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Abstract

In this thesis, we simulate large-amplitude motion of three-dimensional bodies in waves using a
higher-order boundary element method. A ‘geometry-independent’ approach is adopted in which
the representation of the body surface is separated from the discretization of the hydrodynamic
solution.

Traditional formulations of the wave-body problem assume small-amplitude waves and body
motions, and perturbation expansion about the mean position of the body and free surface leads
to a completely linearized system. In the present thesis, the body boundary condition is imposed
exactly, but disturbances at the free-surface are assumed to be small enough to justify linearization.
Previous applications of this so-called body-exact problem have concentrated on the analysis of heave
and pitch motion of ships with forward speed. This study focuses on marine applications where a
large-amplitude response is induced by small-amplitude incident waves.

The time-varying nature of the body-exact formulation makes its numerical solution computa-
tionally intensive. Therefore, a new ‘higher-order’ panel method has been developed to overcome
inefficiencies associated with the conventional constant-strength planar-panel approach. Unlike most
higher-order schemes, the present method separates the discretization of the hydrodynamic solution
from the representation of the body surface by applying a B-spline description of the potential over a
generic parameterization of the geometry. This allows for accurate (or even analytic) representation
of the surface while retaining the desirable characteristics of higher-order methods, most notably
improved efficiency and the ability to evaluate gradients of the potential needed for nonlinear anal-
yses. Robustness and efficiency of the present method are demonstrated by its application to three
problems in which the large-amplitude response of the body is important.

In the first example, we examine the hydrodynamic loads on an underwater vehicle during a near-
surface maneuver. The vertical drift force is found by integrating the quadratic Bernoulli pressure,
and its variation with respect to submergence is shown to complicate the control of the vessel.

Next, multi-body interactions are examined in the context of the drift motion of a floating body
in the vicinity of a fixed structure. Here, the presence of the structure is shown to repel the floating
body against the direction of incident wave propagation for certain conditions.

In the final application, we examine instabilities of floating bodies to illustrate the importance
of accounting for finite-amplitude motions. Period doubling and exponentially large motions in the
rnumerical simulations are related to parametric forcing captured by the body-exact formulation.

Thesis Supervisor: J. Nicholas Newman
Title: Professor Emeritus of Naval Architecture
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Chapter 1

Introduction

1.1 Potential low & panel methods

Knowledge of wave induced loads and motions is necessary for both the design and
operation of ships and offshore structures. Over the past few decades computational
hydrodynamics has matured as a powerful tool for ocean engineers and naval ar-
chitects. Today, numerical simulations complement model tests during preliminary
design stages. The low cost and relative ease of performing these computations allow
for the evaluation of many design concepts over a range of sea conditions. Contin-
ued increase in computer power will undoubtedly spread the utility and popularity
of numerically-based tools.

The success of any particular theory relies largely on its ability to capture the nat-
ural phenomena of interest. For a wide variety of engineering applications potential
flow theory provides a framework that is mathematically attractive and physically
appropriate. The assumptions of an ideal fluid and irrotational motion allow the
flow field to be represented by the gradient of a scalar function, which is the solution
of the Laplace equation and subject to appropriate boundary and initial conditions.
Kinematic and dynamic boundary conditions imposed at the free surface ensure the
correct wave-like behavior of the potential. This initial-boundary-value problem may
be recast as an integral equation with the aid of Green’s theorem and solved numer-

ically by boundary element (panel) methods.

16



Since the pioneering work of Hess and Smith [13], panel methods have been ap-
plied to a wide variety of problems. Here, the integral equation is enforced by dis-
tributing singularities over a collection of panels that represent the body geometry.
Methods based on a free-surface Green function automatically satisfy the radiation
and linearized free-surface boundary conditions, and the body boundary condition is
enforced by discretizing the body surface. The Rankine panel method uses the sim-
ple source as its fundamental singularity, therefore panels are required on the body
and some portion of the free surface in order to numerically impose the boundary
conditions. Since the free-surface condition is enforced directly, Rankine methods
may accept various forms of this boundary condition and include terms neglected by
formulations based upon the free-surface Green function.

The numerical implementation of these methods has various degrees of sophis-
tication. Lower-order methods refer to schemes that use planar quadrilaterals or
triangles to model the body, with the velocity potential assumed constant over each
panel. This simplifies the integration of singularities over the surface, but a large
number of elements are required to ob‘in accurate results. For many applications,
such as the simulation of large motions induced by drift forces, evaluation of the
gradient of the potential becomes important. In these instances, lower-order meth-
ods often fail to produce accurate descriptions of the necessary derivatives. While
this may be overcome by deriving an alternative integral equation, such an approach
fails if the second derivative of the potential is required. Higher-order panel methods
have been developed to overcome the deficiencies of constant-strength planar-panel
schemes. In addition to accurate evaluation of gradients, the efficiency of higher-order
schemes makes computations of the first-order wave loads possible in cases where the
lower-order approach would require a prohibitively large number of planar panels.

The present thesis is aimed at developing state-of-the-art numerical tools that may

be applied to large-amplitude motion simulations. Here, restrictive assumptions of
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small body motions are overcome by imposing the body boundary condition exactly.
Gradients required for the evaluation of drift forces are computed with a novel higher-
order panel method. The present scheme accepts a very accurate representation of the
geometry, and only discretizes the hydrodynamic solution. The utility and robustness
of this new approach are demonstrated by its application to a variety of wave-body

problems.
1.2 Linear time-domain formulations

If the slope of the incident waves is small, the initial-boundary-value problem may
be linearized. Therefore, we may expect the response of a stable body to be propor-
tional to the amplitude of the incident waves, and perturbation expansion allows the
problem to be defined over the mean position of the body and free surface. Fourier
decomposition may be used to transform the transient problem in the time domain
to a time-harmonic problem in the frequency domain, which is then solved at dis-
crete frequencies. Although frequency-domain analysis is efficient at predicting the
steady-state response of the body, stating the problem directly in the time domain
may be advantageous for several reasons, including: frequency-domain formulations
are less efficient in solving forward-speed problems because of difficulties in evaluating
the required Green function [1], and nonlinearities may be directly incorporated in
time-domain simulations.

The application of integro-differential equations of motion for wave-body prob-
lems is usually attributed to Cummins [5), who assumed linearity and small body
motions in order to introduce the impulse response function. Ogilvie [49] gives a
thorough discussion of the hydrodynamic problems involved in such a decomposition,
and relates transient quantities to their frequency-domain analogs. Liapis [28] and
Korsemeyer [21] obtained numerical solutions of impulse response functions for three-

dimensional flows about bodies of arbitrary shape. Both authors used the transient
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free-surface Green function to solve a series of linear radiation problems forced by
impulsive motions, and discussed numerical issues involved in obtaining time-domain
results from lower-order panel codes. King [20] and Bingham [2] extended, respec-
tively, the work of Liapis and Korsemeyer by computing response functions for the
linear diffraction problem. King forced the diffraction problem with a broad-banded
but non-impulsive wave system, while Bingham used an impulsive incident wave pro-
file. Parallel work with the Rankine panel method was carried out by Kring [22]. He
extended the thesis of Nakos [39], and imposed the double-body free-surface condition
to account for terms neglected by the Neumann-Kelvin approximations inherent in

the transient free-surface Green function.
1.3 Nonlinear time-domain formulations

In special cases, extensions to linear theory that account for steep waves and/or
large body motions may be appropriate. Perturbation expansion of the complete
problem leads to a series of linear initial-boundary-value problems, one at each order.
Numerical solutions of the second-order problem in the frequency domain have been
reported in the literature [46, 27], but computations of the corresponding time-domain
problem are less common. Instead, more attention has been devoted towards directly
incorporating various nonlinearities into time-domain formulations.

An obvious extension of the traditional linear model is to impose the body bound-
ary condition on the instantaneous position of the structure. This lifts the restriction
of small-amplitude motions, but disturbances at the free surface must remain lin-
earizable. This body-eract problem has been solved with various degrees of success.
Difficulties of automatically re-gridding surface piercing bodies limited Magee [34] to
the study of submerged bodies. Lin and Yue [29] and Magee [33] presented results
for floating bodies undergoing finite-amplitude heave and pitch motions using lower-

order panel methods. Huang [16] combined the exact body-boundary condition with
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a free-surface condition linearized about the incident wave profile. The weak-scatter
hypothesis used by Huang allows for both body motions and incident waves of large
amplitude. Results of these researchers suggest that the exact treatment of the body
boundary condition improves the simulation of large-amplitude motions.

A more complete treatment of the free-surface nonlinearities may be found in
the Mized Eulerian Lagrangian (MEL) method of Longuet-Higgins [32]. Early MEL
implementations involved two-dimensional or axisymmetric wave flows (Vinje and
Brevig [55], Lin [30], Dommeruth [7]). More recently, the method has been extended
to general three-dimensional wave-body applications, with Ferrant’s [11] work rep-
resentative of its current state. Presently, the numerical effort associated with such
computations is extreme, and problems with instabilities have yet to be fully sorted

out.
1.4 Higher-order panel methods

Deficiencies of the constant-strength planar-panel method often limit its application.
As mentioned earlier, higher-order methods have been developed to overcome difficul-
ties in evaluating spatial derivatives of the potential. The efficiency of these methods
have made the solution of computationally intensive problems more feasible. Most
higher-order schemes allow for linear or quadratic variation of the geometry and po-
tential by using first- or second-degree polynomials over individual panels. Hsin [15]
and Maniar [36] developed a fundamentally different higliier-order panel method based
wholly on B-splines. This method allows the potential and geometry to have any de-
gree of continuity, with basis functions of local or global support. The B-spline form
of the potential provides a means of analytic differentiation of the solution. There-
fore, the gradient of the velocity potential may be found without approximation. The
efficiency of the method is demonstrated by its application to the analysis of problems

with a large number of bodies [35].
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Recently, Lee et. at. [24] presented results using a geometry-independent higher-
order method. Here, the velocity potential is described by a set of B-spline basis
functions, but the body surface may have any regular parameterization. Since no
other assumptions are placed on the representation of the body surface, the hydrody-
namic solution is completely separated from the geometric model. There are several
advantages of such a scheme. Firstly, its compatibility with commercial computer
aided design packages allows for the most convenient and accurate description of
the body geometry. Secondly, an appropriate hydrodynamic discretization may be
selected irrespective of the geometric modeling. In addition, the separation of geomet-
ric and hydrodynamic representation may lead to meaningful adaptive error control
of the three-dimensional boundary element method. Finally, the fact that many hy-
drodynamic discretizations may be applied to a single geometric parameterization
has the practical advantage of saving users from reconstructing new descriptions of
the surface during the several computations needed to obtain a converged numerical

solution.
1.5 Present thesis

The scope of the present thesis includes the development of new higher-order tools
and their application to the body-exact problem. A robust panel method has been
developed by adapting techniques from computer aided design to the geometry-
independent higher-order methodology described above. A substantial portion of
this thesis concerns the re-gridding of the body surface in the geometry-independent
context. We demonstrate the effectiveness of the present method by simulating large-
amplitude motions where robust evaluation of derivatives is needed. Superior effi-
ciency of this higher-order method is observed with respect to the constant-strength
planar-panel method. Additionally, the geometric tools developed in this thesis will

aid the application of the higher-order method to more sophisticated nonlinear for-
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mulations of the wave-body problem.

The initial-boundary-value problem and its associated integral equation are stated
in Chapter 2. There, we explicitly state the assumptions of the hydrodynamic model.
Chapter 3 describes the numerical schemes, which include algorithms that trim the
body surface and solve for the potential. The time-dependent domain requires re-
discretization of the geometry, and an automated trimming/interpolation scheme is
introduced for this purpose. Since we have chosen a geometry-independent approach,
the integral equation must be approximated by direct quadrature. Adaptive sub-
division and triangulation are used in evaluating the singularity of the free-surface
Green function.

Direct pressure integration is performed, as outlined in Chapter 4, in order to
calculate oscillatory and drift forces on the body. In order to simulate the motions
of a body, Newton’s law and the hydrodynamic flow must be solved simultaneously.
The equations governing translation and rotation of a rigid body are also presented.

Results that demonstrate the utility of the body-exact formulation, and the ac-
curacy of our higher-order methods, are presented in Chapters 5, 6, and 7. Single-
and multiple-body applications are chosen where large low-frequency motions para-
metrically influence the response at the higher wave frequency. In each case, small-
amplitude waves provide the forcing of large-amplitude body motions.

Conclusions drawn from applications of the present method to the body-exact
problem are presented in Chapter 8. Recommendations for future extensions are

discussed there as well.
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Chapter 2

Linear and Body-Exact Models

Even with the idealizations of a perfect fluid and irrotational flow, the resulting
hydrodynamic problem is very complicated. This chapter describes more manageable
formulations which result from simplifying the boundary conditions in some way.
Following other investigators, we linearize the free-surface boundary condition but
impose the body boundary condition without approximation. This will limit the
application of our formulation to cases where the body generates small amplitude
waves, but its motion is otherwise unrestricted.

Throughout this discussion, various decompositions of the velocity potential are
introduced as an aid in contrasting the ‘body-exact’ model with conventional formula-
tions of the ship motion problem. We compare our treatment of the free surface with
another common linearization. In addition, the conventional perturbation applied at
the'body surface is briefly outlined in order to distinguish the present formulation

from traditional approaches.
2.1 Governing equations and boundary conditions

The equations governing fluid motion are derived in an inertial reference frame. Let
X = (X,Y,Z) ! be a position vector of a point on the body surface in the OXY Z
earth-fixed coordinate system. The XY plane lies at the mean sea level, and Z is

positive in the upward direction.

1 Boldface characters are used to denote vector quantities.
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We assume the fluid to be inviscid, incompressible, and free of surface tension.
With the additional assumption of irrotational flow, Helmholtz’ theorem ensures that

the fluid velocity may be expressed as the gradient of a scalar potential,
V(X,t) = VI¥(X,t). (2.1)

The total flow is comprised of a specified incident wave field and a disturbance due

to thf; presence of the body. Let
U=0+p, (2.2)

where ® represents the disturbance due to the presence of the body, and ¢ is the
incident potential. We seek a solution of the body potential, ®.
For incompressible fluids, the conservation of mass simplifies to the Laplace equa-

tion,
Vi = 0. (2.3)

The other fundamental conservation law concerns the balance of momentum. For
irrotational flow of an ideal fluid, this leads to the Bernoulli equation. Therefore, the

fluid pressure is
1
P—Pa=—p (\I’: +5IVIP+ gz) ) (2:4)
where p is the fluid pressure, p, is the atmospheric pressure, and p is the mass density

of the fluid. The free-surface elevation, (, is found by applying (2.4) at the air/water

interface,

1 1 :

Conditions must be imposed on the bounding surfaces of the fluid domain in
order to fully define the boundary-value problem. At the body/fluid interface, the
appropriate boundary condition is a statement of no-flux into the impermeable body

surface. Therefore, the body boundary condition is
(U=V)-n=0 on B(t), (2.6)
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where B(t) is the wetted body surface, and U is its velocity.
The free surface requires two boundary conditions since both ¥ and ¢ are un-

knowns. Let the air/water interface be described by
F(X,t)=27Z - ((X,Y,t) =0. (2.7

Since this is a material surface, the kinematic free-surface boundary condition is

%—l;+V-VF=0, (2.8)

which may be written as

Uz =0+ UxCx + Pyly. (2.9)

The dynamic free-surface boundary condition states that the fluid pressure just below
the free surface must equal the atmospheric pressure above. Since this must hold
along the entire free surface, the substantial derivative of the fluid pressure at the

free surface must be equal to zero,
0 oav 1. _ .,
= . — 4= = 2.
(aﬁ" v) (g“aﬁz"") 0. (2.10)

Substituting (2.9) into the expression above gives a single nonlinear free-surface

boundary condition,
U, +2VV¥ .- VU, + %V‘IJ -V(V¥-V¥)+g¥z=0 on Z=¢(. (2.11)

In three dimensions, the fluid velocity due to the presence of the body decays in
amplitude and is negligible far from the disturbance. Denoting S, as an imaginary

surface a great distance away from the body, we have
Vo -0 at S. (2.12)
In addition, a radiation condition must be imposed to ensure that the body produces

outgoing waves.
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Two initial conditions must be imposed at the free surface in order to uniquely
determine the subsequent fluid motion (see Stoker [53]). For flows beginning from a

state of rest, the appropriate conditions are
V=¥,=0on (=0,t=0 . (2.13)

The above initial boundary-value problem is exact within the limits-of potential
theory, but complications of the boundary conditions preclude any straightforward.
solution. Some simplifications are necessary in order to make the problem tractable.
In particular, the free-surface and body boundary conditions will be the starting

points of various linearizations.
2.2 Linearization at the free surface

If the amplitude of the wave motion is small compared to its characteristic length,
the free-surface boundary condition may be linearized by simply neglecting terms
quadratic and higher-order in ¥. In these cases, the difference between Z = ¢ and
Z = 0 is a small first-order quantity, so we can apply the linear free-surface boundary
condition at the undisturbed surface and maintain a consistent linearization. This

straightforward linearization reduces (2.11) to
\I’u+g‘l’z=0 on Z=0. (214)

The simplifications of this linearization are significant, and we should apply the above
cendition carefully. Neglecting nonlinear terms in the free-surface boundary condition
will restrict the amplitude of the incident waves, the velocity of the body, or the
geometry of the surface. Although not implemented in this thesis, the following
decomposition of the body potential is instructive, and reveals what flow effects the
above linearization neglects.

Assume the body oscillates while translating steadily in the 4 X direction at speed

U. The three coordinate systems shown in Figure 2-1 will be used to describe the
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Figure 2-1: Two-dimensional view of the earth-fixed, steady, and body-fixed coordinate systems.

linearization of the exact initial-boundary-value problemn. X denotes a point on the
body surface with respect to the earth-fixed frame. This same point has a position
vector X = (&,7,%) in a body-fixed coordinate system, 6Zj2. A third coordinate
system, the ozyz reference frame, moves in the +X direction at the steady velocity.

Its position vector to the surface is x = (z,y, 2z). The steady and earth-fixed frames

are related by
(Jf,y,Z) = (X_ Ut:KZ) (215)

Care must be exercised when computing temporal derivatives. The rate of change

measured in the =arth-fixed frame is given by

%loxvz - (g_i B U%) ozyz (2.16)

In the steady frame, the velocity potential may be written as
Y(x,t) =P(X - Ut Y, Z,t) = ¥(X,t). (2.17)

Breaking up the potential into steady and unsteady terms gives
P(x,t) = ¢(x) + d(x, 1), (2.18)

where ¢ represents the steady-state flow as viewed in the ozyz frame, and ¢ is the

oscillatory potential. For general body shapes and velocity, the steady flow may not
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necessarily be linearizable. Newman [45] compactly writes the steady free-surface

boundary condition as
1

sW- V(W?) +gdz=0 on z=_C. (2.19)

Here, W is the relative velocity vector,
W(x) = Vé(x) - Ui, (2.20)
and the steady wave elevation is given by the implicit equation

(=5 (W -U7) on 2=C. (2:21)

Without the complications of the unsteady potential, it is worth appreciating the chal-
lenges in obtaining a solution of the steady flow. Like the full free-surface boundary
condition, the nonlinearity of (2.19) and the fact that ¢ is unknown a priori present
the main difficulties in obtaining a solution of the steady potential.

The unsteady motions are assumed to be linearly related to incident waves of small
amplitude. Therefore, we may superpose a small oscillatory wave field onto the steady
flow. A free-surface condition linear in ¢ comes from substituting (2.18) into (2.11).

After Taylor expanding about the steady wave elevation, Newman arrives at
19 (1 2 7
25:(W - VW) + g¢.. Z Y : 9 o
z — + ¢ +2W .V 2.22
pw e b ¢ 2)

—($.+W-V<$){
+W-V(W-V$)+%V$-V(W’)+g$,=0 on z=(.

Although we have simplified the free-surface boundary condition, nonlinear steady
terins in (2.22) make a solution of the linear unsteady problem extremely difficult.
This means that regardless of whether or not the steady-state flow is of interest, we
must accept some simplification of its potential in order to make the hydrodynamic

problem tractable.

2.2.1 The Neumann-Kelvin approximation

The Neumann-Kelvin linearization borrows geometric assumptions from Michell's and

slender body theories. Here, we exploit the fact that the disturbance caused by the
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motion of the body will be proportional to its thickness (beam). This implies that

the leading-order steady flow about thin or slender bodies is simply
W = —Ui + O(e). (2.23)

Substituting this approximation of the steady flow into (2.22) leads to the so-called

Neumann-Kelvin free-surface condition,

0 a\%. 0¢
— U= - = = 29
(t)t U('):v) ¢+az 0 on z2=0. (2.24)

This statement is equivalent to the linearized condition expressed in the earth-fixed
reference frame, (2.14), so we may make some general observations regarding its
validity.

We expect the Neumann-Kelvin approximation to reasonably model the steady
flow if the body perturbs the uniform stream slightly at the free surface. This is true
for thin or slender bodies, but (2.24) must be carefully applied to more full forms.
Bingham [2] has used the Neumann-Kelvin free-surface condition to successfully solve
for the steady resistance, sinkage force and trim moment of moderately fine ships. In
addition to slender ships, this approximation may also be appropriate for bodies
submerged below the free surface.

In some cases, large but slowly varying motions will parametrically influence the
wave-frequency response. Here, the fast oscillations are of primary interest, and we
accept the free stream approximation of ‘steady’ flow in order to simplify the free-
surface boundary condition. Since the slowly-varying flow is of secondary importance,
we expect the Neumann-Kelvin approximation to retain the desired accuracy of the
solution. Higher-order terms may be important in special cases, such as the evaluation
of wave-drift damping, but we will not attempt to model these subtle free-surface

interactions.
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2.2.2 The double-body approximation

Unlike the Neumann-Kelvin assumiption, the double-body approximation includes a

non-negligible perturbation of the uniform stream. Here, the steady potential is
épp = ¢ — Uz + O(e). (2.25)

The idea is to model the non-wave steady disturbance as an infinite-fluid flow by

applying a rigid-lid condition at the mean free surface,

84;,35 =0 on z=0. (2.26)

Nakos [39] provides a free-surface condition for the unsteady potential based on the
above simplifications of the steady flow. After Taylor expanding to the = = 0 plane,

he arrives at

du+2Veéps - ¢+ Véps -V (Veps - V) + -;-V(V¢DB -Vépg)-Vé  (2.27)

. )
+9d.~ Z222(Vgp5-4) =0 on 2 =0.

Clearly, the double-body free-surface condition reduces to the Neumann-Kelvin
approximation as ¢pg — —Uzx. Retaining the disturbance of the uniform stream
may be important for accurate treatment of low speed steady flows past bluff bodies,
but adds to the complexity of the free-surface boundary condition of the linear wave

flow.
2.3 Exact versus linear body boundary conditions

We now turn our attention to the condition imposed at the fluid/body interface.
Unlike the complete free-surface boundary condition, (2.6) is linear. However, it is
implicit since the body position must be found by Newtonian mechanics, which itself
requires a solution of the hydrodynamics. |

The simplified free-surface boundary conditions described above produce a linear

initial-boundary-value problem, and it is reasonable to expect a stable body to have
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motions that are proportional to the amplitude of incident waves. If these oscillatory
excursions about the oryz frame are sufficiently small, the body boundary condi-
tion may be transferred to its mean position. To arrive at this fully-linearized body

boundary condition, begin by decomposing the total potential in the steady frame as

6
P(x,t) = ¢+ dsw + @+ 65+ Y br. (2.28)
k=1

The steady wave potential, ¢sw, represents the wave-like disturbance due to the
steady forward motion of the body. Its linearized free-surface boundary condition
comes from Neumann-Kelvin or double-body approximations of the basis flow, ¢5.
The diffraction problem consists of a specified incident wave field, ¢, and its scattered
waves, ¢,. The radiation potential, @, describes the flow induced by the body as it
moves in its k** rigid mode. A systematic expansion of the exact body bhoundary
condition about the equilibrium position of the body gives the following conditions

for the decomposed velocity potential,

V¢sw ‘n = U:'n (2.29)
Vé¢,:n = —Vyp-n (2.30)
Vér-n = ndy + myz, (2.31)

where, n; is the k** component of the generalized normal. The first term on the
right-hand side of (2.31) is expected, and represents the velocity of the surface. Subtle
implications of the expansion of the body boundary condition about its mean position

give rise to the so-called m-terms, which Ogilvie [50] defines as

miz3 = —(n-V)Vép (2.32)
myse = —(n-V)(nx Vgp). (2.33)
These hydro-geometric factors take into account two effects: the rotation of the body

about its mean position, and the gradient of the steady flow field. Extending the

Neumann-Kelvin assumptions to the body boundary simplifies the evaluation of these
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coefficients. In this case, the m-terms reduce to
mi = {0,0,0,0,Unz, —Un,}. (2.34)

The m-terms reveal the influence of the steady flow on the linearized oscillatory
potential, and their introduction is due to the expansion of the body boundary condi-
tion about its mean position. In this thesis, we impose the body boundary condition
without approximation and do not decompose the disturbance potential. Therefore,
introduction of the m-terms is avoided, but of course the steady/unsteady coupling

represented by these factors is implicit in the exact body boundary condition.
2.4 The boundary integral equation

Imposing the Neumann-Kelvin assumption at the free surface leads to following lincar

but time-varying initial boundary value problem in the global OXY Z frame,

Vo(X,t) = 0 in V (2.35)
Gy +gP. = 0 on Z=0 (2.36)
Vé-n = (U-Vp)-n on B(t) (2.37)
Vé — 0 at S (2.38)
=% = 0 on Z=0,t=0. (2.39)

Here, V is the fluid volume below the XY plane, and S,, and B(t) retain their previous
definitions. We recast the boundary-value problem as an integral equation via Green’s
theorem in order to develop a problem that can be solved numerically.

The transient Green function satisfying the free-surface, far-field, radiation and

initial conditions may be found in Wehausen and Latoine [56] or Stoker [53],
G(P,Q,t—7)=G(P,Q)+ H(P,Q,t — ), (2.40)

where the Rankine term is

G = (1—1), (2.41)

r
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and

H=2 /O [t = cos(y/gk(t — T))|eHHOT(kR)dk (2.42)

is the wave part of the Green function.
Applying Green’s Theorem to ® and G produces the following boundary integral

equation (see Appendix A),

2 + | [, G dS = J [, @nC"dS + / “dr I (O = 0ol 4 (243)

1 t
+ jo dr [ (®H: ~ & H,)Usp map dL,

where U,p is the projection of the body velocity onto the XY plane. The two-
dimensional unit normal in the XY plane is nyp, and I is the waterline.

The Rankine terms give rise to instantaneous effects, while all the memory effects
of the wave flow are included by convolution. As discussed in the preceding section,
traditional formulations linearize the body boundary condition about the mean po-
sition of the body. In these cases, the waterline term in (2.43) is only included if
there is some gross forward-speed. In the body-exact context, we must include the
waterline integral for any horizontal motion of finite-amplitude.

Our goal is to obtain a numerical solution of the above integral equation for three-

dimensional geometries of arbitrary shape.
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Chapter 3

The Numerical Solution

A new numerical scheme has been developed to solve the integral equation derived
in Chapter 2. Previous investigators have solved the body-exact boundary-value
problem using a collection of planar panels to represent the surface (Magee [34], Lin
and Yue [29], and Huang [16]). Most assumed a piecewise constant distribution of the
potential, although Huang used a bi-quadratic variation of the solution. The thesis
of Maniar [36] demonstrates the efficiency and robustness of using B-spline basis
functions in the solution of the linear frequency-domain problem. His restriction that
the body surface also have a B-spline representation was recently lifted by Lee [24],
who separated the discretization of the geometry and velocity potential. This thesis is
aimed at applying such a geometry-independent method to the body-exact analysis in
the time domain, where computational costs heighten the need for efficient algorithms.

The present method separates the hydrodynamic solution from the geometric mod-
eling by superposing a grid onto a generic parametric representation of the surface.
The complete body is comprised of a collection of patches, each with its own param-
eterization. The only restriction is that the mapping be regular. The parameter-
ization of the geometric surface may take any form: non-uniform rational B-spline
(NURBS), uniform and non-uniform B-splines, Bézier patches, analytic definitions, et
cetera. The next step is to apply the discretized velocity potential over that portion

of the surface that lies below the undisturbed free surface. The hydrodynamic solu-
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tion is assumed to have a uniform and non-uniform B-spline representation. There
is, however, no connection between the B-spline representation of the potential and
the form of the geometric model. This separation of the geometric and hydrodynamic
representation leads to a geometry-independent boundary element method.

Applying this approach to the body-exact initial-boundary-value problem intro-
duces problems absent from typical lower-order panel methods. Most notable is the
need to create a higher-order representation of the potential over the instantaneous
wetted surface!. Essentially, this involves intersecting the body surface with the mean
free surface, and mapping the B-spline discretization of the solution to the portion of
the body that lies below Z = 0.

In addition to the overhead associated with redefining the time-varying surface,
imposing the full body-boundary condition increases the numerical cost of solving the
integral equation. In the body-exact formulation, convolution terms in the integral

equation must be re-evaluated at e ‘ry time step.
3.1 Trimming the master body

The body is comprised of a collection of patches, each of which has a parametric
representation X = X(u,v). This maps the unit square in the uv plane to some
portion of the body surface. The first step in obtaining a numerical solution of the
initial-boundary-value problem will be to properly define the instantaneous wetted
surface. For patches that map to both wet and dry portions of the body surface, we
perform two operations. First, a surface-surface intersection problem must be soived
in order to find the instantaneous waterline. An interpolation scheme is then used to
develop a mapping function from a square computational domain, the st space, to the
wet portion of the uv plane. This intermediate mapping is not required on patches

that lie completely below the free surface. In those cases, (s,t) = (u,v).

1Because of the linear free-surface condition, we refer to the portion of the body below the Z = 0 plane as the
wetted surface. The waterline is the curve on the body at Z = 0.
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3.1.1 The marching algorithm

Assuming a regular surface, the geometry may be expressed locally as a polynomial
in two parametric variables. The combination of an implicit algebraic surface (the
mean [ree surface) with a regular parametric surface (the body surface) makes this
intersection problem well suited for marching algorithms. These schemes are used to
trace the two-dimensional curve in the uv plane that corresponds to the waterline.
To make the intersection problem manageable, we will place some modest restrictions
on the geometric parameterization. Self-intersecting waterlines are prohibited, and
we assume the waterline curve crosses the boundaries of the relevant patch at exactly
two points.

A bisection/Newton scheme is applied to the edges of the uv domain in order to
initialize the marching algorithm. This search provides a point (u*,v"), such that
|Z(u",v*)| < Zia = 1078, The marching algorithm is schematically detailed in Fig-
ure 3-1, and combines differential properties of the geometry and the iterative Newton
method.

Assume we prescribe a change in the u-coordinate, éu, and are searching for the
appropriate change in v such that Z(u" + éu,v* 4+ 6v) = 0. The marching algo-
rithm begins by expanding the surface about (u”,v"), with respect to u and v. Since
Z(u",v") = 0, we are able to produce an estimate of év in terms of éu, Z,, and Z,.
v is the initial guess of the waterline’s v-coordinate, but since we only retain linear
terms of the Taylor series, this point will not lie exactly at the mean free surface.
An iterative method is needed to arrive at the correct variation in v. We begin each
Newton iteration by expanding the surface in v about (u™ + éu,v). Z(u" + éu,?) and
Z,(u" + éu,v) give an improved estimate of . This is repeated until the absolute
value of Z(u" + 8u, ) is below Z,,. Because of its quadratic convergence, the Newton
scheme requires few iterations to arrive at the (numerically) true waterline.

At the end of a round of Newton iterations, we advance the waterline in the uv
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first guess
Zx=2(u"v°) + buZu(u®,v®) + SvZ,(u%v°)=0
Sv=—-b6uzy/Z,

=0+ 6v

Newton search
2= Z(u"+6u,d) + bvZ,(u®+6u,0)=0
Sv=-2/2,
b=0v"+bv

if |Z(u® + 6u,9)] > Zial

advance the waterline

(u*,v*) = (u* + bu,d)

Figure 3-1: Flow chart of the marching algorithm.

plane. This new point is used to compute the next initial guess for another round
of iterations. The tracing continues until we reach an edge of the uv square, which
marks the end of the waterline on this patch. The shape of the two-dimensional curve
generated by this marching scheme will depend on the instantaneous body position
and the X = X(u,v) parameterization of the surface. Figure 3-2 shows a typical
waterline curve in the uv plane.

During the Newton search for v, we must perform a division by Z,. Likewise,
Z, appears in the denominator if v is prescribed and éu is to be determined. The
marching scheme implemented in this study chooses the search direction based on the
relative magnitudes of these two derivatives. Z,(u*,v*) and Z,(u",v") are measured

as the waterline curve is traced, and we search for év if |Z,] > |Z,|, or for éu if

20| < |Z.]-
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Figure 3-2: Typical waterline in the uv plane.

3.1.2 A square computational domain

In general, the wet portion of the uv square defined by the marching algorithm,
(&, V) wet, is non-rectangular. However, we wish to work in a square parametric domain
in order to avoid complications with quadrature rules. We now derive a mapping
function between the geometric uv plane and a new computational domain, the st
unit square.

The idea of creating an interior surface from its boundary is credited to Gordon [12]
and Coons [4]. The description of the Gordon-Coons interpolation scheme given below
closely follows that of Hoschek [14].

A typical boundary of (u, v)we: consist of four curves, as shown in Figure 3-3. Each
curve may be parameterized with respect to its arclength, in either s or t. We will

interpolate between opposite boundaries using the following blending functions,
Jolx) = (1-x) (3.1)
Hlx) = x (3.2)
where, x = s or ¢t. Although not implemented in this thesis, other Hermite poly-
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Figure 3-3: Boundary of a typical (u, v)we: space. F(s,1) is the waterline.

nomials may be used to arrive at nonlinear interpolation schemes. However, linear
blending functions will generate a mapping function adequate for our purposes.

The bi-linear Gordon-Coons scheme involves an interpolation and correction. Let
F(s,t) be a function that maps points in the (s,t) unit square to points in (%, v)wet.
Suppose we interpolate between the lower and upper boundary curves, F(s,0) and
F(s,1). B-spline representations of these two edges are obtained by a least-square
fitting procedure, and parameterized by the s variable. The bottom curveliesat t = 0,
and the top (waterline) boundary is the t = 1 isoparametric curve. To interpolate
between these two curves, we apply the blending functions of (3.1) and (3.2). This

gives
PF(s,t) = (1 —t)F(s,0) + tF(s,1). (3.3)

In thc same manner, we interpolate between the left (s = 0) and right (s = 1)
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bounding curves,
PF(s,t) = (1 — s)F(0,t) + sF(1,t). (3.4)

In general, these linear interpolations by themselves are not exact. As an example,
examine the error a linear interpolation introduces along the waterline. Unless F(s, 1)

is a straight line, the P,F(s,t) interpolation introduces an error of
F — PF = F(s,1) = [(1 — s)F(0,1) — sF(1,1)]. (3.5)

This correction should not only be applied at the upper boundary, but along all ¢ =
constant curves defined by the P,F interpolation. This may be symbolically written

as
P\(F — P,F) = P,F — P,P,F. (3.6)

We obtain the correct (u,v)ye surface by interpolating in the s-direction and

applying the appropriate correction. Adding (3.4) and (3.6),
F(s,t) = (u,0)we = P,F+ P,F— PPF (3.7)
= (1—1)F(s,0) +tF(s,1) + (1 — s)F(0,¢) + sF(1,?)
— (1= s)((1 — t)F(0,0) + tF(0,1)) + s((1 — t)F(1,0) + tF(1,1))].

Note that the Gordon-Coons interpolation reproduces the boundaries exactly. This
ensures that the mapping excludes all dry portions of the body surface. Figure 3-4
shows isoparametric curves (with respect to s and t) generated by applying this bi-
linear interpolation to the boundary shown in Figure 3-3, and illustrates the regular
manner in which the (u, v)we surface is partitioned.

Applying quadrature in the st plane will require the Jacobian of the Gordon-
Coons interpolation. Since the bi-linear mapping is given explicitly by (3.7), and the
B-spline representations of the boundary curves may be analytically differentiated,

we may easily compute

_ O(u,v)
Joc = (s, 1)

= UyV; — WDy, (3.8)
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Figure 3-4: Isoparametric lines in the st and uv domains.

where, Jgc is the Jacobian of the st — uv transformation. Differentiating (3.7) gives
F, = (u,v), = (1 — t)F'(s,0) + tF'(s, 1) — sF(0,¢) + F(1,¢) (3.9)

+s [(1 - t)F(01 0) + tF(Ov 1)] - [(1 - t)F(l,O) + tF(17 1)] ’
and

F, = (u,0); = —F(5,0) + F(s,1) + (1 — s)F'(0, ¢) + sF'(1, 1) (3.10)
—(1 - s)[F(0,1) — F(0,0)] — s[F(1,1) — F(1,0)].

Subscripts denote partial differentiation, and primes indicate simple differentiation
of the boundary curves. More details of the interpolation scheme are given in Ap-

pendix B.
3.2 The discrete integral equation

Identifying the portion of the body surface below Z = 0 and establishing a mapping
function from the computational domain to the wetted surface are the first steps in
solving the body-exact problem. We now turn our attention to the discretization
of the hydrodynamic solution. Recent success with B-spline based panel codes has

demonstrated the method’s efficiency and robustness (Maniar [36], Nyvgaard and
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Grue [48], Lee et. al. [25]), and we choose a higher-order discretization of the potential
in the present thesis.

The solution of the velocity potential will require two rounds of integrations, each
approximated by quadrature. First, quadrature is applied in order to evaluate the
integral equation. This inner integration will require special care because of the
singular behavior of the Green function. Next, the residual of the integral equation
is minimized with respect to the B-spline basis functions directly in the parametric
st space. Strictly speaking, this outer integration is a Petrov-Galerkin step since it

involves test and trial functions that span different spaces.
3.2.1 A B-spline representation of the potential

As mentioned earlier, the velocity potential is represented by B-spline basis functions.
This introduces higher-order panels, but we emphasize that these are only used in
the description of the hydrodynamics. The geometric modeling is entirely separated
from the hydrodynamic solution and supplied by the X = X(u, v) parameterization.

The velocity potential over a patch is expressed as

M+k=1 N+k-1

D(s,0)= Y. D dunS(s)T(t), (3.11)

m=1  a=l
where, S and T are B-spline basis functions of order k, and M and N are the non-zero
spans of the knot vectors in the s and t directions, respectively. We define a higher-
order panel as the parametric space in the st plane between these spans. Therefore,
the number of panels on a patch is M x A. However, the total number of unknowns
is (M +k—1)x (N +k—1) since k non-zero B-splines exist in each parametric
direction at any point in the st unit square.

Figure 3-5 shows how the discretization of the velocity potential and the Gordon-
Coons interpolation scheme combine to produce a hydrodynamic grid in Cartesian
space. In this example, the body is comprised of two patches, each with 6 x 2 = 12

higher-order panels. The waterline of the body in its instantaneous position is found
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computational space geometric space physical space
Gordon-Coons X = X(u,v)

st-plane uv-plane X

Figure 3-5: Higher-order panels, defined in the st square, are mapped into the uv and X domains.
The lines are isoparametric curves at the B-spline knots.

by the marching algorithm described earlier, and (s, t) coordinates are mapped to the
wet portion of the uv plane via the Gordon-Coons interpolation. The X = X(u,v)
geometric model then provides the transformation to Cartesian space. This treatment
continues in a patchwise manner until the hydrodynamic grid is placed over the entire
wetted surface.

The choice of B-spline order will determine the degree of continuity across panels.
Basis functions of order k will produce a C¥~2 continucus potential and fluid velocity
of continuity C*~3, giving a more physically reasonable description of the flow than
the piecewise constant distribution of lower-order methods. Equally important is our
ability to analytically differentiate the potential. This allows for accurate descrip-
tions of the velocity field, which will be important in the evaluation of the complete

Bernoulli pressure.
3.2.2 Quadrature schemes for the near- and far-fields

We now turn our attention to algorithms used to approximate the inner integration.
The approach implemented in the present thesis follows that described by Maniar [36]

and Lee [24], but the intermediate (s,t) — (u,v) mapping requires some modification.
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Evaluating the Rankine terms of the integral equation requires special care due to

their singularities when the field and source points coincide. Integrals of the wave

components, however, are regular and may be computed by direct quadrature.
Substituting the B-spline representation of the potential into the integral equation,

we obtain integrals of source and dipole moments of the form
1 1
SC,-_,-=/f8,-7}ﬁd5=//8.-7}}—2Jd3dt, (3.12)
and,
01 01
DP; —//S.-’]}E'—lﬁds_//s.-’]}%Estdt, (3.13)

where J is the product of the Jacobians of the two transformations,

_ _ aX-' _ 8A-; 3(1‘, ’U)
J =Jwdsc = a(s, 1) - O(u,v) d(s,t) "

(3.14)

In calculating the above integrals, conventional panel methods exploit the fact that
the geometric representation is of a particular form. Most common is the constant-
strength planar-panel method. There, Rankine terms may be exactly integrated over
the quadrilaterals. The present thesis is less restrictive in its geometric assumptions.
We only require that the parameterization X = X(u,v) be regular. This allows
for very accurate geometric models, but such a generic representation of the surface
requires that the integral equation be approximated by numerical quadrature.

For any field point/panel combination, Rankine terms in the integral equation
may be placed in one of three categories by measuring the characteristic length of
the panel and its distance to the field point: the far-field, near-field, or self-influence.
Figure 3-6 shows a typical field point/panel pair. We introduce the parameter o to
measure the relative closeness of the field point to the panel, and define it as

D

GE'E,

(3.15)

where, D is the distance from the field point to the parametric center of the panel,

and L is the maximum distance from the center of the panel to its corners.
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Figure 3-6: Typical field point/panel pair.

In the far-field, the field point and panel are separated by a large distance. There,
Q@ > Qcitical, and the % and -,%,- terms of the Green function are slowly varying. We
apply Gauss-Legendre quadrature of fixed order to obtain approximations of SC;;
and DP;.

For small values of a, the field point lies close to the panel. In this near-field
case & < Qcritical, and we subdivide the panel in two. The Cartesian lengths of the
panel are measured in both parametric directions, and we halve the panel along its
longer side. This sub-division is applied adaptively until the characteristic length of
a sub-panel gives asyb-panel > Qcritical: Quadrature is then applied over the sub-panels
to evaluate the source and dipole moments.

As an example of near-field sub-division, we apply this scheme to the hemisphere
shown in Figure 3-7. After the proper amount of adaptive sub-division, Gauss-

Legendre quadrature is applied over the elements shown in Figure 3-8.
3.2.3 The self-influence panels

If the field point lies on the panel, care must be exercised since the Rankine terms

are singular as B — 0. Details of the self-influence evaluation scheme are given in
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Figure 3-7: Hemisphere with 6 x 2 = 12 higher-order panels.

Figure 3-8: Adaptive subdivision applied to the near-field and self-influence panels of a hemisphere.
The field point is the circle at the apex of the four self-influence triangles.
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I

Figure 3-9: Division of the self-influence panel into one square and several rectangular sub-panels.
The original panel has parametric dimensions (s, : s2,; : t2). (sFp,trp) are the coordinates of the
field point.

Appendix C, but we briefly summerize the method developed by Lee [24] below.

We begin our treatment of a self-influence panel by dividing it into sub-panels,
one of which is a square centered about the parametric coordinates of the field point,
(sFp,trp), as shown in Figure 3-9. We will refer to the square with (srp,trp) as its
center as the self-influence square. The Green function is non-singular over the re-
maining sub-panels, and the near-field algorithms described in § 3.2.2 may be applied.
However, the Rankine terms are singular over the self-influence square and require
special care.

We introduce the variables (3,%), which are normalized by the half-length of the
square (o) and centered at the field point. Four triangles are defined in the unit
square upon which we apply a bi-quadratic transformation to analytically remove the
singularity of the source term (Maniar [36}).

Contributions to the source and dipole moments from the self-influence square are

defined as I. Noting that the B-spline basis functions have polynomial representation,
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we may express I as a linear combination of terms,

k k

I= E Z Inn(s — SFP)m(t — ipp)". (3.16)

m=1 n=1

After applying transformations to analytically remove the singularity (Lee [24]),

Imn = azp_/_l1 /_11 hmn(z, z(asinh(pw + q) + B)) Jdedw  (3.17)

1
X - X

2.1 1 1 . ’ ’ , 1
+ o?p /-1 /-1 hm.n(:r(asmh(Pw+q)+ﬂ),m)——lxu X J dzdw

where

a1 \/652 + 2f5t + gt?

Bmn(3, 1) = (05 + spp)™ " (ot + trp) 7 (3.18)
for the source singularity, and
_ 524 2f5t+gt?(R-n
b (5.0) = (05 + spp)™) (o gyt LA SER M)y

R3

for the dipole singularity. e, f, and g are the first fundamental forms of the surface

e = Xy - Xau (3.20)
f=Xy Xy (3.21)
g =Xy, - X,. (3.22)

The definitions of B,p and q are based on geometric quantities of the surface and

given in Appendix C.

3.2.4 The convolution terms

The convolution terms of the integral equation do not contain any singularities be-
cause of the regular behavior of the wave part of the Green function. However, there
are fast oscillations for nearby panel/field point pairs. These high spatial oscillations
will dictate the order of Gauss-Legendre which is applied without sub-division or tri-
angulation. In addition, an appropriate temporal discretization must be chosen in
order to accurately convolve the spatially-integrated terms, which is approximated

by trapezoidal integration.
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3.3 Setup of the linear system

We have M x N higher-order panels over a patch, and k? B-spline coefficients on

each panel. Therefore, the total number of unknowns is
Npat
Nu=§(M;+k—l)x(M+k—1), (3.23)
where N, is the number of patches. Collocation at centroids of planar panels in
constant-strength lower-order methods always leads to an appropriately sized sys-
tem of linear equations. Implementing such a scheme in the context of the present
higher-order panel method is not straightforward. The placement of the collocation
points will influence the numerical solution, and no optimal choice is obvious. As an
alternative to collocation, we choose to produce a square system of linear equations
by a Petrov-Galerkin procedure.
The integral equation is defined and evaluated in physical space, however its resid-

ual is minimized with respect to the B-splines directly in computational space. There-

fore, the minimization step is
// r(X,t)S; T; dsdt = 0, (3.24)

where r(X,t) is the difference of the left- and right-hand sides of integral equation,
and S; and 7; are, respectively, the B-spline basis functions in the s and ¢ directions.
Since there are as many distinct splines as unknown coefficients, we arrive at a square
system of linear equations for the B-spline coefficients of the potential. After the
residual is evaluated, the outer integration of (3.24) is imposed by another round of

Gauss-Legendre quadrature.
3.4 Computational efficiency of the higher-order method

The geometry-independent higher-order method described in the preceding sections

has been implemented in the computer program HITIM. We may measure its efficiency
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by comparing results from the present method to numerical solutions obtained from
a code based on the constant-strength planar-panel approach.

Consider a hemisphere of unit radius floating in calm water. The body is held
in its equilibrium position and given unit amplitude velocity in the vertical direc-
tion at ¢ = 0f. The heave-heave impulse response function is then computed using
HITIM and the lower-order code TIMIT. Planar-panel and higher-order discretizations
of the hemisphere are shown, respectively, in Figures 3-10 and 3-11. In the geometry-
independent discretizations, B-splines are distributed over an analytically defined

surface. The sizes of the resulting linear systems of equations are given in Table 3.1.

: ;- ‘,
w5 i “
ALK 3 ;
Figure 3-10: Lower-order discretizations used Figure 3-11: Higher-order discretizations used
in TIMIT include 10x10, 20x20, and 30x30 pla- in HITIM include 2x2, 4x4, and 6x6 higher-order
nar panels over the hemisphere. panels over the analytic hemisphere.

Computations of the heave-heave impulse response from TIMIT are shown in Fig-
ure 3-12. The same quantity is evaluated by HITIM using cubic B-splines (k = 4), and

plotted in Figure 3-13. Comparing the impulse response function near its peak value,

50



Number of Unknowns

S———

e
code | # of panels | N, || code | # of panels | order | N,
TIMIT 10x10 100 || HITIM 2x2 k=4125
20x20 400 4x4 k=4149
30x30 900 “ 6x6 k=481

Table 3.1: The number of unknowns in the linear system of equations using the lower- (TIMIT) and
higher-order (HITIM) panel methods.

one may see that a converged result is obtained by the higher-order method using
relatively few unknowns. Oscillations in the tail of the impulse response functions are
due to irregular frequency effects, and may be mitigated by refined discretizations.
The errors in the peak values of the computed impulse response functions are
plotted in Figure 3-14. One immediately sees that the higher-order method requires
fewer unknowns to acheive results of a particular accurcay, and that the method
converges more quickly than the constant-strentgh planar-panel approach. Runtimes
associated with the lower- and higher-order computations are plotted in Figure 3-15.
The rate of convergence of a numerical method has important consequences with
respect its efficiency. This is mostly clearly demonstrated by plotting the error against
CPU time and required memory. For an absolute error of 10~3, Figure 3-16 shows
that the higher-order method uses approximately ten times fewer CPU minutes than
the lower-order approach. Savings are also observed with regard to memory require-
ments, as seen in Figure 3-17. In the computation of the impulse response func-
tion, the higher-order method uses approximately half of the memory required of the
lower-order method to achieve an absolute error of 1073, The difference in memory

requirements is greater for more accurate solutions.
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Figure 3-12: The heave-heave impulse response function of the floating hemisphere computed by
TIMIT.
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Figure 3-13: The heave-heave impulse response function of the floating hemisphere computed by
HITIM.
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point is data from a 8v8 (k = 4) higher-order computation.
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Figure 3-15: Computational effort of the constant-strength planar-panel and geometry-independent
higher-order methods. Npan is the number of panels. Computations were performed on a low-level
DEC o« workstation.
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Chapter 4

Global forces & Rigid-body
Mechanics

In the present formulation, the hydrodynamic flow and rigid-body dynamics are cou-
pled through the body boundary condition. For freely floating bodies, the equations
of rigid-body motion are essentially a dynamic boundary condition. The fact that
we impose the body boundary condition exactly means that the hydrodynamic and
rigid-body problems must be solve simultaneously. In the preceding chapters, we
were only concerned with obtaining a solution of the hydrodynamic flow. We now
examine the rigid-body mechanics, and its coupling to the velocity potential through

the hydrodynamic forces.
4.1 The hydrodynamic force

At each instant in time, the fluid pressure is integrated over the hull to obtain the
global hydrodynamic forces. These wave loads will determine the subsequent motion
of the body, in accordance with Newton’s Law. Therefore, an accurate and complete
description of the pressure is essential in properly simulating the resi)onse of a body.
The bulk of the global hydrodynamic load may be obtainea by integrating the linear
Bernoulli pressure over that portion of the body that lies below the undisturbed
mean free surface. However, important small-amplitude contributions to the global

force come from the quadratic Bernoulli term and by accounting for the relative wave
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runnup about the body.

The evaluation of the wave-induced forces may be separated into two terms: the
integration of fluid pressure up to the mean free surface, and pressure integration
from the undisturbed free surface to the actual wave elevation. Assuming the fluid
velocity is of magnitude O(e), where € < 1, the global hydrodynamic force, correct
to O(€?), is

F= -p//Bm e+ %vz +92) nds - p//ABU) (¥, + gZ)ndS , (4.1)

where V = |V¥| is the magnitude of the total fluid velocity, subscripts denote partial
differentiation in an inertial frame, B(t) is the body surface below Z = 0, and AB(t)
is the body surface between Z = 0 and the free-surface elevation ¢. The integral over

AB(t) may reduced to

¢
- ] = - z .
p ffwm( . +9Z) ndS p /m,“L/.., (¥, +9Z)nd (4.2)
I [ 2
3 oy L (4.3)

where the integrand of the inner integral in (4.2) has been expanded about Z = 0,
and the first-order wave elevation ( = —i'l’, has been used. The hydrodynamic force

may then be expressed as

_ _1_ 2 P9 2
F= p//m (wt+2v +gZ)nd5’+ : /m)cndL. (4.4)

Although we have not formulated a series of boundary value problems by pertur-
bation expansion, the quad-atic terms in (4.4) may be loosely thought of as contri-
butions to the second-order force from the first-order solution. These give rise to
mean, difference- and sum-frequency components of the force, but are not the only
sources of nonlinearity. The potential itselt may have, for example, a slowly-varying
component since the solution of the initial boundary-value problem and the pressure

integration are defined over a surface that oscillates in time.
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4.1.1 Evaluating the V? term

A major benefit in representing the potential with B-splines is our ability to analyt-
ically differentiate the solution. This allows for the evaluation of the fluid velocity
over the body surface without the errors associated with finite difference techniques.

The fluid velocity due to the body potential is found by combining terms tangential

and normal to the body surface.
Vo = &,n + Vsd, (4.5)

where Vs is the gradient operator tangential to the body surface, and the normal flow,
®..n, is known from the body boundary condition. We have solved for the potential
over the body surface, so its gradients give the tangential fluid velocity,

1
— f2

where, e, f and g are the first fundamental forms of the surface and are computed

Vs® = " [Xu(9®u — f®,) + Xo(eD, — f0.)], (4.6)

from the gradients X, and X,. Since the potential is defined in the st plane, we
must invert the Jacobian of the Gordon-Coons transformation in order to obtain its

derivatives in the u and v directions,

u ¢3 & ﬂ QS
= [Jc,'c]"l = | % o . (4.7)
o, d, g—: % o,

The total velocity potential is a linear combination of the incident and disturbance

potentials. Therefore, the fluid velocity is simply
V=V¥ =Vp+ V. (4.8)

Gradients of the linear incident potential are known exactly, and [Jgc]™' may be
explicitly computed from the st — wuv mapping given in § 3.1.2, Therefore, the
errors in calculating the fluid velocity from the potential are only associated with the
geometric quantities. These may be minimized by an accurate parameterization of

the body, or eliminated completely by an analytic definition of the surface.
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4.1.2 Approximating the time derivative of the solution

The linear Bernoulli term requires the derivative of the potential with respect to
time, but we have only solved for the potential up to the present instant. Therefore,
backward difference techniques are used to approximate ®;. The body on which we
obtain a solution is moving at speed U, and the position of the panel on the surface is
changing in time. Therefore, two applications of the chain rule are needed to evaluate

the temporal derivative of the potential,

0 do
W = —cﬁ' -U.-Vé - {u,,v,} . {‘Du,(bu}. (49)
A three-point backward difference scheme approximates the total derivative, %. The
panel velocity, {u;, v}, is found by examining the Gordon-Coons mapping functions

of two consecutive body positions. Once the time rate of change of the body potential

is computed, it is added to the linear incident pressure to give
‘I’g = Qg + Pt. (4.10)
4.2 Rigid-body mechanics

Once the hydrodynamic loads are computed, we may find the resulting body motion
using the equations of rigid-body mechanics. These ordinary differential equations are
derived by applying the conservation laws of linear and angular momentum. Conven-
tional schemes are then used to numerically integrate the matrix form of the equations
of motion. A new solution of the hydrodynamic problem is required at each of these

sub-steps, since the body boundary condition is imposed exactly.

4.2.1 Working with rotating reference frames

The equations governing rigid-body motion are derived by applying Newton’s Second
Law in an inertial reference frame, but we introduce a body-fixed coordinate system

in order to conveniently describe the mass distribution of the body. The distinc-
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Figure 4-1: Two-dimensional view of body- and earth-fixed frames. Position vectors to the center
of gravity and origin of the body-fixed frame.

tion between these two frames is non-negligible because of the finite-amplitude body
motions.

Any two reference frames may be related by three translations and a set of Euler
angles (see Figure 4-1). Xr is a position vector from the origin of the OXY Z frame
to the origin of the body-fixed coordinate system, and Xg is the set of Euler angles

defining the rotation of the body,

¢ ) ( 3

X
Xr=¢Y  ad Xp= 18 ¢ (4.11)
\ Z J \ 7 J

Let X ! be a position vector in the ozyz coordinate system. Its representations in

the earth- and bhody-fixed frames are related by

X = [D)(X - X7) (4.12)

X =Xr + [D)"X, (4.13)

where [D] is the rotational transformation matrix, which depends on the order of the

! Quantities with hats denote representations in the body-fixed coordinate system
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rotation. Assuming we prescribe the sequences as yaw(y) — pitch(8) — roll(a), the

transformation matrix is

[D] =

-

cycf sy cp
—syca+cysasf cyca+ sasf sy

where we have used the shorthand notation

ca = cos(a) sa = sin(a)
cB = cos(f) sf =sin(pB)

cy =cos(y) sy =sin(y).

sysa+cycasf —cysa+sysfca cﬂcaj

-

—sB
sach | (4.14)

Since this is an ortho-normal transformation, [D]~! = [D]T. For small Euler angles,

the rotational transformation matrix reduces to the identity matrix.

Angular velocity resolved into the body frame becomes

( )

~¥sf+a

N~

O=1 ysach+fca
‘ "ycacﬂ+ﬂ.saJ

(4.15)

where, the overdot denotes temporal differentiation. Thus, the time rate change of

the Euler angles may be related to angular velocity by

rl sa sfBf/cf casf/cp

XR =[Wlo=|{o0 ca —sa

L 0 sa/cf  ca/cP

(4.16)

.E)

Like the rotational transformation matrix, [W] reduces to the identity matrix for

small angular displacements.

4.2.2 The equations of rigid-body motion

Applying the conservation laws of linear and angular momentum at the center of

gravity will lead to the equations governing three-dimensional translation and rotation
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of a rigid body. The only complication comes from the fact that the mass distribution
is most conveniently defined in the body-fixed reference frame. Therefore, the moment
equation must first be stated in the earth-fixed frame, and then transferred to the
non-inertial body-fixed frame. The derivation given below closely follows that of
Ogilvie [50].

The conservation of linear momentum requires that Newton’s second law be applied
at the center of gravity. The acceleration of this point may be expressed relative to

the motion of the origin of the body-fixed coordinate system,

X, Xy  dw
at2g - 'ﬁhﬁ X Rey +w X (w X Ryy), (4.17)

where R,; = X, — Xr. The force is then related to the translational motion by

treating the body as a point mass,

*Xr Ow
F:m('—air-i-'a—t)(ch-l-wX(wXRcy)). (418)
The conservation of angular momentum applied at the center of gravity is
OH
M, = 5 (4.19)

where M, is the moment about the center of gravity, and H is the angular momentum
of the body. The moment is commonly determined with respect to a body-fixed origin.

Therefore, the left-hand side of the above equation is replaced by
M, =M,-R, xF. (4.20)

Angular momentum is a vector quantity and therefore remains invariant if the body
frame is selected. Only its representation will differ according to the transformation

rule,
H = [D|H. (4.21)
Since H is measured in an accelerating coordinate system, its time rate of change is
H = [L)d + 6 x [L)d, (4.22)
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where [I], is the inertia tensor of the body describing its distribution of mass about
the center of gravity, defined with respect to the body-fixed frame.
Substituting (4.20) and (4.22) into (4.19) gives the following vector-valued equation

governing rotational motion of the body,
[D)(Mo — Rey X F) = [Ip]& + & x [Ig]& (4.23)
M, — Ry x [DIF = [I5)d + & x (Lo} (4.24)
4.2.3 Integrating the equations of motion

A system of equations governing the six rigid degrees of freedom may be derived by
combining the equations governing translational and rotational motion. Retaining

terms linear in w, we arrive at

A [m) —mR,, X [D]T xT — F . (4.25)
mR,, x [D] [1.) w M,

6x6
Here, [m] is the 3 x 3 matrix with the body mass along its main diagonal and zero
everywhere else. [I,] is the inertia tensor with respect to the body origin. The
vector-matrix cross-product used to assemble the 6 X 6 matrix in (4.25) is defined in
Appendix D.

Denoting the above 6 x 6 matrix as [M], we may cast these six second-order differ-

ential equations into a set of twelve first-order equations. From (4.16), the equations

of motion become

X7 [M]! .
a R o
w
e | b = ¢ > (4.26)
Xr .
Xr
Xr
“ J 4P
This may be symbolically written as
y= f(Yv t) ’ (427)
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Runge-Kutta Rules

2nd_order Ynt1 = ¥n + At k;

3rd_order Yn41 =Yn + %(kl + 4k, + ki)

intermediate steps | k; = f(yn)
k. = f(yn + %kl)
ks = f(ya + At(2k2 — k1))

Table 4.1: Rules for 2"%- and 3"4-order Runge-Kutta integration. y and k; are, respectively, the left
and right side of (4.27). At any instant in time, t = nAt

and integrated by standard numerical schemes. We choose the family of Runge-Kutta
schemes for the cases in this thesis since they offer substantial stability. Free motion
simulations presented in this thesis are obtained from either the 2"¢- or 3rd-order

schemes shown in Table 4.1.
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Chapter 5

Submarine Near the Free Surface

Although the dominant wave loads on a body oscillate at the frequency of the incident
waves, mean and low-frequency forces due to second-order effects are important in
some practical cases. One such example is the quadratic interaction of the first-
order potential that induces large horizontal excursions of moored vessels and tension
leg platforms. Fortunately, the mean horizontal forces and vertical moment may
be efficiently evaluated by methods based on momentum conservation (Maruo [37),
Newman [43]), and computationally intensive pressure integration may be avoided.
Components of the drift force and moment in the vertical and horizontal directions,
respectively, are of importance to unrestrained submerged vessels or floating bodies
with small waterplane areas. Unlike the horizontal drift forces and vertical moment,
these quantities are usually computed by direct pressure integration.

The existence of a vertical drift force on submerged bodies has been known for some
time and has been the subject of previous studies. The zero-speed three-dimensional
solution of C.-H. Lee and Newman [26] showed that in addition to the mean verti-
cal force, second-order effects produce a nonzero mean trim moment on a spheroid
submerged just below the free surface. Computations from the spectral method of
Liu [31] indicated that the asymmetry of higher-order corrections to the distribution of
the mean vertical force along the length are important as the incident waves steepen.

The mean forces on a moving body beneath incident waves has been investigated by
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Musker [38], Wilmott [57], and Bingham et. al. [3], among others. The numerical
methods of [38] and [3] are suitable for general body shapes, while the method of
matched asymptotic expansions of [57] was used to calculate the flow about slender
axisymmetric body. The above studies assumed either small body motions about a
prescribed depth or no body oscillations at all.

In this chapter, we use the body-exact formulation to examine the mean vertical
force and trim moment acting on a submarine as the vessel performs a near-surface
maneuver. The effect of small-amplitude oscillations is examined by allowing the

submarine to respond to waves while undergoing large-amplitude motions.
5.1 The analytic geometry

For the purpose of this study, we define the surface of the submarine using an ax-
isymmetric form defined by Jackson |17]. The geometric model consists of a parabolic
nose, parallel middle body, and tapered stern. The surface is a body of revolution,

and its local radius is a function of position forward (zj) or aft (z,) of the parallel

middle body,
- 271/2
z
Ty = Tpmp (1 — (L—i) ] (5.1)
g 3
Ta = Tpmb 1- (%1) ] ’ (52)

where the parallel middle body has a radius rpms, and z;. are local coordinates
running from zero at the parallel middle body to L; or L,. The geometry used in this
thesis has the following dimensions: ryms = 3, Ly = 5%, and L, = 353. Since our
model does not include appendages, we cannot capture the flow about the sail or fins.
However, wave interactions with the bare hull should produce the main contribution
to the hydrodynamic loads on the body and reveal general trends in the mean forces.

Three of the discretizations used to demonstrate the spatial convergence of HITIM

results are shown in Figure 5-1. When possible, results fron: the present method are
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Figure 5-1: 5x4, 7x4 and 9x6 higher-order pan- Figure 5-2: Lower-order panel representations

els distributed over the analytic submarine. of the submarine include bodies with 24x12,
Panels have cosine spacing in the longitudinal 36x18 and 48x24 planar elements. Panels have
direction. cosine spacing in the longitudinal direction

compared to those from the lower-order panel code TIMIT. Typical discretizations
of this constant-strength planar-panel method are shown in Figure 5-2. Two obser-
vations are immediately obvious. Firstly, the higher-order method uses many fewer
panels. Secondly, the HITIM computations are carried out over the same geometrié
surface, whereas the surface of the submarine is converging to its real shape as the

number of panels in the lower-order discretizations are refined.
5.2 Steady forces in calm-water

Consider a submarine steadily cruising at a depth such that its longitudinal axis lies
a distance 2r,,, below the free surface. In order to compare with TIMIT results, the

vessel is impulsively accelerated to Fn = 7';’-2 = 0.0783 (5 knots) at t = 0*. The calm-
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water forces are produced by the linear Bernoulli pressure, which has the following

form at steady-state,

Fuesdy = /./B(t)m-ndS——p//o(——U V<I>) ndS  (53)
p /BoUtbznd.S'.

Convergence of the vertical steady calm-water force computed by TIMIT is shown
in Fignre 5-3. This steady suction force acts to draw the vessel towards the free
surface. The steady moment acting on the body is computed about the longitudinal
center of buoyancy and shown in Figure 5-4. Its sign indicates that the moment is in
the ‘bow-up’ direction. The finest discretization contains over one thousand planar
panels and would be expected to be suitable for the evaluation of many hydrodynamic
quantities. However, even with 60x36 planar panels, the lower-order computations of
the steady suction force and trim moment have yet to converge.

Convergence of the steady vertical force and trim moment using HITIM are shown,
respectively, in Figures 5-5 and 5-6. Quadratic B-splines are distributed over higher-
order panels and lead to effective hydrodynamic discretizations in the geometry-

independent method.
5.3 Mean force and moment in waves

Mean forces arise from higher-order interactions of the diffraction field. The tiine-
averaged loads may be computed by the hybrid method of Ferreira [6], which has
been implemented in TIMIT. This approach combines time- and frequency-domain
techniques, and allows the mean wave loads to be computed over a range of frequen-
cies. We now present results of the mean vertical force and the mean pitch moment
for head and following seas. In both cases, the body is impulsively accelerated to
F, = 0.0783 and travels steadily at a centerline depth equal to one diameter of the

parallel middle body.
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Figure 5-3: Convergence of steady calm-water suction force using TIMIT. Non-dimensional force is
Cs = %{%, where S is the surface area of the submarine. In all runs At = 0.10.

&
:

] Tl il rror T

t

%

§

:

10 20 30

1n
t(g/L)
Figure 5-4: Convergence of steady calm-water trim moment using TIMIT. Non-dimensional moment

is Cy = %:—&%’%, where S is the surface area of the submarine, and L is its length. In all runs
At =0.10

68



0.0035

0.003
0.0025
0.002
0.0015

w
O o0m

0.0005
—e— 5x4
—e— Tx4
—————— 9x6
10x8

-0.0005

-0.001

o
°p}lﬁlf|T]|j’Tl L A N

10 20 30

w(g/L)'"”?
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The mean vertical force and pitch moment due to head waves are shown in Fig-
ures 5-7 and 5-8. The same quantities developed in following seas are shown in
Figures 5-9 and 5-10. In following seas, the mean force and moment have a large
value near % ~ 0.2 due to the 7 = 41 resonance. There, the incident waves propagate
energy at exactly the same velocity as the forward speed of the submarine. These
lower-order computations require a large number of flat panels in order to reach an

converged solution. TIMIT results of the mean loads are nondimensionalized by

s @3

By = L (5.4)
and

_— F(5)

where A is the incident wave amplitude and L is the length of the submarine.

The TIMIT computations show that the mean loads are highly sensitive to wave
heading and wavelength. Most notable is the change from a ‘bow-down’ to a ‘bow-up’
mean pitch moment as the wave heading changes from head to following seas. For this
speed and depth, the largest mean vertical force acting on the submarine is produced
by following waves of length A = 0.75L. HITIM simulations will be performed with
incident waves of this heading, length, and amplitude A = 0.015L. Initial transients
are minimized by ramping the wave amplitude and the forward speed of the submarine
to their steady values.

We integrate the complete Bernoulli pressure in order to determine global forces
and moments, but the following definitions are introduced in order to highlight the

origin of the mean forces and demonstrate convergence of different quantities.
F = Flinear + FV2 (56)
where,

e = [ )
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Figure 5-10: Non-dimensional mean trim moment (F‘s) in following waves. Computations by TIMIT.
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Figure 5-11: Non-dimensional force in the vertical direction is *—;},—5, where S is the surface area of

the submarine. The contribution to the total force from FY” is shown by the line with circles.

and
V2 = _E 2 d '
F : / [ Vs, (5.8)

Figure 5-11 shows the hydrodynamic load acting on the submarine in the vertical
direction as the body travels in ambient waves, and reveals the relative importance
of the linear and second-order forces. For these conditions, the mean of FV* is ap-
proximately two-thirds of the amplitude of F!i"*2", The integrated value of the linear
Bernoulli pressure is shown in Figure 5-12, and demonstrates that vertical component
of the linear force, Flinea quickly converges to graphical accuracy. A more refined
hydrodynamic discretization is required to obtain a converged evaluation of FY*, as

illustrated in Figur- 5-13.

5.4 Depth dependence

Second-order loads on the submarine are due to quadratic interactions of the first-
order potential, which suggests that these forces have a vertical attenuation with

respect to depth like e=2X %, where K is the incident wavenumber. This has practical
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implications for a submarine maneuvering to periscope depth, because the mean forces
may increase from a near-zero value when the vessel is deeply submerged, to a non-
negligible magnitude as the body approaches the free surface. A body-exact solution
is obtained to examine the transient first- and second-order hydrodynamic forces as
the submarine follows a prescribed trajectory which is representative of a maneuver
to periscope depth.

Time histories of the vertical motion and pitch angle are given in Figures 5-
14 and 5-15. The vessel is smoothly accelerated to a forward speed of 5 knots in
monochromatic following seas of A = 0.75L and amplitude A = 0.015L. The subma-
rine begins the simulation at a depth of 4.57,,; and reaches a final centerline depth
of 1.827,mp. During its upwards motion, a ‘bow-up’ trim angle of 5° is prescribed.

The time history of the vertical force acting on the submarine during this maneuver
is shown in Figure 5-16. For small values of time, the body has moderately deep
submergence, and the mean vertical force is small compared to the oscillatory load.
The wave-frequency loads increases in magnitude as the vessel nears the free surface.
Likewise, the quadratic interactions grow in strength, and the mean vertical force in
non-negligible at the low submergence.

The trim moment acting on the body during the maneuver is shown in Figure 5-
17. The magnitude of the mean load, relative to the amplitude of the oscillating
component, is less dominant in the pitch moment than in the heave force. However,

a mean trim moment is observed at the final cruising depth.
5.5 Auto-piloted maneuver

A more realistic siinulation of the periscope maneuver would allow the vessel to re-
spond to waves while maintaining the gross motion given in Figures 5-14 and 5-15.
Since the submarine is neutrally buoyant, an autopilot must be included to offset

the second-order wave-induced loads and transients associated with the momentum
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Figure 5-14: Vertical trajectory of the submarine. Initial centerline depth is 4.5 rpms, and the final
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Figure 5-15: Pitch trajectory of the submarine. The maximum trim angle is 5°.
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equations of motion

Figure 5-18: The PID + ballast autopilot. Fpip(t) is the force from the PID controller, Fyydro(t) is
the hydrodynamic force, Fyise(t) is the negative buoyancy from ballast, z(t) the actual submarine
depth, and e(t) the error in position.

Parameters of the autopilots

mode " K, K; K, ballast

heave || 8.5 x 1073 | 12.75 x 1073 | 3.4 x 1073 | —1.25 x 10~*

pitch [|4.0x10"3| 80x10"% [28x 1073 | —1.0x10™°

Table 5.1; The values of the PID + ballast controllers

of the body. For this purpose, a proportional-integral-derivative (PID) controller was
used in addition to a negative buoyancy representing the effect of ballast. Unless the
ballast is arranged such that it does not change the longitudinal center of gravity,
a non-zero pitch moment is developed. Figure 5-18 shows the schematics of the au-
topilot. The parameters of the PID controller were numerically tuned by performing
several body-exact simulations. The settings given in Table 5.1 produced a suitable
PID + ballast autopilot.

The same wave conditions and forward speed are prescribed as in the preceding
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section, but now the body is allowed to respond in heave and pitch. Using two
independent PID + ballast controllers, we are able to achieve the motions shown in
Figures 5-19 and 5-20. The large-amplitude motion of the submarine follows the target
path well in both modes. In addition, the body assumes small-amplitude oscillations
due to the wave-induced loads and forces from the K, and K; components of the
autopilot. As expected, the wave-frequency motions increase in magnitude as the
submarine nears the free surface.

The hydrodynamic force in the vertical direction is shown in Figure 5-21. Com-
paring the hydrodynamic loads in the present simulation with those plotted in Fig-
ure 5-16, it is evident that the wave-frequency heave force is reduced when the body
is allowed to respond to the incident waves. However, the mean vertical component of
the second-order force remains about the same. The slight overshoot in vertical mo-
tion produces a substantial transient in the hydrodynamic force. The hydrodynamic
trim moment of Figure 5-22 shows that the linear Bernoulli pressure dominates the
second-order moment throughout the maneuver.

Figures 5-23 and 5-24 show, respectively, the time histories of the external ver-
tical force and pitch moment supplied by the autopilot. Ballast is slowly added for
t\/g/L > 60 and offsets the second-order hydrodynamic force. The K; term of the
autopilot produces a slowly-varying vertical force to correct for the difference between
the ballast and mean vertical force. The wave-frequency component of the external

force is generated by the K, and Ky terms.
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Figure 5-20: Pitch motion assumed by the piloted submarine. The dashed line shows the target
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Figure 5-23: Vertical forces developed by PID+ballast autopilot during the maneuver.
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Figure 5-24: Pitch moment developed by PID+ballast autopilot during the maneuver.
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Chapter 6

Hydrodynamic Interactions of
Neighboring Bodies

Subtle hydrodynamic interactions of two or more neighboring bodies may signifi-
cantly change the wave flow and resulting body motions. One such example of marine
interest is the drift motion of a body that floats in proximity to a fixed structure.
Ohkusu [51] carried out model tests in which a ship floating alongside a moored struc-
ture obtained drift motions in the direction opposite to the incident wave propagation.
Additionally, his computations, based on approximate two-dimensional potential the-
ory, predicted a negative drift force on the ship for a range of wave frequencies.

The present study uses a more complete three-dimensional solution to examine the
hydrodynamic coupling between the sphere and circular cylinder shown in Figure 6-1.
Each body is of radius a, and the draft of the cylinder is 2a. We will consider the
axis of the two bocies to be separated by a distance 2d. The bodies are subject to
monochromatic waves such that the sphere lies on the weather side of the truncated
circular cylinder. For ambient waves of amplitude A traveling in the +X direction,

the incident potential is

Y= “‘ﬂekzsin(l{z\’ +wt+0), (6.1)

w
where w? = gK, and 0 is the phase angle. Of primary interest are the forces on
the sphere and its resulting motions as it drifts in the vicinity of the cylinder. The

hydrodynamic features of the sphere-cylinder case are representative of more general
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2d

Figure 6-1: The sphere-cylinder arrangement shown in its equilibrium configuration. Distance from
the center of the sphere to axis of the cylinder is 2d. The sphere aund cylinder have unit radii, and
the draft of the circular cylinder is equal to its diameter. The dry portions of the bodies are shown
along with the discretization of the surfaces below Z = 0.

multi-body applications, which are common to many marine operations.

The use of a simplified free-surface boundary condition in the present case is justi-
fied by an argument put forth by Triantafyllou {54]. He combined multiple time scales
and amplitude expansions to derive a theory in which the flow generated due to slow
drift motion is governed by a first-order potential that satisfies a linear and homo-
geneous free-surface boundary condition. The basic assumption is that although the
dritt motions are large in amplitude, the disturbances they generate may be linearized
since the drift velocity is small.

Quadratic interactions of the first-order potential give rise to a second-order force
which is proportional to the square of the wave amplitude, and includes the mean
drift force as well as a second-harmonic component. A body-exact simulation will
allow us to examine the parametric dependence of this drift force on the relative
spacing between bodies, and couples hydrodynamic transients with the momentum
of the floating sphere. This lift the restrictions of constructing an ad hoc estimate of

the drift motions by the solution of a series time-harmonic flows at various spacings.
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6.1 A linearized steady-state analysis

Before simulations are performed, a preliminary linearized analysis is carried out in
order to gain insight into the hydrodynamic coupling of the two bodies. The geometry-
independent higher-order panel code HIPAN is used to determine the variation of mean
force with respect to wave frequency and distance of separation, and if any negative
drift forces can be realized in the sphere-cylinder arrangement.

First consider the case where both the sphere and cylinder are held fixed and
subject to planar waves. The mean drift force on each body is determined as a
function of h;f- for three different separation distances. The nondimensional horizontal
mean forces on the sphere and cylinder are shown, respectively, in Figures 6-2 and 6-3.
At a separation distance of 2d = 5, body-body interactions produce a negative drift
force on the sphere in the range of % = 0.20 to 0.40, with its peak near % = 0.30.
This repulsive force becomes progressively stronger as the distance between the two
bodies is reduced to 2d = 4 and 2d = 3. In contrast to the mean force acting on
the sphere, the drift force on the cylinder remains positive and is always greater in
magnitude for the frequency range that produces negative drift forces on the sphere.
Therefore, in accordance with theory, the total drift force on the combined system
is in the direction of incident wave propagation for all frequencies and separation
distances.

The same numerical experiment was performed with the sphere free to assume
small oscillations in surge, while keeping the cylinder fixed. Here, the hydrodynamic
boundary value problem and pressure integration are defined over the mean position of
the body. HIPAN computations of the resulting drift forces on the sphere and cylinder
are shown in Figure 6-4 and 6-5, respectively. Allowing the sphere to partially respond
to waves results in a general decrease in both the positive and negative drift force
acting on the sphere. However, we still observe a negative drift force in the same

frequency range as before.



A third steady-state analysis is carried out in which the sphere is allowed to linearly
respond in both surge and heave. Again, the flow is computed about the equilibrium
position of the sphere. In this case, the vertical body motions of the floating sphere
significantly change the drift forces shown in Figures 6-6 and 6-7. Instead of the
repulsive force growing for decreasing distances of separation, the negative drift force
is absent from the 2d = 3 configuration. For 2d = 4, a relatively strong repulsive
force appears in the range of i;'. = 0.40 to 0.60. A weaker repulsive drift force is
observed at a separation distance of 2d = 5 for waves from L‘;i = 0.42 to 0.65.

Relating the body-body interactions of the sphere and cylinder to the trapping of
waves in a channel helps explain the mean repulsive force. Maniar and Newman [35]
investigated the diffraction of waves by long arrays of cylinders of infinite draft, with
a spacing between consecutive elements of 2d. From their analysis, the authors found
that quasi-resonant wave interactions occur at critical values of %. For the cases of
very long arrays, large exciting forces were observed just below the cut-off frequency
of 'L;rd- = 7 that corresponds to trapped waves in a channel. Strictly speaking, waves
cannot be ‘trapped’ in an array of finite extent, because energy is radiated into the far
field. However, the structure of the flow about the array of cylinders was found to be
similar to wave motion in a rectangular channel. Since the normal derivative of the
potential must be zero along fictitious sidewalls between neighboring cylinders, this
resonance is referred to as a ‘Neumann trapped wave’. Numerical results from [35]
show that for long arrays of cylinders, the localized wave build-up between hodies is
considerably larger than the incident wave elevation. This type of wave trapping is not
particular to circular cylinders. Evans and Porter [10] have observed wave-trapping
in systems that consist of only a few elements.

In the present case, any localized ‘sloshing’ between the sphere and cylinder re-
sulting from partial wave trapping may act to repel the two bodies. Figurc 6-8 shows

the first-order surge exciting force and mean drift force on the sphere for a separation
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Figure 6-2: Mean drift force on fixed sphere versus %. Non-dimensional force is M—ﬂ-;, where the
overbar denotes time average. Computations by HIPAN.
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Figure 6-3: Mean drift force on fixed cylinder versus % Non-dimensional force is p—g—‘%—;, where the
overbar denotes time average. Computations by HIPAN.
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Figure 6-4: Mean drift force on floating sphere versus -’%‘-. Sphere is free in surge. Non-dimensional
force is ”—‘;;, where the overbar denotes time average. Computations by HIPAN.
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Figure 6-5: Mean drift force on fixed cylinder versus %2, Sphere is free in surge. Non-dimensional

force is ;fT;, where the overbar denotes time average. Computations by HIPAN.
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Figure 6-6: Mean drift force on floating sphere versus %. Sphere is free in surge and heave.

Non-dimensional force is ;g%;, where the overbar denotes time average. Computations by HIPAN.
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Figure 6-7: Mean drift force on fixed cylinder versus
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distance of 2d = 3. The same quantities for a single, isolated sphere are plotted for
comparison. Indeed, the first Neumann trapped mode occurs near the critical wave-
length that produces the upwave drift force. The mnean force is highly sensitive to
the % parameter in the range of this first quasi-resonance. More trapped waves are
found for shorter wavelengths, but these weaker resonances are not strong enough to

produce a repulsive mean force of considerable magnitude.

Kd/nt

Figure 6-8: Surge exciting force (empty diamonds) and mean drift force (empty circles) on fixed
sphere in the presence of a cylinder. Separation distance is 2d = 3. The exciting force (lilled
diamonds) and mean drift force (filled circles) experienced by a single, isolated sphere are shown
to demonstrate the effect of interference caused by presence of the second body. Computations by
HIPAN.

6.2 Rise-time of the negative drift force

The frequency-domain results presented above demonstrate the existence of a repul-
sive mean force under certain conditions, but the implications of this are not obvious.
Body momentum and hydrodynamic transients will determine if a floating sphere will
continue to drift downwave and collide with the fixed cylinder. We now examine how
quickly or slowly the hydrodynamic mean force reaches a steady-state value by solv-
ing a transient diffraction problem. In Section 6.3, a transient hydrodynamic solution

is combined with the rigid-body mechanics in the motion simulation of the floating
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sphere.
The leading order contributions to the drift force come from quadratic interactions
in the pressure integration. In order to compare HITIM results with HIPAN computa-

tions, we define the second-order surge force as

Fr(t) = -2 /fB o VimdS + 2 fr o Cmidh (6.2)

where n; is the component of the unit normal in the +X direction. All other terms
retain their previous definitions.

Monochromatic waves of Ka = 0.628 are supplied for two different separation
distances. The amplitude of the incident waves is ramped up to a final value of
é = 0.1. Figure 6-9 shows the time history of the surge force acting on the sphere
when both bodies are restrained at a separation distance of 2d = 5 (% = 0.50). The
same quantity for a single, isolated sphere is shown for comparison. F7 is plotted in
nondimensional form for the multi- and single-body cases in Figure 6-10. For this
separation and wavelength, the presence of the cylinder acts to increase the drift force
to approximately F9 x~ 40.4.

The time-history of the force acting on the sphere for the same incident waves and
a separation distance of 2d = 3 (% = 0.30) is shown in Figure 6-11. The amplitude
of the oscillatory force is approximately equal to that of the previous case. A more
subtle result is the change of its mean value. The second-order surge forces acting on
the sphere in the presence of the cylinder and on a single, isolate sphere are plotted

in Figure 6-12. The presence of the cylinder acts to increase the magnitude of 7 and

changes its mean value to approximately —.20.
6.3 The upwave drift of a floating body

Consider the two-body arrangement previously described, with the sphere unre-
strained in surge but fixed in its other rigid-body modes. For incident waves of

Na = 0.628, the [requency-domain results in Figure 6-4 show a negative drift force
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Figure 6-12: Non-dimensional second-order force, ;;%, acting on fixed sphere for a separation of
2d = 3 (solid line) and a single, isolated sphere (dashed line). Incident waves have wavenumber
Ka =0.628,0 = 180° and 4 =0.10.
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on the sphere if the distance to the cylinder is less than 2d = 4. A simulation is
performed with an initial separation distance of 2d = 3.5, and Figure 6-14 shows
the resulting horizontal motion of the sphere. The surge velocity is plotted in Fig-
ure 6-15. Low- and wave-frequency components of the motion arise naturally from
the solution of the body-exact boundary value problem. Because of the phase of the
incident waves, the initial momentum of the sphere is in the +X direction. How-
ever, after approximately three wave periods, the sphere is repelled from the cylinder.
Here, body-body interactions are strong enough to produce a slow upwave drift of
the sphere, and support the earlier fully-linearized analysis.

Conjecture from frequency-domain analysis, however, does not always lead to the
correct prediction of the slow drift motions. This may be illustrated by simulating the
surge and heave of the sphere. Due to finite-amplitude veriical motions, the wettled
surface of the sphere is re-discretized at every time step. Figure 6-13 shows typical
discretizations of the sphere at three instants of time. The preliminary frequency-
domain analysis of § 6.1 suggests that at Lﬂd = 0.50 and 2d = 5, the sphere will drift
away from the cylinder. Figures 6-16 and 6-17 show, respectively, the surge motion
and velocity of the sphere under these initial conditions. In this case, the negative
drift force is not large enough to overcome the initial downwave momentum of the
sphere, and the body slowly drifts with the waves until it collides with the cylinder.

When the ¢ = 0 separation is increased to 2d = 6 (% = 0.60), and the sphere is
free to respond in heave and surge, the floating body assumes the motion plotted in
Figure 6-18. Here, wave -nterference due to the cylinder is strong enough to repel
the floating sphere. After initially drifting in the direction of the incident waves, the
low-frequency velocity of the sphere changes sign. Presumably, the mean force would
once again become positive if the simulation were continued, and the sphere would

perform slow-drift oscillations.

94



Figure 6-13: The two-body arrangement shown with the sphere in three different positions. Only
the portions of the surfaces below Z = 0 are discretized.

6.4 The effect of wave-drift damping

The mean force on a floating body is known to be sensitive to its drift velocity.
Physically, this is due to the difference in wave scattering about a fixed body and the
same body undergoing slowly-varying drift motions. For bodies drifting in waves, the

mean force is commonly expressed as

~ oD
F=D—-&Uri = D — BUygs. , 6.3
gy, et drift (6.3)

where D is the mean drift force at zero-speed, B is the wave drift damping coefficient,
and Uyip, is the drift velocity of the body. The conventional analysis of the wave-
drift damping is based on quasi-steady assumptions that allow multiple parameter
expansions (Emmerhoff and Sclavounos [9]). The leading-order correction of the
mean drift force is proportional to the square of the incident wave amplitude, and
thus comparable in magnitude to the zero-speed drift force.

In the present case, we are studying a fundamentally different phenomenon: body-
body interactions and their influence on the resulting motions. Nonetheless, a rough

estimate of the wave-drift damping is made in order to determine its importance =
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Figure 6-14: Horizontal motion of the floating sphere. Body is free in surge but fixed in heave.
Incident waves are in the +X direction. Initial distance to cylinder is 2d = 3.5. Ka = 0.628,
6 = 180°, and 4 =0.10
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tfigure 6-15: Horizontal velocity of the floating sphere. Body is free in surge but fixed in heave.
Incident waves are in the +X direction. Initial distance to cylinder is 2d = 3.5. Ka = 0.628,
6 = 180°, and 2 =0.10
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Figure 6-16: Horizontal motion of the floating sphere. Body is free in surge and heave. Incident
waves are in the +X direction. Initial distance to cylinder is 2d = 5. Ka = 0.628, 8 = 180°, and
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Figure 6-17: Horizontal velocity of the floating sphere. Body is free in surge and heave. Incident
waves are in the +.X direction. Initial distance to cylinder is 2d = 5. KNa = 0.628, § = 180°, and
4 =0.10
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Figure 6-18: Horizontal motion of the floating sphere. Body is free in surge and heave. Incident
waves are in the +X direction. Initial distance to cylinder is 2d = 6. Ka = 0.628, § = 180°, and
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Figure 6-19: Horizontal velocity of the floating sphere. Body is free in surge and heave. Incident
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in the present simulations. Using results for a single floating hemisphere from Nossen
et. al. [47], the wave-drift damping coefficient for an isolated, single hemisphere
restrained in surge is found to be E%E = 1.25. Comparing results of fixed and
freely floating bodies, one observes that the wave-drift damping coeflicient for floating
bodies generally decreases by about 50%. Therefore, we use a value of Eﬁ,—a = 0.625

in estimating the effect of wave-drift damping on the sphere.

From HIPAN computations, the zero-speed mean drift force on a single, isolated

hemisphere is 2, = 0.244. Table 6.1 shows the magnitude of wave-drift damping
pgA%a

relative to the total mean force for a single hemisphere for a range of drift veloc-

ities. Considering the magnitude of the low-frequency velocity in the body-exact

simulations, it is unlikely that wave-drift damping has a dominant effect.

Wave-drift damping of hemisphere
Udrin Algon
0.02 0.0487
0.04 0.0929
0.06 0.133
0.08 0.170

Table 6.1: The ratio of wave-drift damping to tota! mean force for a single, isolated hemisphere.
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Chapter 7

The Response of Parametrically
Excited Systems

The equations governing the motion of a floating body closely resemble those of a
mechanical oscillator, although the presence of waves in the hydrodynamic system
prevents a direct analogy. However, insight into the response of the body may be
gained by examining linear and weakly nonlinear model equations of motion of an
idealized mass-spring-dashpot system.

Perhaps the most common use of the linear equations of motion is in the determi-
nation of response amplitude operators and the natural frequencies of a floating body.
Nonlinear extensions have been widely used to analyze the rolling motion of ships,
as changes in the righting arm often lead to model equations that predict observed
instabilities. Less publicized, and more general, mechanisms that lead to parametric
forcing have been discussed by Rainey [52]. There, the rates of change of added-
mass, damping, hydrostatic, or exciting forces with respect to displacement lead to
a time-varying ‘restoring’ coefficients. Eatock Taylor and Knoop [8] used arguments
put forth by Rainey to analyze the dynamic instability of an idealized ocean structure
floating in waves.

As an example of the large-amplitude motion generated by parametric excitation,
the body-exact solution from HITIM is used to simulate parasitic motions of floating

bodies. Two structures are examined. In each case, we introduce approximations in
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order to describe the response of the body by Mathieu’s equation. Although the non-
linear mechanisms in the two cases are physically different, both simulations display
analogous instabilities. Approximations used to arrive at this parametrically-forced
model equation are more restrictive than those associated with the formulation of
the body-exact intimal boundary value problem of Chapter 2. However, the stability
properties of Mathieu’s equation are well known and help to explain the numerical
simulations.

Although these instabilities only occur for a highly tuned system, the implica-
tions to real structures in the sea cannot be completely neglected. In a continuous
spectrum, some wave energy will always be present at twice the natural frequency.
If a mechanism for parametric forcing exists, the observed response of an offshore

structure may be very different from what linear analysis predicts.
7.1 A mathematical model for dynamic instability

Assuming small-amplitude sinusoidal motion, the response of a floating hody at steady

state is governed by
Myx + Bx + Cx = F(wo,t) (7.1)

where y is the displacement of the body, M, is the virtual mass of the body, B is
the damping coefficient due to wave radiation, C is the hydrostatic and gravitational
restoring force coefficient, and F(w,,t) represents the exciting force of frequency ws,.
The overdot denotes differentiation with respect to the time variable . As the body
responds to waves, a time-varying restoring coefficient may be justified. In this case,

the model equation becomes
MyX + By + [C + bcos(wot)] v = Flwo,t) . (7.2)

Non-negligible changes of the waterplane area provide the most obvious explanation

for the periodic restoring coefficient, but this is not the only possible mechanism of
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the parametric forcing [52].

The homogeneous part of (7.2) may be expressed in nondimensional terms as

X" +9x" + [a+ Beos(1)] x =0, (7.3)
where,
B wp\ 2 )
T=wit , 7= Moo a= (‘I) and (= Mok (7.4)

The natural frequency is defined as w? = Mc—v’ and primes denote differentiation with

respect to the variable 7. Introducing another change of variables, we arrive at the
standard forin of Mathieu's equation,

1

57+ Beos(r)| £ =0, (7.5)

ﬂ+k—
where x(7) = e"277¢(7).

From Floquet theory, we know that stable solutions of (7.5) lie within certain
regions of the af plane (see Nayfeh [40] or Jordan [18]). Parameters that produce
stable/unstable solutions are separated by curves on which solutions of the ordinary
differential equation have a periodicity of 7 = 27 or 7 = 47. For undamped systems,
the stability boundaries with solutions of period 47 lie at

2
B=0 and am=T4—-,form=1,3,5,.... (7.6)

Transition curves containing 27 solutions lie at
=0 and a,=n?, forn=1,23,.... (7.7)

The qualitative features of these stability boundaries are shown in Figure 7-1.
Instabilities occur most often near a = 1/4, where the excitation frequency is
twice that of the natural response of the body. With this insight, we may design a
wave-body simulation that is susceptible to unstable period doubling. This requires
a physical mechanism for the parametric forcing to be present and have a frequency

of twice the natural response.
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Figure 7-2: The spheroid with major radius a and minor radius b, is shown in its equilibrium position.
R, =0.060,a =1 and b = 0.25.

spheroid is submerged a distance R, below the undisturbed free surface. Because of
significant flare at the waterline, heave as well as pitch motions will lead to a time-
varying hydrostatic coefficient. Our goal is to design a body that will simultaneously
develop period doubling motions in both modes. This requires that the natural fre-
quencies in heave and pitch coincide. We first determine the heave natural frequency,
and then tune the pitch natural response.

Supposing the spheroid is in equilibrium for R, = 0.60, the heave restoring coef-
ficient and displaced fluid mass are C33 = 0.126 and pV = 0.23%. The heave-heave
added-mass and damping coefficients are frequency domain quantities and plotted in
Fizure 7-3. From w = 0.6 to w = 0.8, A3z =~ 0.0127. Therefore, the heave natural

frequency of the spheroid is approximately

33 0.126
e = || =2~ —0.713. 7.10
“heave \/pv+A33 \/0.235+0.0127 0.713 (7.10)

The pitch-pitch added-mass and damping coefficients are shown in Figure 7-4,

and Ass = 0.0248 at w = 0.71. For a vertical center of gravity of xc; = —0.40, the
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hydrostatic restoring force coefficient is Css = 0.0750. The desired radius of gyration
may be found by matching the pitch and heave natural frequencies.

C'55

S 9 . = eave ) 7.11
pVrk + Ass (7.11)

Wpitch =
which gives a radius of gyration of

1 [ C
==\l &

1 710.0750
—— | —— — 0.0248| = 0.723.
0.235 10.7132 0 ] 73

With estimates of the heave and pitch natural frequencies in hand, we may now
select incident waves which are likely to induce large-amplitude motions in both
modes. Since w, & 2w, at the first Mathieu instability, incident waves are chosen
such that their wave period is

T, 2T L T

=441, (7.13)

R E

5

The incident wave elevation and resulting heave and pitch motions of the spheroid are
plotted in Figures 7-5 and 7-6. The ordinate of these figures is the non-dimensional
time ty/g/a. The 2T, response quickly dominates the vertical motion of the spheroid.
The pitch motion retains a noticeable response at the incident wave frequency for
time less than 100 seconds, but this response is also dominated by the 2T, component
at large times. As expected, the amplitudes of these low-frequency heave and pitch
oscillations grow exponentially.

From the Haskind relations, the wave damping is known to be proportional to the
square of the exciting force. Therefore, bodies designed to have small exciting forces
commonly experience a highly-tuned resonant motion (Newman [44]). In the present
case, this is confirmed by the response amplitude operators shown in Table 7.1. Even
though a fully linearized analysis predicts a large resonance, it is important to note
that the unstable motions in the present simulation are due to a physically different

mechanism.
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Figure 7-3: Heave-heave added-mass (solid line) and damping (dashed line) for the spheroid in its
equilibrium position. Computations by HIPAN.
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Figure 7-4: Pitch-pitch added-mass (solid line) and damping (dashed line) for the spheroid in its
equilibrium position. Computations by HIPAN,
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Figure 7-5: Heave motion of the spheroid (solid line) and the elevation of the incident waves (dashed
line). Incident waves have period T, = 4.3 and amplitude 7j = 0.05.
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Figure 7-6: Pitch motion of the spheroid (solid line) and the elevation of the incident waves (dashed
line). Incident waves have period T, = 4.3 and amplitude i = 0.05.
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Response Amplitude Operators of the Spheroid
T, Ix3l/9 |xsl/7

4.518.72 x 1072 2.46 x 107!

9.0 7.40 3.25

Table 7.1: The heave and pitch response amplitude operators for the freely floating spheroid. Results
for sinusoidal motion at the wave and natural periods. 7 is the amplitude of the incident waves.
Computations by HIPAN.

7.3 Parametric excitation from a hydrodynamic mechanism

The periodic stiffness coefficient in the preceding example was easily explained by
time-varying hydrostatic properties. We now present another mechanism which may
provide the parametric forcing required for Mathieu-type instabilities. In this case,
coupling between the exponential attenuation of vertical Froude-Krylov exciting forces
and the first-order body motions leads to a subharmonic resonance at twice the wave
period.

In order to preclude parametric excitation by hydrostatic means, we simulate the
vertical translation of the body shown in Figure 7-7. The same flask shape was used
in experiments by Rainey [52], and later by Eatock Taylor and Knoop [8]. A sphere
of radius a is connected to a vertical circular neck of radius r. At rest, the center of
the sphere is a distance R, = 2a below the undisturbed free surface. In this position,
the heave-heave restoring coefficient and mass of displaced fluid are pgA,, = 0.460
and pV = 4.47.

The equation for vertical translation of a floating body subject to long waves is
[Pv + A33] ,-\.’3 + P_qup XS = fs ) (71‘1)

where x3 and F3 are, respectively, the heave motion and vertical exciting force. An

approximation for the wave loading at the instantaneous position of the body may
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Figure 7-7: The submerged sphere of radius a = 1 attached to a circular vertical element of radius
r = 0.383. At equilibrium R, = 2.

be found by expanding the exciting force about the equilibrium position,

OF:
Falxs) = Fs(0) + 5—| Xa+- (7.15)

9x3 lxa=0
For axisymmetric bodies of large volume, the vertical exciting force due to long

waves (A > a) may be approximated as

Fa(xa) = [pV + Aas] 0 + pgAwp 1, (7.16)

where v is the vertical component of the fluid velocity induced by the incident flow,
and the incident wave elevation is 7 = fjcos(w,t). Because of the large volume and
small waterplane area of the body, we have neglected the effects of damping but
retained the mass force in the longwave approximation.

In deep water, the fluid motion has exponential attenuation in the vertical direc-

tion. Therefore, the exciting force on the body at its true position is

w2(h—x3)
(7.17)

Fa(xs) = [pV + Azs|wine™™ 5 + pgAupn,
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where h is some distance below the undisturbed free surface, and x3 is the vertical

translation of the body. The rate of change of the wave load with depth, evaluated

at the body’s equilibrium position, is

7] A wih

Substituting (7.18) and (7.15) into (7.14) gives a more correct model equation for

motion of the body as it performs large-amplitude vertical translation.

- OF:
y F3(0)
v 2 _ 730 5
X3 + wy[1 + B cos(w,t)] x3 [PV + Asg]’ (7.20)
where
1 dF3 1P Awp (’-‘Jo)‘| _wah
- = — ;. 7.21
B =~V T Al Oxe — 7V A \wr) © (7.21)

the homogeneous part of (7.20) is Mathieu’s equation, so instabilities are possible for
wp & 2wy. In the present example, the parametric forcing comes from the rate of
change of the heave exciting force with respect to the vertical body motion.

In order to select the incident waves that induce a dynamic instability, the natural
frequency of the system must be found. The added-mass and damping coefficients are
shown in Figure 7-8, which gives a value of A3z = 1.84 for excitation near w =~ 0.27.

This coincides with the natural heave frequency since

_ | pgAw 0.460 o 0
Wp = \/—pv AL \/4——-47 18 0.270 . (7.22)

To induce large-amplitude motion, the body is forced with incident waves such that
w, & 2w,. Therefore, the incident wave period is

2 T ™

2
w, wy, 0.270

To/g/a = = 11.6. (7.23)

Figure 7-9 shows that even for waves of 7 = 0.125, the body has a dominant

response at its natural period. As expected from (7.21), the strength of the nonlin-
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Figure 7-8: Heave-heave added-mass (solid line) and damping (dashed line) for the body shown in
Figure 7-7 in its equilibrium position. Computations by HIPAN,

earity increases with the amplitude of the incident waves. The instability is more
pronounced in the response to waves of 7 = 0.200, as seen in Figure 7-10.

.n order to illustrate the difference between body-exact and linearized solutions,
simulations are carried out in which the boundary value problem and pressure inte-
gration are defined over the equilibrium position of the body. Using this linearized
formulation, we obtain the heave motion shown in Figure 7-11. Even though we are
no longer solving the body-exact problem, energy at the natural frequency is intro-
duced due to transients associated with beginning the simulation from a state of rest.
For small values of time, the response is similar that of the body-exact simulation
(see Figure 7-10). However, the 2T, response is not unstable and presumably decays
in amplitude due to the small amount of wave radiation generated by the body.

A nearly monochromatic response at the wave frequency may be obtained by pre-

scribing initial conditions that minimize transients. Therefor~, an initial displacement

of
xa =17 x RAO3 = 0.20 x 0.433 = 0.0866 (7.24)

is chosen, and produces the time history shown in Figure 7-12. Clearly, the response

contains less energy at natural frequency than the previous linearized simulation, and
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Figure 7-9: Heave motion of the body (solid line) when subject to waves of period T, = 11.6 and
) = 0.125 (dashed line).
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Figure 7-10: Heave motion of the body (solid line) when subject to waves of period T, = 11.6 and
7 = 0.200 (dashed line).
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Figure 7-11: Heave motion of the body (solid line) when subject to waves of period T, = 11.6 and
i) = 0.200 (dashed line). The initial boundary value problem and pressure integration are performed
over the equilibrium position of the body. x3 =0 at ¢t = 0.
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Figure 7-12: Heave motion of the body (solid line) when subject to waves of period T, = 11.6 and
) = 0.200 (dashed line). The initial boundary value problem and pressure integration are performed
over the equilibrium position of the body. x3 # 0 at ¢t = 0.
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the motion closely follows the incident waves.

The results above demonstrate the importance of using the body-exact formulation
in simulating the response of this large-volume, small-waterplane structure. Paramet-
ric forcing, and hence the observed instability, are absent from linearized simulations.
Clearly, free-surface nonlinearities will be important once the spherical flask broaches
the Z = 0 plane. However, the body-exact treatment should correctly model the

initiation of the Mathieu instability.
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Chapter 8

Conclusions and Recommendations

A novel boundary element method has been developed to compute the potential flow
about three-dimensional bodies undergoing finite-amplitude motions. In the present
study, the body boundary condition is imposed without approximation, and distur-
bances at the free surface are assumed to be small enough to justify linearization. To
solve this body-exact boundary value problem, we apply a new higher-order panel
method that separates the hydrodynamic discretization from the geometric represen-
tation. The numerical algorithms presented in this thesis adopt a B-spline represen-
tation of the velocity potential, but any regular parameterization may be used to
describe the body surface. This increases the flexibility of the method and allows
for greater accuracy in the representation of the body surface, while maintaining the
desirable characteristics of higher-order schemes. The application of this geometry-
independent higher-order method to the body-exact problem introduces difficulties
absent from fully linearized formulations. Most notable is the need to map the higher-
order discretization of the velocity potential to a time-varying wetted surface. Surface
trimming and interpolation algorithms have been developed for this purpose, and suc-
cessfully applied to various forms.

Traditional lower-order panel methods describe the body surface by a collection
of planar quadrilateral elements, with a piecewise constant distribution of the poten-

tial. This requires many elements for the solution of large wave-body problems, and

115



special attention is required when derivatives of the potential are needed. Higher-
order boundary element methods provide a continuous distribution of the poten-
tial over curved surfaces. Superiority of the higher-order schemes over the conven-
tional constant-strength planar-panel method in accurately evaluating gradients of
the potential and solving computationally intensive problems has been widely re-
ported (36, 25, 48, 19].

Since any parametric representation of the surface is allowed, complex shapes may
be accurately described by computer aided design tools, or analytic definitions may
be used to produce error-free geometric models of simple bodies and idealizations of
real ocean structures. In either case, the description of the surface may be generated
without regard to the hydrodynamic flow. This geometry-independent approach has
obvious advantages over panel methods that build a hydrodynamic grid based upon
the geometric model. Firstly, a very accurate (and even exact) representation of the
surface may be generated. Secondly, various discretizations of the potential may be
consistently applied over the same geometric model. Therefore, meaningful methods
of adaptive error control may be derived since the hydrodynamic discretization may
be refined over the same geometric surface.

Our choice of basis functions in the representation of the potential provides for
analytic differentiation of the solution. This is of particular importance in the com-
putation of second-order forces from quadratic interactions of the first-order solution.
In addition, the continuity inherent in the B-spline discretization of the velocity po-
tential produces a computationally efficient method, as demonstrated in Chapter 3.
Reducing the number of unknowns in the resulting linear system of equations is par-
ticularly beneficial in the present case, because of the high numerical cost associated
with obtaining a body-exact solution.

The first task of the algorithms described in Chapter 3 is to solve what is essentially

a surface-surface intersection problemn. At every time step, the hydrodynamic grid
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must be properly mapped to that portion of the geometry that lies below the mean
free surface. The combination of an implicit algebraic surface (the mean free surface)
with a regular parametric surface (the body surface) makes this intersection problem
well suited for marching algorithms. Such a scheme has been implemented in the
present program in order to trace the waterline in parametric space. A bi-linear
Gordon-Coons interpolation and the original parameterization of the body surface
are then used to map the potential B-splines to physical space.

A solution to the integral equation is obtained via a Galerkin approach. The suc-
cess of a similar higher-order panel method, based wholly on B-splines, was demon-
strated in the thesis of Maniar [36]. There, B-spline representations of the body
surface and velocity potential were used in the solution of the linear wave-body
problem in the frequency domain. Quadrature schemes similar to those developed
by Maniar, and later appiied by Lee et. al. [24], have been adopted in the present
geometry-independent higher-order method.

The robustness and accuracy of our method has been demonstrated by its applica-
tion to the body-exact initial boundary value problem. Previous body-exact studies
focused on conventional naval applications, specifically the heave and pitch motions of
ships with forward speed [16, 29, 33]. The examples presented in Chapters 5, 6, and 7
include the computation of mean forces on a submerged body, the hydrodynamic in-
teractions between multiple bodies, and instabilities of floating ocean structures. In
these cases, disturbances at the free surface are expected to be small enough to justify
linearization, and the body-exact solution should retain the dominant features of the
flow. Since the body-exact formulation is linear but time-varying, nonlinearities in
the numerical results come from second-order forcing due to the first-order potential,
or the parametric influence of body position on the solution.

The first application involves the evaluation of wave-induced loads on a near-

surface submarine. The mean vertical force and trim moment on the vessel have
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been shown to strongly depend on the submergence. Transients are observed as
the vessel approaches periscope depth, complicating the control of the body as it
nears the free surface. Body-exact simulations have been used to numerically tune
the parameters of a standard controller and arrive at a successful autopilot for the
submarine. This allows for the computation of hydrodynamic loads on the submarine
while the vessel responds to waves during the maneuver, and is more complete than
an ad hoc construction of a simulation using steady-state results computed with the
vessel at various levels of submergence.

Next, the body-exact formulation has been used to study the motions of a floating
sphere that drifts in the vicinity of a fixed cylinder. The mean forces on the bodies
have been shown to be sensitive to the spacing to wavelength ratio, and an upwave
drift of the sphere exists for certain conditions. The features of the sphere-cylinder
arrangement are illustrative of interactions that are present in more general multi-
body problems. Here, the time-varying linear boundary value problem is sufficient
for capturing the mean horizontal force that acts to repel the floating body upwave
and away from the fixed structure.

Finally, dynamic instabilities of floating bodies have been observed by accounting
for the finite amplitude of the body motions. Parametric forcing from hydrostatic and
hydrodynamic mechanisms was shown to induce period doubling and exponentially
large body motions. A simple model equation was introduced in order to explain
the structure of the more complete numerical simulations. Practical implications of
this Mathieu-type instability are important, since real ocean structures subject to
the same parametric forcing may have an unexpectedly large response at the natural
frequency even though little wave energy may exist at that particular frequency.

The geometric trimming and mapping schemes developed in the present thesis
could be applied to solve other formulations of the wave-body problem. One pos-

sibility is to apply the geometry-independent higher-order approach to the Rankine
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solution of problems with free-surface nonlinearities. There, the accuracy of higher-
order schemes will lead to a robust code, and acceleration techniques such as the

pre-corrected FFT have the promise of reducing the computational costs associated

with the increased number of panels.
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Appendix A

The Earth-Fixed Integral Equation

The body-exact boundary value problem is

V29(X,t) = 0 in V (A.1)
®:+9P. = 0 on F (A.2)
Vé.n = (U-Vp)-n on B(t) (A.3)
Vé — 0 at S, (A.4)
=%, = 0 on F(t=0) (A.5)

where V is the volume of fluid bounded by the body surface (B), the air/water in-
terface (F), and an imaginary surface at infinity (S ). U is the local velocity of the
body surface, and ¢ is the incident potential.

For any field point P = (z,y, z,t) and source point @ = (£,79,(, 1), the transient
Green function satisfying the above boundary value problem (excluding the body
boundary condition) may be found in Wehausen and Laitone [56] or Stoker [53], and

is
G(P,Q,t—T) = G°+H (AG)
where,
ro= |P=Ql=[c=-&"+@y—n)*+ (==Y (A7)
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o= [P=Q=[(z-6+ @ —-n*+(2+ )" (A.8)

R = [(z—&"+(y—n)"~ (A.9)

The body-exact boundary value problem is cast into an integral equation by two
applications of Green’s theorem. First, assume S, to be an infinitesimally small

surface surrounding the field point P. Applying Green’s second identity to the velocity

potential and G, gives,

///v (8V2G, — G,V*¢) dV = //s N (8G g — Gr®4g) dS = 0. (A.10)

The integrals over S, and S, do not have any contributions, so the surface integrals
only have contributions from the free surface and body surface. Now integrate over

the past time history,

/0‘ dr //HB (‘I>Gn.q - Gfd‘)no) dS = 0. (A.11)

The Green function and potential both satisfy the free-surface boundary condition.

Therefore, the integral over F may be rewritten as:
1
— = —= —_ 2
//f (€Girng — Grng) dS ; //f (8Grrr — Gr®,,)dS (A.12)
1 0
= //}_ 5= 190G, — G 9,]dS.

Using the Transport theorem, the temporal differentiation may be moved outside of

the integral,

_:7 //f 56; [0G,, — G,®,]dS = (A.13)
19 , 1
—;E /»/.7-' [‘DGTT - Grq)‘r] s t ;./r [(I)G"‘T - GT(I)"'] U- n2DdL‘

where nyp the two-dimensional unit normal vector in the horizontal plane, and T is
the waterline curve. Substituting (A.13) into (A.11), and using the initial conditions

on the free surface gives,

//Jr ®GdS + /Ot dr //B(<I>Gm., — G, 8,,)dS (A.14)

1t , ~
+;/0 dT/F(tI)G" — G,®,)U - ngpdL = 0.
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The second application of Green’s second identity involves ® and G° in V,

./.[/v (QVzGo - G°V2(I>) dv = -//.'F+B+.s,,+sw (@qu _ Goq’nq) dS (A.15)

There is no contribution from S, or G° over the free-surface, but the integration of

Rankine terms over S, is 2r. Therefore, the above equation reduces to

2w + [[ (067, - 6°0.5) d5 + [ @G2ds = 0. (A.16)

The integral over the free surface may be canceled by adding (A.14) and (A.16). This

gives an integral equation which only contains contributions from the body surface,

20 + [ (863, — G*d,,)ds = / Cdr J[(@Ging - Gi@ug)is + (A1)

1 t
. /0 dr fr (8G,, — G,®,)U - napdL.
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Appendix B

The Gordon-Coons Interpolation

The parameterization X = X(u,v) is assumed to be regular over a ‘patch’ of the
complete body. However, the boundary value problem is defined only over that por-
tion of the surface below Z = 0. Let the parametric space that corresponds to this
wetted hull surface be defined as (u,v)wer. We now describe a procedure by which a
computational domain, the st unit square, may be mapped to (u,v)wet-

Our approach in discretizing the wetted surface involves two main steps. First, the
marching algorithm of § 3.1.1 is used to solve the surface-surface intersection problem
and define the waterline in (u,v) space. Then, the potential B-splines are mapped
from their square computational domain to wet parametric space. This is done by
developing the interior (u, v)we: from its boundary curves. The method used presently
is credited to Coons [4], but it was given a mathematical foundation by Gordon [12)].
The description of the Gordon-Coons interpolation scheme given below, follows that
of Hoschek [14].

We wish to establish a mapping function from a square computational space, the

st unit square, to the wet parametric surface; i.e.
(u,v)wee = F(s,1). (B.1)

The portion of the (u, v) plane that corresponds to the wetted body surface is defined
by four boundary curves, each of which are parameterized by their arclength. A

typical boundary of (u,v)ye is shown in Figure B-1.
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Figure B-1: The wet uv domain enclosed by the four boundary curves: F(s,0), F(0,1), F(s, 1), and
F(1,1).

The first step is to interpolate between the t = 0,1 boundaries. We define the

interpolation function P,F(s,t) such that
P.F(s,) = fo()F(s,0) + fi()F(s,1), (B.2)
where the two blending functions are

fo(x)=(1—x) and fi(x) = x- (B.3)

Other Hermite polynomials may be chosen, but the linear blending function above
will be adequate for our purposes. A graphical interpretation of the P, F interpolation
is shown in Figure B-2. Next, the blending functions are used to interpolate between

the two s = 0,1 boundaries,
P.F(s,t) = fo(s)F(0,t) + fi(s)F(1,1). (B.4)

This is shown graphically in Figure B-3.
If the boundary curves are not straight lines, the above interpolations will intro-

duces errors. For example, Figure B-4 shows error produces by the P2 interpolation
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Figure B-2: P, interpolation of the uvyer. Figure B-3: P, interpolation of the utwer.
at the t = 1 houndary. We may define this precisely as
F(s,1) — [fo(s)F(0,1) — fi(s)F(1,1)] (B.5)
or, symbolically, as
F - P,F. (B.6)

A correction should be applied at the ¢t = 0,1 boundaries and every straight line

deﬁned by the P, F operation,

P,(F - P;) = P,F - P,P,F. (B.7)
The interior surface is the sum of the P, F interpolation and (B.7),

F(s,t) = P,F + P,F — P,P,F, (B.8)
or

F(s,1) = (1 — )F(s,0) + tF(s,1) + (1 — s)F(0,2) + sF(1,t)  (B.9)

—[(1 = s)((1 = t)F(0,0) + (F(0,1)) + s((1 - t)F(1,0) + tF(1,1))].

From the above expression, it is evident that tl e surface defined in the Gordon-Coons

interpolation is the combination of two linear interpolations and a corrcctions that
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Figure B-4: The error at a boundary due to linear interpolation

involves the four corners of the boundary. Applying (B.8) to a set of typical bounding
curves produces the interior surface shown in Figure B-5. The corresponding compu-
tational space in plotted in Figure B-6. Also, it is clear that the boundary curves are
exactly reproduced by (B.8).

Since the Gordon-Coons mapping is given explicitly, the Jacobian of the (s,t) —

(u,v)wee mapping may be found by directly differentiating (B.8).

\\X\\H
\\\\H

|
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u S

Figure B-5: the wet uv space divided by the Figure B-6: the st space
interpolation
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Appendix C

Self Influence Quadrature

We wish to evaluate the source self-influence

m==ﬂ&n%ﬁ (C.1)
1
=.”&ﬂJE@¢
and the dipole term
Hy= [[sT; 5‘%% Jdsdt, (C.2)

where, the J is the Jacobian of the (s,2) — X transformation

J X  9(u,v) 09X
"~ (s, t)  O(s,t) O(u,v)’

(C.3)

The singularity as R — 0 in each case requires special care. We will examine how

to evaluate (C.2) and extend this to the dipole case. This appendix describes the

triangulation and quadrature schemes derived by Newman [41, 42] and Lee [23].
The B-spline basis functions may be expressed as polynomials, centered about the

panel’s midpoint (sy,tm),

S=a s 't ap1s* 4+ ays +a; (C.4)
T = bkt’k—l + bk_lt'k_2 4o bot’ 4 by, (C.5)
where (s',t') = (s — s, t — t,;n). We can express (C.2) as a linear combination of I¢

mn)

c  _ 2 [t m-1 ,m-1 l ! 34!
IS, = s™m1¢ Jds'dt'. (C.6)
sy Ji R
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Figure C-1: The self-influence square is further subdivided into four triangles.

With proper subdivision, we may arrive at a square self influence domain centered

about the field point’s parametric coordinates (see Figure C-1). We begin by centering
the square about the field point,

(3,8) = (s' — st = 1)), (C.7)

and use the polynomial form of the B-spline basis functions to arrive at

¢ _ S [l am—1 ‘n-—ll adf
Lm,,_/ia /. gmot vt = J didi. (C.8)

Assuming a regular surface, we may approximate the distance form the field point
to the source point, locally, as

R = [X(s,t) = X(s5,ts)| = |X(8 — 8} + 5m, 1) — X(s5,1/)]|
- |0X(spity) . | 0X(sy,t5);
= ' 0s s+ ot t

(C.9)

= \/es? + 2f3f + gi.

Here, ¢, f and g are the first fundamental forms of the surface,

e = X,(ss,ty5) - X,s(ss,2y) (C.10)
f=Xy(s5:87) - Xi(sgs2y)

9= Xi(ss:ts) - Xe(sy,ty)-
Normalize the local variables (3,%) by the square’s half-length

s = , t_=

Q| &
Q| e

(C.11)
128



s} —s!, th—th ..
where, o == 22— = b2 This gives

11 _ es? + 2f5t + gt?
c _ .2 - m-1 n-1 \/
L =0 /_1 /_1 (05 +35,)™ " (ol + 1) = (C.12)
L Jdsdi.
Ve + 2f3t + giz
Over triangle 1 the above integral becomes
11 1 _
L, =0a? f(5,%) J dadt, (C.13)
! /0 /-l Ves? + 2fst + gi?

where,

2f3st + gt2

32
f(s’t—)=(0'§+3f)m-l (0’[+tf)n—] \/e ki R

(C.14)

The singularity at R = 0 may be analytically removed by introducing the following

transformation
s=z , t=uzy. (C.15)

Substituing this into (C.14) and including the integration over triangle 2,

L; 2 [' [ ! J dzd C.16
masn =" [ [ S0 g e (¢10)

For triangles 3 and 4, apply the transformation
Ss=zy , t=ro, (C.17)

to obtain the non-singular integrals

L; 2 [ [ - Jdzd C.18
s =" [ [ J(es2) e S dady, (C.18)

We now wish to account for the form of the square-root behavior in the integrations

over the four triangles. For Lg, ., let
f e

B=-=, «a - — B2 C.19
. piats (C.19)

1 g1 1
L2 = o? ./-1 [-1 f(z,zy) J dzdy. (C.20)

[blay/1 + (122)°

Therefore, (C.16) becomes
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This suggest another change of variables:

z = sinh™! (y—_é) (C.21)
a
dz = d—‘:}-sinh" (y — p ) dy (C.22)
= %log{(#)+\11+(y ﬂ)}
dy

The lower and upper limits of integration become, respectively, z;, = sinh~! (i;ﬁ)

and zy = sinh™! (’—;2) Finally, we use another normalization,

Z=ZU52L'”+ZU;LZL=Pw+q, (C.23)

to give the integration over triangles 1 and 2,

c 2 1 1 . 1
L2 =0 p/_l /-1 f(z, z(asinh(pw + q) + ﬂ))lfl J dzdw, (C.24)

and

1 1
c — 2. . / / /
Lnora =0 [ [ S(elasink(po +4) + B),2) S dedw,(C.25)
for triangles 3 and 4. In the latter integration,

ﬂ's-f : a'_\/ — p2, (C.26)

We add the integrals over all four triangles and obtain a result for the entire

self-influence sqaure.

1 1
Lfnn,1+2+3+4 = 0'21’_/_1/_1 f(z,z(asinh(pw + q) + B)) Ib’-]d:vdw (C.27)
+ 02’/1/1f( inh(p'w + ¢') + #), 7) — J ded
P ). S(a(asin (pw+q)+ﬂ),w)|a| zdw

where

2fst + gt?

32
f(3,8) = (65 +37)" " (of + Lyt \/es + :

(C.28)
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for the source singularity, and

e3? + 2f5t + gi*(R - N)

f(3,0) = (05 +0)™ (ol + )" R

(C.29)

for the dipole singularity.
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Appendix D

Vector and “Matrix”
Cross-Product Notations

Let a, b, and c denote the following 3z1 column vectors,

) y ¢ 3
( (/3] ( b] 1
a=4qa, ¢, b=4¢5b ¢}, and c= c (- (D.1)
\ a3 J \ ba j \ €3 J
The vector-vector cross product is defined in the conventionally manner,
azbs — azb,
c=axb={ gb; —arh {- (D.2)
\ albz - agbl J
Define a 323 matrix [X]. The “matrix” cross product is defined as
a x [X] = [{a x x1} {a x x2} {a x x3}], (D.3)

where x; is the i** column vector of [X]. The following idendtities hold for the 3z1

column vectors a and b and 323 sqaure matricies [X] and [Y],

{a x [X]b} = [a x [X]]b (D.4)

[a x [X][Y]] = {a x [X]] [Y] (D.5)
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