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Abstract

We show that, if the accessible information is used as a security quantifier, quantum channels with a
certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit
below the rate of non-private classical communication. This result is obtained by exploiting the
quantum data locking effect. The price to pay to achieve such a high private communication rate is
that accessible information security is in general not composable. However, composable security
holds against an eavesdropper who is forced to measure her share of the quantum system within a
finite time after she getsit.

(OMOM

1. Introduction

One of the most promising contemporary applications of quantum mechanics is within cryptography, where the
laws of quantum physics certify the secrecy of a communication protocol. In quantum key distribution, the
communication protocol aims at establishing a shared key between two legitimate parties, Alice and Bob, in such
away thata third party, say Eve, who eavesdrops on and tampers with the communication line, obtains virtually
no information about the key [1]. The key itself is generated randomly, possibly to serve as a one-time pad. On
the other hand, in a private communication protocol, the sender, say Alice, aims at sending private messages to
Bob [2]. In this case, the content of the messages is under the control of Alice and it is not random from her point
of view. Clearly, any private communication protocol can be also used for key distribution.

In this paper we introduce a private communication protocol, based on the phenomenon of quantum data
locking (QDL) [3], that achieves a private communication rate as high as less than one bit below the classical
capacity for non-private communication. Our protocol provides a scheme for realizing a quantum enigma
machine, a quantum optical cipher based on the QDL effect [4]. It can be implemented experimentally using
standard technologies routinely applied in quantum key distribution in setups where information is encoded by
single-photon states spread over d optical modes. The security of our private communication protocol is
assessed in terms of the accessible information criterion, which is not the standard and widely accepted security
criterion in quantum cryptography. A detailed comparison of the two security criteriais given in [5, 6]. This
security criterion is in general weaker than the standard security criterion of quantum cryptography. For this
reason, before proceeding with the description of the protocol, we make a brief detour to clarify in which context
the accessible information yields reliable security, as well as to review the phenomenon of QDL.

1.1. Accessible information security

Suppose that Alice’s messages are generated by a source described by the random variable X, with probability
distribution py(x), and the conditional states obtained by Eve are p, .. The ensemble state of the joint system of
Alice and Eve is hence given by the density matrix p,; = >, py (x)[x)a (x| @ Pg|x- Letusrecall that the
accessible information is defined as the maximum classical mutual information between Alice’s input and the
result of an optimal measurement performed by Eve on her share of the quantum system. A local measurement
by Eveisamap Mg : E — Y whose output is the classical variable Y. Then the accessible information of the
state p,p reads

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Liee = max I (X; Y), (D

E

where I (X; Y) = H(X) + H(Y) — H (XY) is the classical mutual information, and H denotes the Shannon
entropy.

To assess the security of our protocol, we show that I,.. ~ € log D where D is the dimension of Eve’s quantum
system, and the security parameter € can be made arbitrarily small under suitable conditions. This means that the
outputs of any measurement by Eve are arbitrarily close to being independent of Alice’s messages. When used as a
security quantifier, the accessible information suffers from a major problem: it does not guarantee composable
security. Roughly speaking, composable security means that if two communication protocols are secure
individually then they remain secure when composed [7, 8]. The fact that the accessible information does not
ensure composability is intimately related to the very effect of QDL [5, 9]. However, as discussed in [6, 10], the
accessible information yields composable security conditioned on certain physical assumptions. A physical
assumption that guarantees composable security is that the eavesdropper is forced to measure her share of the state
as soon as she obtains it, as is the case, for instance, when she does not have access to a quantum memory. This isa
consequence of the fact that the accessible information concerns the output of Eve’s measurements, and not the
quantum state itself. Another assumption that implies composable security is that Eve possesses a quantum
memory with finite coherence time. In the simplest model, Eve either measures her share of the quantum system
within a time 7z or the quantum memory decoheres and becomes classical. Suppose the given communication
protocol is used as a subroutine of a larger protocol. Composable security is granted if Alice and Bob know the
coherence time of Eve’s quantum memory and wait for a time sufficiently longer than z before proceeding. Clearly,
too large values of z would make the protocol impractical. However, as discussed in [6], in a stationary regime the
overall asymptotic communication rate is independent of 7 and remains finite even in the limit 7 — oo.

By making assumptions on the technological capabilities of the eavesdropper we are in fact restricting the class
of allowed attacks. In quantum cryptography one distinguishes three kinds of attacks: individual attacks (where the
eavesdropper applies local measurement to the output of each use of the communication channel); collective
attacks (where the eavesdropper is allowed to store quantum information for an indeterminate amount of time
before applying a collective measurement on the output of multiple channel uses); and coherent attack (where the
eavesdropper is allowed to tamper with the communication line in an arbitrary way). The assumption that the
eavesdropper has a quantum memory with finite coherence time defines a class of attack that lie in between
individual and collective attacks. As in individual attacks, the eavesdropper cannot store quantum information for
an arbitrarily long time. However, in our case we allow the eavesdropper to store quantum information for a finite
time and to apply a collective measurement on the output of multiple channel uses.

To be fair, our communication protocol is defined under the assumption that the legitimate receiver Bob is
constrained by the same technological limitations as the eavesdropper Eve.

1.2. Quantum data locking

Below we introduce a private communication protocol that is secure according to the accessible information
criterion. Such a protocol is a QDL protocol. In a typical QDL protocol, the legitimate parties, Alice and Bob,
publicly agree on a set of N= MK codewords in a high-dimensional quantum system. From this set, they then
use a short shared secret key of log K bits to select a set of M codewords that they will use for sending
information. If the eavesdropper does not know the secret key, then the number of bits, as quantified by the
accessible information, that she can obtain about the message is essentially equal to zero for certain choices of
codewords. In most of the known QDL protocols codewords are chosen from different bases, and the secret key
identifies the basis to which the codewords belong. Here we apply a random coding approach and assume that all
the N= MK codewords are chosen randomly.

A number of works have been devoted to the role of QDL in physics and information theory [3, 11-16].
However, only recently QDL has been considered in the presence of noise [4-6, 10, 17]. A formal definition of
the locking capacity of a communication channel has been introduced in [10], as the maximum rate at which
information can be reliably and securely transmitted through a (noisy) quantum channel N _, g from Alice to
Bob, where the security is quantified by the accessible information. Motivated by QDL protocols, we also allow
the assistance of an initial secret key shared by Alice and Bob. In order for this key to be inexpensive in the
asymptotic limit, we further require that the bits of secret key grow sublinearly with the number of channel uses.

Two notions of locking capacities were defined in [10]: the weak locking capacity and the strong locking
capacity. The weak locking capacity is defined by requiring security against an eavesdropper who measures the
output of the complementary channel (denoted as N . = J(/A_,B) of the channel from Alice to Bob®. The

3 We recall that the action of a quantum channel N}, _, 3 can always be represented as Ny 5(p) = Tre(V p ® wy V"), where wg isa pure
state of the environment E, and V is a unitary transformation coupling the system with the environment. The conjugate channel of N _  is
then defined by Ny 5(p) = Nasilp) = Trg(V p @ V.
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strong locking capacity is instead defined by requiring security against an eavesdropper who is able to measure
the very input of the channel. In general, the weak locking capacity is larger than or at most equal to the strong
locking capacity, as any strong locking protocol also defines a weak locking one. It is natural to compare the weak
locking capacity with the private capacity [2]. Since the latter is defined by the stronger standard security
criterion of quantum cryptography, it follows that the weak locking capacity is always larger than or at least equal
to the private capacity. Finally, both locking capacities cannot exceed the classical capacity, which is the
maximum rate of reliable communication allowed by the channel (not requiring any secrecy) [18]. As shown in
[5], there exist qudit channels with low or even zero private capacity whose weak locking capacity is larger than
one half of the classical capacity. In our previous work, we have obtained key generation protocols that achieve a
strong locking rate just one bit smaller than the classical capacity [6].

In a cryptographic setting, the notions of strong and weak data locking capacity correspond to different
kinds of attacks by the eavesdropper. In a strong locking scenario, we are imagining that the eavesdropper can
obtain a noiseless version of the input states sent by Alice. If the strong locking capacity is non-zero, this mean
that these messages can remain locked to Eve. This is something that cannot happen if the standard security
criterion is applied. In a weak locking scenario, we are instead imagining that the eavesdropper has access to the
environment of the channel. This attack is similar to a collective attack. However, as discussed in the previous
section, the weak locking attack lies in between the collective and individual attacks.

The first result we present in this paper is a QDL protocol for the d-dimensional noiseless channel, see
section 2. The protocol allows QDL (in the strong sense) of the noiseless qudit channel at a rate of log d bits per
channel use, equal to its classical capacity, and consumes secret key at an asymptotic rate of less than 1 bit per
channel use. The crucial property of this protocol that distinguishes it from prior work on the topic (e.g. [15]) is
that it employs codewords that are separable among different channel uses. This property allows us to generalize
the protocol to the case of noisy memoryless channels and to obtain achievable rates of strong and weak locking
for a physically motivated family of qudit channels, see sections 3 and 4.

2. A protocol for strong locking of a noiseless channel

In this section we define a strong locking protocol for direct communication via a noiseless qudit channel. This is
an improved version of a similar protocol for quantum key distribution that we have introduced in [6].
Sections 2.1-2.4 present the proof of our main results. Applications to (weak and strong) locking of noisy
memoryless channels are then presented in sections 3 and 4.

To encode M messages in n qudits, Alice prepares one of the codewords

wc>=j

Z ‘xj,c>a (2)

1
forc =1, 2,..., M, where the vectors |x; . ) are independently sampled from an ensemble of qudit states

{p(x), |x)}". Alice and Bob publicly agree on a set of K n-qudit local unitaries

U= @ U](S), (3)
j=1

fors = 1, 2,..., K. According to the value of the secret key, Alice applies the unitary transformation U to
scramble the n-qudit codewords, obtaining

e > - U

w)=8 U [xic) @

In the strong locking scenario, we assume that Eve intercepts the whole train of qudit systems and measures
them. Since Eve does not have access to the secret key, we have to compute the accessible information of the state

, (5)

V/c(S) > <l//c(5)

M K 1
pae = 2PNl @ D
c=1 s=1

where {|¢) } =1, .. p isan orthonormal basis for an auxiliary dummy quantum system associated to Alice and p(c)
is the probability of the codeword |y ). For the sake of simplicity here we assume that all the messages have equal
probability, thatis, p (c) = 1/M (the case of non-uniform distribution has been considered in [15, 16]). One
can upper bound the accessible information as follows (see appendix A):

4 . .
We remark that the vectors |x) may not be orthogonal. In general, one could also replace them with mixed states.
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. <
IaccglogM_ M r‘{/l)in H[Q(¢)] _n[EQc(¢)] > (6)
where
| &
Q) = = bl wE, (7)
s=1
M
H[Q(#)] = =) Q(¢) log Q. (¢), (8)
c=1
n(x) = —x log x, and the minimization is over all n-qudit unit vectors |¢).

In the following sections 2.1-2.4, we show that there exist choices of the unitaries {U¥},_, _ g such that

Lee=0 (e log d"), 9)
provided that
A 1 2 5 d" 4In2Ind"
with
2d
i 11
T (1)

In particular, if we put € = 27" in(10) with s € (0, 1), Eve’s accessible information will be exponentially
small in #, with an asymptotic secret key consumption rate (in bits per channel use) equal to

log K
k = lim =2 (12)
n—oo N
log M
= max{log 7, logd — lim ) } (13)
n—oo N
= max{l - log(l + é), logd — R}, (14)

log M

where R = lim,,_ o,

To show that, we make use of a random coding argument based on random choices of both the codewords
and the data locking unitaries. In particular, each of the unitaries U](S) is generated independently and randomly
by sampling from the uniform Haar distribution of d-dimensional unitaries’.

For the case of a noiseless channel, since Bob knows the unitary U®) chosen by Alice, he can simply apply the
inverse transformation U™ and then perform an optimal measurement to discriminate between the
codewords’. We consider random codewords generated by sampling independently and identically each of the
qudit state |x; . ) from a given ensemble of input states. It is well known that in such a setting Bob can decode

reliably in the limit # — oo if M < ed", with ¢ vanishing in the limit n — oo [20]. For instance, putting e = 27"
for s < 1 one obtains an asymptotic rate of communication of R = limn_,m% log M = log d bits per channel
use, with a secret key consumption rate of less than 1 bit per channel use.

2.1. Preliminary results
To characterize our QDL protocol we will make use of two concentration inequalities. The first one is the tail
bound [20]:

Theorem 1. Let {X; } -, .. 1 be Ti.i.d. non-negative real-valued random variables, with X; ~ X and finite first and
second moments, [E [X], [E[X?] < oco. Then, forany t > 0 we have that

> The value of y depends on the ensemble of unitaries used to scramble the codewords. This value is obtained if the unitaries are sampled
from the uniform Haar distribution—see equation (17) and appendix B. In [6, 17] different values of y were obtained by applying other
ensembles of scrambling unitaries.

6 . .
By optimal measurement we mean any measurement that achieves the Holevo bound as, e.g., the pretty good measurement [18].
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1l w Tr?
Pri—=) X, <E[X] -7y < exp| ————= |
{TE t }\ 2E[ x?]

(Pr {x} denotes the probability that the proposition x is true.) The second one is the operator Chernoff
bound [21]:

Theorem 2. Let {X; },=,, .. 1 be T'i.i.d. random variables taking values in the algebra of hermitian operators in
dimension D, with 0 < X, < land E[X,] = pll (1is theidentity operator). Then, for any = > 0 and for
(1 + 7)u < 1wehavethat

l w Tru
Pra=> X, > (1 +7)ul p <D exp| — ,
{ T ; ¢ > ( ) } < p [ )
and
T
1 Trtu
Pro=) X, < (1 =7)ul p <D exp|— .
{Tzl < )u} p( T3
For any given d"-dimensional unit vector |¢) and codeword Iwc(s) ), we define the quantity

a2 (@) = [{p| w )P = [(p| ULy)P. (15)

Clearly, the latter is a random variable if the unitary U and/or the codeword c are chosen randomly. To apply
theorems 1 and 2, we compute the firstand second moments of qc(s) (¢), for given |¢) and ¢, with respect to the .
i.d. random locking unitaries. We obtain (see appendix B)

S 1
Eola @] = (16)
and
a2 < T (17)
with
2d
= —. 18
T a s
For any given |¢) and ¢, we also consider the quantity
1 &
Q) =—>49" (). (19)
K s=1
We now derive several concentration inequalities by applying theorems 1 and 2:
e Applying Maurer’s tail bound (theorem 1), we obtain that for any given |¢) and ¢
_ 2
i <125 < exp(—K€ ) (20)
d" 27"
We then use this inequality to bound the probability that there exist £ codewords such that Q. (¢) < ! d_f .
Applying the union bound we obtain
1 - M 1-eY
pr 3 | viouw <15t (M) pr{aw <15 }) @
ar ¢ ar
M £Ke?
< exp| — 22
<(¥) p( = ) (22)
, £Ke?
< M? exp| — (23)
2y"
2
:exp[flnM— /Ke ) (24)
29"
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e Letus consider the operators |y/C(5) ) (WC(S) | and apply the operator Chernoff bound (theorem 2). Notice that
equation (16) implies
Eo|

Putting 4 = 1/d"and (1 + 7)u = (1 — &), the operator Chernoff bound implies that for any given ¢

B dl (25)

WC(S)> <WC(S)

2
X K(d"(1 - 8) 1)
1
Prq — Ny >0 -1y <d - 26
r{KEWC o[> - onp < ey d"41n2 (26
Kd'(1 -6~ 1/d")
=d" — 27
xp 4In2 @7)
This in turn implies
Kd"(1 -6~ 1/d")
Pr{maXQc(qb) >1-— 5} < d"exp| — (28)
|#) 41In2
We then bound the probability that there exists a codeword cand a vector |¢) such that Q. (¢) > 1 — §.
Applying the union bound we obtain
Pr{max Q) >1-— 5} < MPr{max Q. () >1-— 5} (29)
[#).c [$)
Kd'(1 -5~ 1/d")
< Md" exp| — (30)
4In2
Kd'(1 -5 1/d")
< exp| In Md" — (31)

4In2

o Finally, we consider random choices of the codewords c and apply the Chernoff bound with 7 = €. We then
obtain

M 2
d

. M M . . Kge
Pr{m;)xEQc(qﬁ)e[(l—e)E,(1+€)E]}>1—2d exp[lnd - 41nz]' (32)

2.2.Eve’s accessible information
Let Eve intercept and measure the train of n qudits sent by Alice. We now show that, for n1large enough, a
random choice of the unitaries U](S) ’
information is negligibly small.

We consider a random choice of the codeword |y ). From equation (32), we have that for all | $),

Z?il Q.(p) € [(1 - e)%, 1+ 6)%] up to a probability which is bounded away from 1 provided

s guarantees, up to an arbitrarily small probability, that Eve’s accessible

K>d_41n21nd

T (33)

This yields

dar < dar dar
M%?XW[ZQC@)}maX{u —€) 1ogM, (1+e) logﬁ}. (34)

c=1

Which in turn implies that, for K large enough, equation (6) is upper bounded by the following, up to a negligibly
small probability,




10P Publishing

NewJ. Phys. 17 (2015) 033022 CLupoand S Lloyd

(1+¢€)logd" —clogM + n(l +¢€) — d— minyg H[Q ()], for M < d",
Loee < M (35)

(1-¢€)logd"+elogM+n(1—¢€)— dM minjg H[Q ()], for M > d".

According to the latter expressions, an upper bound on the accessible information follows from a lower
bound on the minimum Shannon entropy, min,4y H [Q (¢) ]. That s, to prove that I,.. S € log d", we need to
show that % minjgy H[Q(¢)] 2 (1 — €) log d". Todo that, forany ¢ > 0and d" and Klarge enough we
bound the probability that

Q.(p) o Qu(#) < 1) (36)

This corresponds to bounding the probability that either Q. (¢p) > 1, =1 — g ( ld_f ) + 0 (77 ( ld_f ) ) or

Q.(¢) < A_ = (1 — €)/d". Notice that for d" sufficiently large and/or ¢ sufficiently small we have
az1— 2;7(1;;‘).
First, we bound the probability that there exists a codeword cand a vector |¢) such that Q. (¢) > 1. We

apply equation (31) with § = Zn(ld_”e)to obtain
Pr{maxQC () > /1+} < Pr{mach(g{)) >1-— zn(l — ¢ )} (37)
[)sc [$),c d"
n l—e n 2
Kd (1 —a(5E) - 1/d)
< exp| In Md" — (38)
4In2
n l1-e¢ n
K (1—4n( = )—z/d)
< exp| In Md" — (39)
41In2
n 1-e€
o (1-en(52)) B
< exp| In Md" — =p,, (40)

4In2

1-¢
dﬂ

with d" provided K is not too small, namely, K >

where we have also used the fact that % <n (

) for nlarge enough. This probability vanishes exponentially

In Md" 4In2
d" 1-6n[(1—e)/d"’
Second, we bound the probability that there exist £ << M codewords such that Q. (¢) < A_. Weapply
equation (24) and obtain

Pr{ 3ey wnce | ViQe (@) </1_} =Pr{ 3¢y ence | ViQu(e) < ld_f} (41)

£Ke?
<exp|ZInM — . (42)

29"

Putting ¢ = eM we have
. Ke?
Pr{ = o Yo ‘ ViQ.,(@) < /1_} < exp| -M e elnM||=p. (43)
4

Notice that this probability is also exponentially small in M, provided that K > 2y"¢™2 In M.

Inequality (31) implies that, with probability at leastequal to 1 — p, , all the Q. (¢)’s are larger than 4,. Also,
according to equation (43), for a given | ¢) there exist, with probability greater than 1 — p , atleast
M — ¢ = (1 — €)M values of csuch that Q. (¢) > A_. Putting these results together we obtain that for any
given |¢)

HIQW) > M (1 - o S log 125 (44)

1—-¢€

dn

= —%(1 —¢)? log (45)

7
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>%(1 ~ 2¢) logd”—%(l —2¢)log (1 — €) (46)
> %(1 — 2¢) log d", (47)

thatis,
%H[Q(fﬁ)] > (1 = 2¢) log d", (48)

with a probability atleastequalto 1 — p — p,,whichisinturnlargerthan1 — 2p for Mlarge enough.

2.3. The ¢-net

To bound the accessible information in equation (35) we have to show that a relation similar to (48) holds for all
vectors |¢). To do that we introduce an e-net. Let us recall that an e-net is a finite set of unit vectors M. = {|¢,)};
ina D-dimensional Hilbert space such that for any unit vector | ) there exists | ;) € N, for which

)bl = |o;) (Bl <e. (49)

As discussed in [11] there exists an e-net with | M| < (5/€)?". Below, we first extend the bound(48) to include
all the vectors in N, and then, for ¢ sufficiently small, to all the manifold of unit vectors.
By applying the union bound we obtain:

Pr{|¢1§&H[Q(¢i)] < (1-2¢)log d”} < (5/eP" 2p. (50)
=2(5/¢)*" expl—M[K—e3 - elnM]] (51)
29"
=2exp[—M(K—€3 —elnM—Zﬂ In 2]] (52)
2y" M e

Then, we have to replace the minimum over vectors in the e-net with a minimum over all unit vectors. An
application of the Fannes inequality [22] yields (see also [11])

‘ minH [Q(¢)] - ¢r§1irJ1\/H[Q(¢i)] <elogd + n(e), (53)

[#)en.

which implies

{ , } [ (K€3 d 5”
PrqminH [Q(¢)] < (1 — 3¢)logd” —n(e) p < 2exp| -M| — —e¢lnM —-2—1In—||. (54)
|#) 2y" M €

Such a probability is bounded away from one (and goes to zero exponentially in M) provided

1 2 d" 5
K>2y"l—InM+ ——1In—|. 55
}/(62 e M e) (55)

Under this condition for K, we finally have the following upper bound for the accessible information

{46‘ logd" — elogM + (1 + €) + n(e), for M < d", (56)

2¢logd" + elogM + n(1 —¢) + n(e), for M > d".

2.4.Improving the bound on K

We expect the number of messages to increase exponentially in the number of channel use, thatis, M =~ 2"%,
When 2R < d, this yields an additional exponential term, proportional to d"/M =~ (d27R)" > 1 on theright
hand side of (55). This term originated from the fact that we are using an ¢-net on a space of dimension d", that
contains up to (5/¢)*?" elements. We now show that it is sufficient to consider an e-net on a smaller space of
dimension M. As a result, we obtain an improved bound on K:

K> 2y" LlnM+£ln2. (57)
€? e e

To show that, we first note that Q (¢) is indeed a function of an effective vector | ) with complex
components ¢, for ¢ = 1, ..., M, where
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2

2 1 < )
= = 211w (58)
s=1

For MK > d" the condition (32) implies that the codewords |l//c(5) ) fill the whole d"-dimensional Hilbert space
with high probability. This means that we can parameterize any unit vector |¢) in terms of the parameters ¢ and
aset of dummy parameters that do not affect the value of Q (¢).

From (32), we obtain that Z?iﬁ@z <A+eM / d" < 1, up to small probability. That is, these parameters
define a sphere in M complex dimensions with radius smaller than 1. Repeating the same reasoning with an e-
net defined on this M-dimensional space we obtain the bounds (56) on the accessible information under the
tighter condition (57) on the number of key messages.

In conclusion we obtain, from (56), that

L<O (e log d”). (59)
Under the condition, from (57) and (33),
! 2 5) d" 4In2Ind"

3. Strong locking of a memoryless qudit channel

The noiseless protocol can be straightforwardly applied for the strong locking of a noisy qudit channel N 5
connecting Alice to Bob. The point is that in a strong locking setting we require that the communication is secure
against an eavesdropper having access to the very input of the channel. In other words, the security of the
protocol is independent of how the channel acts on the input, and hence it applies to the noiseless case as well as
the noisy one. That is, the bound on the accessible information in equation (56) and the condition on the
number of key values in equation (60) apply for a generic qudit channel.

The crucial difference, however, is that the presence of noise reduces the rate at which Alice and Bob can
reliably communicate classical information. Let us suppose that, using the codewords described above, Alice and
Bob can achieve a reliable communication rate of R = limn_,m% log M bits per channel use [23]. Then (60)
implies an asymptotic key consumption rate of

log K
lim o8

n—-oo HN

= max{logy, logd — R} = max{l - log(l + é), logd — R}. (61)

Since R cannot exceed log d, we obtain an increase in the secret key consumption rate with respect to the
noiseless setting. We can say that the latter equation represents a trade-off between communication rate and
secret key consumption. In order to achieve strong locking, the secret key consumption rate should increase to
compensate the reduced communication rate.

4. Weak locking of a memoryless qudit channel

In the weak locking scenario the eavesdropper has access to the output of the complementary channel, hence
receiving a signal distorted by noise. One thus expects that the randomness introduced by the noise contributes
to the QDL effect. If this is true, then one can exploit the randomness due to the noise to reduce the length of the
required secret key. Below we show that this intuition is true by examining a family of channels of a specific form.
We define these channels through their conjugates, which are of the form

Nazs(p) = Nase(p) = pp + (1 = p)o, (62)

where p € [0, 1]and ois a given density matrix (notable examples of channels belonging to this family are the
erasure channel and the conjugate of the depolarizing channel).

The results for the noiseless case can be easily applied to these channels. To do that, it is sufficient to notice
that, with probability p, the channel N} _ g is noiseless. In other words, for  uses of the channel, one expects that
the channel N _ g will act as an effective noiseless channel over a fraction of about pn qudits. It is sufficient to
require that the protocol data locks the information contained in these qudits, since the remaining (1 — p)n
qudits do not convey any information at all about the message as the output is independent of the input.

More formally, upon 7 uses of the channel Eve receives (with probability arbitrarily close to 1 for n large
enough) no more than n (p + §) qudits without any distortion. Let us hence consider a given subset of n (p + &)
qudits and apply the same reasoning of the noiseless channel given above with n replaced by n (p + 6). This
yields abound on Eve’s accessible information conditioned on the choice of the subset:

9
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K 5
n;+5) —e¢lnM—-2In —)] (63)
2y €

Pr {Ias(lzjchEt > O(G 10g dn(P+5))} <2 exp[—M(

(this follows from the bounds in equation (54)). Finally, we apply the union bound to account for all possible
( ) (pn+ 5 ) choices of the subsetof nn (p + &) qudits:

Ke? 5
PriLe> O(elogd @\l <2| " M|—5 —elmM-2In2 64
r{ > ((:‘ og )}\ o+ 6) exp 27 %) €ln n€ (64)
3
<2n" 0+ exp| =M Ke” _ elnM — 21nE (65)
zyn(p+5) €

<2 (p+6)Inn—M Ke M- 2m? (66)

<2exp|n(p nn 2 eln n=]

This probability goes to zero exponentially in M—we can always assume that M = ¢2"® where Ris the
communication rate—for K large enough. From (66) and (33), we obtain the following sufficient condition on
K:

n(p+6) n(p+5)
K > max 2y”(1’+5)(i In M + 2 In E), d 4ln2Ind , (67)
e’ et € M €2
which yields an asymptotic secret key consumption rate of (we can assume lim,,_, .0 = 0)
log K
lim —8= = max{py, plogd — R} = max{p[l - log(l + é)], plogd — R}. (68)
n—oo N

This example shows that the presence of noise in the channel to Eve allows Alice and Bob to consume secret
key at areduced rate, compared to the stronglocking case in (61). We now compute alower bound on the
maximum achievable communication rate for the class of channels considered here. To compute R, we first
write an isometric extension of the channel. We introduce four quantum systems: systems 1, 2 and 3 are qudits
and system 4 is a qubit. In input, system 1 is assigned to Alice and systems 2, 3 and 4 to Eve. In output, system 1 is
assigned to Eve and the others to Bob. We put

Uzsa = 123 @ 10)4(0] + S12 @ 15 @ |1)4(1], (69)

where Sy, is the swap operation between qudits 1 and 2. As initial state of the environment we put

|06) = )2 @ (P 10001 + JT=p [1)a(1]), (70)

where Tr;3 ()23 (@|) = o0, (withoutloss of generality we can also assume Tr;(|@)23 (@ |) = 03).
One can easily check that

Tr234( Uiaapy @ |§0E >234 <§0E| U1T234) =pp; + (1 - po. (71)
Taking the trace over the output systems 1 we obtain the output of the channel to Bob:

Tl’1<U1234,01 ® ‘(PE>234 <€05‘ U1T234) = p @) (@] @ 10)4(0] + (1 = p)p, @ 03 @ [1)a(1]
+ 0 =p) [ Tn(Sin @ lphs(0l) @ 1401 + hc. . (72)

We notice that the action on the channel from Alice and Bob depends on o through the last two terms
proportional to |0}, (1| and |1),(0|. If we apply a completely dephasing channel on qubit 4 the channel to Bob
becomes an erasure channel with erasure probability p independently of 6. This implies that the classical
capacity of the erasure channel is an achievable rate for classical communication, hence we can put
R = (1 — p) log d. Moreover, this bound holds for any choice of the locking unitary, since the erasure channel is
covariant under unitary transformations.

4.1. Erasure channel

If o is orthogonal to the input space, the channel in equation (62) is a qudit erasure channel with erasure
probability 1 — p, whose complement is an erasure channel with erasure probability p. In this case, the
maximum communication rate equals the classical capacity of the erasure channel, R = (1 — p) log d, witha
secret key consumption rate of

10
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k= max{p[l - log(l + é)] (2p - 1) log d} (73)

4.2. Conjugate of the depolarizing channel
If 6 = 1/d, the channel in equation (62) is a qudit depolarizing channel with depolarizing probability 1 — p. We
can rewrite the action of the depolarizing channel as

bits per channel use.

-1
1 -
Nios(p) = pp + —L 3 xeztpz-0x 7, (74)
d a,b=0
where X = Z‘]té lj @® 1)(j| (6 denotes summation modulo d) and Z = Zj;& e27/d| ) (j| are the d-
dimensional generalization of the Pauli matrices, and {|j) } j=o, .., 4—1 is a qudit basis. This representation of the
channel to Eve induces a representation for the isometric extension, which is given by the bipartite conditional
unitary
d-1

U= ) |ab)(ab] Q X°Z", (75)

a,b=0

where the first system, assigned to Eve’s input, is represented by a d*-dimensional Hilbert space (spanned by the
basis vectors {|ab) }), and the second is the input qudit system. As initial state of Eve’s system we take

d—1
|oe) = Y 4w lab), (76)

a,b=0

where g, = p + (1 - p)/d2 andg,, = (1 — p)/d2 for ab # 00. Taking the partial trace over Eve’s output
system, we finally obtain the following expression for the channel to Bob:

d—1
Nacs®@) = Y fTudey Tr(Xﬂszz—h’X-ﬂ’) lab) (a'b'|. (77)
a,b,a’,b’'=0

A straightforward calculation yields that the maximum achievable rate using our ensemble of input states is

R=f(p d?) = £ (p, d), (78)

where

f(p, D) = —(p 42 ;p)log(p + 2 ;p) - 1)1%1’ log(l%p). (79)

Asin the case of the erasure channel, this rate is independent of the choice of the locking unitary.
In conclusion, equation (78) gives the maximum reliable communication rate from Alice to Bob. The secret
key consumption rate is hence equal to

k= max{p[l - log(l + é)], plogd —f(p, d2> + f(p, d)}. (80)

5. Quantum bootstrapping

Our QDL protocols yield achievable rates of strong and weak locking through a noisy qudit channel. Consider
the case of weak locking at a rate R with a secret consumption rate of k bits per channel use. If the channel Nj 3
has non-zero private capacity, one can first use the channel to establish a private key between the two legitimate
parties, then use such a key to lock the subsequent uses of the channel. In this way Alice and Bob will achieve a
weak locking rate of

R
1+k/P’

wl ( 81 )
where Pis the private capacity of the communication channel [2]. It follows that any channel with non-zero
private capacity allows us to lock data in the weak locking sense. For qudit channels having R and Plarge enough,
Ry can be much larger than the private capacity and arbitrarily close to the classical capacity.

11
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Figure 1. Comparison of several communication rates (in bits per channel use) for the qudit erasure channel, with d = 64 and
p € [0, 1]. Weaklocking rate (solid line); private capacity (dashed line); classical capacity (dot-dashed line).

Alternatively, for generic channels, including those with zero private capacity, one can define a QDL
protocol under the assumption that Alice and Bob know an upper bound 7 on the coherence time of Eve’s
quantum memory. For R > k,aweak locking protocol is then defined according to the following procedure:

1. Alice and Bob initially share a secret key of nk bits;
2. They use the secret key to send about #nR bits of locked information through » uses of the qudit channel;

3. They wait a time 7 sufficiently long to guarantee that Eve’s quantum memory decoheres. After such a time the

locked information Alice has sent to Bob can be considered secure in the composable sense (see section 1
and [6]);

4. If R > k, Alice and Bob recycle nk of the nR bits as a secret key for the next round of the communication
protocol;

5. Theyrepeat the above procedure for n” times.

(We remark that Bob does not need to store quantum information for a time longer than 7. Indeed, he needs
to store quantum information only for the time necessary to send nR bits along the channel from Alice to Bob. In
other words the protocol does not require the legitimate Bob to have better technology than the
eavesdropper Eve.)

Using this bootstrap technique, Alice and Bob will asymptotically achieve a weak locking rate of (for R > k)

Ry=R-k (82)

bits per channel use, with a secret key consumption rate of k/#’ bits that goes to zero in the limit n’ — oo. While
the rate per channel use is finite and independent of 7, one may object that the communication rate per second
will become arbitrarily small if 7 is large enough. To solve this problem, Alice and Bob can run two or more
independent instances of the protocol in parallel (each using an independent secret key) taking advantage of the
dead times between one protocol and the other. It follows that the communication rate per second remains finite
and independent of 7 even in the limit of ¢ — oo. (Clearly, this procedure becomes impractical if 7 is too large.)

For the qudit erasure channel, the procedure described above achieves a weak locking rate (in bits per
channel use) of

Ry =(1—-p)logd - max{p[l - log(l + %)], (2p — 1) log d} (83)
Similarly, for the conjugate of the qudit depolarizing channel we obtain

Ru=f(p,d*) = f(p, d) - max{p[l - log(l + %)],plogd —f(p. @) +£(ps d)}, (84)

where f (p, d)and f (p, d*) areasin equation (79). figure 1 shows the weak locking rate of the qudit erasure
channel compared with the classical capacity [ 18] and the private capacity [2]. Figure 2 shows the weak locking
rate of the conjugate of the qudit depolarizing channel, compared with its classical capacity and the Hashing
bound for private communication.

12
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Figure 2. Comparison of several communication rates (in bits per channel use) for the conjugate of the depolarizing channel, with
d=64and p € [0, 1]. Weak locking rate (solid line); hashing bound for private communication (dashed line); classical capacity (dot-
dashed line).

The idea of key recycling is not new in quantum cryptography (see, e.g., [24]). The crucial difference in our
approach is that we are assuming the weaker security criterion expressed in terms of the accessible information.
By weakening the notion of security we are able to obtain a positive rate of locked communication even if the
channel has zero privacy according to the standard security criterion of quantum cryptography.

6. Conclusions

In conclusion, we have presented protocols that achieve a weak locking rate as high asless than one bit below the
classical capacity for quantum channels exhibiting certain symmetry properties. These results, together with

[5, 6], further deepen our understanding of the QDL effect as well as of the notions of locking capacities recently
introduced in [10]. A few natural questions remain open. It is not clear whether our stronglocking protocol for
the noiseless channel is optimal in terms of secret key consumption. The obtained secret key consumption rate
of max {1 — log (1 + 1/d), log d — R} bits per channel use could very well not be a fundamental limit, but just
a consequence of our proof technique. Also, one would like to find weak locking protocols for general channels
beyond the restricted, yet physically relevant, class of channels considered here. Finally, since the most
important realizations of quantum communication channels are within continuous-variable, it is urgent to
discover QDL protocols for quantum systems with infinite dimensions.
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Appendix A. Upper bound on the accessible information

In this appendix we derive an upper bound on the accessible information of the bipartite state

y) (p

l - Sl
Pag = M}EW)(M X Ef . (A.1)

The accessible information is the maximum classical mutual information between Alice’s input X and the
result of an optimal measurement performed by Eve on her share of the quantum system. Such alocal
measurement is described by a set of POVM elements {A, } ,, with A, > Oand }’ ,Ay = I, whereyis the value
of the corresponding measurement result. The output of the measurement is a random variable Y. The
conditional probability distribution of Y given x is

< 1
Py = Y (wl?

s=1

Ay ), (A.2)

and py (y) = M™%, py (7 1x)
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Then the accessible information of the state p, reads

Lic=maxI(X;Y) =maxH(X) + H(Y) — H(XY), (A.3)
{a} {a}
where
H(X) = =) px (x) log py (x) = log M, (A.4)
H(Y) = =p, () log py (), (A5)
y
and
H(XY) = =Y py (y1x)py (x) log py (y %) py (x) = = Y- M~'py (v]x) log M~'py (¥ |x). (A.6)
X,y Xy

By convexity of mutual information, it is sufficient to restrict to the set of rank-one POVM with
Ay =4, |¢y) (qby |, where the |4, )’sare unit vectorsand g, > 0. The condition Zy #,1¢,)(¢,| = I thenimplies

2 H / d" = 1. A straightforward calculation yields

L N

y

wheren(-)=—-(-)log(-),Q (qﬁy) is the M-dimensional real vector of non-negative components
L &
Q) = = 2140, 1P, (A8)
s=1
and H[Q(¢)] = —, Q«(¢}) log Q. (e))-
We now apply a standard convexity argument, first used in [3]. To do that, notice that the positive quantities

Hy / d" can be interpreted as probability weights. An upper bound on the accessible information (A.7) is then
obtained by using the fact that the average cannot exceed the maximum. This yields

Lace = log M — %{Mg:;?%”Zﬂ—i{H[Q(%)] - nngx(rﬁy)]} (A.9)

y
dar .
<logM — v %n{H [Q(#)] — n[;Qx (¢>)”, (A.10)
which is the upper bound in (6).

Appendix B. Calculation of the first and second moment

Here we compute the first and second moment of g, (¢) = [{¢|U |y} |* with respect to a random unitary of the
formU = ) - U}, where each qudit unitary Ujis independently sampled from the uniform distribution
induced by the Haar measure du (U;) on the unitary group.

We have
Eol 0.(8) | = Eu[ (@] Ulu)(w] U 19 ] (B.1)
= (1 Eo[ U |w) (we| U] 1) (B.2)
= (| @ v, Uj [xic) (x| UT |10 (B.3)
- dL (B.4)

where we have used Ey, [U; |x) (x| UJT] = /d/l (U Uj |x) (x| U]-Jr = [/d for any unit vector | x).
To compute the second moment we first write

Eu[q.(#7] =Eu[ (41 U
=Eu[ (64| U®U

U' )¢l U

ve) (ve| U 19) ] (B.5)

Ut Q@ U I, 4) ] (B.6)

v ) (w

14
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= (&, 1 B[ UQ U v ve) (v we| UT Q@ UT|igh, ) (B.7)
= $I QB[ Uy @ Uj [xi 2 ) (10 x| U] @ U] 10 ) (B.8)
=91 7=1/dﬂ(Uj)Uj Q Uj %10 x5 ) (%10 xjc| U @ U I, ), (B.9)

where|g, ¢) = 1) @ 1), lue w) = lwe) @ lyeand |xjc, xjc) = |xj.c) & |xj.c). We then apply the
representation of the twirling operator [25]

T(p)=/dﬂ(U)U®Up Ut Ut (B.10)
_ Qo Q
=Tr (pQO)iTr(QO) + Tr (le)iTr(Ql)) (B.11)
where
Qo = w (B.12)

are the projectors on the symmetric (@ = 0) and anti-symmetric (@ = 1) subspaces, I denotes the identity
operator, and Sis the swap operator (S|y, w') = |y’, w)). We then have

Q 2
7 [ese wie) e i) = 50y = Taw

Qo, (B.13)

which yields
Euofa.(07] = (ﬁ)nw, 1 Q2" 1, ) (B.14)
( FTEFE ) 1Qo® "Il (B.15)
(d(d+1)) Il (B.16)
(m) (8.17)

Here we have used the fact that (¢, ¢| Q0® ", P) < || QO® " |lso> where || Q0® "l is the operator norm of
Q0® " (namely, the supremum of its eigenvalues), and that || Q0® "Moo = 1 Q% =1
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