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Abstract
We show that, if the accessible information is used as a security quantifier, quantum channels with a
certain symmetry can convey privatemessages at a tremendously high rate, as high as less than one bit
below the rate of non-private classical communication. This result is obtained by exploiting the
quantumdata locking effect. The price to pay to achieve such a high private communication rate is
that accessible information security is in general not composable. However, composable security
holds against an eavesdropper who is forced tomeasure her share of the quantum systemwithin a
finite time after she gets it.

1. Introduction

One of themost promising contemporary applications of quantummechanics is within cryptography, where the
laws of quantumphysics certify the secrecy of a communication protocol. In quantumkey distribution, the
communication protocol aims at establishing a shared key between two legitimate parties, Alice and Bob, in such
away that a third party, say Eve, who eavesdrops on and tampers with the communication line, obtains virtually
no information about the key [1]. The key itself is generated randomly, possibly to serve as a one-time pad. On
the other hand, in a private communication protocol, the sender, say Alice, aims at sending privatemessages to
Bob [2]. In this case, the content of themessages is under the control of Alice and it is not random fromher point
of view. Clearly, any private communication protocol can be also used for key distribution.

In this paperwe introduce a private communication protocol, based on the phenomenon of quantumdata
locking (QDL) [3], that achieves a private communication rate as high as less than one bit below the classical
capacity for non-private communication. Our protocol provides a scheme for realizing a quantum enigma
machine, a quantumoptical cipher based on theQDL effect [4]. It can be implemented experimentally using
standard technologies routinely applied in quantumkey distribution in setupswhere information is encoded by
single-photon states spread over d opticalmodes. The security of our private communication protocol is
assessed in terms of the accessible information criterion, which is not the standard andwidely accepted security
criterion in quantum cryptography. A detailed comparison of the two security criteria is given in [5, 6]. This
security criterion is in general weaker than the standard security criterion of quantum cryptography. For this
reason, before proceedingwith the description of the protocol, wemake a brief detour to clarify inwhich context
the accessible information yields reliable security, as well as to review the phenomenon ofQDL.

1.1. Accessible information security
Suppose that Alice’smessages are generated by a source described by the randomvariableX, with probability
distribution pX(x), and the conditional states obtained by Eve are ρ ∣xE . The ensemble state of the joint systemof

Alice and Eve is hence given by the densitymatrix ρ ρ= ∑ ∣ 〉 〈 ∣ ⨂ ∣p x x x( )x X xAE A E . Let us recall that the

accessible information is defined as themaximum classicalmutual information betweenAlice’s input and the
result of an optimalmeasurement performed by Eve on her share of the quantum system. A localmeasurement
by Eve is amap → E Y:E whose output is the classical variableY. Then the accessible information of the
state ρAE reads
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=


I I X Ymax ( ; ), (1)acc
E

where = + −I X Y H X H Y H XY( ; ) ( ) ( ) ( ) is the classicalmutual information, andH denotes the Shannon
entropy.

To assess the security of our protocol, we show that ϵ∼I Dlogacc whereD is the dimensionof Eve’s quantum
system, and the security parameter ϵ can bemade arbitrarily small under suitable conditions. Thismeans that the
outputs of anymeasurement byEve are arbitrarily close to being independent ofAlice’smessages.Whenused as a
security quantifier, the accessible information suffers fromamajorproblem: it does not guarantee composable
security. Roughly speaking, composable securitymeans that if two communication protocols are secure
individually then they remain securewhen composed [7, 8]. The fact that the accessible informationdoes not
ensure composability is intimately related to the very effect ofQDL [5, 9].However, as discussed in [6, 10], the
accessible information yields composable security conditionedon certainphysical assumptions. Aphysical
assumption that guarantees composable security is that the eavesdropper is forced tomeasure her share of the state
as soon as she obtains it, as is the case, for instance, when shedoesnot have access to a quantummemory. This is a
consequence of the fact that the accessible information concerns theoutput ofEve’smeasurements, andnot the
quantumstate itself. Another assumption that implies composable security is that Eve possesses a quantum
memorywithfinite coherence time. In the simplestmodel, Eve eithermeasures her share of the quantumsystem
within a time τor thequantummemory decoheres andbecomes classical. Suppose the given communication
protocol is used as a subroutine of a larger protocol. Composable security is granted ifAlice andBobknow the
coherence timeof Eve’s quantummemory andwait for a time sufficiently longer than τbefore proceeding.Clearly,
too large values of τwouldmake theprotocol impractical.However, as discussed in [6], in a stationary regime the
overall asymptotic communication rate is independent of τ and remainsfinite even in the limit τ → ∞.

Bymaking assumptions on the technological capabilities of the eavesdropperwe are in fact restricting the class
of allowed attacks. In quantumcryptography one distinguishes three kindsof attacks: individual attacks (where the
eavesdropper applies localmeasurement to the output of each use of the communication channel); collective
attacks (where the eavesdropper is allowed to store quantum information for an indeterminate amount of time
before applying a collectivemeasurement on the output ofmultiple channel uses); and coherent attack (where the
eavesdropper is allowed to tamperwith the communication line in an arbitraryway). The assumption that the
eavesdropper has a quantummemorywithfinite coherence timedefines a class of attack that lie inbetween
individual and collective attacks.As in individual attacks, the eavesdropper cannot store quantum information for
an arbitrarily long time.However, in our casewe allow the eavesdropper to store quantum information for afinite
time and to apply a collectivemeasurement on theoutput ofmultiple channel uses.

To be fair, our communication protocol is defined under the assumption that the legitimate receiver Bob is
constrained by the same technological limitations as the eavesdropper Eve.

1.2.Quantumdata locking
Belowwe introduce a private communication protocol that is secure according to the accessible information
criterion. Such a protocol is aQDLprotocol. In a typical QDLprotocol, the legitimate parties, Alice and Bob,
publicly agree on a set ofN=MK codewords in a high-dimensional quantum system. From this set, they then
use a short shared secret key of Klog bits to select a set ofM codewords that theywill use for sending
information. If the eavesdropper does not know the secret key, then the number of bits, as quantified by the
accessible information, that she can obtain about themessage is essentially equal to zero for certain choices of
codewords. Inmost of the knownQDLprotocols codewords are chosen fromdifferent bases, and the secret key
identifies the basis towhich the codewords belong.Here we apply a random coding approach and assume that all
theN=MK codewords are chosen randomly.

A number of works have been devoted to the role ofQDL in physics and information theory [3, 11–16].
However, only recentlyQDLhas been considered in the presence of noise [4–6, 10, 17]. A formal definition of
the locking capacity of a communication channel has been introduced in [10], as themaximum rate at which
information can be reliably and securely transmitted through a (noisy) quantum channel →A B fromAlice to
Bob, where the security is quantified by the accessible information.Motivated byQDLprotocols, we also allow
the assistance of an initial secret key shared byAlice andBob. In order for this key to be inexpensive in the
asymptotic limit, we further require that the bits of secret key grow sublinearly with the number of channel uses.

Twonotions of locking capacities were defined in [10]: theweak locking capacity and the strong locking
capacity. Theweak locking capacity is defined by requiring security against an eavesdropper whomeasures the
output of the complementary channel (denoted as =→ → ̃A E A B) of the channel fromAlice to Bob3. The

3
We recall that the action of a quantum channel →A B can always be represented as ρ ρ ω= ⊗→ V V( ) Tr ( )A B E E

† , whereωE is a pure
state of the environment E, andV is a unitary transformation coupling the systemwith the environment. The conjugate channel of →A B is
then defined by ρ ρ ρ ω= = ⊗→ →  V V˜ ( ) ( ) Tr ( )A B A E B E

† .

2
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strong locking capacity is instead defined by requiring security against an eavesdropper who is able tomeasure
the very input of the channel. In general, theweak locking capacity is larger than or atmost equal to the strong
locking capacity, as any strong locking protocol also defines aweak locking one. It is natural to compare theweak
locking capacity with the private capacity [2]. Since the latter is defined by the stronger standard security
criterion of quantum cryptography, it follows that theweak locking capacity is always larger than or at least equal
to the private capacity. Finally, both locking capacities cannot exceed the classical capacity, which is the
maximum rate of reliable communication allowed by the channel (not requiring any secrecy) [18]. As shown in
[5], there exist qudit channels with lowor even zero private capacity whoseweak locking capacity is larger than
one half of the classical capacity. In our previous work, we have obtained key generation protocols that achieve a
strong locking rate just one bit smaller than the classical capacity [6].

In a cryptographic setting, the notions of strong andweak data locking capacity correspond to different
kinds of attacks by the eavesdropper. In a strong locking scenario, we are imagining that the eavesdropper can
obtain a noiseless version of the input states sent by Alice. If the strong locking capacity is non-zero, thismean
that thesemessages can remain locked to Eve. This is something that cannot happen if the standard security
criterion is applied. In aweak locking scenario, we are instead imagining that the eavesdropper has access to the
environment of the channel. This attack is similar to a collective attack.However, as discussed in the previous
section, theweak locking attack lies in between the collective and individual attacks.

Thefirst result we present in this paper is aQDLprotocol for the d-dimensional noiseless channel, see
section 2. The protocol allowsQDL (in the strong sense) of the noiseless qudit channel at a rate of dlog bits per
channel use, equal to its classical capacity, and consumes secret key at an asymptotic rate of less than 1 bit per
channel use. The crucial property of this protocol that distinguishes it fromprior work on the topic (e.g. [15]) is
that it employs codewords that are separable among different channel uses. This property allows us to generalize
the protocol to the case of noisymemoryless channels and to obtain achievable rates of strong andweak locking
for a physicallymotivated family of qudit channels, see sections 3 and 4.

2. A protocol for strong locking of a noiseless channel

In this sectionwe define a strong locking protocol for direct communication via a noiseless qudit channel. This is
an improved version of a similar protocol for quantumkey distribution that we have introduced in [6].
Sections 2.1–2.4 present the proof of ourmain results. Applications to (weak and strong) locking of noisy
memoryless channels are then presented in sections 3 and 4.

To encodeMmessages in n qudits, Alice prepares one of the codewords

ψ = ⊗
=

x , (2)c
j

n

j c
1

,

for =c M1, 2 ,..., , where the vectors ∣ 〉x j c, are independently sampled from an ensemble of qudit states
∣ 〉p x x{ ( ), }4. Alice and Bob publicly agree on a set ofKn-qudit local unitaries

= ⊗
=

U U , (3)s

j

n

j
s( )

1

( )

for =s K1, 2 ,..., . According to the value of the secret key, Alice applies the unitary transformationU s( ) to
scramble the n-qudit codewords, obtaining

ψ ψ= = ⊗
=

U U x . (4)c
s s

c
j

n

j
s

j c
( ) ( )

1

( )
,

In the strong locking scenario, we assume that Eve intercepts thewhole train of qudit systems andmeasures
them. Since Eve does not have access to the secret key, we have to compute the accessible information of the state

∑ ∑ρ ψ ψ= ⨂
= =

p c c c
K

( )
1

, (5)
c

M

s

K

c
s

c
s

AE
1 1

( ) ( )

where ∣ 〉 =c{ } c M1, ... is an orthonormal basis for an auxiliary dummyquantum system associated toAlice and p(c)
is the probability of the codeword ψ∣ 〉c . For the sake of simplicity herewe assume that all themessages have equal
probability, that is, =p c M( ) 1 (the case of non-uniformdistribution has been considered in [15, 16]). One
can upper bound the accessible information as follows (see appendix A):

4
We remark that the vectors ∣x〉may not be orthogonal. In general, one could also replace themwithmixed states.

3
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∑ϕ η ϕ⩽ − −
ϕ =

I M
d

M
H Q Qlog min [ ( )] ( ) , (6)

n

c

M

cacc

1

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

where

∑ϕ ϕ ψ=
=

Q
K

( )
1

, (7)c

s

K

c
s

1

( ) 2

∑ϕ ϕ ϕ= −
=

H Q Q Q[ ( )] ( ) log ( ), (8)
c

M

c c

1

η = −x x x( ) log , and theminimization is over all n-qudit unit vectors ϕ∣ 〉.
In the following sections 2.1–2.4, we show that there exist choices of the unitaries =U{ }s

s K
( )

1, ..., such that

ϵ= ( )I O dlog , (9)n
acc

provided that

γ
ϵ ϵ ϵ ϵ

> +K M
d

M

d
max 2

1
ln

2
ln

5
,

4 ln 2 ln
, (10)n

n n

2 3 2
⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
with

γ =
+
d

d

2

1
, (11)

In particular, if we put ϵ = −2 ns
in(10)with ∈s (0, 1), Eve’s accessible informationwill be exponentially

small in n, with an asymptotic secret key consumption rate (in bits per channel use) equal to

=
→∞

k
K

n
lim

log
(12)

n

γ= −
→∞

d
M

n
max log , log lim

log
(13)

n

⎧⎨⎩
⎫⎬⎭

= − + −
d

d Rmax 1 log 1
1

, log , (14)⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
where = →∞R limn

M

n

log
.

To show that, wemake use of a random coding argument based on randomchoices of both the codewords
and the data locking unitaries. In particular, each of the unitariesUj

s( ) is generated independently and randomly
by sampling from the uniformHaar distribution of d-dimensional unitaries5.

For the case of a noiseless channel, since Bob knows the unitaryU s( ) chosen byAlice, he can simply apply the

inverse transformation
−

U s( ) 1
and then perform an optimalmeasurement to discriminate between the

codewords6.We consider random codewords generated by sampling independently and identically each of the
qudit state ∣ 〉x j c, from a given ensemble of input states. It is well known that in such a setting Bob can decode

reliably in the limit → ∞n if ϵ<M dn, with ϵ vanishing in the limit → ∞n [20]. For instance, putting ϵ = −2 ns

for <s 1one obtains an asymptotic rate of communication of = =→∞R M dlim log logn n

1 bits per channel

use, with a secret key consumption rate of less than 1 bit per channel use.

2.1. Preliminary results
To characterize ourQDLprotocol wewillmake use of two concentration inequalities. Thefirst one is the tail
bound [20]:

Theorem1. Let =X{ }t t T1, ..., be T i.i.d. non-negative real-valued random variables, with ∼X Xt and finite first and

secondmoments, < ∞ X X[ ], [ ]2 . Then, for any τ > 0we have that

5
The value of γ depends on the ensemble of unitaries used to scramble the codewords. This value is obtained if the unitaries are sampled

from the uniformHaar distribution—see equation (17) and appendix B. In [6, 17] different values of γwere obtained by applying other
ensembles of scrambling unitaries.
6
By optimalmeasurement wemean anymeasurement that achieves theHolevo bound as, e.g., the pretty goodmeasurement [18].

4

New J. Phys. 17 (2015) 033022 CLupo and S Lloyd



∑ τ τ< − ⩽ −
=




Pr
T

X X
T

X

1
[ ] exp

2
.

t

T

t

1

2

2

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜⎜ ⎡⎣ ⎤⎦

⎞

⎠
⎟⎟

(Pr x{ }denotes the probability that the proposition x is true.) The second one is the operator Chernoff
bound [21]:

Theorem2. Let =X{ }t t T1, ..., be T i.i.d. random variables taking values in the algebra of hermitian operators in
dimensionD, with ⩽ ⩽ X0 t and μ= X[ ]t ( is the identity operator). Then, for any τ > 0 and for

τ μ+ ⩽(1 ) 1we have that

∑ τ μ τ μ> + ⩽ −
=

Pr
T

X D
T1

(1 ) exp
4 ln 2

,
t

T

t

1

2⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

and

∑ τ μ τ μ< − ⩽ −
=

Pr
T

X D
T1

(1 ) exp
4 ln 2

.
t

T

t

1

2⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

For any given dn-dimensional unit vector ϕ∣ 〉 and codeword ψ∣ 〉c
s( ) , we define the quantity

ϕ ϕ ψ ϕ ψ= =q U( ) . (15)c
s

c
s s

c
( ) ( ) 2 ( ) 2

Clearly, the latter is a randomvariable if the unitaryU s( ) and/or the codeword c are chosen randomly. To apply
theorems 1 and 2, we compute the first and secondmoments of ϕq ( )c

s( ) , for given ϕ∣ 〉 and c, with respect to the i.
i.d. random locking unitaries.We obtain (see appendix B)

ϕ = q
d

( )
1

, (16)U c
s

n
( )⎡⎣ ⎤⎦

and

ϕ γ⩽ q
d

( ) , (17)U c
s

n

n
( ) 2

2
⎡⎣ ⎤⎦

with

γ =
+
d

d

2

1
. (18)

For any given ϕ∣ 〉 and c, we also consider the quantity

∑ϕ ϕ=
=

Q
K

q( )
1

( ). (19)c

s

K

c
s

1

( )

Wenowderive several concentration inequalities by applying theorems 1 and 2:

• ApplyingMaurer’s tail bound (theorem 1), we obtain that for any given ϕ∣ 〉 and c

ϕ ϵ ϵ
γ

< − ⩽ −{ }Pr Q
d

K
( )

1
exp

2
. (20)c n n

2⎛
⎝⎜

⎞
⎠⎟

We then use this inequality to bound the probability that there existℓ codewords such that ϕ < ϵ−Q ( )c d

1
n .

Applying the union boundwe obtain

ϕ ϵ
ℓ

ϕ ϵ∃ ∀ < − ⩽ < −
ℓ

ℓ

{ }Pr c c i Q
d

M
Pr Q

d
, ..., ( )

1
( )

1
(21)c n c n1 i

⎜ ⎟
⎧⎨⎩

⎫⎬⎭
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ℓ
ℓ ϵ

γ
⩽ −M K

exp
2

(22)
n

2
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ℓ ϵ
γ

⩽ −ℓM
K

exp
2

(23)
n

2⎛
⎝⎜

⎞
⎠⎟

ℓ ℓ ϵ
γ

= −M
K

exp ln
2

. (24)
n

2⎛
⎝⎜

⎞
⎠⎟

5
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• Let us consider the operators ψ ψ∣ 〉〈 ∣c
s

c
s( ) ( ) and apply the operator Chernoff bound (theorem2). Notice that

equation (16) implies

ψ ψ =


d
. (25)U c

s
c

s
n

( ) ( )⎡⎣ ⎤⎦
Putting μ = d1 n and τ μ δ+ = −(1 ) (1 ), the operator Chernoff bound implies that for any given c

∑ ψ ψ δ
δ

> − ⩽ −
− −

=


( )

Pr
K

d
K d

d

1
(1 ) exp

(1 ) 1

4 ln 2
(26)

s

K

c
s

c
s n

n

n
1

( ) ( )

2
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

δ
= −

− −( )
d

Kd d
exp

1 1

4 ln 2
. (27)n

n n 2⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

This in turn implies

ϕ δ
δ

> − ⩽ −
− −

ϕ

( )
Pr Q d

Kd d
max ( ) 1 exp

1 1

4 ln 2
. (28)c

n

n n 2⎧⎨⎩
⎫⎬⎭

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

We then bound the probability that there exists a codeword c and a vector ϕ∣ 〉 such that ϕ δ> −Q ( ) 1c .
Applying the union boundwe obtain

ϕ δ ϕ δ> − ⩽ > −
ϕ ϕ

Pr Q MPr Qmax ( ) 1 max ( ) 1 (29)
c

c c
,

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

δ
⩽ −

− −( )
Md

Kd d
exp

1 1

4 ln 2
(30)n

n n 2⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

δ
⩽ −

− −( )
Md

Kd d
exp ln

1 1

4 ln 2
. (31)n

n n 2⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

• Finally, we consider random choices of the codewords c and apply theChernoff boundwith τ ϵ= .We then
obtain

∑ ϕ ϵ ϵ
ϵ

∈ − + ⩾ − −
ϕ =

Pr Q
M

d

M

d
d d

K
max ( ) (1 ) , (1 ) 1 2 exp ln

4 ln 2
. (32)

c

M

c n n
n n

M

d

1

2
n⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2.2. Eve’s accessible information
Let Eve intercept andmeasure the train of n qudits sent by Alice.We now show that, for n large enough, a
random choice of the unitariesUj

s( ) ʼs guarantees, up to an arbitrarily small probability, that Eve’s accessible
information is negligibly small.

We consider a random choice of the codeword ψ∣ 〉c . From equation (32), we have that for all ϕ∣ 〉,
ϕ ϵ ϵ∑ ∈ − += Q ( ) (1 ) , (1 )c

M
c

M

d

M

d1 n n
⎡⎣ ⎤⎦ up to a probability which is bounded away from1provided

ϵ
>K

d

M

d4 ln 2 ln
. (33)

n n

2

This yields

∑η ϕ ϵ ϵ< − +
ϕ =

d

M
Q

d

M

d

M
max ( ) max (1 ) log , (1 ) log . (34)

n

c

M

c

n n

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧⎨⎩
⎫⎬⎭

Which in turn implies that, forK large enough, equation (6) is upper bounded by the following, up to a negligibly
small probability,
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ϵ ϵ η ϵ ϕ

ϵ ϵ η ϵ ϕ
⩽

+ − + + − <

− + + − − >

ϕ

ϕ

I
d M

d

M
H Q M d

d M
d

M
H Q M d

(1 ) log log (1 ) min [ ( )], for ,

(1 ) log log (1 ) min [ ( )], for .

(35)acc

n
n

n

n
n

n

⎧
⎨
⎪⎪

⎩
⎪⎪

According to the latter expressions, an upper bound on the accessible information follows from a lower
bound on theminimumShannon entropy, ϕϕ∣ 〉 H Qmin [ ( )]. That is, to prove that ϵ≲I dlog n

acc , we need to

show that ϕ ϵ≳ −ϕ∣ 〉 H Q dmin [ ( )] (1 ) logd

M
n

n

. To do that, for any ϵ > 0 and dn andK large enoughwe

bound the probability that

ϕ ϕ η ϵ− < −
Q Q

d
( ) log ( )

1
. (36)c c n

⎜ ⎟⎛
⎝

⎞
⎠

This corresponds to bounding the probability that either ϕ λ η η> = − +ϵ ϵ
+

− −( )( ) ( )Q O( ) 1c d d

1 1
n n or

ϕ λ ϵ< = −−Q d( ) (1 )c
n. Notice that for dn sufficiently large and/or ϵ sufficiently small we have

λ η⩾ − ϵ
+

−( )1 2
d

1
n .

First, we bound the probability that there exists a codeword c and a vector ϕ∣ 〉 such that ϕ λ> +Q ( )c .We

apply equation (31) with δ η= ϵ−( )2
d

1
n to obtain

ϕ λ ϕ η ϵ> ⩽ > − −
ϕ ϕ

+Pr Q Pr Q
d

max ( ) max ( ) 1 2
1

(37)
c

c
c

c n, ,
⎜ ⎟

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭

η
⩽ −

− −ϵ−( )( )
Md

Kd d
exp ln

1 2 1

4 ln 2
(38)n

n
d

n1 2

n

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

η
⩽ −

− −ϵ−( )( )
Md

Kd d
exp ln

1 4 2

4 ln 2
(39)n

n
d

n1
n

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

η
⩽ −

−
=

ϵ−

+
( )( )

Md
Kd

pexp ln
1 6

4 ln 2
: , (40)n

n
d

1
n

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

wherewe have also used the fact that η< ϵ−( )d d

1 1
n n for n large enough. This probability vanishes exponentially

with dn providedK is not too small, namely, >
η ϵ− −K Md

d d

ln 4 ln 2

1 6 [(1 ) ]

n

n n .

Second, we bound the probability that there exist ℓ ≪ M codewords such that ϕ λ< −Q ( )c .We apply
equation (24) and obtain

ϕ λ ϕ ϵ∃ ∀ < = ∃ ∀ < −
ℓ ℓ−{ }Pr c c i Q Pr c c i Q

d
, ..., ( ) , ..., ( )

1
(41)c c n1 1i i

⎧⎨⎩
⎫⎬⎭

ℓ ℓ ϵ
γ

⩽ −M
K

exp ln
2

. (42)
n

2⎛
⎝⎜

⎞
⎠⎟

Putting ℓ ϵ= M wehave

ϕ λ ϵ
γ

ϵ∃ ∀ < ⩽ − − =ℓ − −{ }Pr c c i Q M
K

M p, ..., ( ) exp
2

ln : . (43)c n1

3

i

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

Notice that this probability is also exponentially small inM, provided that γ ϵ> −K M2 lnn 2 .
Inequality (31) implies that, with probability at least equal to − +p1 , all the ϕQ ( )c ʼs are larger than λ+. Also,

according to equation (43), for a given ϕ∣ 〉 there exist, with probability greater than − −p1 , at least
ℓ ϵ− = −M M(1 ) values of c such that ϕ λ> −Q ( )c . Putting these results togetherwe obtain that for any

given ϕ∣ 〉

ϕ ϵ ϵ ϵ> − − − −
H Q M

d d
[ ( )] (1 )

1
log

1
(44)

n n
⎜ ⎟⎛
⎝

⎞
⎠

ϵ ϵ= − − −M

d d
(1 ) log

1
(45)

n n
2
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ϵ ϵ ϵ> − − − −M

d
d

M

d
(1 2 ) log (1 2 ) log (1 ) (46)

n
n

n

ϵ> −M

d
d(1 2 ) log , (47)

n
n

that is,

ϕ ϵ> −d

M
H Q d[ ( )] (1 2 ) log , (48)

n
n

with a probability at least equal to − −− +p p1 , which is in turn larger than − −p1 2 forM large enough.

2.3. The ϵ-net
To bound the accessible information in equation (35)we have to show that a relation similar to (48) holds for all
vectors ϕ∣ 〉. To do that we introduce an ϵ-net. Let us recall that an ϵ-net is a finite set of unit vectors ϕ= ∣ 〉ϵ { }i i

in aD-dimensional Hilbert space such that for any unit vector ϕ∣ 〉 there exists ϕ∣ 〉 ∈ ϵi for which

ϕ ϕ ϕ ϕ ϵ∥ − ∥ ⩽ . (49)i i 1

As discussed in [11] there exists an ϵ-net with ϵ∣ ∣ ⩽ϵ (5 ) D2 . Below, wefirst extend the bound(48) to include
all the vectors in ϵ , and then, for ϵ sufficiently small, to all themanifold of unit vectors.

By applying the union boundwe obtain:

ϕ ϵ ϵ< − ⩽
ϕ ∈ −

ϵ ( )Pr H Q d pmin (1 2 ) log (5 ) 2 (50)i
n d2

i

n
⎧⎨⎩

⎡⎣ ⎤⎦
⎫⎬⎭

ϵ ϵ
γ

ϵ= − −M
K

M2(5 ) exp
2

ln (51)d
n

2
3

n
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ϵ
γ

ϵ
ϵ

= − − −M
K

M
d

M
2 exp

2
ln 2 ln

5
. (52)

n

n3⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

Then, we have to replace theminimumover vectors in the ϵ-net with aminimumover all unit vectors. An
application of the Fannes inequality [22] yields (see also [11])

ϕ ϕ ϵ η ϵ− ⩽ +
ϕ ϕ ∈ ϵ ( )H Q H Q dmin [ ( )] min log ( ), (53)i

n

i

⎡⎣ ⎤⎦

which implies

ϕ ϵ η ϵ ϵ
γ

ϵ
ϵ

< − − ⩽ − − −
ϕ

Pr H Q d M
K

M
d

M
min [ ( )] (1 3 ) log ( ) 2 exp

2
ln 2 ln

5
. (54)n

n

n3⎧⎨⎩
⎫⎬⎭

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

Such a probability is bounded away fromone (and goes to zero exponentially inM) provided

γ
ϵ ϵ ϵ

> +K M
d

M
2

1
ln

2
ln

5
. (55)n

n

2 3

⎛
⎝⎜

⎞
⎠⎟

Under this condition forK, we finally have the following upper bound for the accessible information

ϵ ϵ η ϵ η ϵ
ϵ ϵ η ϵ η ϵ

⩽
− + + + <
+ + − + >

I
d M M d

d M M d

4 log log (1 ) ( ), for ,

2 log log (1 ) ( ), for .
(56)acc

n n

n n

⎧⎨⎩

2.4. Improving the bound onK
Weexpect the number ofmessages to increase exponentially in the number of channel use, that is, ≃M 2nR.
When < d2R , this yields an additional exponential term, proportional to ≃ ≫−d M d( 2 ) 1n R n on the right
hand side of (55). This termoriginated from the fact that we are using an ϵ-net on a space of dimension dn, that
contains up to ϵ(5 ) d2 n

elements.We now show that it is sufficient to consider an ϵ-net on a smaller space of
dimensionM. As a result, we obtain an improved bound onK:

γ
ϵ ϵ ϵ

> +K M2
1

ln
2

ln
5

. (57)n
2 3

⎜ ⎟⎛
⎝

⎞
⎠

To show that, we first note that ϕQ ( ) is indeed a function of an effective vector ϕ∣ 〉˜ with complex
components ϕ̃c , for =c M1, ..., , where
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∑ϕ ϕ ψ=
=K

˜ 1
. (58)c

s

K

c
s2

1

( )

For ≫MK dn the condition (32) implies that the codewords ψ∣ 〉c
s( )

fill thewhole dn-dimensionalHilbert space

with high probability. Thismeans thatwe can parameterize any unit vector ϕ∣ 〉 in terms of the parameters ϕ̃c and
a set of dummyparameters that do not affect the value of ϕQ ( ).

From (32), we obtain that ϕ ϵ∑ ∣ ∣ ⩽ + ⩽= M d˜ (1 ) 1c
M

c
n

1
2 , up to small probability. That is, these parameters

define a sphere inM complex dimensionswith radius smaller than 1. Repeating the same reasoningwith an ϵ-
net defined on thisM-dimensional spacewe obtain the bounds (56) on the accessible information under the
tighter condition (57) on the number of keymessages.

In conclusionwe obtain, from (56), that

ϵ⩽ ( )I O dlog . (59)n
acc

Under the condition, from (57) and (33),

γ
ϵ ϵ ϵ ϵ

⩾ +K M
d

M

d
max 2

1
ln

2
ln

5
,

4 ln 2 ln
. (60)n

n n

2 3 2
⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭

3. Strong locking of amemoryless qudit channel

The noiseless protocol can be straightforwardly applied for the strong locking of a noisy qudit channel →A B

connecting Alice to Bob. The point is that in a strong locking settingwe require that the communication is secure
against an eavesdropper having access to the very input of the channel. In other words, the security of the
protocol is independent of how the channel acts on the input, and hence it applies to the noiseless case as well as
the noisy one. That is, the bound on the accessible information in equation (56) and the condition on the
number of key values in equation (60) apply for a generic qudit channel.

The crucial difference, however, is that the presence of noise reduces the rate at whichAlice and Bob can
reliably communicate classical information. Let us suppose that, using the codewords described above, Alice and
Bob can achieve a reliable communication rate of = →∞R Mlim logn n

1 bits per channel use [23]. Then (60)

implies an asymptotic key consumption rate of

γ= − = − + −
→∞

K

n
d R

d
d Rlim

log
max{log , log } max 1 log 1

1
, log . (61)

n
⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
SinceR cannot exceed dlog , we obtain an increase in the secret key consumption rate with respect to the
noiseless setting.We can say that the latter equation represents a trade-off between communication rate and
secret key consumption. In order to achieve strong locking, the secret key consumption rate should increase to
compensate the reduced communication rate.

4.Weak locking of amemoryless qudit channel

In theweak locking scenario the eavesdropper has access to the output of the complementary channel, hence
receiving a signal distorted by noise. One thus expects that the randomness introduced by the noise contributes
to theQDL effect. If this is true, then one can exploit the randomness due to the noise to reduce the length of the
required secret key. Belowwe show that this intuition is true by examining a family of channels of a specific form.
We define these channels through their conjugates, which are of the form

ρ ρ ρ σ= = + −→ →  p p˜ ( ) ( ) (1 ) , (62)A B A E

where ∈p [0, 1]and σ is a given densitymatrix (notable examples of channels belonging to this family are the
erasure channel and the conjugate of the depolarizing channel).

The results for the noiseless case can be easily applied to these channels. To do that, it is sufficient to notice
that, with probability p, the channel →A E is noiseless. In otherwords, for n uses of the channel, one expects that
the channel →A E will act as an effective noiseless channel over a fraction of about pn qudits. It is sufficient to
require that the protocol data locks the information contained in these qudits, since the remaining − p n(1 )
qudits do not convey any information at all about themessage as the output is independent of the input.

More formally, upon nuses of the channel Eve receives (with probability arbitrarily close to 1 for n large
enough) nomore than δ+n p( )qudits without any distortion. Let us hence consider a given subset of δ+n p( )
qudits and apply the same reasoning of the noiseless channel given abovewith n replaced by δ+n p( ). This
yields a bound onEve’s accessible information conditioned on the choice of the subset:
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ϵ ϵ
γ

ϵ
ϵ

> ⩽ − − −δ
δ

+
+{ }( )Pr I O d M

K
Mlog 2 exp

2
ln 2 ln

5
. (63)n p

n pacc
subset ( )

3

( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

(this follows from the bounds in equation (54)). Finally, we apply the union bound to account for all possible

δ+( )n

n p( )
choices of the subset of δ+n p( )qudits:

ϵ
δ

ϵ
γ

ϵ
ϵ

> ⩽
+

− − −δ
δ

+
+{ }( )Pr I O d

n

n p
M

K
Mlog 2

( )
exp

2
ln 2 ln

5
(64)n p

n pacc
( )

3

( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

ϵ
γ

ϵ
ϵ

⩽ − − −δ
δ

+
+

n M
K

M2 exp
2

ln 2 ln
5

(65)n p
n p

( )
3

( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

δ ϵ
γ

ϵ
ϵ

⩽ + − − −
δ+

n p n M
K

M2 exp ( ) ln
2

ln 2 ln
5

. (66)
n p

3

( )

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

This probability goes to zero exponentially inM—we can always assume that ϵ=M 2nR whereR is the
communication rate—forK large enough. From (66) and (33), we obtain the following sufficient condition on
K:

γ
ϵ ϵ ϵ ϵ

> +δ
δ δ

+
+ +

K M
d

M

d
max 2

1
ln

2
ln

5
,

4 ln 2 ln
, (67)n p

n p n p
( )

2 4

( ) ( )

2
⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭
which yields an asymptotic secret key consumption rate of (we can assume δ =→∞lim 0n )

γ= − = − + −
→∞

K

n
p p d R p

d
p d Rlim

log
max{ , log } max 1 log 1

1
, log . (68)

n
⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭
This example shows that the presence of noise in the channel to Eve allowsAlice and Bob to consume secret

key at a reduced rate, compared to the strong locking case in (61).We now compute a lower bound on the
maximumachievable communication rate for the class of channels considered here. To computeR, wefirst
write an isometric extension of the channel.We introduce four quantum systems: systems 1, 2 and 3 are qudits
and system4 is a qubit. In input, system 1 is assigned toAlice and systems 2, 3 and 4 to Eve. In output, system1 is
assigned to Eve and the others to Bob.We put

= ⨂ + ⨂ ⨂  U 0 0 1 1 , (69)1234 123 4 12 3 4

where 12 is the swap operation between qudits 1 and 2. As initial state of the environment we put

φ φ= ⨂ + −( )p p0 0 1 1 1 , (70)E 23 4 4

where φ φ σ∣ 〉 〈 ∣ =Tr ( )3 23 2 (without loss of generality we can also assume φ φ σ∣ 〉 〈 ∣ =Tr ( )3 23 3).
One can easily check that

ρ φ φ ρ σ⨂ = + −( )U U p pTr (1 ) . (71)234 1234 1 E 234 E 1234
†

1

Taking the trace over the output systems 1we obtain the output of the channel to Bob:

ρ φ φ φ φ ρ σ

ρ φ φ

⨂ = ⨂ + − ⨂ ⨂

+ − ⨂ ⨂ +

( )
( )

U U p p

p p

Tr 0 0 (1 ) 1 1

(1 ) Tr 1 0 h.c. . (72)

1 1234 1 E 234 E 1234
†

23 4 2 3 4

1 12 1 23 4
⎡⎣ ⎤⎦

Wenotice that the action on the channel fromAlice andBob depends on σ through the last two terms
proportional to ∣ 〉 〈 ∣0 14 and ∣ 〉 〈 ∣1 04 . If we apply a completely dephasing channel on qubit 4 the channel to Bob
becomes an erasure channel with erasure probability p independently of σ . This implies that the classical
capacity of the erasure channel is an achievable rate for classical communication, hencewe can put

= −R p d(1 ) log .Moreover, this bound holds for any choice of the locking unitary, since the erasure channel is
covariant under unitary transformations.

4.1. Erasure channel
If σ is orthogonal to the input space, the channel in equation (62) is a qudit erasure channel with erasure
probability − p1 , whose complement is an erasure channel with erasure probability p. In this case, the
maximumcommunication rate equals the classical capacity of the erasure channel, = −R p d(1 ) log , with a
secret key consumption rate of
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= − + −k p
d

p dmax 1 log 1
1

, (2 1) log (73)⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭
bits per channel use.

4.2. Conjugate of the depolarizing channel
If σ =  d, the channel in equation (62) is a qudit depolarizing channel with depolarizing probability − p1 .We
can rewrite the action of the depolarizing channel as

∑ρ ρ ρ= +
−

→
=

−
− − p

p

d
X Z Z X( )

1
, (74)

a b

d
a b b a

A E 2
, 0

1

where = ∑ ∣ ⊕ 〉〈 ∣=
−X j j1j

d
0
1 (⊕ denotes summationmodulo d) and = ∑ ∣ 〉〈 ∣π

=
−Z j jej

d j d
0
1 i 2 are the d-

dimensional generalization of the Paulimatrices, and ∣ 〉 = −j{ } j d0, ..., 1 is a qudit basis. This representation of the
channel to Eve induces a representation for the isometric extension, which is given by the bipartite conditional
unitary

∑= ⨂
=

−

U ab ab X Z , (75)
a b

d
a b

, 0

1

where thefirst system, assigned to Eve’s input, is represented by a d2-dimensionalHilbert space (spanned by the
basis vectors ∣ 〉ab{ }), and the second is the input qudit system. As initial state of Eve’s systemwe take

∑φ =
=

−

q ab , (76)
a b

d

abE
, 0

1

where = + −q p p d(1 )00
2 and = −q p d(1 )ab

2 for ≠ab 00. Taking the partial trace over Eve’s output
system,we finally obtain the following expression for the channel to Bob:

∑ρ ρ= ′ ′→
′ ′=

−

′ ′
− ′ − ′ ( )q q X Z Z X ab a b( ) Tr . (77)

a b a b

d

ab a b
a b b a

A B

, , , 0

1

A straightforward calculation yields that themaximumachievable rate using our ensemble of input states is

= −( )R f p d f p d, ( , ), (78)2

where

= − +
−

+
−

− −
− −

f p D p
p

D
p

p

D
D

p

D

p

D
( , )

1
log

1
( 1)

1
log

1
. (79)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

As in the case of the erasure channel, this rate is independent of the choice of the locking unitary.
In conclusion, equation (78) gives themaximum reliable communication rate fromAlice to Bob. The secret

key consumption rate is hence equal to

= − + − +( )k p
d

p d f p d f p dmax 1 log 1
1

, log , ( , ) . (80)2⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭

5.Quantumbootstrapping

OurQDLprotocols yield achievable rates of strong andweak locking through a noisy qudit channel. Consider
the case of weak locking at a rateRwith a secret consumption rate of k bits per channel use. If the channel →A B

has non-zero private capacity, one canfirst use the channel to establish a private key between the two legitimate
parties, then use such a key to lock the subsequent uses of the channel. In this wayAlice and Bobwill achieve a
weak locking rate of

=
+

R
R

k P1
, (81)wl

where P is the private capacity of the communication channel [2]. It follows that any channel with non-zero
private capacity allows us to lock data in theweak locking sense. For qudit channels havingR andP large enough,
Rwl can bemuch larger than the private capacity and arbitrarily close to the classical capacity.
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Alternatively, for generic channels, including thosewith zero private capacity, one can define aQDL
protocol under the assumption that Alice and Bob know an upper bound τ on the coherence time of Eve’s
quantummemory. For >R k, a weak locking protocol is then defined according to the following procedure:

1. Alice and Bob initially share a secret key of nk bits;

2. They use the secret key to send about nR bits of locked information through n uses of the qudit channel;

3. They wait a time τ sufficiently long to guarantee that Eve’s quantummemory decoheres. After such a time the
locked information Alice has sent to Bob can be considered secure in the composable sense (see section 1
and [6]);

4. If >R k, Alice and Bob recycle nk of the nR bits as a secret key for the next round of the communication
protocol;

5. They repeat the above procedure for n′ times.

(We remark that Bob does not need to store quantum information for a time longer than τ. Indeed, he needs
to store quantum information only for the time necessary to send nR bits along the channel fromAlice to Bob. In
otherwords the protocol does not require the legitimate Bob to have better technology than the
eavesdropper Eve.)

Using this bootstrap technique, Alice and Bobwill asymptotically achieve aweak locking rate of (for ⩾R k)

= −R R k (82)wl

bits per channel use, with a secret key consumption rate of ′k n bits that goes to zero in the limit ′ → ∞n .While
the rate per channel use isfinite and independent of τ, onemay object that the communication rate per second
will become arbitrarily small if τ is large enough. To solve this problem, Alice andBob can run two ormore
independent instances of the protocol in parallel (each using an independent secret key) taking advantage of the
dead times between one protocol and the other. It follows that the communication rate per second remains finite
and independent of τ even in the limit of τ → ∞. (Clearly, this procedure becomes impractical if τ is too large.)

For the qudit erasure channel, the procedure described above achieves aweak locking rate (in bits per
channel use) of

= − − − + −R p d p
d

p d(1 ) log max 1 log 1
1

, (2 1) log (83)wl ⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭

Similarly, for the conjugate of the qudit depolarizing channel we obtain

= − − − + − +( ) ( ) ( )R f p d f p d p
d

p d f p d f p d, ( , ) max 1 log 1
1

, log , , , (84)wl
2 2⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭

where f p d( , ) and f p d( , )2 are as in equation (79).figure 1 shows theweak locking rate of the qudit erasure
channel comparedwith the classical capacity [18] and the private capacity [2]. Figure 2 shows theweak locking
rate of the conjugate of the qudit depolarizing channel, comparedwith its classical capacity and theHashing
bound for private communication.

Figure 1.Comparison of several communication rates (in bits per channel use) for the qudit erasure channel, with d=64 and
∈p [0, 1].Weak locking rate (solid line); private capacity (dashed line); classical capacity (dot-dashed line).
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The idea of key recycling is not new in quantum cryptography (see, e.g., [24]). The crucial difference in our
approach is that we are assuming theweaker security criterion expressed in terms of the accessible information.
Byweakening the notion of security we are able to obtain a positive rate of locked communication even if the
channel has zero privacy according to the standard security criterion of quantum cryptography.

6. Conclusions

In conclusion, we have presented protocols that achieve aweak locking rate as high as less than one bit below the
classical capacity for quantum channels exhibiting certain symmetry properties. These results, together with
[5, 6], further deepen our understanding of theQDL effect as well as of the notions of locking capacities recently
introduced in [10]. A few natural questions remain open. It is not clear whether our strong locking protocol for
the noiseless channel is optimal in terms of secret key consumption. The obtained secret key consumption rate
of − + −d d Rmax {1 log (1 1 ), log }bits per channel use could verywell not be a fundamental limit, but just
a consequence of our proof technique. Also, onewould like tofindweak locking protocols for general channels
beyond the restricted, yet physically relevant, class of channels considered here. Finally, since themost
important realizations of quantum communication channels are within continuous-variable, it is urgent to
discoverQDLprotocols for quantum systemswith infinite dimensions.
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AppendixA.Upper bound on the accessible information

In this appendixwe derive an upper bound on the accessible information of the bipartite state

∑ ∑ρ ψ ψ= ⨂
= =M

x x
K

1 1
. (A.1)

x

M

s

K

x
s

x
s

AE
1 1

( ) ( )

The accessible information is themaximum classicalmutual information betweenAlice’s inputX and the
result of an optimalmeasurement performed by Eve on her share of the quantum system. Such a local
measurement is described by a set of POVMelements Λ{ }y y, with Λ ⩾ 0y and Λ∑ = y y , where y is the value

of the correspondingmeasurement result. The output of themeasurement is a randomvariableY. The
conditional probability distribution ofY given x is

∑ ψ Λ ψ=
=

p y x
K

( )
1

, (A.2)Y
s

K

x
s

y x
s

1

( ) ( )

and = ∑ ∣−p y M p y x( ) ( )Y x Y
1

Figure 2.Comparison of several communication rates (in bits per channel use) for the conjugate of the depolarizing channel, with
d=64 and ∈p [0, 1].Weak locking rate (solid line); hashing bound for private communication (dashed line); classical capacity (dot-
dashed line).
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Then the accessible information of the state ρAE reads

= = + −
Λ Λ{ } { }

I I X Y H X H Y H XYmax ( ; ) max ( ) ( ) ( ), (A.3)acc
y y

where

∑= − =H X p x p x M( ) ( ) log ( ) log , (A.4)
x

X X

∑= −H Y p y p y( ) ( ) log ( ), (A.5)
y

Y Y

and

∑ ∑= − = − − −H XY p y x p x p y x p x M p y x M p y x( ) ( ) ( ) log ( ) ( ) ( ) log ( ). (A.6)
x y

Y X Y X
x y

Y Y
, ,

1 1

By convexity ofmutual information, it is sufficient to restrict to the set of rank-one POVMwith
Λ μ ϕ ϕ= ∣ 〉〈 ∣y y y y , where the ϕ∣ 〉y ʼs are unit vectors and μ > 0y . The condition μ ϕ ϕ∑ ∣ 〉〈 ∣ = y y y y then implies

μ∑ =d 1y y
n . A straightforward calculation yields

∑ ∑
μ

ϕ η ϕ= − −
μ ϕ ϕ

( ) ( )
{ }

I M
M

H Q Qlog min , (A.7)
y

y

y
x

x yacc

y y y

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

where η = −( · ) ( · ) log ( · ), ϕQ ( )y is theM-dimensional real vector of non-negative components

∑ϕ ϕ ψ=
=

( )Q
K

1
, (A.8)x y

s

K

y x
s

1

( ) 2

and ϕ ϕ ϕ= −∑H Q Q Q[ ( )] ( ) log ( )y x x y x y .

We now apply a standard convexity argument,first used in [3]. To do that, notice that the positive quantities
μ dy

n can be interpreted as probability weights. An upper bound on the accessible information (A.7) is then

obtained by using the fact that the average cannot exceed themaximum. This yields

∑ ∑
μ

ϕ η ϕ= − −
μ ϕ ϕ

( ) ( )
{ }

I M
d

M d
H Q Qlog min (A.9)

n

y

y

n y
x

x yacc

y y y

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

∑ϕ η ϕ⩽ − −
ϕ

M
d

M
H Q Qlog min [ ( )] ( ) , (A.10)

n

x

x

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

which is the upper bound in (6).

Appendix B. Calculation of thefirst and secondmoment

Herewe compute the first and secondmoment of ϕ ϕ ψ= ∣〈 ∣ ∣ 〉∣q U( )c
2 with respect to a randomunitary of the

form = ⨂ =U Uj
n

j1 , where each qudit unitaryUj is independently sampled from the uniformdistribution
induced by theHaarmeasure μd U( )j on the unitary group.

We have

ϕ ϕ ψ ψ ϕ= q U U( ) (B.1)U c U c c
†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

ϕ ψ ψ ϕ=  U U (B.2)U c c
†⎡⎣ ⎤⎦

ϕ ϕ= ⨂ =  U x x U (B.3)j
n

U j j c j c j1 , ,
†

j
⎡⎣ ⎤⎦

=
d

1
, (B.4)

n

wherewe have used ∫ μ∣ 〉〈 ∣ = ∣ 〉〈 ∣ = U x x U U U x x U d[ ] d ( )U j j j j j
† †

j
for any unit vector ∣ 〉x .

To compute the secondmoment wefirst write

ϕ ϕ ψ ψ ϕ ϕ ψ ψ ϕ= q U U U U( ) (B.5)U c U c c c c
2 † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

ϕ ϕ ψ ψ ψ ψ ϕ ϕ= ⨂ ⨂ U U U U, , , , (B.6)U c c c c
† †⎡⎣ ⎤⎦
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ϕ ϕ ψ ψ ψ ψ ϕ ϕ= ⨂ ⨂ U U U U, , , , (B.7)U c c c c
† †⎡⎣ ⎤⎦

ϕ ϕ ϕ ϕ= ⨂ ⨂ ⨂=  U U x x x x U U, , , , (B.8)j
n

U j j j c j c j c j c j j1 , , , ,
† †

j
⎡⎣ ⎤⎦

∫ϕ ϕ μ ϕ ϕ= ⨂ ⨂ ⨂= ( )U U U x x x x U U, d , , , , (B.9)j
n

j j j j c j c j c j c j j1 , , , ,
† †

where ϕ ϕ ϕ ϕ∣ 〉 = ∣ 〉 ⨂ ∣ 〉, , ψ ψ ψ ψ∣ 〉 = ∣ 〉 ⨂ ∣ 〉,c c c c and ∣ 〉 = ∣ 〉 ⨂ ∣ 〉x x x x,j c j c j c j c, , , , .We then apply the
representation of the twirling operator [25]

∫ρ μ ρ= ⨂ ⨂ U U U U U( ) d ( ) (B.10)† †

ρ ρ= +( )
( )

( )
( )

Q
Q

Q
Q

Tr
Tr Q

Tr
Tr Q

, (B.11)0
0

0

1
1

1

where

= + −
α

α
Q

S( 1)

2
(B.12)

are the projectors on the symmetric (α = 0) and anti-symmetric (α = 1) subspaces, denotes the identity
operator, and S is the swap operator ( ψ ψ ψ ψ∣ ′〉 = ∣ ′ 〉S , , ).We then have

= =
+

 ( )
( )

x x x x
Q

Q d d
Q, ,

Tr

2

( 1)
, (B.13)j c j c j c j c, , , ,

0

0

0

which yields

ϕ ϕ ϕ ϕ ϕ=
+

⨂ q
d d

Q( )
2

( 1)
, , (B.14)U c

n
n2

0
⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟

⩽
+

∥ ∥⨂
∞

d d
Q

2

( 1)
(B.15)

n
n

0

⎛
⎝⎜

⎞
⎠⎟

=
+

∥ ∥∞
d d

Q
2

( 1)
(B.16)

n
n

0

⎛
⎝⎜

⎞
⎠⎟

=
+d d

2

( 1)
. (B.17)

n⎛
⎝⎜

⎞
⎠⎟

Herewe have used the fact that ϕ ϕ ϕ ϕ〈 ∣ ∣ 〉 ⩽ ∥ ∥⨂ ⨂
∞Q Q, ,n n

0 0 , where∥ ∥⨂
∞Q n

0 is the operator normof
⨂Q n

0 (namely, the supremumof its eigenvalues), and that∥ ∥ = ∥ ∥ =⨂
∞ ∞Q Q 1n n

0 0 .
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