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ABSTRACT 
The performance of important electrical loads on 
mission critical systems like warships or off-shore 
platforms is often tracked by dedicated monitoring 
equipment.  Individual monitoring of each load is 
expensive and risky. Expense occurs because of 
the need for individual sensors and sensor wiring 
for every load of interest.  Reliability is 
compromised because detected failures or fault 
conditions might legitimately be due to load 
failure, but might also be due to errors or failure 
in the sensor network or recording instruments.  
The power distribution network on a warship 
could be pressed into “dual-use” service, 
providing not only power distribution but also a 
diagnostic monitoring capability based on 
observations of the way in which loads draw 
power from the distribution service.  This paper 
describes field tests of a prototype system that 
monitors multiple loads using existing electrical 
wiring.  Initial results are presented from a device 
that monitors a small collection of motors and two 
other devices that monitor an entire engine room.   

INTRODUCTION 
In the modern world we are surrounded by 
sophisticated networking tools that make it easy to 
send and receive information.  Examples include 
Ethernet, Bluetooth, 802.11b, and cellular 
networks.  Unfortunately, the process of “feeding” 
and “clearing” a network, that is, of gathering and 
analyzing the data, remains expensive in many 
applications.  For example, the information 
available to an engineering officer about a 
propulsion plant or any other engineering plant is 
generally directly proportional to the complexity 
and size of the installed sensor array.  
 
During the past year, we have developed new 
hardware and software that makes it possible to 
construct a nearly sensor-less system for 

monitoring the condition of mission critical loads.  
Our approach relies on electrical data (i.e. current 
and voltage) that is collected at a central point in a 
power distribution system.  Our field-tested 
device is referred to as a non-intrusive load 
monitor (NILM), and it can identify electrical 
loads from aggregate current measurements and 
then perform diagnostics on the identified loads.   
 
This paper provides a description of the 
automated load-identification and diagnostic 
system that is used to simultaneously monitor 
multiple loads in shipboard systems.  The paper 
begins with a discussion of the potential benefits 
of non-intrusive load monitoring over more 
traditional approaches requiring large sensor 
networks.  The paper then describes previous 
work conducted aboard ships.  The third section 
describes a software package named ginzu that 
automates the load-identification and fault-
detection processes.  The paper then provides field 
examples from a NILM that monitors multiple 
loads in a waste-removal system.  Finally, the 
paper concludes with results from an initial field 
study in which two NILMs monitored an entire 
engine room.   

NON-INTRUSIVE LOAD 
MONITORING VERSUS 
TRADITIONAL APPROACHES 
 
The development of high bandwidth networks has 
made an old dilemma increasingly more apparent: 
although networking makes it easy and 
inexpensive to obtain information from remote 
sensors, useful information can only be gathered 
by a potentially expensive and intrusive sensor 
array.  Although mass production may ultimately 
reduce sensor cost, especially for solid-state or 
technologically advanced micro-
electromechanical sensors, installation and 



 

analysis will likely remain expensive. The overall 
reliability of a monitoring system with many 
sensors may be reduced in comparison to a system 
with relatively fewer sensors. The utility of data 
collected with a monitoring system is critically 
dependent on the ability to perform relevant and 
fast analysis of the collected data.  More sensors 
may provide more potentially useful information, 
but at increased cost and increased burden in 
collating and correlating relevant observations.  
 
On combat vessels, modern propulsion plant 
monitoring systems, for example, rely on 
hundreds of sensors arrayed throughout the main 
machinery space.  Although these sensor networks 
enable increased levels of automation, they are 
costly to install and to maintain.  As these 
networks grow to include more sensors, there is a 
corresponding drop in the overall reliability of the 
monitoring system.   

Fortunately, the growing reliance on electrically 
actuated systems provides a new opportunity to 
reduce sensor count.  The basis for this claim lies 
in the fact that electrical currents contain 
significant information about the physical 
condition of individual loads.  A device that 
monitors aggregate current at a central location 
can then disaggregate and track the behavior of 
multiple downstream components.   

The Non-intrusive Load Monitor (NILM) is a 
system that can determine the operating schedule 
of electrical loads in a target system using 
centralized measurements (Leeb 1995, Shaw 
2008).  In contrast to other systems, the NILM 
reduces sensor cost by using relatively few 
sensors.  The NILM disaggregates and reports the 
operation of individual electrical loads like lights 
and motors using only measurements of the 
voltage and aggregate current at the service entry 
to an electrical panel.   

Over the last decade we have been conducting an 
aggressive research program to develop the NILM 
as a nearly sensor-less platform for monitoring 
mission critical electromechanical loads on 
warships.  Field experiments have been conducted 
on board two US Coast Guard Famous Class 
Cutters, the USCGC Escanaba and USCGC 
Seneca. We have also begun to examine 
monitoring possibilities for US Navy ships, 

including the DDG-51 class destroyer, through 
experiments conducted at the Navy’s Land-Based 
Engineering Site (LBES). Until recently, most of 
these experiments have focused on particular 
engineering subsystems.  Also, the experiments 
have typically not involved real-time reporting of 
information to crew members.  Results are 
presented in several publications including Cox 
(2006, 2007) and Mitchell (2007).   
 
During the past year, we have developed and 
tested new hardware and software for nonintrusive 
load monitoring.  We have tested the ability of our 
new monitoring system to provide useful 
information while underway, augmenting the 
observations traditionally made by a 
watchstander.  In some cases we have provided 
new information for which no sensor had been 
previously installed.  We currently use the NILM 
to monitor small collections of electrical loads, 
but we have initiated studies that consider how 
many electrical loads a NILM can successfully 
monitor on a shipboard power system.  Our 
ultimate goal is to develop a practical lower bound 
on the power changes that can be effectively 
detected by a NILM installed at the switchboard 
level. 
 

POWER SYSTEM MONITORING 
OVERVIEW 
Power system monitoring is an exciting approach 
for creating an inexpensive, highly capable  
“black-box” for monitoring the performance of 
critical shipboard systems.  With remarkably little 
installation effort or expense, we have fielded a 
minimally intrusive power monitor that can 
reliably monitor and track diagnostic conditions 
for multiple devices. This NILM can be used to 
determine the need for maintenance, to identify 
fault conditions, to find power quality problems, 
to help reconfigure a power system after damage, 
and to provide reliable verification of load 
operation.  Generally, the power distribution 
system can, with the proper signal processing and 
data analysis, be made to serve “dual-use.”  That 
is, it can simultaneously be used for its intended 
function of power delivery and as an information 
network for monitoring critical loads.   



 

As previously noted, the NILM makes 
measurements of voltage and current solely at a 
single point in the electric utility service. It 
characterizes individual loads by their unique 
signatures of power drawn from the mains.  A 
transient detection algorithm can identify when 
each load turns on and off, even when several do 
so nearly simultaneously.  This monitoring can be 
performed with relatively little hardware: a 
Pentium-class computer, an A/D converter, and a 
single set of current and voltage sensors (see 
Figure 1). 
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Figure 1: Block diagram of NILM installation 

 

When installing a NILM to monitor multiple loads 
on a ship or other target system, it first undergoes 
a training phase.  During training, the NILM 
observes individual electrical transient events that 
occur during the operation of particular loads.  
Sample data that might be observed by a NILM is 
shown in Figures 2 and 3.   

 

 

 

 

 

 

 

 

 

Figure 2: Turn-on transient of a power electronic 
load (personal computer) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Turn-on transient of an induction motor 
pump 

Figure 2 shows the turn-on transient of a personal 
computer.  Figure 3 shows the turn-on transient of 
an induction motor turning a pump head.  Each 
electrical load performs a different physical task, 
and each consumes power in a relatively unique 
way associated with its task.  The personal 
computer shown in Figure 2, for example, is 
essentially a power electronic load that draws a 
distorted line current with substantial third 
harmonic content.  This distortion occurs because 
the computer connects to the line through a full-
wave rectifier. The current trace also shows the 
internal sequencing of load components, e.g., the 
step change associated with the activation of an 
internal electrical component approximately one 
tenth of second into the transient.  The induction 
motor in Figure 3, on the other hand, draws a 
large pulse of current while accelerating the rotor, 
and then settles to a smaller steady state current 
demand. These transients serve as “fingerprints” 
that can be used to identify the operation of a 
particular type of load, even when several loads 
are operating at the same time. 

In practice, the NILM examines or recognizes 
fingerprints by looking for known shapes in 
“spectral envelopes” or short-time estimates of the 
envelope of frequency content in the current 
waveform.  An example is shown in Figure 4 for 
another induction motor.  The top trace shows 
current versus time during the start transient.  The 
solid line in the lower trace shows the component 
of current at the same frequency and phase as the 
line voltage, or a spectral envelope that 



 

corresponds to real power in steady state.  The “x” 
data points in the lower trace show a stored 
exemplar or fingerprint that the NILM uses to 
identify this particular load.  . 

 

 

 

 

   

 

 

 

 

Figure 4: Induction motor spectral envelope  

The NILM examines the spectral envelopes of 
line frequency currents both in-phase and 
quadrature to the line voltage, as well as higher 
harmonics. The in-phase and quadrature 
fundamental frequency spectral envelopes are 
sometimes referred to as “real” and “reactive” 
envelopes. The induction motor, for example, 
would be characterized by traces of in-phase and 
quadrature line current.  In the case of the power 
electronic load (personal computer), there would 
also be useful fingerprint information in spectral 
envelopes associated with third harmonic 
frequency (180 Hz on a 60 Hz utility).  

We have engaged in research to explore the 
possibility of using a nonintrusive approach to 
diagnostic monitoring.  This work has been 
directed at collecting, examining, and modeling 
data from field observations that we have 
collected onboard the USCGC Escanaba (Fig. 5) 
and the USCGC Seneca, as well as at the USN 
LBES facility.  Seven key systems have been 
monitored onboard the Coast Guard Cutters, 
including auxiliary seawater (ASW) pumping, 
vacuum-assisted waste disposal systems 
(collection-hold-transfer or CHT), and reverse-
osmosis water purification (RO). We have 
observed these systems both in-port and underway 
during operational cruising.  

 

 

 

 

 

 

 

 

 

 

Figure 5: USCGC ESCANABA  

The unique signatures presented by different 
classes of loads create an opportunity for 
diagnostic monitoring.  Once it becomes possible 
to associate observed waveforms or segments with 
specific loads, it is possible to perform state and 
parameter estimation on the observed waves to 
track and trend diagnostic parameters for 
individual loads.  For example, on the USCGC 
Seneca we have used the NILM to determine 
several important operating parameters of the 
ASW system.  The auxiliary seawater system 
provides cooling for all heat loads onboard the 
cutter with the exception of those associated with 
main diesel engine cooling. Heat loads that are 
cooled by this system include the HVAC units, 
refrigerators, freezers, diesel engine air coolers, 
and diesel engine lube oil coolers.  

ASW provides an excellent example of the 
diagnostic capabilities of the NILM.  A coupling 
that connects the ASW pump motor to the pump 
head can fail, leaving the ship temporarily without 
cooling, a major mission complication. Field data 
showed that a high frequency “ripple” present in 
the spectral envelopes during pump transients 
increased as the coupling progressively failed.  
The NILM is able to track each start of the ASW 
pump and evaluate the condition of the coupling 
by computing a diagnostic metric from the 
observed spectral envelopes (Shaw 2008).  The 
progress of a typical coupling failure is shown in 
Figure 6.  The imminent failure of the coupling 
can be predicted three to five starts before 
ultimate failure using power line monitoring. 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 6: ASW coupling experiencing progressive 
failure.  

REAL-TIME MONITORING 
During the past year, we have worked to automate 
the recognition of load operation and diagnostic 
monitoring to make results available to the crew 
in real-time. To do so, we have developed a 
software package known as ginzu that eliminates 
the need for off-line analysis by a skilled 
observer.  Initial tracking of load operation and 
diagnostic condition are now provided 
automatically by the NILM on-board ship.  
Furthermore, our field-tested systems have been 
installed at a central point that allows them to 
monitor multiple loads simultaneously.   

The ginzu software application implements a 
detect-classify-verify loop that locates electrical 
load transients, identifies them using a decision-
tree-based expert classifier, and then generates 
event files that contain relevant information.  
Additionally, the ginzu application provides 
streaming data to a graphical user interface known 
as the Ginzu Graphical User Interface (GinzUI).   

Classification Overview 
In general, NILM classification methods have 
focused on identifying system-specific events 
based on signal characteristics.  The methods 
implemented in the ginzu classification software 
compare the shape characteristics of a transient to 
shape characteristics of known events.  
Specifically, the shape characteristics are defined 
as (1) the relative steady state power change 

across the transient event index and (2) the shape 
of the spectral envelope during the transient.  The 
comparisons are aided by continuously tracking 
the state of the system (i.e. the running status of 
the known motors and other electric components 
in the system) and limiting the classification 
decisions to only those permitted by the 
associated finite state diagram of possible 
operating conditions.    

Figure 7 shows a simplified flow diagram of 
ginzu’s program logic.  The algorithm initializes 
by loading a 10 second data window consisting of 
relevant spectral envelopes, e.g., corresponding to 
in-phase and quadrature (“real” or “P” and 
“reactive” or “Q”) components of current.  This 
window is passed to a detection algorithm that 
locates vector indices where rapid changes in the 
envelopes have occurred.  These indexes represent 
system transients and are candidates for 
classification.   

 
Figure 7:  Program flow diagram.  Shows detect-
classify-verify logic used for incoming power. 
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Once an event has been detected, the classifier 
may be called.  The classifier implements a 
hierarchy of classification decisions to make a 
‘best guess’ based on the relative power levels 
around the event, the state of the system prior to 
the event, and if possible, the correlation between 
the shape of the power signal during the event and 
the shape of a known library event.   

On the other hand, if a rapid power change is not 
detected, a state verification and correction 
function is called. This function attempts to verify 
that the current power levels are consistent with 
what the ginzu algorithm anticipates them to be 
based on current system state.  The algorithm then 
reads one additional period of data from the input 
buffer; this data is inserted into the P/Q buffer and 
the old data is discarded.  This new P/Q window 
is then passed to the detect-classify-verify loop, 
and the cycle is repeated.   

The following sections provide an overview of the 
main components of the ginzu software along with 
a brief description of the GinzUI application.  For 
in-depth discussion refer to Proper (2008). 

Event Detection 
The preprocessor located upstream in the program 
flow of the ginzu software provides spectral 
envelopes for fundamental and higher harmonic 
content at a sample rate of 120 Hz. Therefore, the 
ten second data windows form several 1200 index 
arrays.  For example, one array contains “real” 
power and another “reactive” power.  The 1200 
index power array is passed to the detection 
algorithm where rapid power changes are located.  
This is accomplished by using a change-of-mean 
filter that calculates the difference between the 
original power signal and the output of a low pass 
filter.  The result is a processed signal that only 
contains rapid power changes.  Ultimately, these 
power changes are compared to pre-determined 
detection thresholds (based on the monitored 
system’s characteristics).  The output of the 
comparator is an index of ‘Event Detections’. 

Classfication Techniques 
The ginzu software algorithm recognizes events 
by examining changes in both steady-state 
consumption levels and also transient shape.  

 

Steady-State Power Change 

When individual loads are cycled within the 
system (i.e. pump on/off), they produce a 
corresponding change in the real envelope (P) 
and reactive envelope (Q) and possibly other 
spectral envelopes. These changes can be used as 
a simple classifier to identify loads.   

It is advantageous to look for changes in steady-
state levels in as many spectral envelopes as 
contain useful information.  This is illustrated in 
Figure 8, which shows steady-state power levels 
after turn-on and turn-off of two loads, a computer 
and a lamp. The top plot in Figure 8 shows 
changes in Q versus P.  The middle plot shows the 
change in third harmonic content versus P.  The 
bottom plot shows change in Q versus third 
harmonic content.  Notice that in the P-Q space 
(top graph), the two loads are essentially 
indistinguishable.  They both turn on and consume 
approximately 150 watts in steady state, with 
essentially no reactive power. Similarly, they turn 
off with a -150 watt steady-state change as 
expected. Observations summarized in the top 
graph alone could not be used to differentiate the 
operation of the two loads.  

 
Figure 8: Steady-state changes for turn-on and 
turn-off  of a computer and a lamp (see text). 
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The computer, however, draws a third harmonic 
current, distinguishing it from the lamp.  The 
middle and bottom traces in Figure 8 show that 
this difference makes it easy to detect the 
operation of the computer with respect to the lamp 
in an information space that includes as many 
useful spectral envelopes as can be reliably 
recorded.  

Transients 

The ginzu algorithm also classifies individual 
loads based on distinctive load transient shapes. 
Overall transient profiles tend to be preserved 
even in loads that use active waveshaping or 
power factor correction.  Most loads observed in 
the field have repeatable transient profiles, or at 
least sections of the transient profile that are 
repeatable. 

Transient-based recognition permits near-real-
time identification of load operation, especially 
turn-on events. Transients are identified by 
matching events in the incoming aggregate power 
stream to previously defined transient signatures, 
or “exemplars.” Exemplars can be determined, for 
example, by a one-time direct observation of the 
device in question, or by previous training in the 
laboratory. Pre-training has proven to be a 
reasonable approach for very repeatable loads that 
show up in large quantities, such as fluorescent 
lamp ballasts.  The exemplar may be comprised of 
multiple parts for loads whose transients have a 
number of distinct sections. Each section of the 
exemplar can be shifted in time and offset to 
match incoming transient data.  In addition, an 
overall gain may be applied to all sections of the 
exemplar to achieve a better fit.  Each event 
detected is compared to the full set of exemplars 
by using a least squares criterion to select the 
appropriate shifts and gains.  The match with the 
lowest residual norm per number of points is then 
compared to a threshold.  If the fit is good enough, 
the event is classified as a match to the exemplar.  
If not, the event is left unclassified. 

Correct classification of overlapping transients is 
possible using properly designed exemplars. 
Fingerprint traces provide positive identification 
of specific events occurring during system 
operation.  By comparing the shape of the 
transients to known system events, a numerical 

score can be assigned to grade the degree of 
similarity of the two signals; this score is known 
as the correlation score.  It is derived using the 
method of least squares in the ginzu algorithm.  
This method is discussed in detail in Lee (2003) 
and Proper (2008).   

State Verification 
If no transients are detected within a given 
window, the classifier does not need to be called. 
Ginzu uses this opportunity to verify the current 
state of operation.  This is accomplished by 
calculating the average power level for a ten 
second window and its standard deviation.  These 
values are used in a state verification function to 
perform various checks and correct the state status 
if needed. 

GinzUI 
The GinzUI application provides the interface 
between the event file and the NILM user.  Figure 
9 illustrates the front-end display used on board 
the USCGC Escanaba.  The primary functions of 
GinzUI are: 

• To continuously check the user interface 
directory for newly created event files. 

• To read event file contents and move the 
event files to an archive directory. 

• To peform diagnostics on event file data 
and alert the user if a diagnostic has 
failed. 

• To allow the user to graphically view 
event file contents. 

 
Figure 9:  USCGC Escanaba CHT GUI 



 

CHT TEST SYSTEM 
To demonstrate the ability of ginzu to monitor 
multiple loads, we installed a NILM at the service 
entry to the power panel supplying the Shipboard 
Waste Collection and Disposal System (CHT) 
onboard the USCGC Escanaba.  The CHT system 
represents a common shipboard auxiliary system 
used to transfer sewage from installed heads to a 
sanitary tank where it is pumped overboard.   

NILM has been monitoring the CHT system since 
2003 and various problems have been detected 
and classified through the application of NILM 
signal analysis.  The CHT system operation and 
performance has been detailed in previous 
research (Mosman 2006,  Piber 2007).   

Figure 10 shows the prototype installation aboard 
the Escanaba.  The NILM system with ginzu 
software runs completely on the touch tablet 
computer shown in Figure 10, installed next to the 
power panel serving the CHT system.  The crew 
can interact with the NILM through the touch 
screen, both through diagnostic reports and also 
by requesting additional data and analysis from 
the NILM. 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Real-time NILM monitoring CHT on 
the USCGC Escanaba.   

A simplified schematic of the CHT system is 
provided in Figure 11.  It consists of a 360 gallon 
sewage collection tank, which collects drains from 
eighteen vacuum toilets, two urinal lift valves, one 
urinal non-lift valve, and the ship’s garbage 

grinder.  There are four pumps associated with the 
system including two vacuum pumps and two 
discharge pumps. A number of other ancillary 
single-phase loads (i.e. lamps and small motors) 
are also installed.   

The vacuum pumps are each rated at 1.5 
horsepower and connected upstream to the top of 
the collection tank and downstream to the vacuum 
seal tank.  Their function is to maintain the 
necessary vacuum on the system for proper 
operation.  If pressure falls below 14 in-Hg, one 
of the pumps automatically turns on to increase 
vacuum within the tank. The pumps alternate 
operation in order to minimize wear.  If pressure 
falls below 12 in-Hg, both pumps are energized to 
restore proper vacuum pressure.  Pumps are 
automatically secured when pressure reaches 18 
in-Hg.   

Figure 11: Simplified diagram showing key 
components of the CHT system. 

 
CHT System State Recognition 
As previously mentioned, the system states can be 
defined by measuring the real power usage.  This 
approach was applied to the CHT system.  The 
final allowable states that were defined for the 
CHT system are shown in Figure 12.  By 
identifying the most likely state transitions and 
tracking these states, the classifier algorithm can 
be tuned so that the most likely transitions are 
given additional consideration. 

One additional note on Figure 12 is that it 
includes the most common transitions from state 
to state.  In other words, if an ON event is 
detected while both vacuum pumps are already 
running, the event cannot be a vacuum pump ON.  
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As stated in the previous section, the state 
information can be combined with the power 
change information to create accurate classifiers.  
Consider an event where the post-event power 
was zero.  Any loads known to be operating 
before the change should now be classified as 
OFF.   

0 Vacuum Pumps On 
1 Discharge Pump On 

1 Vacuum Pump On 
1 Discharge Pump On 

2 Vacuum Pumps On 
1 Discharge Pump On 

1 Vacuum Pump On 
0 Discharge Pumps On 

All Pumps Off 

2 Vacuum Pumps On 
0 Discharge Pumps On 

 
Figure 12:  Finite state model for the CHT system. 

 

CHT Diagnostic Package 
A rudimentary diagnostic package was included in 
GinzUI to provide real-time detection of CHT 
system faults that had been observed by Mosman 
(2006) and Piber (2007).  These failures include 
clogs in gauge lines and/or priming orifices, tank 
level probe failures, and system leaks.  When a 
system fault is detected, a comment is printed to 
the diagnostic log and the log turns yellow to 
indicate an abnormal condition.  Additionally, a 
line is printed to a text file that contains the 
description of the failure and the time of the 
detection.   

FIELD RESULTS 
The deployment of a complete diagnostic NILM 
system on the USCGC Escanaba took place in 
January of 2008.  The installed system consisted 
of the ginzu event classification software and the 
GinzUI diagnostic GUI running on an IBM T60 
tablet-style laptop.  The Escanaba implementation 
was intended to provide the crew with immediate 
functionality with little or no special training.    
Ultimately, the package needed to be user 
friendly, stable, and capable of providing an 
automatic restart function to recover from any 

scenario where the program execution was 
stopped.   

Summary of Results 
During its maiden cruise, the ginzu classifier 
automatically identified over 50,000 transients.  
Additionally, the associated GUI performed real-
time diagnostics that identified the occurrence of: 

• A continuous fault in the CHT tank probe 
level indication circuit causing over one 
thousand cycling discharge pump events. 

• Two situations where the vacuum pumps 
were not reaching their normal power 
level due to probable clogging. 

The CHT Classifier was assessed by randomly 
sampling and manually classifying 1500 CHT 
events from the Escanaba dataset.  In these 1500 
events, 62 events were determined to be 
misclassifications.  This equates to 95.9% 
accuracy.  The 62 events provide a representative 
sample of common classified errors. 

Automatic Diagnosis of Probe Failure 
Approximately five hours after the installation of 
the NILM, the diagnostics module alarmed that a 
probe failure had been detected based on 
excessive cycling of the discharge pumps.  .This 
particular fault had been previously diagnosed in 
research conducted by Piber (2007).  It was 
discovered that the CHT electrical controller was 
not functioning properly following a modification 
from design specifications.  Figure 13 shows a 
screen shot from the actual system. Notice that 
there is a short burst of discharge pump operation.  
This behavior is not typical and is characteristic of 
this particular fault.      

Automatic Diagnosis of Vacuum Pump Clogging 

Two vacuum pump clogging events were 
diagnosed during the three month patrol.  When a 
clog occurs in the pump suction or priming line, 
its associated vacuum pump fails to add vacuum 
to the system, thus forcing the other pump to be 
energized.  Figure 14 shows an actual screen shot 
recorded while this fault was in place.  Notice 
both the expected ‘double start’ sequence and the 
lower power absorbed by the first pump.   

 



 

 
Figure 13:  GinzUI showing eight cycling discharge 
pump runs.   
 

 
Figure 14:  Vacuum pump clogging.  The second 
pump starts to aid the first pump.   
 

TESTING THE LIMITS OF 
NONINTRUSIVENESS 
The success of the results aboard the USCG 
Cutters has encouraged us to continue our effort to 
develop and expand the role of the NILM as a 
platform for condition-based monitoring and 
maintenance.  Ideally, as few NILMs as possible 
would be installed onboard a ship.  However, 
there is a natural trade-off between intrusiveness 
and detection accuracy.  Best certainty in event 
detection would be provided by individually 
monitoring every load of interest.  Maximum 
nonintrusiveness, on the other hand, might involve 
one or a very small number of NILMs monitoring 
a large collection of loads on the power system, 
with a concomitant risk of mis-identification.   

We are currently examining data from our field 
work at the USN LBES facility, where several 
NILM units have been installed.  Some of these 
devices monitor individual loads, while two others 
are recording aggregate data at the two 
switchboards providing power to the entire engine 
room.  Figure 15 and Table 1 present some initial 
results. The top trace in Figure 15 is an aggregate 
power signal recorded at a switchboard while the 
LBES was in use for crew certification.  The 
bottom trace shows the power absorbed by the 2A 
lube oil service pump (LOSP) over the same time 
period. The letters correspond to positively 
identified events, and a summary is provided in 
Table 1.   Notice that many major auxiliary loads 
are detectable and that the transient shape at the 
load and upstream are quite similar.   

 
Figure 15:  Aggregate power recorded during a 
crew certification at the DDG-51 LBES facility (top) 
and power absorbed by the 2A LOSP (bottom).   

 
Results such as those shown in Figure 15 are very 
encouraging because they indicate that many 
critical loads can be detected with little additional 
design effort. We are currently comparing the 
dynamic range and resolution of the monitoring 
system at various points in the power system to 
develop a more rigorous design metric.  This 
metric will indicate for the designer the likely 
tradeoff in identification accuracy versus the 
number of NILMs needed in a shipboard power 
system.  



 

Table 1: Summary of events shown in Figure 15. 
Event Description 

A LPAC #2 Started 

B LPAC #2 cycling 

C 2A LOSP Started in Slow Speed 

D 2A LOSP Shifted to Fast Speed 

E 2A FOSP Started in Slow Speed 

F LPAC #2 cycling 

G 2A FOSP Shifted to Fast Speed 

H 2A FOSP Shifted to Slow Speed 

I 2A FOSP Secured & LPAC #2 cycling 

J 2A LOSP Secured 

K LPAC #2 cycling 

 

CONCLUSION 
We have demonstrated the first real-time NILM 
that has provided diagnostic information in near 
real-time to a serving military crew.  The 
commissioning process for the NILM requires 
system knowledge, but is not onerous. It has been 
shown that the NILM is capable of performing as 
a stand-alone diagnostic tool.  The performance 
on the USCGC Escanaba indicates that the NILM 
is a maturing and capable technology that could 
work well supporting ICAS and other condition-
based maintenance efforts in the USN and 
USCGC. 
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