conception of the infinite because we lack experience of the infinite. As he writes,

As for the idea of finite, there is no great difficulty. The obvious portions of
extension that affect our senses, carry with them into the mind the idea of the
finite:... The difficulty is, how we come by those boundless ideas of eternity
and immensity; since the objects we converse with come so much short of any
approach or proportion to that largeness.

In A Treatise of Human Nature, David Hume suggests a similar worry:

'Tis universally allow'd, that the capacity of the mind is limited, and can never
attain a full and adequate conception of infinity: And tho' it were not allow'd,
'twou'd be sufficiently evident from plainest observation and experience. 2

And as we have seen in the first chapter, Shaughan Lavine argues that it is puzzling how

we have knowledge of the infinite because "we have absolutely no experience of any kind

of the infinite." 3

John Locke, An Essay Concerning Human Understanding, vol. 1, Ed., Alexander Fraser, Dover
Publication, inc., New York, 1959. p. 277.

2 David Hume, A Treatise of H-uman Narure, second edition. Ed. L.A. Selby-Bigge. Oxford

University Press, Oxford, 1978. p. 26.
3 Shaughan Lavine, Understanding the infinite. Harvard University Press, Cambridge,

Massachusetts and London, England, 1994. p. 8.
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Contrary to these philosophers, I will argue that when we view pictures such as

Figure 1, we have an "experience of the infinite," or more specifically, we have a

perceptual illusion of an infinite sequence.

Figure 1

Showing that we can experience an infinite sequence is important to two areas of

inquiry. First, the discussion of these experiences sheds light on the relationship between

experience and beliefs formed on the basis of experience. For, to sustain the claim that

these experiences are experiences of the infinite, I will use the example of pictures to argue

that even though an object appears to us in a certain way, we do not always believe nor are

we always disposed to believe that the object is that way. Furthermore, I will use the
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example of pictures to argue that we can see an object as having some property, but come

to believe, on the basis of seeing the object, that the object does not have that property. So,

the particularly tricky case of the infinite will hopefully provide general information about

the relationship between our experience and the beliefs formed on the basis of that

experience.

Second, these experiences provide a partial solution to the epistemological puzzle

about the infinite introduced in Chapter 1. In Chapter 3, 1 will argue that the illusions of the

infinite I will describe supply us with modal knowledge of the infinite. Accordingly, the

experiences of the infinite discussed in this chapter provide the foundation for a partial

response to the puzzle about the infinite.

I should note that I will not argue that the experiences of the infinite discussed in

this chapter provide a solution to Locke's puzzle about the infinite. Locke wonders how

we can form a concept of the infinite if we do not experience of the infinite. But even

though I will not provide a response to this empiricist puzzle, as I explain in the final

section, we should not summarily dismiss these experiences as a way to provide a solution

to the empiricist puzzle.

In this chapter, then, I will argue that we can have experiences of the infinite and

discus how these experiences shed light on the relationship between experience and beliefs

formed on the basis of experience. I will postpone the argument that these experience

supply us with modal knowledge of the infinite until the next chapter.

I. Some Distinctions

First, I will make a few distinctions in order to facilitate my discussion of these

experiences of the infinite.
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The first distinction is between two uses of the expression 'experience'. In one use

we apply the expression to sense experiences. As usually characterized, sense experiences

have at least two distinctive characteristics. Sense experiences are, in a certain sense,

passive. As Jong as we are in the right place at the right time, we need not do anything to

have such experiences. Second, sense experiences have phenomenological qualities.4

There is something it is like to have these experiences. 5

We can contrast this use of 'experience' with another. We sometimes use the

phrase 'experience' to refer to an action we perform as opposed to a sense experience we

undergo. For example, if a farmer asks a potential apprentice whether she has farming

experience, he is not asking whether she has seen a freshly planted field or heard the crow

of roosters in the morning. Rather, the farmer is asking the apprentice whether she has

performed certain actions that have culminated in her attaining farming skills. He is asking

her about what I will call her "act experiences."

Act experiences, then, are actions we perform. When discussing act experiences,

the term 'experience' is used to refer to the act itself, for example, the act of driving a car

or flying a kite. Act experiences have two distinguishing characteristics. First, they are

active, unlike sense experiences which are passive. For an act experience, it is not enough

to be in the right place at the right time. Rather, to have such experiences, we need to do

something. Indeed, the experience is the act which the individual performs. Furthermore,

4 A phenomenological quality of an experience is how things seem to someone who has the
experience. For example, the way a red patch looks to someone is a phenomenological quality of'
the experience of the red patch, and the way rain sounds to someone is a phenomenological
quality of the experience of rain. Phenomenological qualities of experiences are often called
qualia.

5 One might also want to characterize sense experiences as having intentional features. However,
whether all sense experience have intentional features is debatable. On the one hand, it seems
plausible to say that seeing a red house is an experience that is directed toward a certain object.
But it seems less plausible to hold that tickles, itches, and pains have intentional features.
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although an individual might have certain sense experiences when he performs an

action-for example he might experience hunger pangs or he might feel the ground

beneath his feet-an act experience is not identified by its associated phenomenological

qualities.

The distinction between sense experience and act experience is important because

it helps clarify what I mean by the claim that we can have experiences of the infinite. There

are at least two ways one might understand this claim. We can understand it as the claim

that we can have an "act experience of the infinite," where we have an act experience of

the infinite if we "construct" an infinite sequence of objects.6 In this case, when I say that

I will show that we can have experiences of the infinite, one expects an argument that we

can construct an infinite sequence of objects. On the other hand, we can understand the

claim that we can have experiences of the infinite as the claim that we can have sense

experiences of the infinite. In what follows, I will argue that we can have sense

experiences of an infinite sequence.

Besides noting the distinction between sense experience and act experience, we

should also note another important distinction, the distinction between the potential

infinite and the actual infinite. This distinction is usually made by relying on the notion of

6 We can think of a construction as either a mental or a physical act. For instance, the intuitionists
and empiricists, such as Locke, seem to think that constructing a natural number is a kind of
mental act. But others have described the construction of a "number" as the formation of a
physical string that is composed of strokes and so seem to think of a construction in terms of a
physical act, such as the physical act of drawing one stroke on the left end of a string of strokes.
Although it is plausible to refer to physical constructions as experiences, it is debatable whether
we should refer to mental constructions as experiences. Off hand, it sounds awkward to say that
someone has had an experience of a mental act such as learning or believing. However, Locke,
for instance, appears to think that we are conscious of certain mental acts and that this
consciousness is in part responsible for the formation of number concepts including the concept
of infinity. So, although the construction is a mental process, some philosophers believe that our
awareness or experience of this mental process is important in forming certain concepts.
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construction.7 The F's are potentially infinite if, given some F's, it is always possible to

construct an F that is different from any previously constructed F. The F's are actually

infinite if there are infinitely many Fs. If we have a primitive symbol for a function such as

the successor function, we can replace the constructivist notions in this characterization

with modal notions. In particular, if s is a symbol for "a successor function" on the F's,

then the F's are potentially infinite if the following holds: necessarily for all x, it is

possible that there exists ay such that s(x) = y. The F's are actually infinite if it is possible

that for every x there is a y such that s(x) =y. 8 In this paper, I will focus on experiences of

completed infinite sequences rather than potentially infinite sequences.

One last distinction I need to make is between different notions of seeing. In one

sense of 'sees', if we see an object and that object is made of infinitely many parts, then it

follows that we see all the parts of that object and so see infinitely many objects. I am not

interested in this sense of seeing. For, ultimately I want to show that we can acquire

knowledge about the infinite from our experience of the infinite. To acquire knowledge

when we see an object, we need to be "aware" of what we see. If we are able to "see" all

the parts of an object only because we see the whole object, we are not necessarily aware

of all these parts of the object.

So, the sense of seeing in which I am interested is the sense in which we see an

object because we are aware of that object. But what is it to be aware of an object? I

7 Michael Dummett seems to introduce a notion that is akin to the notion of the potential infinite.
See, for example, his discussion of the notion of an indefinitely extensible concept in his Frege:
Philosophy of Mathematics (Harvard University Press, Cambridge, MA, 1991), pp. 316-319, and
also in his article "The Philosophical Significance of GddeI's Theorem" in Truth and Other
Enigmas (Harvard University Press, Cambridge, MA 1978), pp.195-19 9.

8 Notice that in S5 we can affix a necessity operator to the claim that it is possible that for every x
there is a y such that s(x)=y.
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suggest that to be aware of an object is to be able to differentiate that object from its

surroundings on the basis of how that object appears.9 In this sense of 'sees', it is correct

to say that John sees an apple on the brown table because he is able to differentiate the

apple from its environment on the basis of how the apple appears to him. However, it is

incorrect to say that John sees a red sticker on the apple when the red sticker blends in

perfectly with the color of the apple. For, although John is casually connected to the red

sticker, he does not see the red sticker because he does not differentiate the red sticker

from its environment on the basis of how the sticker appears to him.

In describing cases involving this sense of 'sees', it is often useful to describe the

situation in question as one in which a person sees an object as an F. For, this form of

expression indicates not only what object a person is casually connected to but also how

that object phenomenologically appears to the person, or similarly, how his senses

represent the object. For example, we might say that a person sees an apple as round and

red to indicate that the person sees an apple that appears round and red to him, or,

similarly, to indicate that the this person's senses represent the apple as round and red.

It is important to note that there are many ways to understand the claim that a

person S sees an object as an F. So far, I have described a phenomenological use. In this

use, when we say that S sees an object as an F, we characterize how that object

phenomenologically appears to S. However, in a different use, we use this phrase to

characterize what beliefs we form based on our sense experience. In this doxastic use,

when we say that S sees an object o as an F, we indicate that on the basis of a perception,

S believes, of o, that it is F. In what follows, when I say that S sees an object as an F, I

9 This characterization is based roughly on Fred Dretske's characterization of non-epistemic
seeing in his Seeing and Knowing. University of Chicago Press, Chicago, 1969.
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intend to characterize how an object phenomenologically appears to S. When I want to use

the doxastic sense of 'sees', I will simply claim that a person forms certain beliefs on the

basis of what he perceives. 10

II. The Indefinitely Large and the Infinite

Now that I have made certain important distinctions, I will begin my investigation

as to whether we can have experiences of the infinite.

There are many ways one might argue that we can have sense experiences of a

completed infinite sequence. Let me first briefly indicate some of the ways I will not

argue. I will not argue that we see an infinite object as infinite. Neither will I argue that we

see a finite object as infinite. Rather, I will argue that when we see certain objects, namely

certain sequences, we see them as having the property: containing, as a proper part, a

shrunken duplicate. Seeing a sequence as containing a shrunken duplicate is an experience

of an infinite sequence because, as I will argue, if the sequence did contain a shrunken

duplicate, it would have infinitely many parts. So, the experience is a perceptual illusion of

an infinite sequence.

We do not see all sequences as containing a shrunken duplicate. The sequences that

we see as containing a shrunken duplicate are certain indefinitely large sequences. The

idea that we encounter the infinite in our experiences of the indefinitely large is not new.

Jorge Luis Borges11 nicely describes the motivation for thinking that our

experiences of the indefinitely large might count as experiences of the infinite. Borges

10 These distinctions are based roughly on distinctions made by Fred Dretske in his Seeing and
Knowing. University of' Chicago Press, Chicago, 1969. Also see Fred Dretske, Naturalizing the
Mind. MIT Press, Cambridge, 1995. esp. pp. 67-68.

" Jorge Luis Borges, "Funes, the Memorious." Ficciones. Edited and Translated by Anthony
Kerrigan. Grove Weidenfeld, New York, 1962. p. 107-115.
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recounts an encounter with a young man, Funes, who had unmatched powers of perception

and memory.

We, in a glance, perceive three wine glasses on the table; Funes saw all the

shoots, clusters, and grapes of the vine. He remembered the shapes of the
clouds in the south at dawn on the 30th of April of 1882, and he could compare
them in recollection with the marbled grain in the design of a leather-bound
book which he had seen only once, and with the lines in the spray which an oar
raised in the Rio negro on the eve of the battle of the Quebracho. 12

At some point, Funes endeavored to name every aspect and every detail of every scene he

had ever seen. However, "two considerations dissuaded him; the thought that the task was

interminable and the thought that it was useless." 13 When we are presented with such a

large number of things, we sometimes think that we are, in a certain way, dealing with the

infinite.

We have seen in the first chapter that Shaughan Lavine also suggests that we, in

some sense, encounter the infinite in our experience of the indefinitely large. As he writes,

...the thought that the number of grains of sand on the beach might as well be
infinite for many practical purposes is what leads to the concept of the
infinite...14

So where does the concept of the infinite come from? Training to be sure, but
how did it begin? My proposal is that it began with an extrapolation from
experience of indefinitely large size.15

So, Lavine suggests that our concept of the infinite is rooted in our experiences of the

indefinitely large.

12 Borges, "Funes, the Memorious," p. 1 12.

O Ibid., p. 1 14.
14 Lavine, Understanding the Infinite, p. 256.
15 Ibid., p. 248.
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The connections Borges and Lavine suggest between our experience of the

indefinitely large and the infinite are insufficient to show that we have experiences of the

infinite. In fact, in most cases, although experiences of the indefinitely large might, in

some way, seem like encounters with the infinite, these experiences are not plausibly

called experiences of the infinite.

For example, consider cases where we see an indefinitely large pile of similarly

sized objects, for example, when we see a large pile of pebbles or when we see a truck

filled with sand. Seeing indefinitely large piles and heaps is not plausibly called an

experience of the infinite. For, when we see a large pile of pebbles, it does not appear that

we see the pile as infinite or as having a property that only an infinite object could have.

Furthermore, we see the pile as bounded both in its extent and in the dimension of its parts.

We should note, however, that even though we see the pile as finite, it is not the case that

we see the pile as containing, say, 100,324 pebbles. Indeed, we refer to these experience as

experiences of the indefinitely large precisely because we do not see the pile as containing

100,324 pebbles.

A quite different example of an experience of the indefinitely large is a case where

we are in the midst of a randomly scattered group of similarly sized objects, for example

when we are in the midst of a forest. 16 Although we do not see the forest as finite-for the

boundaries of the forest are not apparent-seeing the forest, nevertheless, is not an

experience of the infinite. Although our perception of the forest leaves open the possibility

of their being infinitely many trees, we do not see the forest as infinite nor do we appear to

see the forest as having a property that only an infinite object could have.

16 Notice that although the trees are approximately the same size, the trees that are farther away
appear smaller than those that are closer.
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III. Illusions of the Infinite

There are, however, other experiences of indefinitely large quantities that do count

as experiences of the infinite. In particular, we can see certain indefinitely large sequences

as containing, as a proper part, a shrunken duplicate. These are experiences of the infinite

because, as I will argue, if the sequences in question did contain a shrunken duplicates,

then they would contain infinitely many members. In this way, we can have an illusion of

an infinite sequence. I believe we have such a case when we see Figure 1, which appears in

the beginning of this paper.

The first thing we should note is that Figure 1 is a picture. When discussing visual

experiences of pictures, we must be aware that there are two layers of representations at

work. First, the picture depicts or represents some object. Second, the picture looks some

way to us, and we represent the picture as looking that way.

In Chapter 3, I will be concerned with the first level of representation. In particular,

I will argue that Figure 1 represents an infinite sequence. For now, however, I am not

interested in what this picture represents, but rather, in what we see when we see the

picture as an object in itself. That is, I am interested in how our experience represents this

picture. As I have indicated, I believe that we can see Figure 1 as having the property

containing a shrunken duplicate as a proper part. I also believe that if this picture did have

this property, the sequence of rectangles in the picture would be infinite. To establish these

claims, I will first indicate why we see Figure 1 and other similar figures as containing a

shrunken duplicate. I will then argue that if Figure I did contain a shrunken duplicate, it

would contain infinitely many rectangles.
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To show that we see Figure 1 as containing a shrunken duplicate of itself, consider

Figure 2. The top picture in Figure 2 is simply Figure 1. For reference, I have labeled this

top picture "sequence A." Below sequence A, I have drawn another sequence of rectangles

which I have labeled "sequence B."

I contend that we see two relationships between sequence A and sequence B.

(1) We see an exact duplicate of sequence B as a proper part of sequence A.

(2) We see sequence B as a shrunken duplicate of all of sequence A.

Both of these claims are clear from inspection of Figure 2. We can verify (1) by noticing

that sequence B appears to be an exact duplicate of the sequence we would obtain if we

delete the first rectangle-woman pair in sequence A. We verify (2) by recognizing that

sequence A and sequence B appear to be similar in all respects except for size.

If both (1) and (2) are true, then we see Figure 1 as containing, as a proper part, a

shrunken duplicate. For, we recognize that sequence B is simply a duplicate of the

sequence we obtain by deleting the first rectangle in sequence A, and, what holds for

sequence B holds for its exact duplicate.

We can create a similar kind of case by using a picture that consists of simply a

sequence of rectangles. For instance, consider Figure 3, which is a simplification of

Figure 2. The top picture in Figure 3 is a sequence of rectangles. The bottom picture in

Figure 3 is the sequence obtained when the first rectangle in the top sequence is deleted.

As in the case of Figure 2, the bottom picture appears to be an exact duplicate of a proper

part of the top picture. In addition, the bottom picture appears to us as a duplicate, in all

respects except for size, of the top picture in Figure 3. Since we see the two pictures in
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Sequence B

Figure 2

CHAPTER 2



Figure 3

Figure 3 as related in these two ways, it follows that we see the top picture as containing a

shrunken duplicate.

Notice that the rectangles need not be embedded in one another to produce the

desired effect. For instance, consider Figure 4. The bottom picture in this figure is the

sequence obtained by deleting the first rectangle in the top sequence. As with the previous

examples, we see the top picture in Figure 4 as containing a miniaturized duplicate of
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sequence. To show this, consider Figure 1. 1 contend that if Figure I did contain a

shrunken duplicate, then it would contain infinitely many rectangles. To show this, I will

argue that if Figure 1 contains finitely many rectangles, Figure I does not contain a

shrunken duplicate. So, suppose that the number of rectangles in Figure 1 is finite. Let us

call the sequence that is obtained by deleting the first rectangle in Figure 1, MiniFigure 1.

Since Figure 1 contains only a finite number of rectangles, say n, MiniFigure 1 contains

one less rectangle and so contains n-I rectangles. MiniFigure 1, then, is not a shrunken

duplicate of Figure 1. For, MiniFigure 1 contains one less rectangle than Figure 1.

Accordingly, if Figure 1 contains finitely many rectangles, Figure 1 does not contain a

shrunken duplicate. It follows that if Figure 1 contains a shrunken duplicate as a proper

part, then Figure 1 contains infinitely many rectangles. So, in seeing Figure 1 as

containing a shrunken duplicate as a proper part, we have an illusion of an infinite

sequence.

Before considering some objections to this argument, I need to make a couple of

clarifications. At the beginning of the section, I claimed that I would not show that we can

see a sequence or any other object as infinite. Rather, I would show that we can see a

sequence as containing a shrunken duplicate. At this point, some might think that I have

not kept my word. For, in showing that we see Figure 1 as containing a shrunken duplicate,

some might think that I have also showa that we see Figure 1 as infinite. The reasoning for

this conclusion might go as follows. I have shown that we see Figure 1 as having a

property which is such that if Figure 1 did have this property, it would contain infinitely

many parts. Furthermore, the following principle appears to ' ,Ad:
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(3) If a person sees an object o as an F and if the claim that x is an F entails that x is a
G, then he sees o as a G.

Therefore, it appears that I have shown that we see Figure 1 as infinite.

The problem with this line of reasoning is that (3) is false. Consider the following

example. The claim that x is a square entails that x is a diamond. But we can see a square

as a square, and yet not see a square as a diamond. Indeed, to see a square as a diamond,

we need to see the square forty-five degrees off the x and y axis. Accordingly, we must

differentiate between seeing a sequence as containing a shrunken duplicate and seeing the

sequence as infinite. If my argument is successful, I have established that we can see a

sequence as containing a shrunken duplicate, but this argument is insufficient to show that

we can see a sequence as infinite.

IV. An Objection

I will now turn to some objections to the argument in the preceding section. It is

possible to pose a serious objection to the argument that if our experience of Figure 1 were

veridical, then the figure would contain infinitely many rectangles. To bring out the worry,

consider the following example. Suppose that there are two closed boxes that look

identical. They appear to be the same size, color, and so forth. It thus seems correct to say

that we see the boxes as duplicates. But even if we see these boxes as duplicates, surely it

would be fallacious to argue that if the boxes were duplicates, then they would contain the

same things. For, we do not see the boxes as duplicates with respect to what they contain.

But isn't this same kind of mistake made in the above argument? To show that we see

Figure 1 as containing a shrunken duplicate, we need to see Figure 1 and MiniFigure 1 as

duplicates with respect to the number of rectangles they contain. But since we see these
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figures as containing an indefinite number of rectangles, we cannot see the two figures as

containing the same number of rectangles.

To respond to this criticism, first notice that to see Figure 1 and MiniFigure 1 as

duplicates with respect to the number of rectangles they contain, we need not see Figure 1

or MiniFigure 1 as containing a particular number of rectangles. To see Figure 1 as

containing the same number of rectangles a,- MiniFigure 1, we need only see the rectangles

of Figure 1 as one-one correlated with those of MiniFigure 1. Indeed, to see the number of

knives as the same as the number of forks, we need not see the knives and forks as both

seven in number. t is enough to see the forks and knives as one-one paired.

But do we see the rectangles of Figure I as one-one correlated with those of

MiniFigure 1? I believe that we do. We see these sequences as so correlated because we

see Figure I and MiniFigure I as having the same structure. In particular, we see these

sequences as having the same shape, and we see these sequences as having the same kinds

of parts arranged in the same way. Furthermore, we see the corresponding parts of these

sequences as having the same shape and as having the same kinds of parts arranged in the

same way. We see this correlation even in the "fuzzy" parts of the image. As the images

get smaller, it becomes more and more difficult to differentiate between the 'fferent

rectangles. Nevertheless, we see the fuzzy regions of both sequences as similar in

structure. The sequences are indefinite in the same ways. Because we see these sequence

as similar in these respects, we see the sequence as one-one correlated.

So, the indefiniteness of the sequences does not preclude us from seeing the

sequences as one-one correlated. We can see the sequences as containing an indefinite

number of rectangles, yet still see the sequences as containing the same number of
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rectangles. We are able to do this because, even though the sequence gets fuzzy as the

images get smaller, we still see the sequences as one-one correlated.

V. Sense Experience and Beliefs Formed on the Basis of Sense Experience

Given certain assumptions about the relationship between sense experience and

beliefs, one can make further objections to the claim that we can have an illusion of an

infinite sequence. In this section I will examine these objections and challenge the

underlying assumptions about the relationship between what we see and what we believe.

Some philosophers believe that perception should be analyzed in terms of belief

and so accept that

(4) If a person sees an object o as an F, then he believes that o is F,

Those who accept (4) might deny that we see a sequence as containing a shrunken

duplicate, for, we are never fooled into believing that the sequence actually contains a

shrunken duplicate. Indeed, we know that the image is finite.

However, as many others have noted,17 there are many counter examples to (4).

For example, consider the Muller-Lyer figure (Figure 5). I see the top line in the figure as

Figure 5

17Frank Jackson, Perception. Cambridge University Press, Cambridge, 1977. pp. 37-38.
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longer than the bottom line. Nevertheless, I know that the two lines are the same length

because I have read about this illusion. In this case, then, having certain background

beliefs affects what beliefs I form on the basis of my sense experience. Accordingly, we

can see an object as an F and yet do not believe that the object is an F. The example of the

infinite is similar to the Muller-Lyer example. We know that Figure I does not contain

infinitely many rectangles, and so, we do not believe that the sequence contains a shrunken

duplicate. Nevertheless, we can see the sequence as containing a shrunken duplicate.

A similar objection to my argument relies on a slightly weaker version of (4). Some

philosophers hold that perceptions should be analyzed as inclinations or dispositions to

believe and so hold that

(5) If a person sees an object o as an F, then he is disposed to believe that o is F.

If (5) holds, then it appears that we cannot see a sequence as containing a shrunken

duplicate because we are never disposed to believe that the sequence contains a shrunken

duplicate.

Principle (5) has also been challenged. Gareth Evans, for example, presents several

arguments against this view in The Varieties of Reference.18 Instead of reviewing his

arguments here, I will present a new counter example to (5) in which we see an object as

an F, but are not disposed to believe that the object is an F. The counter example is given

in Figure 6. Figure 6 is a two-dimensional picture of a three-dimensional cube. Although

the picture is two-dimensional, it appears to have certain features that only a three-

dimensional object could have. In particular, when we look at this figure, we see line a as

18 Gareth Evans, The Varieties of Reference.Edited by John McDowell. Oxford University Press,

Oxford, 1982. pp. 124 , 229.
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b

a

Figure 6

in front of line b. But even though we see the picture as having this three-dimensional

feature, we are not disposed to believe that line a is in front of line b. Indeed, we are in no

way taken in by the artist's representation of a three-dimensional object. We do not believe

that the picture is a three-dimensional cube.

It is a bit difficult to determine what is going on in this case. This case is not an

example of aspect shifting, i.e., it is not the case that at one moment, we see line a as in

front of line b, and then at a later moment, we see line a as on the same plane as line b. Nor

is this an example in which our experience has contradictory content, i.e., it is not the case

that we see line a as in front of line b and simultaneously see line a as not in front of line

b. Rather, what seems to be going on in this case is that even though we can see line a as

in front of line b, this is only one aspect of how the picture appears to us, and this one

aspect of how the picture appears is insufficient to produce the disposition to believe that

the picture is three-dimensional. Indeed, what beliefs we are disposed to form on the basis

of perception are caused not simply by one of tne ways an object appears to us but rather

by the combination of all the ways an object appears to us. When we take into account the

entire appearance of the picture, we are not disposed, on the basis of perception, to believe

that line a is in front of line b.

A similar story can be told in the infinite sequence case. Even though we see the

sequence as containing a shrunken duplicate, perhaps other aspects of how the sequence
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looks temper our disposition to believe that the sequence contains a shrunken duplicate.

So, in the end we re not disposed to believe that the sequence contains a shrunken

duplicate even though we see the sequence as containing a shrunken duplicate.

Figure 6 has certain further interesting features. I have claimed that we see line a as

in front of line b, but we are not disposed to believe that line a is in front of line b.

However, something further is true in the case of Figure 6. Because we recognize

immediately that the picture is a two-dimensional representation of a three-dimensional

object, we are disposed to believe that line a is not in front of line b. So, we see line a as

in front of line b, but are disposed to believe the opposite of what we see. Accordingly,

Figure 6 illustrates that even the following principle, which is weaker than (4) and (5) also

fails:

(6) If a person sees an object o as an F, then it is not the case that he is disposed to be-
lieve that o is not F.

That (6) fails is relevant to the case of the infinite. Certain features of pictures of

sequences might dispose someone to believe that the sequences in the pictures are finite.

For instance, Figure 3 contains a black dot in its center, and so, some might contend that

when we see Figure 3, we are disposed to believe that the sequence in the picture is finite.

In this case, then, we see the sequence in Figure 3 as containing a shrunken duplicate, but

we are disposed to believe that the sequence is finite and so disposed to believe that it does

not contain a shrunken duplicate. My discussion of Figure 6 shows that the case of the

infinite is not an anomaly.

What seems to be going on in these cases is that even though we see, for example,

line a as in front of line b, other aspects of the way the picture looks dispose us to believe
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that the picture is two-dimensional. As I noted, what beliefs we are disposed to form on the

basis of perception are caused not simply by one of the ways the object appears to us, but

rather by the combination of all the ways the object appears to us. Accordingly, we must

also factor in that when we look at the picture, we see the picture as drawn on a two-

dimensional surface. When we take into account the entire appearance of the object, in

some cases, we are disposed to believe that the object is not an F even though the object

appears to be an F. [n the case of Figure 6, line a appears to be in front of line b, but when

we factor in all the aspects of how the picture appears, we are disposed to believe that line

a is not in front of line b.

Overall, then, we should not discount the example of the infinite because it goes

against certain accounts that analyze perception in terms of belief. For, as I have argued,

such accounts are implausible.

VI. The "Content" of Our Experience of the Infinite

In the proceeding reflections about the relationship between experience and belief,

certain interesting features of the illusion of the infinite have been brought out. In

particular, I have indicated that we see Figure 3 as containing a black dot in its center. One

thus might conclude that we see the sequence as finite.19 Accordingly, part of the content

of such an experience of the infinite seems to be that the sequence is finite. We have seen

previously that part of the content of the experience of the infinite is that the sequence

19 1 should note that I am not convinced that we see any of these sequences as finite. For one thing,
I believe that these pictures are similar to what we see when we are in the midst of a forest. Just
as we do not see the boundaries of the forest, we do not see the boundaries of these sequences.
Furthermore, the inference from the claim that we see the sequence as containing a black dot to
the claim that we see the sequences as finite is questionable. For the inference appears to rely on
(3). Although I have these reservations, I will accept the claim that we see the sequences as finite
because some readers might hold that this accurately represents the content of the experience.
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contains a shrunken duplicate of itself. The question I ask in this section is whether it is

possible for an experience to have a content consisting of both the claim that the sequence

is finite and that the sequence contains a shrunken duplicate of itself.

Initially, one might think this is problematic because if the sequence did contain a

shrunken duplicate it would be infinite. However, we cannot see the sequence as infinite

and simultaneously see the sequence as finite. That is, we cannot have an experience with

contradictory content. This objection, however, does not succeed. As I discussed earlier,

the claim that we see the sequence as infinite does not follow from the claim that we see

the sequence as containing a shrunken duplicate. So, it is incorrect to conclude that we see

the sequence as simultaneously finite and infinite. 20

But even though the experience does not have a contradictory content, one might

think that we cannot simultaneously see the sequence as both finite and as containing a

shrunken duplicate. For, the properties that lead us to see the sequence as finite preclude us

from seeing the sequence as containing a shrunken duplicate.

There are two ways to respond to this objection. First, one can claim that the

experience of the infinite is a case of aspect shifting. That is, we do not simultaneously see

the sequence as finite and as containing a shrunken duplicate. Rather, at one point we see

the sequence as finite, and then the figure "flips" on us and we see the sequence as

containing a shrunken duplicate. The problem with this response is that it does not respect

the phenomenology of the case at hand. The figure does not appear to "flip" on us.

20 Even if one could show that the experience has contradictory content, it is debatable whether this
undermines the example of the infinite. In his article "The Waterfall Illusion" Tim Crane argues
that in the waterfall illusion we see an object as moving and simultaneously we see the same
object as not moving. Crane argues that such examples are not problematic unless the contents of
perceptual experiences are conceptual. Tim Crane, "The Waterfall Illusion." Analysis 48 (1988).
pp. 142-47. also see his "Concepts in Perception." Analysis 48 (1988). pp. 150-53.
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A more promising response to the objection is to challenge the contention that the

properties that lead us to see the sequence as finite preclude us from seeing the sequence as

containing a shrunken duplicate. I contend that seeing a black dot in the center of the top

picture in Figure 3 does not preclude us from seeing the top sequence in this figure as

containing a shrunken duplicate. For, to see this sequence as containing a shrunken

duplicate, we need to see the top sequence in Figure 3 and the bottom sequence in Figure 3

as similar in structure, and we can see the two sequences as similar in structure even

though we see a black dot in the center.

Notice that the case of the infinite is thus similar to the case of the box in Figure 6.

In the case of Figure 6, we see line a as in front of line b, but we also see the figure as

drawn on a two-dimensional surface. Just as in the cas.s of the infinite, this case is not

problematic because seeing the figure as drawn on a two-dimensional surface does not

preclude us from seeing line a as in front of line b.

VII. But It's an Illusion

So far, Ihave argued that, contrary to what many philosophers have argued, we can

have an "experience of the infinite." In particular, we can have a perceptual illusion of an

infinite sequence. In the introduction I claimed that showing that we can have such

experiences is interesting because it ultimately helps us respond to the epistemological

puzzle about the infinite that Lavine describes. In particular, in Chapter 3 I will argue that

we can appeal to these illusions to show that we have modal knowledge of the infinite.

However, at this point, one might be skeptical that the experiences I have described

can serve the purpose I say they can. In particular, one might believe that because these
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experiences are illusions, I cannot appeal to them to respond to the epistemological puzzle

about the infinite.

One concern along this line is that because an illusion is a misrepresentation of the

way the world is, it cannot provide us with information that results in knowledge about the

world. To respond to this concern, we need to notice that although illusions do not appear

to tell us how the world is, it does not follow that they do not tell us how the world could

be. For, even though illusions misrepresents our immediate environment, they still might

supply us with modal knowledge. Of course, at this point, it is unclear how an illusion can

supply us with modal knowledge. In Chapter 3, I will explain how it is that certain illusory

experiences can provide us with knowledge that certain objects could exist.

Another concern about the possibility of illusions providing us with any kind of

knowledge is that when we undergo an illusion, our mind appears to manufactures the

experience, creating something that is not really there. As a result, this experience does not

appear to provide us with reliable information.

To respond, we must notice that the illusion of the infinite is not the kind of illusion

where our mind manufactures the experience. Indeed, the illusion of the infinite is not a

hallucination. When a person hallucinates, his experience is not caused by external stimuli.

Rather, something internal to the person causes him to undergo the experience. His mind

manufactures the experience. One might legitimately question whether a hallucination can

provide information that results in knowledge. Our experience of the infinite, however, is

not a hallucination. The arrangement of lines in Figure 5 causes the picture to look a

certain way to us. We do not make the picture look that way. We do not mentally add

properties to the picture so that it appears a certain way to us. So, because the illusion of
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the infinite is caused by certain features of the picture, we cannot rule out, off hand, the

possibility that this experience can supply us with reliable information and thus

knowledge.

So far, I have simply defended the weak claim that, off hand, we should not

conclude that these illusion cannot serve as a basis for modal knowledge. I now want to

indicate why these experiences might be particularly well suited for the task. That is, I

want to indicate why the illusion of the infinite is particularly useful in providing

information about the infinite. Most illusions we undergo do not appear to be informative.

The reason is that we can just as well imagine what we appear to see. For example, we

need not have an illusion of a golden mountain to know what a golden mountain would

look like. For, we can perfectly well imagine what a golden mountain would look like. The

case of the infinite is different. If someone asks us to imagine what we would see if we

were to see an entire infinite sequence, we would have difficulty imagining what we are

asked to imagine. The illusion of the infinite is special because it provides a way for us to

extend our powers of imagination. The illusion of the infinite supplies our imagination

with something that it would have difficulty producing on its own.

Before closing, I want to note that as with the epistemological puzzle, one should

not summarily conclude that we cannot use these experiences of the infinite to provide a

response the empiricist puzzle simply because these experiences are illusions. In

particular, even though illusions misrepresents our immediate environment, they still

might supply us with concepts of objects that do not actually exist. For example, some

might hold that to have a concept one must know what it is like to see an object that falls

under that concept. In this case, an illusion might supply the needed experience.
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Furthermore, since the experience of the infinite is not a hallucination, we cannot reject the

use of this illusion on the grounds that our mind manufactures our experience and so

supplies inherently questionable information.

VIII. Summary

Overall, then, I have argued that we can have an illusion of an infinite sequence

because we can see certain indefinitely long sequences as containing, as a proper part, a

shrunken duplicate. I have argued that we should not discount the example of the infinite

on the basis that it goes against certain accounts that analyze perception in terms of belief.

For, such accounts are implausible. Furthermore, I have argued that there is no problem in

holding that the content of this experience consists both of the claim that the sequence

contains a shrunken duplicate and the claim that the sequence terminates. Lastly, I have

argued that we should not summarily dismiss this experience of an infinite sequence as a

way to obtain modal knowledge on the grounds that the experience is an illusion. This last

result leads into the last chapter, where I will argue that the experiences I have described

provide us with modal knowledge of the infinite.
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Chapter 3

Pictures as a Guide to Possibility:
The Case of the Infinite

The feasibility of philosophical positions often rests on possibility claims. The case

of skepticism about the external world is a prime example. The skeptic relies on the

premise that there could be a world that lacks physical objects, but appears just as our

world appears to us. The standard practice for establishing that a proposition is possible is

to argue that the proposition is conceivable, where the proposition's conceivability is

presumed to provide evidence for its possibility. What I propose to do here is to describe a

way of establishing possibility claims. I will explain how pictures can be an invaluable

resource in establishing that the depicted object could exist in three-dimensional space.

When drawing modal conclusions from pictures, we must proceed with care. Some

pictures are deceptive. In particular, some pictures appear to depict an object that could

exist in three-dimensional space, but they do not depict such an object. So, to sustain the

claim that a picture provides evidence that the depicted object could exist in three-

dimensional space, I need to explain how we determine that a picture depicts an object that

could exist in three-dimensional space rather than an object that could not. I will argue that

upon seeing a picture, we can obtain evidence that a picture represents a "coherent spatial

configuration" rather than an "incoherent spatial configuration," and furthermore, that if

we have evidence that a picture represents a coherent spatial configuration, we thereby
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obtain evidence that the depicted object could exist in three-dimensional space. Part of my

argument will involve explicating the notion of coherence at work here. I will provide not

only a characterization of coherence but also a test for coherence. I will call this method of

establishing possibility claims, "the picture method."

Part of my interest in the picture method is that it has implications for modal

structuralism, a position in the philosophy of mathematics.1 In short, we can use this

method to defend modal structuralism.

As its name suggests, modal structuralism is a form of structuralism. In particular,

a modal structuralist accepts the platitude that mathematics is the study of structures.

Modal structuralism differs from other varieties of structuralism in that it avoids

commitment to mathematical objects. It avoids such commitment by translating

mathematical statements into second-order modal statements that contain n- terms that

purport to refer to, or quantifiers that purport to range over, mathematical objects.

Because modal structuralism dispenses with mathematical objects, it appears to

avoid a well-known epistemological puzzle facing a platonist philosophy.2 The platonist

must provide an account of knowledge of and reference to mathematical objects, but since

mathematical objects are abstract, it appears that an account will not be forthcoming. The

modal structuralist circumvents this requirement because the modal structuralist explains

how to avoid reference to these problematic entities. As a result, the modal structuralist

need not provide an account of knowledge of and reference to mathematical entities.

Hilary Putnarn originally prescnted this view in his paper "Mathematics without Foundations."

Philosophy of Mathematics, Selected Readings, Second Edition, Eds. Paul Benacerraf and Hilary
Putnam. Cambridge University Press, Cambridge, 1983. pp. 295-31 1. More recently, Geoffrey
Hellman has provided a detailed defense of the view. See his AMathematics Without Numbers.
Oxford University Press, Oxford, 1989.

2 Paul Benacerraf, "Mathematical Truth." The Journal of Philosophy 70 (1973). pp. 661 -679.
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Modal structuralism, however, does not appear entirely free of epistemological

difficulties. As others have pointed out, 3 modal structuralism is viable only if an

0-sequence could exist.4 But at present, modal structuralism appears to lack a defense of

this claim, and so it faces an epistemalogical challenge.

In what follows, I will explain why the modal structuralist must hold that an

co-sequence could exist and acgue that, at present, the leading proponent of modal

structuralism does not provide a convincing defense of this claim. I will then provide the

needed defense. In particular, I will introduce the picture method for establishing

possibility claims. I will then use the picture method to argue that there could be an

co-sequence of concrete objects. I will argue that pictures such as Figure I provide the

necessary evidence. By showing that we have grounds for this modal claim, I provide the

modal structuralist with a defense of one of the his central tenets.

I will close the chapter by discussing an oLjection to my proposal that a modal

structuralist can provide grounds for the claim that there could be an o-sequence of

concrete objects. In a recent paper5 Bob Hale argues that the modal structuralist cannot

provide evidence for this claim. Hale thus concludes that modal structuralism faces an

epistemological difficulty just as significant as the one that platonism faces. Clearly, my

defense of the claim that an co-sequence could exist is contrary to Hale's conclusion. In the

3 Charles Parsons, "Structuralist View of Mathematical Objects." Synthese 84 (1990). p. 319. Bob

Hale, "Structuralisrn's Unpaid Epistemological Debts." Philosophia Mathematica 3 Vol. 4

(1996). pp. 124-147. Hellman, Mathematics Without Numbers.
4~ An w-sequience is an infinite set X that has a structure similar to that of the natural numbers. That

is, the seq ;ence has a first member, "0"; every member in the sequence has a "successor"; and
there are no members in the sequence that follow infinitely many others. More formally, an m-
sequence is a set X such that there is an object 0 which is a "distinguished member" of X, there
is a one-one and total function f[from X onto X minus 0, and every member of X can be reached
from 0 by finitely many iterations of f.

5 Bob Hale, "Structuralism's Unpaid Epistemological Debts." Philosophia Mathematica 3 Vol. 4
(1996). pp. 124-147.
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Figure 1

last two sections I will lay out Hale's argument and explain why it does not undermine my

defense of this claim.

I. The Evidentiary Burdens of Modal Structuralism

First off, I will explain why the modal structuralist must support the claim that an

o-sequence could exist. I will then argue that the modal structuralist seems to face an

epistemological challenge because, at present, he lacks a convincing defense of this central

tenet.

To understand why a modal structuralist must provide grounds for the claim that an

o-sequence could exist, we need a characterization of the modal structuralist's suggested
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translation of mathematical statements. As I have noted, the modal structuralist proposes a

way to eliminate reference to mathematical objects and thereby eliminate such objects. He

eliminates reference to mathematical objects by showing how to translate each

mathematical sentence into a sentence that contains neither quantifiers that purport to

range over, nor singular terms that purport to refer to, mathematical objects.

In the case of arithmetic, it is easiest to see this translation as proceeding in three

stages. First, an arithmetical statement is translated into a statement that is about

co-sequences. This enables the modal structuralist to eliminate reference to natural

numbers. This statement about co-sequences is then rendered in second-order logic so as to

avoid reference to all types of mathematical objects, including co-sequences, sets, and so

forth. Finally, in what appears to be an attempt to avoid epistemological tangles, the modal

structuralist replaces the second-order translation with a corresponding statement in modal

second-order logic. In the final analysis, then, the modal structuralist translates

arithmetical statements into statements of modal second-order logic.

Off hand, the first stage of the translation seems plausible, as there is a predicable

way of mating each member of and operation on the natural numbers to a corresponding

member of and operation on any co-sequence. For instance, 0 corresponds to the first

member in an co-sequence; 1, to the second member; 2, to the third; and so forth. Also, the

successor function corresponds to the function f that orders the o-sequence. Using this

correspondence as a rough guide, the modal structuralist can translate arithmetical

statemcnts into statements that contain no terms that purport to refer to, or quantifiers that

purport to range over, natural numbers. For example, the statement that every number has

a successor can be translated into the statement that, for all x, if x is an co-sequence, whose

CHAPTER 3 99



"successor" function is f, then for every member a of x there is a member b of x such that

b = (a). In general, in the first stage, an arithmetical statement A is translated as follows:

(1) For all x if x is an o-sequence, then A*(x)

where A* is obtained from A by rewriting A so that the resulting formula speaks of

operations on, and objects in, x. If all arithmetical statements are translated as the modal

structuralist suggests, reference to natural numbers appears to be eliminated.

However, as it stands, this translation does not eliminate reference to all

mathematical objects, as (1) contains what appear to be. a quantifier over o-sequences. To

avoid reference to a-sequences and other mathematical objects, the modal structuralist

carries the translation a step further. Using second-order logic, we can rewrite (1) in an

attempt to eliminate all terms that purport to refer to, and quantifiers that purport to range

over, mathematical objects. (Those interested in the translation should see footnote 6.)6

Whether the second-order translation is successful in eliminating reference to

mathematical objects depends on one's views about the ontological commitments of

second-order modal logic. Although the translation uses second-order logic, in what

follows I will appeal to (1) because it is easier to work with than the corresponding

statement in second-order logic.

6 I will show how we can translate an aritiunetical statement A directly into a statement of second-
order modal logic. For an arithmetical statement A whose only nonlogical constants are 0 and a
symbol S for the successor function, we obtain a translation as follows. First, we form the
conditional whose antecedent is the conjunction PA of the second-order Peano Axioms and
whose consequent is A. (Note that the conjunction PA of these second-order axioms is finite.)
PA specifies the conditions under which a sequence formed from 0 and S is an w-sequencc.
Second, we obtain the open sentences PA' and A' from PA and A, respectively, by replacing all
occurrences of 0 with the variable z, replacing all occurrences of S with the second-order variable
R, and relativizing all the quantifiers in A and PA with the second-order variable X. We then
bind the newly introduced variables with universal quantifiers to form VXVxVR(PA' --+ A'),
which is the desired second-order translation of A.
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A modal structuralist finds the translation, as it stands, unacceptable. The problem

is that if there are no co-sequences, then for any arithmetical statement A, the translation of

A is vacuously true. So, to avoid wholesale vacuous truth on the current translation, one

must defend the claim that an co-sequence of objects actually exists.

For the modal structuralist, defending such a claim is unappealing. Part of his

impetus for providing a translation of mathematical statements is to eliminate

mathematical objects and thus to avoid the corresponding epistemological difficulties. But

if, after giving the translation, he must defend the claim that an rn-sequence exists, he again

faces a web of epistemological difficulties. The o-sequences in question consist either of

abstract objects or of concrete ones. Supposing that it consists of abstract objects is

unattractive. For, if a modal structuralist tries to defend the claim that an rn-sequence of

abstract objects exists, he appears to confront the epistemological difficulties he originally

tried to avoid. 7 Supposing that the o-sequence consists of concrete objects is also

unattractive because the modal structuralist would most likely defend such a claim by

appeal to the fact that our current scientific theories postulate the existence of infinitely

many space-time points. But as Parsons queries "Can we rule out the possibility that

physics will abandon infinitely divisible space-time and replace it with some 'quantized'

conception?" 8 If we cannot, then the modal structuralist is left with the unsettling

possibility that future physics will undermine the justification of our mathematical

theories.

7 It may be that abstract objects other than mathematical objects pose less epistemological
difficulties. For instance, if the abstract objects are "quasi-concrete" objects, i.e., if the abstract
objects "are determined by intrinsic relations to concrete objects," (Charles Parsons,
Mathematics in Philosophy. Cornell University Press, Ne w York, 1983. p. 25.), then we might be
able to provide an explanation of knowledge of, and reference to, such objects. In particular,
perhaps we come to know about quasi-concrete objects by examining the concrete objects to
which they are intrinsically related.

8 Parsons, "The Structuralist View of Mathematical Objects," p. 315.
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In what appears to be an attempt to avoid such epistemological tangles, the modal

structuralist modifies the suggested translation of arithmetical statements. He proposes

that instead of translating an arithmetical statement A as (1), we should translate A as

follows:

(2) EI(For all x if x is an rn-sequence, then A*(x)).9

So, the modal structuralist proposes that we simply affix a necessity operator to the front of

(I). Because the statement is prefixed with a modal operator, to avoid wholesale vacuous

truth, the modal structuralist need not defend the claim that an r-sequence exists.

However, the modal structuralist is not entirely free of epistemological burdens. If

he accepts (2) as the translation of arithmetical statements, then to avoid wholesale

vacuous truth, he must defend the claim that

(3) O(There is an ro-sequence)

Indeed, if it is necessarily false that an ro-sequence exists, then all statements of the form

(2) are true. For, if there could be no r-sequences, then of course it is necessary that for all

x either x is not an ro-sequence or A*(x). Accordingly, if there could be no rn-sequences,

for any arithmetical statement A, the translation of A is true.

9~ Exactly what the relevant notion of necessity is here is a difficulty question. In his "Structural ist
View of Mathematical Objects" Charles Parsons offers four possible interpretations of the modal
operator in this context. The four interpretations are as follows: "strictly logical, in a sense
connected with formal logic;" "logical in the sense more usual in discussions of modality, which
takes account of the constraints of non-logical concepts, in my opinion best called
'metaphysical';" "mathematical;" and "physical." (Charles Parsons, "Structuralist View of
Mathematical Objects," p. 319.) Parsons maintains that the necessity operator should be
interpreted as mathematical necessity.
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Off hand, it seems that defending (3) is preferable to defending the claim that an

o-sequences actually exists. At a minimum, we have more options in defending (3). For

instance, we can try to argue that it is conceivable or imaginable that an o-sequence exists.

However, one should not be overly optimistic about the ease at which a modal

structuralist can provide a defense of (3). To see why, let us consider a defense of (3) given

by Geoffrey Hellman, one of the leading defenders of modal structuralism. He appears to

believe that (3) is true because we can argue for the claim that

(4) O(There is an o-sequence of concrete objects)

Hellman believes that an infinite sequence of concrete objects could exist because "even

arch-opponents of "completed infinities" concede the coherence" 10 of a models of

"Euclidean time or space."11 Here, Hellman appears to contend that since current physical

theories postulate the existence of infinite space, models of infinite space are coherent and

thus possible. He then appeals to second-order logic to concludes that models consisting of

an o-sequence of objects are possible.

Is Hellman's defense plausible? It is if one believes that the current physical

theories cannot be challenged on philcsophical grounds. That is, it is if one believes that by

dint of a claim's being part of our current scientific theory, this claim expresses a coherent

possibility.

10 Hellman, Mathematics without Numbers, p. 30.
" Charles Parsons also believe that the claim that infinitely many concrete objects exists follows

from the claims about coherence, but he appears to be more cautious in endorsing the claim that

our current physical theories are coherent: "There may be epistemological problems about how
we know a statement like [(4)] to be true. But its truth seems to follow from the supposition that
theories in physics describe coherent possibilities, and perhaps it can be seen in more direct and
intuitive ways." Charles Parsons, "Structuralist View of Mathematical Objects," p. 320.
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Of course, many will not be convinced by an appeal to the authority of science.

And those that are not will find it less than evident that there could exist infinitely many

concrete objects. Although some claims about what is possible strike us as evident-for

example, the claim that I could have worn a black shirt yesterday seems obviously true

because I can readily imagine that yesterday I put on a black shirt rather than a white

one-the claim that it is possible that there are infinitely many concrete objects does not

appear to have this character. In particular, it is not at all clear that we can imagine a

situation in which there are infinitely many concrete objects.12

In his article "Structuralism's Unpaid Epistemological Debts"13 Bob Hale presents

a related criticism of Hellman's defense. Hale contends that Hellman mistakenly assumes

that because the claim about o-sequence is only about what is possible, it is a weak claim

and so needs no defense. To show that such a stance is incorrect, Hale points out that it

would be incorrect to think that just because the supposition that my mind could exist

without my body is a claim about the merely possible, this supposition needs no support,

and our default position is acceptance. Indeed, we do not accept this claim without

supporting arguments. In fact, many philosophers argue that this claim is false. According

2 To bring out the full difficulty of the task facing the modal structuralist, we would need to
consider different interpretations of the modal operator. As I noted in footnote 9, Charles Parsons
offers four possible interpretations of the modal operator in this context: physical, logical,
mathematical, metaphysical. I believe none of these interpretations ensures that the claim that
infinitely many concrete objects could exist is evident. As for physical possibility, unless one
believes that by dint of being a scientific theory, a scientific theory guarantees the coherence of
its claims, it does not appear to be evident that it is physically possible that infinitely many
concrete objects could exist. As for logical possibility, I agree with Parsons that logical
possibility is not clearly distinct form mathematical possibility. And, since it is not clear how one
goes about establishing mathematical possibility, I believe it is a stretch to say that it is evident
that it is mathematically possible that infinitely many objects could exist. This leaves
metaphysical possibility, and establishing the metaphysical possibility of this claim about the
infinite requires an argument from conceivability.

O See footnote 5.
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to Hale, just as we need evidence that my mind could exist without my body, we need

evidence that there could be infinitely many concrete objects.

So, we have seen that the leading proponent of modal structuralism fails to provide

an adequate defense of (3). The modal structuralist thus appears to face the

epistemological challenge of explaining how we know that (3) holds. Of course, this is not

to say that no defense of (3) is possible. For all I have said, nothing bars a modal

structuralist from supplying a defense of (3). However, I will not survey the possible

defenses that a modal structuralist might wage. Rather, I will offer a defense of my own.

In particular, in what follows, I will lay the groundwork for a defense of (3). I will

explain how to appeal to pictures in order to establish that the depicted object could exist.

I will then apply this general method to show that by seeing pictures of an infinite

sequence, we obtain evidence for (4) and thus we obtain evidence for (3).

II. The Use of 'Depicts' and its Cognates

Before providing a sketch of the picture method, however, I will explain how I

intend to use 'depicts' and its cognates. In giving this account I am not explicating the

notion of depiction. Indeed, a key feature of this account is that the claim that a picture

depicts an object does not entail that the depicted object could exist in three-dimensional

space.

We have all had the experience of seeing certain pictures as having properties

similar to a three-dimensional object. When we look at a two-dimensional picture of a

cube, for example, we see some of the lines in the picture as being in front of others.

Pictures designed to look like three-dimensional objects are special because our visual

system produces an experience whose content contains claims that a e purportedly about a
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three-dimensional object. Our visual system is able to do this because it draws on

mechanisms that are used to perceive three-dimensional objects. When we look at three-

dimensional objects, our perceptual system produces, from the two-dimensional pattern

encoded in our rods and cones, an experience whose content contains claims that are

purportedly about a three-dimensional object. This process is automatic and unconscious,

but once it is accomplished we end up with an experience that purports to be of a three-

dimensional object. We can then extract from the content of this experience a list of

statements that are purportedly about a three-dimensional configuration. By looking at

"perspective pictures," i.e., pictures that lok like three-dimensional objects, these

automatic and unconscious mechanisms also produce an experience whose content

contains claims that are purportedly about a three-dimensional object, and from the

content of this experience, we can extract a description that is purportedly about a three-

dimensional object.

An artist employs a variety of techniques to produce perspective pictures. For

instance, an artist can use rules of linear perspective. These rules specify how to draw

images in two-dimensions so that the resulting picture appears to look like a three-

dimensional spatial configuration. One rule tells the artist how to draw lines so that the our

experience of these lines will be similar to our experience of parallel lines that recede in

the distance. Besides using rules of linear perspective, the artist can also employ certain

shading techniques to mimic in two-dimensions what happens when light hits a solid

object.

It is important to recognize that the artist can apply these techniques of perspective

locally and still produce a picture that appears to look globally like a three-dimensional
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object. Figure 2 provides an example. In this picture, the rules of perspective are applied

locally. Each corner is constructed so that our visual system is provided locally with the

needed cues to produce an experience whose content contains claims that are purportedly

about a three-dimensional object. I will discuss this picture in more detail latter. In

particular, I will explain how we can distinguish this picture from pictures "of' three-

dimensional objects.

Figure 2

To characterize the notion of depiction, let us restrict our attention to perspective

pictures. We have seen that when we look at a picture, we can generate, from the content

of our experience, a list of statements that are purportedly about a three-dimensional

object. Let us call the list of statements generated from such a picture a "profile" generated

from this picture. For example, a profile generated from Figure 2 contains the claim that

there is an object that is three-dimensional; that this object consists of four connected bars

that meet at ninety degree angles; that the bar at the top of this object contains three-square

blocks; that the top bar is orientated so that its front surface makes an acute angle with the

ground; and so forth.
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It is important to notice that a profile generated from a picture does not contain, for

every feature we see the picture as having, a claim that describes this feature. For example,

no profile generated from Figure 2 contains the claim that a two-dimensional object is

made of ink nor does it contain the claim that this two-dimensional object has 'Figure 2'

written beneath it. Although these claims are part of the content of our experience of this

picture, they are not part of a profile generated from it.

This observation, however, brings up an important question: how do we determine

which claims are part of a profile and which are not? I believe that conventions of

representation determine which claims are part of a profile. Conventions of representation

are, in short, general rules that tell us which features that we see a perspective picture as

having are representational and which are not. For instance, the profile generated from

Figure 2 does not contain claims to the effect that an object has a feature only a two-

dimensional object has. The reason is that a convention of representation tells us that we

should ignore aspects of the picture that destroy the illusion of three-dimensionality. As a

result, we do not include in the profile claims that correspond to features that undermine

this illusion. So, even though we see the picture as having certain properties that only a

two-dimensional object has, we ultimately do not include in the profile the claim that the

object has such and such two-dimensional feature. Conventions of representation also tell

us to ignore certain features of the picture that are unique to pictures. For instance, we

ignore that the picture has a frame, and we ignore that the picture is drawn on a canvas. So,

the claim that 'Figure 2' is written beneath Figure 2 is thus not part of the profile generated

from Figure 2. Conventions of representation help us generate a profile by helping us

distinguish representational from nonrepresentational features of a picture.
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My characterization of the notion of a profile allows for the possibility that more

than one profile can be generated from a picture. For, we can extract more claims from the

content of our experience of a picture on one occasion than on another. To define 'depicts',

I need to introduce the notion of a maximal profile. The "maximal profile" generated from

a picture is the list that contains, for every representational feature of a picture, a

corresponding claim about that feature. Using the notion of maximal profile, we can define

'depicts' as follows:

Depiction Condition: A picture depicts a configuration that fits the maximal profile

generated from this picture.

So, we determine what configuration a picture depicts by using rules of interpretation to

generate a list of claims that specifies spatial properties of a configuration. The

configuration that has these spatial properties is the depicted configuration.

The proposed account of depiction allows for the possibility that a picture depicts

an object that could not exist in three-dimensional space. For, an object that could not exist

in three-dimensional space can fit a profile generated by a picture and so be depicted by a

picture. Notice, then, in saying that a picture depicts an object, we are not thereby

committed to the claim that the depicted object could exist in three-dimensional space.

III. Pictures as a Guide to Possibility: A Sketch

So far, we have seen that the modal structuralist owes us a defense of (3), i.e. the

claim that an osequence could exist. In this and the next section, I will lay the

groundwork for this defense of (3). 1 will introduce a method for establishing possibility

claims. I will describe how to appeal to pictures in order to establish that the depicted

object could exist. I will then apply this general method to show that by seeing pictures of
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an infinite sequence, we obtain evidence for (4), i.e., the claim that an o-sequence of

concrete objects could exist, and thus we obtain evidence for (3).

I should inform the reader that in this section I will help myself to an admittedly

controversial notion, namely the notion of a "coherent" spatial configuration. I will discuss

this notion in detail in the next section. In this section I simply want to provide an outline

of the picture method.

The picture method is well suited to the task of establishing that the depicted object

could exist. In fact, the picture method often fares better than methods where we have only

a description of the object in question and, on the basis of our understanding of this

description, attempt to show that something satisfying that description could exist. For, it

is often difficult to determine, on the basis of our grasp of a description, whether an object

satisfying that description could exist. But when we couple the description with a picture

of the object, we sometimes obtain the needed evidence. Pictures sometimes succeed

where mere descriptions fail because experiences have a force that narratives sometimes

lack. To see this, consider the following story which, I presume, the reader will find almost

impossible to understand.

A man with suction cups attached to his feet takes a journey around four connected

bars. Initially, he walks up the inside of the first bar which is twelve feet long and which

lies perpendicular to his body. When he reaches the top of the bar, he faces the end of a

fifteen foot bar which is parallel to his body. The man steps onto this second bar and walks

along it until he confronts a third bar which is parallel to his body. He steps onto this third

bar, walks twclve feet, and encounters a fifteen-foot bar which is again parallel to his body.
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He steps onto this last bar, walks along it, and eventually finds himself back at his initial

position.

The difficulty in trying to determine whether it is possible that a man could make

such a journey in three-dimensional space is not that this story is nonsense. Indeed, each

sentence is clear and comprehensible. Rather, the difficulty is that it is unclear how the

whole story fits together. As a result, we are uncertain as to whether this story describes a

case of possible motion in three-dimensional space.

Pictures provide us with the needed evidence. In particular, Figure 3 provides us

Figure 3

with grounds for believing that the story describes a case of possible motion in three-

dimensional space. Figure 3 contains three pictures of the object on which the man walks

and depicts his initial position. The pictures show us how the object would look from

different vantage points. I believe that by seeing Figure 3, we have adequate grounds for

believing that the depicted object could exist in three-dimensional space, and

consequently, for believing that the man's journey is a case of possible motion in three-

dimensional space. The reason is that seeing these pictures gives us evidence that the

pictures represent a coherent spatial arrangement and from this observation of coherence,
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we can infer that the depicted object could exist in three-dimensional space. These pictures

thus have a force that the description of the man journey lacks.

However, when drawing modal conclusions from our experience of pictures, we

must proceed with care, for, pictures can be deceptive. Fortunately, however, pictures are

deceptive in a way that need not fool us. To see this, recall Figure 2 from the previous

Figure 2

section. Just like Figure 3, Figure 2 appears to depict a three-dimensional object. However,

on closer inspection, we begin to see that this picture is deceiving. In particular, if we look

at the bottom left corner while covering up the bottom right corner, the bottom bar appears

to be in the background. If we do the opposite, i.e., look at the bottom right corner while

covering up the bottom left corner, the bottom bar appears to be in the foreground.

Looking at these two corners separately, thus, makes us expect that the bottom bar

extending from the right corner does not meet the bottom bar extending from the left

corner. However, when we look at the figure as a whole, it appears to depict an object

consisting of four connected bars. Because we form a contradictory interpretation of the

object, we have reason to believe that the picture does not depict a coherent spatial
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configuration. We thus have evidence that the picture does not depict an object that could

exist in three-dimensional space. So, even though some pictures are deceptive, we need not

be duped.

So far, then, I contend that if we see certain kinds of pictures and if we determine

that these pictures represent a coherent spatial configuration, then seeing these pictures

provides evidence that the depicted object could exist in three-dimensional space.

Accordingly, I contend that not only can we detect that a picture represents a coherent

spatial configuration, but also we can use the claim that a picture represents a coherent

spatial configuration as grounds for concluding that the depicted object could exist in

three-dimensional space.

Before closing this section, let me briefly indicate how the picture method is

related to the standard method of establishing modal claims. The standard way to establish

that a proposition is possible is to argue that it is conceivable, where the proposition's

conceivability is presumed to provide evidence for its possibility. Does the picture method

provide a way of conceiving that an object exists? The answer to this question depends on

one's conception of conceivability. Some conceptions of conceivability make room for the

impact of visual images on our ability to conceive that an object could exist. Other

conceptions do not. The discussion in this section demonstrates that conceptions of

conceivability that make room for the impact of visual images must provide a method for

filtering out deceptive images such as Figure 2.
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IV. Pictures as a Guide to Possibility: A Detailed Argument

My argument, as it stands, requires supplementation. In particular, I need to

provide a characterization of the notion of coherence. In the rest of this section, I will

provide an account of coherence as well as a test for coherence.

I suggest the following characterization of coherence:

Coherence Condition: A picture represents a coherent spatial configuration if
and only if it can be "naturally" mapped into three-dimensional
space and the resulting object can be "filled in" so as to produce a
three-dimensional object that fits the maximal profile generated
from the picture.

I need to make two comments about this condition. First, I need to indicate what I mean by

a "natural" map. We know that a two-dimensional image can be mapped to infinitely many

three-dimensional objects. Raphael's School of Athens, for example, can be mapped to my

left foot, the fly on the window sill, the cup on the table, and so forth. Such maps, however,

are not natural maps. A natural map respects the geometrical information contained in the

picture. For example, we might see one point in the picture as in front of another. A natural

map m-ps these two points in the picture to two points in three-dimensional space, one of

which is in front of the other. To ensure that a map is natural, we can require that the map

preserves linear distances up to scale and relative positions. That is, if point aI on the

picture is mapped to the point b1 in three-dimensional space and point a2 on the picture is

mapped to point b2 in three-dimensional space, then the distance and the relative position

between a1 and a2 as represented in the picture must be proportionally preserved when

these points are mapped to bi and b2-

My second comment is about the filling-in clause of the coherence condition. It is

necessary to include this clause because a natural map from a two-dimensional surface will
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often supply only some of the outside surfaces of the depicted object. A natural map

supplies only some of the surfaces because pictures often depict an object that has surfaces

that are not "seen" in the picture, but nevertheless are "implied" by the picture. It is thus

necessary to fill in the rest of the object after mapping. This "filling in" should be done in

a way that meets our expectations as to what the depicted object is like. For example, in

looking at Figure 3, we expect that the depicted object is composed of four rectangular

bars that meet at right angles. Since the map from the two-dimensional image to three-

dimensional space does not generate the backside of the rectangle, it is necessary to "fill

in" the resulting three-dimensional object. To avoid cumbersome sentences in what

follows, I will drop the filing-in clause when discussing the coherence condition and

simply say that the resulting object fits the maximal profile generated from the picture.

Now that we have a characterization of coherence, we can see why meeting the

coherence condition entails possibility. It entail possibility because if the two-dimensional

picture can be mapped into three-dimensional space in such a way that the resulting object

fits the maximal profile generated from the picture, then a three-dimensional object can

have all the features that the depicted object has. Accordingly, the depicted object could

exist in three-dimensional space.

We can similarly argue that falling to meet the coherence condition entails

impossibility in three-dimensional space. That is, if a two-dimensional picture cannot be

naturally mapped into three-dimensional space in such a way that the resulting object fits

the maximal profile generated from the picture, then a three-dimensional object cannot

have all the features that the depicted object has. Accordingly, the depicted object could

not exist in three-dimensional space.
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Initially, the argument from incoherence to impossibility might seem problematic.

For, certain pictures do not appear to meet the coherence condition, but they appear to

depict an object that could exist in three-dimensional space. I have in mind pictures that

"flip" on us. That is, at one moment we see the picture in one way and then the next

moment the picture looks completely different. The classic example is given in Figure 4.

Figure 4 does not appear to meet the coherence condition because if we wait for the figure

to invert, we can see point A as in front of point B, and we can also see point B as in front

of point A. (Figure 5 makes the two views more apparent.) As a result, the geometrical

A

Figure 4

A A

Figure 5

information contained in the picture appears to be contradictory. So, it appears that there is

no map from this picture to three-dimensional space that preserves the geometrical

information in the picture. But Figure 4 appears to depict a cube and so appears to depict

an object that could exist in three-dimensional space.

16CHAPTER 3116



I believe that the difficulty here is only apparent. The problem with this "counter

example" is that it is incorrect to say that Figure 4 depicts, in my sense, a single object. We

determine what object a picture depicts on the basis of how the picture appears to us.

Because the picture looks some way to us, we can obtain a profile from the picture. In the

case of Figure 4, however, we cannot generate the needed profile because the picture looks

one way at one moment and then looks an entirely different way at another moment. We

have two entirely different experiences of the picture and all its part. The best we can do,

then, is set up two profiles for the picture. It thus is incorrect to say that the picture depicts

a single three-dimensional object.

This example illustrates that there are a variety of pictures that depict neither a

coherent spatial configuration nor an incoherent one. This occurs because in some cases it

is either indeterminate what object a picture depicts. We thus cannot sort pictures into two

piles: pictures that represents coherent spatial configurations and pictures that represent

incoherent spatial configurations. We need a third pile for undecided cases and cases

where the picture does not depict a single object.

So far, then, I have explained what coherence consists in. But my characterization

of coherence is still incomplete. My arguments in the previous section suggest that we can

detect whether a picture depicts a coherent spatial configuration simply by looking at the

picture, but the coherence condition does not make it clear how we determine, by

inspecting the picture, that a picture represents a coherent spatial configuration. For

example, the coherence condition says that Figure 2 represents a coherent spatial

arrangement just in case the two-dimensional picture can be naturally mapped into three-

dimensional space in such a way that the resulting object consists of four connected bars,
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one of which contains four blocks, and so forth. But how do we determine whether

Figure 2 satisfies this condition? Must we resort to some fancy proof or computer aided

mapping program? Must we have sophisticated mathematical knowledge to determine

whether the coherence condition is satisfied?14 Or is it possible to detect whether a picture

depicts a coherent spatial configuration simply by looking at the picture?

I believe that visual inspection of a picture is sufficient and suggest the following

test for coherence:

Coherence Test: A picture passes the coherence test if and only if we cannot
generate contradictory profile when looking at different parts of the
picture as well as the whole picture.

I have already tacitly appealed to this test when discussing Figure 2. There, I argued that

this figure does not represent a coherent spatial configuration because we form a

contradictory profile when looking at the different parts of the picture as well as the whole

picture. When we look at the right corner, the bottom beam looks as if it is in the

background. When we look at the left corner, the bottom beam looks as if it is in the

foreground. We thus expect that these two sides cannot meet. However, when looking at

the whole picture, the bottom beam appears as a single bar.

A few comments are in order about the suggested coherence test. Recall that a

profile generated from a picture does not contain, for every feature we see the picture as

having, a claim that describes this feature. For example, consider Figure 6. If we cover up

14 The stakes in answering this question are high. Ultimately I want to use the picture method to
defend modal structuralism, a position that attempts to eliminate mathematical objects. If
defending modal structuralism requires knowledge of mathematical claims, then the argument for
it would be circular. However, if determining whether a picture represents a coherence spatial
configuration does not require mathematical knowledge, then the defense of modal structuralism
is not circular. For, even though the coherence condition appeals to mathematical concepts, the
defense of modal structuralism will not be circular as long determining whether something passes
the coherence test does not require mathematical knowledge.
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Figure 6

every part of the picture except the middle sections of line a and line b, then we see line a

and line b as on the same plane. One might worry that this leads us to construct a

contradictory profile for the picture. However, since focusing on only a small portion of

the picture destroys the illusion of depth, conventions of representation tell us that we

should not include, in a profile, the claim that line a is not in front of line b. When

constructing a profile from a picture, we consider only the representational features of the

picture, i.e. the features that conventions of representation deem representational.

My next comment about the coherence test concerns how the coherence condition

and the coherence test are related. In particular, I need to show that the coherence test is a

test for coherence.

To show that the coherence test is a test for coherence, I first need to establish that

if a picture represents a coherent spatial configuration, then our test indicates this and,

second, that if our test indicates that the picture depicts a coherent spatial configuration,

then the picture depicts such a configuration. To establish the first claim, notice that if the

picture can be naturally mapped into three dimensional space in such a way that the

resulting object fits the maximal profile generated from the picture, then the picture and

the depicted object are geometrically similar. In particular, how the picture appears

geometrically is how the depicted object is. Because coherence guarantees that the

depicted object could exist in three-dimensional space, the depicted object has non-
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contradictory properties. Since how the picture appears geometrically is how the depicted

object is, it follows that we cannot generate a contradictory profile when we look at the

picture. Accordingly, the picture passes the coherence test.

We now need to show that if a picture passes the coherence test, then the picture

represents a coherent spatial configuration. We know that if a picture passes the coherence

test, we cannot generate a contradictory profile from the picture. So, the maximal profile

generated from the picture must be non-contradictory. Because it is non-contradictory, we

can reproduce the features listed in the maximal profile on a three-dimensional graph.

Accordingly, the depicted object could exist in three-dimensional space.

But what guarantees that there is a natural map from the picture to the depicted

object? To answer this question, notice that I have characterized the notion of depiction so

that the geometrical properties we see the picture as having are similar to the geometrical

properties that the depicted object has. In particular, if we see two points in the picture as a

certain distance apart and at a certain position relative to each other, then the depicted

object contains corresponding points which are at a proportional distance apart and similar

position relative to one another. Accordingly, there is a natural map from the picture to the

depicted object. So, the picture represents a coherence spatial configuration.

Now that I have discussed both the coherence condition and the coherence test, I

can clearly indicate the kind of support that coherence provides for possibility. If a picture

represents a coherent spatial configuration, then we have indisputable grounds for

concluding that the depicted object could exist in three-dimensional space. Similarly, if a

picture passes the coherence test, then we have indisputable grounds for claiming that the
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picture represents a coherent spatial configuration, and so we have indisputable grounds

for concluding that the depicted object could exist in three-dimensional space.

However, it is important to notice that our route for establishing possibility

requires us to provide evidence that a picture passes the coherence test. Ultimately, then,

our reason for holding that a picture depicts an object that could exist in three-dimensional

space comes from evidence that this picture passes the coherence test.

But, what kind of evidence do we have for the claim that a picture passes the

coherence test? Well, we need to look at the whole picture as well as its parts and then try

to determine whether we can form a contradictory profile from the picture. The key point

to notice, here, is that in making this determination, we are fallible. As I stated earlier, the

content of an experience of a picture contains claims that are purportedly about a three-

dimensional object and claims that are about a two-dimensional object. Using rules of

representation, we extract from the content of our experience claims that purport to be

about a three-dimensional object. In performing this extraction, our inattention might lead

us to form a non-contradictory profile from the picture even though it is possible to form a

contradictory one. Because we are fallible in assessing whether a picture passes the

coherence test, the picture method allows us to provide defeasible justification of

possibility.

Overall, then, I have suggested a way to use experiences of pictures to support

possibility claims. If we do not form a contradictory profile when looking at a picture, then

we have reason to believe that the picture represents a coherent spatial arrangement. As a

result, we have reason to believe that the depicted object could exist in three-dimensional

space.

CHArER 3 121



V. Pictorial Evidence that an co-Sequence Could Exist

In the rest of this essay, I will apply the machin 'y I have developed to the case of

an infinite sequence. I will argue that by using this machinery, we can provide grounds for

(4), i.e., the claim that an co-sequence of concrete objects could exist. By providing

grounds for this claim, I offer a defense of modal structuralism.

To show (4), I will argue that a particular kind of infinite sequence could exist, in

particular a Dedekind infinite sequence, where a set of objects X forms a Dedekind infinite

sequence if there is a one-one function f that maps X onto all, except for one member, of

X. Arguing that a Dedekind infinite sequence could exist provides a route for establishing

(4), even though not all Dedekind infinite sequences are co-sequences. 15 The reason is that

we can apply a theorem of Richard Dedekind to extract an co-sequence from a Dedekind

infinite sequence. Dedekind appeals to second-order logic to show that if a Dedekind

infinite sequence exists then it contains an co-sequence as a proper part. 16 The injective

function on the Dedekind infinite sequence supplies us with the "successor" function for

the co-sequence. In particular, the ancestral of this injective function is the needed

"successor" function for the co-sequence. So, if we know that a Dedekind infinite sequence

of concrete object could exist, by using second order logic we can show that an co-

sequence of those concrete objects could exist. In what follows, then, my task will be to

argue that we have grounds for believing that a particular Dedekind infinite sequence

could exist.

15 A Dedekind infinite sequence may contain members that follow infinitely many others
16 Richard Dedekind, Essays on the Theory of Numbers. Dover Publications, NY, 1963. p. 68.

(Theorem 72)
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The particular Dedekind infinite sequence I am interested in is a Dedekind infinite

sequence of rectangles, the description of which is as follows. The sequence of rectangles

contains rectangles that are of the same size. In this sequence, there is a first rectangle, and

two feet after this rectangle, there is another rectangle which is parallel tU the first; and,

two feet after this second rectangle is another rectangle, and so forth. In general, for any

rectangle r in this sequence there is another rectangle r' that follows two feet after r and

that is different from any rectangles lying behind r.17

Have we described a possible situation? As with the story about the man's journey

around four connected bars, it is difficult to detennine whether the description forms a

coherent whole. To make this determination, I suggest that we apply the picture method to

obtain the needed evidence. To use this method, we need to produce a picture and argue

that not only is this picture a picture of a Dedekind infinite sequence but also this picture

passes the coherence test. If we can do this, we obtain evidence that the sequence could

exist.

Off hand, however, this suggestion does not seem promising. The problem is that it

does not appear that we can produce a picture of a Dedekind infinite sequence. For, a

picture depicts a Dedekind infinite sequence only if a Dedekind infinite sequence satisfies

the maximal profile generated from the picture and no finite sequence satisfies the

maximal profile. But how can we produce a picture that generates such a profile? Any

picture we draw has only finitely many rectangles. So, it appears that the maximal profile

will contain the claim that the sequence is finite, and so only finite sequences will satisfy

it. Accordingly, it appears that we can produce only a picture that depicts a finite sequence.

17 Although it may not be obvious from the description, this sequence is a Dedekind infinite

sequence. The function that plays the role of the one-one function is the function that takes each
rectangle to the rectanglk directly following it.
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I believe that we can produce a picture of an infinite sequence as opposed to a finite

sequence. I will argue that we can produce a picture of an infinite sequence because we can

produce a picture that is such that, when we look at it, we have an illusion of an infinite

sequence, and consequently, we must include in the profile generated from this picture a

claim that only a Dedekind infinite sequence can satisfy.

To make my case, first I will remind the reader how it is that we have an illusion of

the infinite when we look at certain pictures. I will then explain why this ensures that only

a Dedekind infinite sequence satisfies the maximal profile generated from this picture.

The pictue that provides us with this illusionary effect is Figure 7. As I stated in

the Chapter 2, in saying that we have an illusion of an infinite sequence when we look at

Figure 7, I do not mean that we actually see the figure as containing infinitely many

rectangles. Rather, we have an illusion of the infinite in that we see the figure as having the

LFgr7
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property: containing a shrunken duplicate of itself. This is an illusion of the infinite

because if Figure 7 did have that property, it would contain infinitely many rectangles.

To see that we have an illusion of the infinite, I have placed Figure 7 above another

figure, Figure 8. Figure 8 contains an exact duplicate of the sequence obtained from

EI

Figure 7

L|Z

Figure 7
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Figure 7 when the first rectangle in Figure 7 is deleted. As I discussed in the Chapter 2, I

contend that by inspecting Figure 7 and Figure 8, we can verify that the following hold:

(5) We see an exact duplicate of Figure 8 as a proper part of Figure 7.

(6) We see Figure 8 as a shrunken duplicate of all of Figure 7.

And if both (5) and (6) are true, we represent Figure 7 as having the property, containing a

shrunken duplicate of itself.

I contend that in seeing Figure 7 as containing a shrunken duplicate, we have a

perceptual illusion of an infinite sequence. For, if Figure 7 did contain a shrunken

duplicate, then it would contain infinitely many rectangles. To show this, I will argue that

if Figure 7 contains finitely many rectangles, Figure 7 does not contain a shrunken

duplicate. So, suppose that the number of rectangles in Figure 7 is finite. Let us call the

sequence that is obtained by deleting the first rectangle in Figure 7, MiniFigure 7. Since

Figure 7 contains only a finite number of rectangles, say n, MiniFigure 7 contains one less

rectangle and so contains n-I rectangles. MiniFigure 7, then, is not a shrunken duplicate of

Figure 7. Accordingly, if Figure 7 contains a shrunken duplicate as a proper part, then

Figure 7 contains infinitely many rectangles. So, in seeing Figure 7 as containing a

shrunken duplicate as a proper part, we have an illusion of an infinite sequence.

So far, I have argued that we have an illusion of an infinite sequence when we see

Figure 7. Establishing this claim enables us to show that Figure 7 is a picture of a

Dedekind infinite sequence of rectangles. As I said previously, Figure 7 depicts a

Dedekind infinite sequence only if a Dedekind infinite sequence satisfies the maximal

profile generated from Figure 7 and no finite sequence satisfies this profile. I believe that
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the maximal profile generated for Figure 7 includes the claim that the sequence contains a

shrunken duplicate. Indeed, I have argued that we see Figure 7 as containing a shrunken

duplicate. Furthermore, I believe that conventions of representation tell us that the claim

that an object contains a shrunken duplicate is part of the maximal profile generated from

this picture. Indeed, the property containing a shrunken duplicate is not a property that is

characteristic of pictures, such as the properties of having a frame, drawn on a two-

dimensional canvas, and having the label 'Figure 7'. Furthermore, in seeing the picture as

containing a shrunken duplicate, we preserve the illusion of depth in the picture. So,

conventions appear to indicate that the maximal profile generated from Figure 7 includes

the claim that the sequence contains a shrunken duplicate. As a result, the sequence that

satisfies the maximal profile must be a Dedekind infinite sequence, and so Figure 7 depicts

such a sequence.

Now that we have produced a picture of an infinite sequence, we are close to the

goal of this section, namely showing that a Dedekind infinite sequence of rectangles could

exist. The final step is to show that this picture passes the coherence test. That is, we must

show we do not form a contradictory profile when looking at different parts of Figure 7 as

well as the whole picture.

Off hand, one might think that such a task is destined to fail. One might think that

when we look at Figure 7 we form a contradictory profile. In particular, on tihe basis of

seeing the picture, we include in the profile the claim that the sequence contains a

shrunken duplicate. But also, since we see the ink blot near the horizon line, it appears that

we also include in the profile the claim that the sequence contains only finitely many

rectangles. So, it appears we form a contradictory profile.
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To see what is wrong with this argument, we must remember that not every feature

of the picture corresponds to a claim in the profile. Indeed, conventions of representation

tell us that some features of Figure 7 are not representational. In particular, conventions

tell us that we should not include in the profile the claim that the sequence contains some

rectangles followed by a large blotch. For one thing, when we look at the part of the picture

that just contains the ink blot, we destroy the illusion of depth in the picture. So,

conventions of representation tell us that we should not include in a profile the claim that

there is a blot on the horizon. Furthermore, the feature of the ink's coalescing M one point

is like the feature of having a frame or of being drawn on paper. It is unique to the picture.

The picture has this feature by dint of being a picture, and so conventional of

representation dictate that the feature is not representational.

The observations made in the above paragraph are similar to observations we made

about Figure 6, the picture of the cube. We noted that this figure has certain

nonrepresentational features. The feature drawn on paper is such a nonrepresentational

feature of Figure 6. On the other hand, the feature line a being in front of line b is a

representational feature. Conventions of representation tell us which features are

representational and which are not representational. Once we apply conventions of

representation, we can see that it is incorrect to include in the maximal profile generated

from Figure 7 the claim that the depicted sequence is finite.

With these clarification, we can now explain why Figure 7 passes the coherence

test. When we look at Figure 7 and its different parts, we form a non-contradictory profile.

When we look at the whole picture, we include in the profile the claim that sequence

contains a shrunken duplicate. And, looking at the parts of the picture does not require us
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to include a claim in the profile that contradicts this claim about the shrunken duplicate.

When we look at the last few rectangles, we do not add to the profile a claim contradicting

the claim that the sequence contains a shrunken duplicate. When we look at the first few

rectangles, we include in the profile claims about the shape and position of the first few

rectangles, claims that do not contradict the claim that the sequence contains a shrunken

duplicate. By producing a non-contradictory profile, we obtain evidence that this picture

passes the coherence test.

We have thus shown that we have ground for the claim that a Dedekind infinite

sequence could exist. We have reason to believe that Figure 7 is a picture of a Dedekind

infinite sequence. Furthermore, we have reason to believe that this picture passes the

coherence test. Accordingly, our experience of Figure 7 give us grounds for the claim that

Dedekind infinitely many concrete objects could exist in three-dimensional space.

As I noted at the beginning of this section, showing that we have evidence that

Dedekind infinitely many concrete objects could exist is one short step from showing that

we have evidence that an w-sequence of concrete objects could exist. By appealing to

second-order logic, we can extract an C-sequence from a Dedekind infinite sequence.

VI. But It's an Illusion

At this point the reader might have certain concerns about the fact that I have used

an illusion to provide grounds for a modal claim. In Chapter 2 1 already addressed certain

worries about using an illusion as a basis for knowledge. In particular, I argued that even

though an illusion is a misrepresentation of the way the world is, this does not obviously

bar it from providing us with modal knowledge. I also pointed out that we cannot discount

CHAFrER 3 129



the possibility that this illusion provides us with modal knowledge on the basis that our

mind manufactures the illusion, creating something that is not really there. For, as I

argued, the arrangement of lines in Figure 7 causes the picture to look a certain way to us.

We do not add properties to the picture.

Now that I have described the picture method, however, one might have specific

concerns about my use of the illusion of the infinite. For instance, one might worry that

because the illusion of the infinite is in our head and does not correspond to snme ic ol

feature of the picture, showing that the picture passes the coherence test does not appear to

provide grounds for the claim that an infinite sequence could exist. The problem is that the

coherence test is supposed to give us evidence that we can map Figure 7 into three-

dimensional space so as to preserve the geometrical features of Figure 7. But it appears

that we can preserve these features of Figure 7 by mapping Figure 7 to a finite sequence in

three-dimensional space. For, our experience of a finite sequence is similar to our

experience of Figure 7.

This argument misstates the coherence condition. The coherence condition

requires that the mapping from Figure 7 to a three-dimensional configuration is such that

the resulting configuration fits the maximal profile generated from Figure 7. But what

claims are in the maximal profile from Figure 7? I have argued that the claim that a

sequence contains a shrunken duplicate is part of the maximal profile generated from

Figure 7. So, the required mapping cannot map Figure 7 to a finite sequence. For, a finite

sequence does not satisfy the maximal profile generated from Figure 7.

That the coherence condition accommodates illusory features of a picture should

be no surprise. All perspective pictures have illusory features. These pictures appear to
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have three-dimensional properties, but they are two-dimensional. The coherence condition

requires that such illusory features of the picture are real features of the depicted object.

Indeed, the mapping from a two-dimensional picture to a three-dimensional configuration

is such that the resulting object not only appears to fit but actually fits the maximal profile

generated from the picture.

We should note, however, that the illusion of the infinite differs from the illusion of

depth that is produced in the picture of a cube, for instance. In particular, certain three-

dimensional finite sequences appear to contain a shrunken duplicate but, for the most part,

no other object besides a cube appears as a cube. This difference between the illusion of

the infinite and other illusory aspects of a picture, however, turns out to be unimportant.

For, as I have argued, conventions dictate that the feature containing a shrunken duplicate

is a representational feature of the picture. So, just as a picture "of' a cube depicts an

object that has six sides which meet at ninety degree angles, Figure 6 depicts an object that

contains a shrunken duplicate. So, Figure 6 depicts a sequence that not only appears to

contain a shrunken duplicate but actually contains one.

VII. An Epistemological Puzzle for Modal Structuralism

So far, I have argued that the modal structuralist can provide a defense of (4), i.e.,

the claim that there could exist an a-sequence of concrete objects. My argument, however,

is contrary to Bob Hale's conclusion in his recent article "Structuralism's Unpaid

Epistemological Debts." There, Hale argues that it appears to be impossible for the modal

structuralist to provide credible support for (3), i.e., the claim that an o-sequence of

objects could exist. The problem is that to show (3), the modal structuralisL must establish
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(4).18 But since Hale believes there appears to be no way for a modal structuralist to

establish (4), he concludes that modal structuralism generates a special epistemological

puzzle that seems just as tough as the epistemological puzzle that platonism generates. In

this section, I will discuss why Hale believes that it is impossible to provide grounds for

(4). In the next section I will explain why his argument does not undermine my argument

for (4). I also will point out specific difficulties with his argument against modal

structuralism.

Hale claims that the only way a modal structuralist can argue for (4) is by using

conceivability as a grounds for possibility, where the notion of conceivability is explicated

in terms of imaginability.

An initial thought in providing such an explication is simply to say that P is

conceivable if P is imaginable. This characterization seems to work in some cases. For,

example, I take it that I can imagine that ten of my books are stacked in a pile on my living

room floor, and so this proposition is conceivable. But others propositions are not

amenable to this treatment. For example, can we imagine that someone's mind is distinct

18 Hale contends that it is not plausible for a modal structuralist to defend the claim that an a-
sequence, of abstract objects could exist. For to defend this claim, the modal structuralist must
show either that an actual o-sequence of abstract objects exists or that if there is no actual w-
sequence of abstract objects, then there could be such a sequence. None of these options,
however, is acceptable to the modal structuralist. According to Hale, the first option is
unacceptable because it requires the modal structuralist to reintroduce abstract objects and thus
the corresponding epistemological difficulties. (Note that whether there is an epistemological
difficulty depends on the type of abstract object introduced. For instance, if the abstract objects
are "quasi-concrete" objects, i.e., if the abstract objects "are determined by intrinsic relations to
concrete objects," (Charles Parsons, Mathematics in Philosophy. Cornell University Press, New
York, 1983. p. 25.), then we might be able to provide an explanation of our knowledge of and
reference to such objects. In particular, perhaps we come to know about quasi-concrete objects
by examining the concrete objects to which they are intrinsically related.) The second option also
appears to be unacceptable because, to pursue it, the modal structuralist must provide an
explanation as to why it is a contingent fact that an w-sequence of abstract objects does not exist,
but Hale contends that there appears to be no explanation of this contingency. (See Bob H ale and
Crispin Wright, "A reducio ad surdum -Field on the Contingency of Mathematical Objects."
Mind 103 (1994). pp 169-84.) So, Hale concludes that the modal structuralist must defend (4).
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from his body? It is hard to know. For, how do we determine whether we have succeeded

in imagining such a thing? How can we settle any kind of dispute as to whether this claim

is conceivable? So, although this characterization of conceivability enables us to verify

that certain claims are possible, it is no help in settling disputed cases.

One method of settling disputes is to attempt to establish the conceivability of P by

appeal to the imaginability of some other situation which we characterize using a

description that is not simply a rewording of a sentence expressing the proposition P. The

idea, then, is to convince someone of P's possibility by describing a situation without

employing a sentence that expresses P. For example, we might try to convince someone

that John could be in pain by describing a situation in which John falls off a building and

subsequently cries and screams. The problem with this suggestion, however, is that when

we produce such a description, it is unclear why we should take the imaginability of the

situation described as evidence for P's conceivability.

Clearly, the situation we describe must be related to the proposition that P in some

way. But exactly what counts as the appropriate way?

Hale ultimately offers the following answer: "...to conceive of P's being the case

is to imagine a situation which distinctively favours the hypothesis P...",19 or similarly to

conceive of P's being the case is to imagine a situation "of which it would be

unreasonable, in the absence of further data, not to believe that, were it to obtain, it would

be the case that P."20'2 1 This account emphasize the fact that to conceive of P, we need to

19 Hale, "Structuralism's Unpaid Epistemological Debts," p. 139.
20 Ibid., p. 139.

21Hale relies heavily on Stephen Yablo's discussion in "Is Conceivability a Guide to Possibility?".
Stephen Yablo, "Is Conceivability a Guide to Possibility?" Philosophy and Phenomenological
Research 53 (1993). pp 1-42. Cf. Yablo who writes, "conceiving of P is a way of imagining that
P; it is imagining a world of which P is held to be a true description," or similarly, irnagining "a
world that I take to verify that P." Yablo, "Is Conceivability a Guide to Possibility?" p. 27.
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not only describe a situation without reference to P but also convince ourselves that the

situation described is one of which we justifiably believe that P is true.22 This account

enables us to see why describing John's falling and screaming is a way of convincing

someone that John could be in pain. The situation in which John falls is described without

employing the word 'pain' or a cognate, and it is a situation of which we justifiably believe

that John is in pain. So, as long as one agrees that we can indeed imagine a situation in

which John falls and screams, then we have reason to believe that we can conceive that

John is in pain.

To show that the modal structuralist cannot defend (4), Hale "conveniently"

divides his argument into two parts.23 He argues for the following two claims:

(7) We cannot conceive that an infinite sequence of concrete objects is constructed.

(8) We cannot conceive that such a sequence exists independently of construction. 24

Hale argues for (7) by relying on the following key premise:25

(9) If it is imaginable that someone constructs an infinite sequence of concrete objects,
then it should be possible to imagine a situation in which that person has evidence
that this construction has been performed.

22 One virtue of this treatment is that it leaves room for undecided cases, cases where we cannot
determine whether P is conceivable or inconceivable. For, we might not be able to imagine either
a situation 'that distinctively favors P or a situation that distinctively favors not P.

2 Although Hale says that is convenient to divide the argument into these two parts, he never
explains why he proceeds as he does.

24 As I noted in footnote 22, one virtue of Hale's explication of conceivability is that it leaves room
for undecided cases, cases where we ca~nnot determine whether P is conceivable or
inconceivable. Hale takes advantage of this aspect of his account. He does not argue that it is
inconceivable that an infinite sequence exists. Rather he argues that it is not conceivable that such
a sequence exists.

25 For discussions about whether constructing an infinite sequence is possible see Paul Benacerraf,
'Tasks, Super-tasks and Modern Eleatics." The Journal of Philosophy 59 (1962). pp. 765-784.
Also see James Thomson, "Tasks and Super-tasks." Analysis 15 (1954). pp. 1-13.
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As Hale writes,

So, if it is possible that Hercules has performed a supertask [i.e., a task

consisting of infinitely many sub tasks], it should be possible to envisage a
situation in which he would have adequate grounds for believing himself to

have succeeded. 26

He accepts this principle because the construction of an infinite sequence of concrete

objects is a physical task, and he thinks that we should, in principle, be able to come up

with empirical evidence that a physical task has been accomplished.

Because I will challenge (9), it is not necessary to go into extensive detail about the

rest of Hale's argument for (7). Suffice it to say that he argues that to imagine a situation in

which we would have empirical evidence that an infinite sequence has been constructed,

we would need to imagine a situation in which we would have evidence that an infinite

sequence exists independently of any construction. So, he contends that to argue that an

infinite sequence could exist, the modal structuralist must ultimately argue that we can

conceive that an infinite sequence exists independently of construction.

According to Hale, though, it is also not promising to argue that we can conceive

that an infinite sequence of concrete objects exists independently of construction. He

claims that to conceive that an infinite sequence exists independently of any construction,

we "must supply a description-necessarily finite-of a possible situation, no empirically

adequate theoretical account of which could avoid postulating the existence of a completed

ao-sequence." 27 Since the description of the situation in question will be of only finitely

many observable pieces of evidence, he contends that "It beggars belief that any such

26 Hale, "Structuralism's Unpaid Epistemological Debts," p. 142.
27 Ibid., p. 145. Note that the description cannot be simply a rewording of the claim that an

w-sequence exists. Rather, the description is of certain observable phenomena that might support
this claim.
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description could rule out alh but theories which postulate the existence of infinitely many

concrete objects..."28 and so concludes that (8) holds, i.e., that we cannot conceive that an

o-sequence exists independently of any construction.

Overall, then, Hale claims that although modal structuralism aj ,ears to resolve one

of the platonist's most perplexing epistemological puzzle, it seems to generate a quite

difficult epistemological puzzle of its own.

VIII. Why Hale's Argument Fails

If my argument in support of modal structuralism is correct, then something must

be wrong with Hale's argument. For, I have argued that we have grounds for the claim that

infinitely many concrete objects could exist. But Hale concludes that the modal

structuralist cannot establish this modal claim.

To determine how Hale's argument fails, we must determine whether he believes

that the picture method supplies us with a way of conceiving that certain objects could

exists.

Given that Hale assumes that to conceive that an infinite sequence exists, we must

"must supply a description-necessarily finite-of a possible situation, no empirically

adequate theoretical account of which could avoid postulating the existence of a completed

co-sequence," it appears that he does not consider the picture method as a way of

conceiving that an infinite sequence exists. For, if we use the picture method, we need not

supply a description of observable evidence and show that no empirically adequate theory

could avoid postulating the existence of a completed cosequence. Rather, we simply argue

that we can produce a picture of an infinite sequence and that this picture passes the

2 Hale, "Structuralism's Unpaid Epistemological Debts," p. 145.
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coherence test. It thus appears that Hale does not classify the picture method as a way of

conceiving that an object exists. But if this is the case, then none of his arguments

undermines what I have said in support of the claim that an infinite sequence could exist.

So, Hale fails to show that a modal structuralist cannot establish that an infinite sequence

of concrete objects could exist. For, Hale has not considered all the ways the modal

structuralist might provide evidence for this modal claim. The notion of conceivability he

discusses provides one route to possibility. But there are others.

Hale's argument faces further difficulties besides this one. As we have seen, he

thinks that modal structuralism faces a special epistemological difficulty because he

believes that both (7) and (8) hold. I contend that even if we do not consider the picture

method as a way of establishing possibility claims, Hale fails to establish either of these

claims.

As we have seen, the crucial assumption in arguing for (7) is as follows:

(9) If it is imaginable that someone constructs an infinite sequence of concrete objects,
then it should be possible to imagine a situation in which that person has evidence
that this construction has been performed.

The general principle upon which (9) seems to rely is as follows:

(10) If it is imaginable that someone performs a physical task, then it should be possible
to imagine a situation in which that person has evidence that this task has been per-
formed.

This general principle, however, is false. For, it is possible to perform a task that is such

that no one has evidence that the task has been performed. For example, suppose there is a

bucket full of marbles, and suppose that John, who is alone and wears gloves, closes his

eyes, grabs a marble, returns the marble to the bucket, and then mixes up the marbles. John
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has thereby succeeded in performing the task T, where T is the task of choosing a

particular marble m and making sure that no one has evidence that m has been chosen.

Although we can imagine a situation in which John performs this task, we cannot imagine

a situation in which John performs this task and someone has evidence that he has

performed this task. For, if John performs T, then no one has evidence that T is performed.

So, since performing some physical task requires one to destroy all evidence that the task

is performed, (10) is false.

As for the second part of Hale's argument, we have seen that he believes that, with

respect to a description of observable phenomena that might serve as evidence that

infinitely many concrete objects exist,

It beggars belief that any such description could rule out all but theories which
postulate the existence of completed concrete o-sequences-that the facts it
would record, were it true, would in principle defy explanation in terms of a
theory which confined itself resolutely to the finite, as far as its concrete
ontology goes.29

And from this, he concludes that we cannot conceive that infinitely many objects exist

independently of any construction. But this restriction on what is required to conceive that

an infinite sequence exists is too strong. Indeed, even Hale believes that we can conceive

that John, say, is in pain. 30 But surely no matter what pieces of observable evidence we

may cite, they do not "rule out all but theories which postulate" that John is in paiin nor do

they "defy explanation" in terms of theory that says that John is not in pain.

In sum, Hale appears to rely on verificationist premises that many will find

implausible. Indeed, a nonverificationist believes that some tasks might be intrinsically or,

29 Hale, "Structuralism's Unpaid Epistemological Debts," p. 145.
30 Ibid., pp. 138-9.
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in principle, unverifiable. So, to a nonverificationist, it seems plausible to think that we can

imagine that a physical task is performed even though we might never be able to image a

situation in which we have el dence that this task is performed. In addition, the default

stance of a nonverificationist is that whether P is possibly true should not depend on our

ability to verify something. As a result a nonverificationist may take exception to the

contention that to establish that P is possible, we need to verify that a situation is such that,

if it obtained, P would hold in it.31

IX. Summary

Overall, then, I have offered a way to establish possibility claims. I have argued

that if we can show that a picture depicts a certain object and if we form a non-

contradictory profile of this picture, then we thereby obtain evidence that the depicted

object could exist in three-dimensional space. This technique for establishing modal

claims is important because the tenability of philosophical positions often rests on modal

claims. In particular, the tenability of modal structuralism rests on the claim that an m-

sequence could exist. I have argued that the picture method helps us defend modal

structuralism because we can use it to provide evidence for the claim that a Dedekind

infinite sequence could exist. I have argued that we can produce a picture of a Dedekind

infinite sequence and furthermore that this picture passes the coherence test. In so doing, I

have provided evidence for the claim thux a Dedekind infinite sequence could exist. To

complete the argument in support of modal structuralism, I appealed to a theorem of

M Hale points out that the conceivability condition does not equate P's possibility with P's

verifiability and so contends that the account does not import an objectionable verificationist
element. See Hale, "Structuralism's Unpaid Epistemological Debts," p. 139. However, notice
that the account does require that to determine whether P is possible, we must convince ourselves
that the situation described is one of' which we justifiably believe that P is true. My point is that
some nonverificationists might object to this condition as well.
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Dedekind which enabled me to construct an o-sequence from a Dedekind infinite

sequence.
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Conclusion

I began this thesis by presenting an epistemological puzzle about the infinite: how

is it that we have knowledge of infinite mathematical objects if we do not experience

anything suitably like "infinite mathematical objects?" In this dissertation I have

investigated a response to this puzzle as well as proposed a partial solution to it.

In the first chapter, I argued that Lavine's response to this puzzle does not work. As

we have seen, Lavine tries to respond to the puzzle by arguing that the axioms of Fin(ZFC)

are true principles about finite sets. I argued that he fails to show this. In particular, I

argued that it does not seem possible to show that both Relativized Extensionality and

Generalized Zillion are true principles about finite sets. No account of availability or

availability functions enabled us to support both principles. Furthermore, when we try to

understand the notion of availability function more intuitively, Relativized Extensionality

became highly implausible.

In the second and the third chapters I took steps to respond to the epistemological

puzzle. In the second chapter I argued that, contrary to what many have assumed, we can

have "experiences of the infinite" when we see certain pictures. In particular, we can see

sequences in these pictures as containing, as a proper part, a shrunken duplicate, and so

when we look at these pictures, we have a perceptual illusion of an infinite sequence. In

this chapter, I also explained how experiences of pictures help undermine certain
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assumptions about the relationship between experience and beliefs formed on the basis of

experience.

In the third chapter, I set out to show that the experiences discussed in the second

chapter provide us with modal knowledge of the infinite. Specifically, I set out to show

that these experiences provide us with evidence that there could exist infinitely many

concrete objects.

To show that we have evidence for this modal claim, I introduced machinery for

establishing modal claims. I showed how, in general, we can use pictures to support the

contention that the depicted object could exist. I argued that upon seeing a picture, we can

provide evidence that a picture represents a "coherent" rather than an "incoherent" spatial

configuration. I then argue that if we have evidence that a picture represents a coherent

spatial configuration, we thereby obtain evidence that the depicted object could exist. To

support these claims, I provided an account of coherence and explained why coherence

provides grounds for possibility. I also presented a test of coherence.

I then used the "picture method" to show that by seeing pictures of an infinite

sequence we obtain evidence for the modal claim that an infinite sequence could exist. To

make my case, I argued that since we a perceptual illusion of the infinite when we look at

certain pictures, these pictures represent an infinite sequence. In addition I argued that we

have evidence that these pictures represent a coherent spatial configuration. I thus

concluded that we have evidence that an infinite sequence could exist.

An added benefit of showing that we have evidence that an infinite sequence could

exist is that it helped us provide a defense of a central tenet of modal structuralism. The

modal structuralist must defend the claim that an infinite sequence of concrete objects
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could exist, and, at present, he appears to lack a defense of this central tenet. So, in

addition to providing a response to the epistemological puzzle, my argument in the third

chapter shores up the modal structuralist position.

Overall, I hope that the arguments in this thesis serve to show that not only is the

infinite not as remote from our experience as we initially might believe but also our

knowledge of the infinite is not as mysterious as it first seems.
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