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Distributed Power Allocation for Cooperative

Wireless Network Localization

Wenhan Dai, Student Member, IEEE, Yuan Shen, Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Device-to-device (D2D) communication in cellular
networks is a promising concept that permits cooperation among
mobile devices not only to increase data throughput but also to
enhance localization services. In those networks, the allocation of
transmitting power plays a critical role in determining network
lifetime and localization accuracy. Meanwhile, it is a challenging
task for implementation in cooperative networks, since each
device has only imperfect estimates of local network parameters
in distributed settings. In this paper, we establish an optimization
framework for robust power allocation in cooperative wireless
network localization. We then develop distributed power al-
location strategies via relaxation of the original problem. In
particular, we decompose the power allocation problem into in-
frastructure and cooperation phases, show the sparsity property
of the optimal power allocation, and develop efficient power
allocation strategies. Simulation results show that these strategies
can achieve significant performance improvement compared to
the uniform strategies in terms of localization accuracy.

Index Terms—Convex optimization, cooperative techniques,
localization, power allocation, robust optimization.

I. INTRODUCTION

LOCATION-AWARENESS of mobile devices is essential

for many emerging applications and services in wireless

networks, such as indoor navigation, asset tracking, social

networking, and environmental monitoring [1]–[9]. Conven-

tional techniques are not adequate for providing seamless and

high-accuracy location awareness in harsh environments. For

example, the global positioning system (GPS) does not operate

well indoors or in urban canyons due to signal blockage [10];

and the techniques that rely on cellular network infrastruc-

tures cannot provide satisfactory localization accuracy [7].

This inadequacy has motivated recent research activities in

localization for wireless networks [11]–[24].

Typical localization systems for wireless networks employ

two types of nodes, i.e., anchors (infrastructure with known po-

sitions) and agents (mobile devices with unknown positions).

Conventionally, agents aim to infer their positions based on
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Fig. 1. Cooperative wireless network localization: the anchors are infrastruc-
tures such as cellular base stations and GPS satellites, and the agents are
mobile devices. The agents infer their positions by making range measure-
ments with neighboring anchors and agents.

range measurements to the anchors [6]–[8].1 With the emer-

gence of device-to-device (D2D) communication, each agent

can make additional range measurements with its neighboring

agents, and cooperates with them for positional inference.

Such cooperation can significantly improve localization per-

formance by virtue of sharing position information among

neighbors [25]–[28], thus circumventing the use of high-

power, high-density anchor deployment required for high-

accuracy non-cooperative localization. For example, in Fig. 1,

the agent’s cooperation enables both agents to determine their

positions, while neither agent can trilaterate its position unless

it can make range measurements with more anchors.

Localization accuracy in wireless networks is determined

by the network topology and the accuracy of range mea-

surements, where the latter depends on transmitting power,

signal bandwidth, and channel condition [8]. Allocation of

the transmitting power plays a critical role in wireless network

localization (WNL) since it affects network lifetime in addition

to localization accuracy. In fact, power allocation strategies

have been shown to significantly improve the localization ac-

curacy and reduce the power consumption in non-cooperative

localization networks [29]–[31].

Existing studies on power allocation for WNL considered

only the non-cooperative cases in the absence of D2D com-

munication [32]–[35]. The power allocation problems in these

studies were formulated as various optimization programs that

minimize the localization errors subject to a given transmitting

power constraint, or vice versa. In particular, the power

1The range measurement (made by an agent) to a node refers to the
measurement of the distance between the agent and the node.
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allocation problems were investigated for wireless sensor

networks in [32] and for multiple-antenna radar networks in

[33]. Both studies employed the Cramér–Rao Bound as the

performance metric and relaxed the original problems into

convex programs. The authors in [34] adopted the squared

position error bound (SPEB) as the performance metric and

demonstrated that the power allocation problem for WNL can

be transformed into semi-definite programs (SDPs). Using two

important functional properties of the SPEB, recent work [35]

showed that the power allocation problems can be transformed

into second-order cone programs (SOCPs), which have more

efficient solvers than SDPs.

Little is known about optimizing the allocation of the

transmitting power among anchors and agents in cooperative

WNL. Due to the additional range measurements between

agents in cooperative settings, the expression for the agents’

SPEBs has a much more complicated structure than its non-

cooperative counterpart [25], hindering the design and analysis

of power allocation strategies. Moreover, distributed power

allocation strategies are more desirable than centralized ones,

since the latter requires the parameters of the entire network.

Designing such distributed power allocation strategies brings

another layer of difficulty because the location information of

the agents is interrelated over the entire network while only

local network parameters are available at each agent [36]–

[39]. In addition, it is essential to design robust strategies that

can cope with the uncertainty of network parameters since,

in practice, perfect estimates of such parameters are often

unavailable. Therefore, the goal of this work is to design

distributed power allocation strategies for cooperative WNL

under network parameter uncertainty.

In this paper, we establish an optimization framework

for robust power allocation in cooperative WNL, aiming to

minimize the localization errors in the presence of network

parameter uncertainty and transmitting power constraints. The

main contributions of this work are as follows.

• We derive several tractable upper bounds for the lo-

calization performance metric, which involve only local

network parameters;

• We propose distributed strategies for the robust power

allocation, in which the underlying optimization problems

are transformed into convex programs;

• We show the sparsity property of the optimal power

allocation, leading to distributed sparsity-aided allocation

strategies.

The rest of the paper is organized as follows. Section II

presents the system model and then formulates the power

allocation problem in the presence of network parameter

uncertainty. Section III presents several important properties of

the individual SPEB (iSPEB) in cooperative WNL. Section IV

provides the design of distributed power allocation strategies.

Section V shows the sparsity property of the optimal power

allocation and presents the sparsity-aided allocation strategies.

Finally, numerical results are presented in Section VI and

conclusions are drawn in the last section.

Notation: [A]ij denotes the element in the ith row and j th

column of matrix A. In denotes an n × n identity matrix.

0m,n denotes a m× n matrix with all 0’s. 1n and 0n denote

n-dimensional vectors with all 1’s and 0’s, respectively. For

0m,n, 1n, and 0n, the subscript will be omitted if clear in the

context. ek is a unit vector with the kth element being 1 and all

other elements being 0’s. ‖·‖0 denotes the number of non-zero

elements. The operation ⊗ denotes the Kronecker product.

Matrix Jr(φ) is defined as Jr(φ) = [cosφ sinφ]T [cosφ sinφ].
For vectors x and y, the relations x � y and x ≻ y denote that

all elements of x−y are nonnegative and positive, respectively.

For square matrices A and B, the relation A � B denotes

that A−B is a semidefinite matrix.

II. PROBLEM FORMULATION

This section introduces the system model for cooperative

WNL and formulates the distributed power allocation prob-

lems. The uncertainty model for network parameters is also

presented, which leads to robust formulations.

A. System Model

Consider a two-dimensional synchronized wireless network

with Nb anchors and Na agents. Anchors, with known po-

sitions, constitute infrastructure such as cellular base sta-

tions. Agents are mobile devices with unknown positions.

Let Na = {1, 2, · · · , Na} denote the set of agents and

Nb = {Na+1, Na+2, · · · , Na+Nb} denote the set of anchors.

The position of node k is denoted by a vector pk, and the angle

and the distance from node j to node k is denoted by φkj and

dkj , respectively. The unknown positions of the agents are

written in a vector form p = [pT
1 pT

2 · · · pT
Na

]T.

In cooperative WNL, each agent aims to determine its

position based on the range measurements to neighboring

agents as well as to neighboring anchors. In particular, two

kinds of transmission for localization are considered:

• Anchor transmission (infrastructure): anchor j transmits

a ranging signal to agent k with power xkj ;

• Agent transmission (cooperation): agent j transmits a

ranging signal to agent k with power xkj .

Let {xkj}k∈Na , j∈Na∪Nb
denote the power allocation set, for

which the shorthand {xkj} will be used in the rest of the paper

unless otherwise specified.

B. Distributed Power Allocation Formulation

The performance metrics for cooperative WNL are pre-

sented as follows. Let Je(p) denote the network equivalent

Fisher information matrix (EFIM) given by (1) at the bottom

of next page, where JA
e (pk) and Ckj are given by

JA
e (pk) =

∑

j∈Nb

xkj ξkj Jr(φkj)

and

Ckj = (xkj ξkj + xjk ξjk)Jr(φkj)

respectively [25].2 In the above expressions, ξkj is the

equivalent ranging coefficient (ERC) that depends on the

channel condition between node k and j [35]. Note that by

2For notational convenience, the dependence of the power allocation set on
Je(p) are suppressed throughout the paper.
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simply setting ξkj = ξjk = 0, the EFIM given by (1) can

be specialized to networks in which nodes k and j are not

connected.

For k ∈ Na, let p̂k be an unbiased estimator of pk. It is

shown that the mean squared error for p̂k is lower bounded

by the iSPEB P(pk), i.e.,

E{‖p̂k − pk‖
2} ≥ P(pk) := tr

{
J−1

e (pk)
}

(2)

where the individual EFIM Je(pk) is a 2 × 2 matrix that

retains all the necessary information to derive the information

inequality for the parameter pk [25].3

The iSPEB is adopted as a performance metric, and the

goal of distributed power allocation is to achieve the minimum

iSPEB by allocating transmitting power xk associated with

agent k, where xk is the vector consisting of {xkj}j∈Nb
∪

{xjk}j∈Na\{k}. Such a problem can be formulated as

Pk : min
xk

P(pk)

s.t.
∑

j∈Nb

xkj ≤ P (k)
anc (3)

∑

j∈Na\{k}

xjk ≤ P
(k)
agt (4)

xk � 0 (5)

where P
(k)
anc and P

(k)
agt are the total power associated with agent

k for anchor transmission and agent transmission, respectively.

Remark 1: The above formulation reduces to the non-

cooperative case by setting xkj = 0 for all k ∈ Na and j ∈ Na

in the constraints.

C. Uncertainty Model and Robust Formulation

Perfect estimates of network parameters (angles and ERCs)

are often unavailable in practice; for example, the angles de-

pend on agents’ positions, which need to be inferred in WNL.

This motivates the robust formulation of power allocation

problems, where the design of strategies accounts for the un-

certainty associated with the estimated parameters.4 The goal

of robust power allocation is to minimize the iSPEB subject

to power constraints and network parameter uncertainty.

For agent k and node j, let φ̂kj and ξ̂kj denote the nominal

values of the angle φkj and ERC ξkj , respectively. Consider

3The SPEB is obtained via information inequality and is asymptotically
achievable by the maximum likelihood estimators in high SNR regimes [40]–
[42]. High-accuracy WNL systems often operate in such regimes via the use
of repeated transmissions, coded sequences, or spread spectrum techniques,
etc.

4For example, in applications such as navigation and tracking, the estimated
parameters can be obtained from previous time steps.

i

2εφki

2εφkj

p̂k

p̂j

d̂kj − (δk + δj)

d̂kj + (δk + δj)

δk

Fig. 2. Example of the uncertainty model: each agent is located in one of
the green circles; for agent k, the circle is centered at p̂k with radius δk .

that the actual parameters lie in the linear sets

φkj ∈
[
φ̂kj − εφkj , φ̂kj + εφkj

]
=: Sφ

kj (6)

ξkj ∈
[
ξ̂kj − εξkj , ξ̂kj + εξkj

]
=: Sξ

kj (7)

where εφkj and εξkj are positive scalars denoting the maximum

uncertainty. Fig. 2 provides an example of the uncertainty

model. Agent k is located in a circle centered at p̂k with

radius δk. In this case, εφkj = arcsin
(
(δk + δj)/d̂kj

)
, where

d̂kj is the estimate of the distance between agent k and agent

j.

The worst-case iSPEB for agent k due to the network

parameter uncertainty (6) and (7) is given by

PR(pk) := max
{φkj∈Sφ

kj
, ξkj∈Sξ

kj
}
P(pk) (8)

and correspondingly, the robust power allocation problem is

given by

Pk-R : min
xk

PR(pk)

s.t. (3) − (5).

Remark 2: When the parameter uncertainty vanishes, the

worst-case iSPEB PR(pk) reduces to P(pk) and consequently,

the robust power allocation problem Pk-R reduces to the non-

robust problem Pk.

III. PROPERTIES OF SPEB

This section presents several important properties of the

iSPEB and lower bounds on the individual EFIM.

Je(p) =




JA
e (p1) +

∑
j∈Na\{1}

C1,j −C1,2 · · · −C1,Na

−C2,1 JA
e (p2) +

∑
j∈Na\{2}

C2,j −C2,Na

...
. . .

−CNa,1 −CNa,2 JA
e (pNa

) +
∑

j∈Na\{Na}
CNa,j


 (1)
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A. SPEB Properties

The network EFIM Je(p) can be written as a linear com-

bination of positive semidefinite matrices, given by

Je

(
p
)
=

∑

k∈Na

∑

j∈Na∪Nb\{k}

xkjξkjukju
T
kj

where ukj ∈ R
2Na is given by

ukj =

{
ek ⊗ [ cosφkj sinφkj ]

T if j ∈ Nb

(ek − ej)⊗ [ cosφkj sinφkj ]
T if j ∈ Na

in which ek and ej are Na-dimensional vectors. Using this

expression of network EFIM, the following properties of the

iSPEB can be obtained.

Proposition 1 (Convexity): The iSPEB P(pk) is convex in

xk.

Proof: See Appendix A.

Proposition 1 implies that Pk is a convex program since

the objective function is convex and the constraints are linear.

Thus, the optimal solution for Pk can be obtained using

standard convex optimization algorithms provided that the

power allocation vectors of other agents, i.e., {xj}j∈Na\{k},

are available.

Proposition 2 (Monotonicity): The iSPEB P(pk) is non-

increasing in power allocation vector xk.

Proof: See Appendix B.

Proposition 2 implies that the iSPEB is monotonically non-

increasing in ξkj , and thus the maximization over ξkj to obtain

the worst-case iSPEB is straightforward:

PR(pk) = max
{φkj∈Sφ

kj
, ξkj=ξ

kj
}
P(pk)

where ξ
kj

= ξ̂kj − εξkj .

Note that the optimal solutions of Pk’s and Pk-R cannot be

obtained in a distributed manner because the iSPEBs P(pk)
and PR(pk) depend on the angles and ERCs of the entire

network as well as the power allocation vectors of other agents.

Hence, we will derive upper bounds for P(pk) and PR(pk)
that are amenable for distributed implementation in Section

III-B and Section III-C, respectively.

B. Upper Bounds for Distributed Implementation

This section provides upper bounds for the iSPEB P(pk),
involving only the local network parameters. Consider the

following two auxiliary matrices:

JI
e(pk) = JA

e (pk) +
∑

j∈Na\{k}

xjkξjk Jr(φjk)

1 + xjk ξjk ∆jk
(9)

JII
e (pk) = JA

e (pk) +
∑

j∈Na\{k}

xjkξjk Jr(φjk)

1 + P
(k)
agt ξjk ∆jk

(10)

where

∆jk = vT
jk [J

A
e (pk) ]

−1 vjk

in which vjk = [ cosφjk sinφjk ]
T.5 The next proposition

shows that these auxiliary matrices are lower bounds for

Je(pk).
Proposition 3: The EFIM for agent k is bounded as

JII
e (pk) � JI

e(pk) � Je(pk).

Proof: See Appendix C.

Proposition 3 implies that

P(pk) ≤ P I(pk) ≤ P II(pk)

where

P I(pk) = tr
{[

J I
e(pk)

]−1
}

P II(pk) = tr
{[

JII
e (pk)

]−1
}

are upper bounds for the iSPEB of agent k. Note that if ∆jk

is available,6 then JI
e(pk) and JII

e (pk) depend only on local

network parameters and power allocation vectors of agent k;

that is, they do not rely on the parameters of the entire network

or the power allocation vectors of other agents. Therefore,

these bounds for the iSPEB are amenable for distributed

power allocation. In addition, since P I(pk) and P II(pk) are

upper bounds for the iSPEB, the power allocation programs

that adopt them as the objective functions are conservative

relaxations and their solutions will result in localization errors

small than the corresponding objective values.

Note that the denominator in the summand of the expression

in right-hand side of (10) does not contain xjk . Therefore,

the EFIM JII
e (pk) is linear in xjk , and such a linear form

will permit more efficient optimization, e.g., SDP [34]. Indeed,

this form of EFIM will permit even more efficient convex

optimization, e.g., SOCP [35].

C. Upper bounds with Parameter Uncertainty

This section provides upper bounds for the worst-case

iSPEB PR(pk) in the presence of network parameter uncer-

tainty. Consider the following matrix

QA
e (pk) :=

∑

j∈Nb

xkj ξkj (Jr(φ̂kj)− δkj I )

where δkj = | sin εφkj |. Then it can be shown that for any

φkj ∈ Sφ
kj and ξkj ∈ Sξ

kj ,

QA
e (pk) � JA

e (pk)

and consequently,

PA(pk) := tr
{[

JA
e (pk)

]−1
}
≤ tr

{[
QA

e (pk)
]−1

}
(11)

provided that QA
e (pk) � 0 [34].

Two additional auxiliary matrices are introduced as follows:

QI
e(pk) = QA

e (pk) +
∑

j∈Na\{k}

xjk χ
I
jk

(
Jr(φ̂jk)− δjk I

)

QII
e (pk) = QA

e (pk) +
∑

j∈Na\{k}

xjk χ
II
jk

(
Jr(φ̂jk)− δjk I

)

5In fact, ∆jk is the directional position error bound of agent j (based solely
on the anchors) along the angle φjk between the two agents [25].

6The knowledge of ∆jk can be obtained by a sequential power allocation
strategy, as discussed in Section IV.
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where

χ I
jk =

ξ
jk

1 + xjkξjk∆
R
jk

and χ II
jk =

ξ
jk

1 + P
(k)
agt ξjk∆

R
jk

in which

∆R
jk = max

φjk∈Sφ

jk

vT
jk

[
QA

e (pj)
]−1

vjk .

The next proposition shows that these two auxiliary matrices

QI
e(pk) and QII

e (pk) are lower bounds of JI
e(pk) and JII

e (pk),
respectively.

Proposition 4: Under the uncertainty model (6) and (7),

QI
e(pk) � JI

e(pk), ∀φkj ∈ Sφ
kj , ξkj ∈ Sξ

kj

QII
e (pk) � JII

e (pk), ∀φkj ∈ Sφ
kj , ξkj ∈ Sξ

kj

provided that QA
e (pk) � 0.

Proof: Note that

∆R
jk ≥ vT

jk

[
QA

e (pk)
]−1

vjk

≥ vT
jk

[
JA

e (pk)
]−1

vjk = ∆jk

where the first inequality is due to the definition of ∆R
jk and the

second inequality is due to JA
e (pk) � QA

e (pk) and QA
e (pk) �

0. Thus one can obtain

χ I
jk =

ξ
jk

1 + xjkξjk∆
R
jk

≤
ξjk

1 + xjkξjk∆R
jk

≤
ξjk

1 + xjkξjk∆jk

and similarly

χ II
jk ≤

ξjk

1 + P
(k)
agt ξjk∆jk

.

Moreover, note that QA
e (pk) � JA

e (pk) and (Jr(φ̂jk) −
δjk I ) � Jr(φjk) [34]. These inequalities lead to the claim

of the proposition.

Proposition 4 implies that for any φkj ∈ Sφ
kj and ξkj ∈ Sξ

kj ,

P I(pk) ≤ tr
{[

QI
e(pk)

]−1
}

P II(pk) ≤ tr
{[

QII
e (pk)

]−1
}

provided that QI
e(pk) � 0, QII

e (pk) � 0 and QA
e (pk) � 0.

Consequently,

PR(pk) ≤ max
{φkj∈Sφ

kj
,ξkj∈Skj}

P I(pk) ≤ tr
{[

QI
e(pk)

]−1
}

(12)

PR(pk) ≤ max
{φkj∈Sφ

kj
,ξkj∈Skj}

P II(pk) ≤ tr
{[

QII
e (pk)

]−1
}
. (13)

Note that similarly to JI
e(pk) and JI

e(pk), if ∆R
jk is available,

then QI
e(pk) and QII

e (pk) depend only on local network

parameters and power allocation vectors of agent k, facilitating

the design of distributed power allocation strategies.

IV. DISTRIBUTED POWER ALLOCATION STRATEGIES

This section develops distributed power allocation strate-

gies in the presence of network parameter uncertainty. These

strategies also account for the non-robust cases in which

the parameter uncertainty vanishes. In particular, the original

problem is decomposed into infrastructure and cooperation

phases, and distributed strategies are then designed for each

phase.

A. Power Allocation Decomposition

Using the upper bound in (12) or (13) as the optimization

objective for agent k requires the power allocation vectors

of all other agents. Obtaining these vectors in turn require

the power allocation vector of agent k in their optimization

programs. To circumvent this difficulty, we transform the

original problem into a sequential two-phase (infrastructure

phase and cooperation phase) optimization problem and design

distributed power allocation strategies for each phase. Specifi-

cally, each agent k accomplishes the tasks outlined as follows:

• infrastructure phase: determines the allocation of power

transmitted from anchors to agent k and obtains its

positional information;

• cooperation phase: determines the allocation of power

transmitted from agent k to its neighboring agents, using

their positional information obtained in the infrastructure

phase.

The next two subsections will present the power allocation

strategies in the infrastructure and cooperation phases.

B. Infrastructure Phase

For each agent k, PR(pk) is minimized with respect to

{xkj}j∈Nb
with xkj = 0 for all j ∈ Na. Using (11), the

robust anchor power allocation problem for agent k can be

formulated as

P
(k)
anc : min

{xkj}j∈Nb

tr
{[

QA
e (pk)

]−1
}

s.t. QA
e (pk) � 0

(3) and (5).

This power allocation problem can be transformed into SDP

by exploiting the properties of the SPEB as follows.

Proposition 5: Problem P
(k)
anc is equivalent to the SDP given

by

P
(k)
anc, SDP : min

M∈R2×2,{xkj}j∈Nb

tr{M }

s.t.

[
M I

I QA
e (pk)

]
� 0 (14)

(3) and (5).

Proof: Consider adding a dummy constraint with an

auxiliary matrix M to P
(k)
anc , resulting in

P
(k)
anc, aux : min

M∈R2×2,{xkj}j∈Nb

tr
{[

QA
e (pk)

]−1
}

s.t. QA
e (pk) � 0

M �
[
QA

e (pk)
]−1

(15)

(3) and (5)



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. X, MONTH 2014 6

which is equivalent to P
(k)
anc . Note that (15), together with

QA
e (pk) � 0, can be converted into (14) using the property of

Schur complement. Moreover, note that (15) implies that

tr{M} ≥ tr
{[

QA
e (pk)

]−1
}

and consequently, the objective function in P
(k)
anc, aux can be

replaced by tr{M}. Thus P
(k)
anc, SDP is equivalent to P

(k)
anc, aux

and hence to P
(k)
anc . Finally, since QA

e (pk) is linear in xkj ,

P
(k)
anc, SDP is an SDP.

C. Cooperation Phase

Using the optimal solutions of P
(k)
anc in the infrastructure

phase, each agent k obtains QA
e (pk) and transmits this to its

neighbors. Then, the power allocation problems for agent k in

the cooperation phase are formulated using (12) and (13) as

relaxed performance metrics.

1) Distributed Strategy I: Based on (12), the power alloca-

tion problem for agent k in the cooperation phase is formulated

as

P
(k)
agt, I : min

{xjk}j∈Na\{k}

tr
{[

QI
e(pk)

]−1
}

s.t. QI
e(pk) � 0 (16)

(4) − (5) .

Note that P
(k)
agt, I is not necessarily a convex program since

the feasible set corresponding to the constraint (16) may be

nonconvex. To deal with this issue, consider the following

problem

P
(k)
aux, I : min

M∈R2×2,{xjk,yj}j∈Na\{k}

tr
{
M

}

s.t.

[
M I

I Q̃I
e(pk)

]
� 0 (17)

0 ≤ yj ≤
xjk ξjk

1 + xjk ξjk ∆
R
jk

,

j ∈ Na \ {k} (18)

(4) − (5)

where

Q̃I
e(pk) = QA

e (pk) +
∑

j∈Na\{k}

yj
(
Jr(φ̂jk)− δjk I

)
.

One can show that P
(k)
aux, I is a convex program since the

feasible set corresponding to all the constraints is convex and

the objective function is a linear function of the optimization

variables. The next proposition shows that the optimal solution

of P
(k)
agt, I can be obtained by solving the convex program

P
(k)
aux, I.

Proposition 6: The minimum objective value of P
(k)
agt, I is

the same as that of P
(k)
aux, I, and the optimal solution of P

(k)
agt, I

can be obtained from that of P
(k)
aux, I.

Proof: See Appendix D.

Algorithm 1 Distributed Power Allocation Strategies

Input: Sφ
kj and Sξ

kj , k ∈ Na and j ∈ Na ∪ Nb \ {k}
Output: {xkj}k∈Na,j∈Na∪Nb\{k}

1: For k ∈ Na, agent k solves P
(k)
anc, SDP in the infrastructure

phase

2: For k ∈ Na, agent k transmits QA
e (pk) to its neighboring

agents

3: For k ∈ Na, agent k solves P
(k)
aux, I (or P

(k)
aux, II) in the

cooperation phase

4: Output xkj .

2) Distributed Strategy II: Based on (13), the power alloca-

tion problem for agent k in the cooperation phase is formulated

as

P
(k)
agt, II : min

{xjk}j∈Na\{k}

tr
{[

QII
e (pk)

]−1
}

s.t. QII
e (pk) � 0

(4) − (5) .

As with Proposition 5, one can show that P
(k)
agt, II is equiv-

alent to the following SDP.

P
(k)
aux, II : min

M∈R2×2,{xjk}j∈Na\{k}

tr{M }

s.t.

[
M I

I QII
e (pk)

]
� 0

(4) − (5) .

Remark 3: Since P
(k)
aux, I and P

(k)
aux, II require only the es-

timates of the local network parameters, they are amenable

for distributed implementation. The detailed power allocation

strategies are described in Algorithm 1.

V. SPARSITY OF POWER ALLOCATION

This section first presents the sparsity property of the

optimal power allocation and then proposes optimal anchor

power allocation strategies based on the sparsity property for

cooperative WNL. For ease of exposition, the strategy without

parameter uncertainty is considered and the analysis for the

robust case is analogous.

A. Sparsity of the Optimal Power Allocation Vector

Without loss of generality, the analysis focuses on the

anchor power allocation for agent k (i.e., P
(k)
anc ) with the total

power constraint P
(k)
anc = 1.

Let yk = [xk(Na+1) xk(Na+2) · · · xk(Na+Nb) ]
T denote the

anchor power allocation vector (APAV) for agent k. Then the

objective function of P
(k)
anc can be written explicitly as follows

[35]:

PA(pk;yk) =
4 · 1T Rk yk

yT
k RT

k Λk Rk yk
(19)

where Rk = diag{ξk(Na+1), ξk(Na+2), · · · , ξk(Na+Nb)}, and

Λk ∈ R
Nb×Nb is a symmetric matrix,

Λk = 11T − ck c
T
k − sk s

T
k (20)
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Agent

Anchor

Fig. 3. Sparsity property of the optimal APAV: for each agent, the optimal
localization accuracy can be achieved with at most three activated anchors.

with

ck = [ cosφk(Na+1) cosφk(Na+2) · · · cosφk(Na+Nb) ]
T

sk = [ sinφk(Na+1) sinφk(Na+2) · · · sinφk(Na+Nb) ]
T.

Based on the expression of (19), the sparsity property of the

optimal APAV will be given.

Proposition 7: There exists an optimal APAV y∗
k for P

(k)
anc

such that ‖y∗
k‖0 ≤ rank{Λk}.

Proof: See Appendix E.

Remark 4: The matrix Λk in (20) is a linear combination

of three rank-one symmetric matrices, implying that the rank

of Λk is no more than three, i.e., rank{Λk} ≤ 3. Therefore,

Proposition 7 implies the sparsity of the optimal APAV, i.e.,

each agent can achieve the optimal localization accuracy by

activating at most three anchors. Fig. 3 illustrates the sparsity

of the optimal APAV.

Since P
(k)
anc and P

(k)
agt, II have a similar structure, the sparsity

property of the optimal power allocation also holds for P
(k)
agt, II:

each agent can achieve the optimal localization accuracy by

making range measurements with at most three other agents.

Such property enables us to develop sparsity-aided power

allocation strategies. For brevity, the design of the strategy

will focus on solving P
(k)
anc and the solution for P

(k)
agt, II can be

obtained similarly.

B. Optimal Strategies for Simple Networks

Due to the sparsity of the APAV, the allocation strategy

presented here will start from networks with three anchors,

referred to as simple networks.

Proposition 8: For a simple network, if the following

conditions hold




rank{Λk} = 3

1T (RkΛkRk)
−11 > 0

(RkΛkRk)
−1(Rk 1+ α1) ≻ 0

(21)

where

α =
(
1T(RkΛkRk)

−11
)−1/2

then the unique optimal APAV for P
(k)
anc is given by

y∗
k =

A

2α
(RkΛkRk)

−1(Rk 1+ α1) (22)

x coordinate [m]

y
co
o
rd
in
a
te

[m
]

1000

1000

600

600

200

200

-1000

-1000

-600

-600

-200

-200

Fig. 4. The cooperative network consists of anchors (red circles) and agents
(blue dots).

where

A =
2α

1T(RkΛkRk)−1(Rk 1+ α1)
.

Otherwise, there exists an optimal APAV for P
(k)
anc with two

positive elements and y∗
k = ỹ

(i∗)
k , where

i∗ = arg min
i∈{1,2,3}

PA(pk; ỹ
(i)
k )

in which

ỹ
(1)
k =

1

a2 + a3
[ 0 a3 a2 ]

T

ỹ
(2)
k =

1

a1 + a3
[ a3 0 a1 ]

T

ỹ
(3)
k =

1

a1 + a2
[ a2 a1 0 ]T

with ai =
√
ξk(Na+i) for i = 1, 2 and 3.

Proof: See [43].

Proposition 8 gives the power allocation strategy for P
(k)
anc

in a closed form: if the conditions in (21) hold, the optimal

APAV is given by (22); otherwise, the optimal APAV is the

one (with the minimum objective value) of the three vectors.

The strategy in Proposition 8 can be extended to a general

network with Nb anchors. There are
(
Nb

3

)
distinct ways for

selecting three anchors to form simple networks; then the

optimal power allocation strategy is the one that corresponds

to the simple network with the minimum SPEB. In small

networks, this strategy is more efficient than SDP proposed

in Section IV.

VI. NUMERICAL RESULTS

This section provides the performance evaluation of the

proposed power allocation strategies, for which the convex

optimization programs are solved by CVX [44].
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Strategy I

Strategy II
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B

[m
2
]

20

16
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8

4
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Fig. 5. Average SPEB with respect to P tot
agt . Two cases for different Na are

considered: Na = 4 (dashed lines) and Na = 8 (solid lines).

Fig. 4 shows a two-dimensional cooperative network where

seven anchors are placed in the vertices of equilateral triangles

with circumradius of 500 meters. Agents are uniformly placed

in a circular area with radius of 50 meters and the center of the

circle is uniformly chosen in the whole 2000m×2000m area.

Consider the ranging signals with carrier frequency fc = 2.1
GHz and bandwidth W = 40 MHz. The noise power density is

−168 dBm/Hz. The WINNER channel model [45] is adopted

for the ranging signal propagation as follows

PL[dB] = A+B log10 d[m] + 20 log10
fc[GHz]

5.0
+X

where X ∼ N (0, σ2) accounts for large-scale fading (i.e.,

shadowing). For anchor transmission, A = 41.0, B = 23.8,

and σ = 4; for agent transmission, A = 46.8, B = 18.7,

and σ = 3. The extended typical urban model is used for the

power dispersion profile [46]. The ERCs ξkj are computed

according to the formulas in [25]. The total transmitting power

constraints in (3) and (4) are set to be the same for each agent,

i.e., P
(k)
anc = P tot

anc/Na and P
(k)
agt = P tot

agt/Na, where P tot
anc =

500W and P tot
agt takes specific values.

A. Localization Performance

This subsection evaluates the average SPEB for the fol-

lowing power allocation strategies in the absence of network

parameter uncertainty:

• Strategy I described in Section IV-C1;

• Strategy II described in Section IV-C2;

• the uniform strategy, in which

xkj = P (k)
anc /Nb , j ∈ Nb

xjk = P
(k)
agt /(Na − 1) , j ∈ Na \ {k} ;

• the centralized strategy described in [47].

Fig. 5 shows the average SPEB as a function of the total

agent transmitting power for all the four strategies where

Na = 4 and 8. It can be seen that for all the strategies, the

Na

S
P
E
B

[m
2
]

Optimal (Coop.)

Strategy I

Strategy II

Uniform (Coop.)

20

16

12

8

4

0
2 4 6 8 10

Fig. 6. Average SPEB with respect to the number of agents by different
strategies for P tot

agt = 1.25 W.

Na

S
P
E
B

[m
2
]

Optimal (Coop.)

Strategy I

Strategy II

Uniform (Coop.)

20

16

12

8

4

0
2 4 6 8 10

Fig. 7. Average SPEB with respect to the number of agents by different
strategies for P tot

agt = 2.5 W.

average SPEB decreases with P tot
agt as the agents can better

determine their positions with more transmitting power for

their cooperation. Moreover, the SPEB decreases with P tot
agt

at a slower rate for larger values of P tot
agt, implying that the

improvement of localization accuracy brought by the incre-

mental transmitting power of cooperation diminishes when

P tot
agt is large. These observations provide a guideline for the

localization accuracy versus power consumption tradeoff.

Figs. 6 and 7 show the average SPEB as a function of

the number of agents for all the four strategies where P tot
agt =

1.25W and 2.5W, respectively. It can be seen that Strategies

I and II significantly outperform the uniform strategy. For

example when Na = 6 and P tot
agt = 1.25W, both strategies

reduce the average SPEB by more than 30% compared to

the uniform strategy. Moreover, Strategy I performs better

than Strategy II, especially for large Na, since the former

adopts a tighter bound for the SPEB as the objective function.
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Fig. 8. Worst-case SPEB with respect to USS by the centralized strategy and
the uniform strategy. In the cooperation setting, P tot

agt = 1.25W.

Finally, the performance loss of Strategies I and II compared

to the optimal centralized strategy increases with the number

of agents. This can be attributed to the fact that the bounds for

the SPEB used in the proposed strategies are tighter in smaller

networks.

B. Effects of Network Parameter Uncertainty

This subsection evaluates the worst-case SPEB for the

robust power allocation strategies in the presence of network

parameter uncertainty. Consider a network with four agents,

in which the uncertainty region of each agent is a circle with

radius ∆, referred to as the USS. Thus, for agent k, εφkj =

arcsin(∆/d̂kj) for j ∈ Nb, while εφkj = 2 arcsin(∆/d̂kj) for

j ∈ Na \ {k}.

Fig. 8 shows the worst-case SPEB as a function of the USS

for the centralized and uniform strategies where P tot
agt = 0W

(non-cooperative setting) and P tot
agt = 1.25W (cooperative

setting).7 It can be seen that the worst-case SPEB increases

with the USS. This is because larger USS translates into

a larger range of network parameters and consequently a

larger worst-case SPEB. Moreover, the centralized strategy

significantly outperform the uniform strategy in both settings.

For example, in the cooperative setting, the centralized strategy

reduces the worst-case SPEB by more than 34% compared to

the uniform strategy. Finally, both strategies perform better in

the cooperative setting than in the non-cooperative setting.

Fig. 9 shows the worst-case SPEB as a function of the USS

for all the four strategies where P tot
agt = 1.25 W. It can be

seen that the worst-case SPEB increases with the USS for all

the strategies as with Fig. 8. Moreover, Strategies I and II

have almost the identical performance and both outperform

the uniform strategy, reducing the worst-case SPEB by more

than 36%. Finally, the performance loss of Strategies I and II

7The centralized strategy for the robust case can be obtained by extending
that for the non-robust case developed in [47] using a similar technique
proposed in Section III-C.
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Fig. 9. Worst-case SPEB with respect to USS by proposed strategies, the
uniform strategy and the centralized strategy.

compared to the centralized strategy is no greater than 7%,

showing the near-optimality and the robustness provided by

the two proposed distributed strategies.

VII. CONCLUSION

In this paper, we established an optimization framework

for robust power allocation in cooperative WNL. Based on

such framework, we developed efficient and distributed power

allocation strategies via relaxation methods. We also discov-

ered the sparsity property of optimal power allocation for

WNL, leading to more efficient power allocation strategies in

cooperative networks. The simulation results showed that the

proposed power allocation strategies significantly outperform

the uniform ones and achieve near-optimal performance. The

outcome of this paper provides a guideline for the design

of practical power allocation strategies, enabling robust and

energy-efficient localization networks.

APPENDIX A

PROOF OF PROPOSITION 1

Note that if X � 0, [X−1 ]2k−1,2k−1 and [X−1 ]2k,2k are

convex and non-increasing functions in X [48, p. 110]. In

addition, Je(p) is a linear function of xk. By the convexity

property of the composition functions [48, p. 86], P(pk) is a

convex function in xk.

APPENDIX B

PROOF OF PROPOSITION 2

For two power allocation vectors xk and yk , suppose

xk � yk and let {xij} and {yij} denote the corresponding

power allocation sets such that xi = yi for i ∈ Na \ {k}.

Then, the difference between the EFIMs associated with power
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allocation sets {xij} and {yij} is given by

Je(p; {xij})− Je(p; {yij})

=
∑

i∈Na

∑

j∈Na∪Nb\{i}

(xij − yij) ξijuiju
T
ij

=
∑

j∈Nb

(xkj − ykj) ξkjukju
T
kj

+
∑

j∈Na\{k}

(xjk − yjk) ξjkujku
T
jk

where the last equality is due to the fact that xi = yi for

i ∈ Na \ {k}. Note that xkj − ykj ≥ 0, ξkj ≥ 0, and ukju
T
kj

are positive semidefinite matrices. Therefore,

Je(p; {xij})− Je(p; {yij}) � 0

and hence J−1
e (p; {xij}) � J−1

e (p; {yij}), which leads to the

claim

tr
{[

J−1
e (p; {xij})

]
pk

}
≤ tr

{[
J−1

e (p; {yij})
]
pk

}
.

where [J−1
e (p) ]pk

denotes the square submatrix on the diag-

onal of J−1
e (p) corresponding to pk.

APPENDIX C

PROOF OF PROPOSITION 3

Without loss of generality, the proof focuses on the first

agent. Consider JL
e (p), representing the EFIM ignoring the

cooperation among agents in Na \ {1}, in (23) shown at the

bottom of this page. Note that JL
e (p) � Je(p) since

Je(p)− JL
e (p)

=
1

2

∑

k∈Na\{1}

∑

j∈Na\{1,k}

(xjkξjk + xkjξkj)ukju
T
kj � 0

where the inequality is due to the fact that each summand is

positive semidefinite. Consequently,

Je(p1) � JL
e (p1). (24)

The EFIM for agent 1 based on JL
e (p) is given as

JL
e (p1)

= JA
e (p1) +

∑

j∈Na\{1}

[
C1,j −C1,j

(
JA

e (pj) +Cj,1

)−1
Cj,1

]

(25)

(a)
= JA

e (p1) +
∑

j∈Na\{1}

(x1jξ1j + xj1ξj1)Jr(φ1j)

1 + (x1jξ1j + xj1ξj1)∆j1

(b)

� JA
e (p1) +

∑

j∈Na\{1}

xj1ξj1Jr(φj1)

1 + xj1ξj1∆j1
= JI

e(p1) (26)

where (a) can be verified after some algebra by noting

C1,j = (x1jξ1j + xj1ξj1)v1j v
T
1j

and (b) holds since Jr(φ1j) � 0 and y/(1+y∆j1) increases in

y. Equations (24) and (26) give the result Je(p1) � JL
e (p1) �

JI
e(p1).
Moreover, due to the power constraints for the agent trans-

mission, it follows that xjk ≤ P
(k)
agt and hence

ξjk

1 + P
(k)
agt ξjk ∆jk

≤
ξjk

1 + xjk ξjk ∆jk

which leads to the claim that JII
e (pk) � JI

e(pk).

APPENDIX D

PROOF OF PROPOSITION 6

Consider the following problem

P̃
(k)
aux, I : min

M∈R2×2,{xjk,yj}j∈Na\{k}

tr
{
M

}

s.t. yj =
xjk ξjk

1 + xjk ξjk ∆
R
jk

,

j ∈ Na \ {k} (27)

(4), (5) and (17).

Analogously to Proposition 5, one can show that P̃
(k)
aux, I

is equivalent to P
(k)
agt, I and they have the same minimum

objective value. Hence, we only need to prove that P̃
(k)
aux, I

and P
(k)
aux, I have the same minimum objective value and that

the optimal solution of P̃
(k)
aux, I can be obtained from that of

P
(k)
aux, I.

On the one hand, since (18) is a relaxed constraint of

(27), the minimum objective value of P
(k)
aux, I is no greater

than that of P̃
(k)
aux, I. On the other hand, for an optimal

solution
{
M∗, {x∗

jk, y
∗
j }j∈Na\{k}

}
of P

(k)
aux, I, there exists

{x̃∗
jk}j∈Na\{k} such that x̃∗

jk ≤ x∗
jk and

y∗j =
x̃∗
jk ξjk

1 + x̃∗
jk ξjk ∆

R
jk

(28)

due to that x ξ
jk
/(1 + x ξ

jk
∆R

jk) is an increasing func-

tion of x. Hence,
{
M∗, {x̃∗

jk, y
∗
j }j∈Na\{k}

}
is also an opti-

mal solution of P
(k)
aux, I. In the meantime, (28) implies that{

M∗, {x̃∗
jk, y

∗
j }j∈Na\{k}

}
is a feasible solution of P̃

(k)
aux, I and

hence the minimum objective value of P̃
(k)
aux, I is no greater than

tr{M∗}, which is the minimum objective value of P
(k)
aux, I.

Therefore, P
(k)
aux, I and P̃

(k)
aux, I have the same minimum

objective value and the
{
M∗, {x̃∗

jk, y
∗
j }j∈Na\{k}} is the op-

timal solution of P̃
(k)
aux, I, obtained from that of P

(k)
aux, I. This

concludes the proof of Proposition 6.

JL
e (p) =




JA
e (p1) +

∑
j∈Na\{1}

C1,j −C1,2 · · · −C1,Na

−C2,1 JA
e (p2) +C2,1 0

...
. . .

−CNa,1 0 JA
e (pNa

) +CNa,1


 (23)
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APPENDIX E

PROOF OF PROPOSITION 7

Let y∗
k denote an optimal APAV for P

(k)
anc with the minimum

number of positive elements and let m = ‖y∗
k‖0. If there

are multiple such vectors, any can be chosen. Without loss of

generality, consider that the first m elements of y∗
k are positive,

i.e.,

y∗
k = [ (y∗)T 0T

Nb−m ]T (29)

where y∗ denotes the vector consisting of the m positive ele-

ments of y∗
k. Let R = diag{ξk(Na+1), ξk(Na+2) · · · , ξk(Na+m)}

and Λ be the first principle m×m matrix of Λk, i.e.,

Λ = 11T − c cT − s sT

with

c = [ cosφk(Na+1) cosφk(Na+2) · · · cosφk(Na+m) ]
T

s = [ sinφk(Na+1) sinφk(Na+2) · · · sinφk(Na+m) ]
T.

If m ≤ rank{Λk}, the proof is complete; otherwise, it will

lead to a contradiction shown as follows.

If m > rank{Λk}, then m > rank{Λ} since rank{Λk} ≥
rank{Λ}. This gives I − Λ+Λ 6= 0, which is equivalent

to I − R−1Λ+ΛR 6= 0. Suppose the ℓth column of (I −
R−1Λ+ΛR) is not 0. Consider the following mapping

g(t) = y∗ + t · (I−R−1Λ+ΛR) el

where el ∈ R
m. By Lemma 1 (shown in Appendix F),

there exists t̃ such that g(t̃) � 0 and ‖g(t̃)‖0 < m. Then

consider the APAV ỹk = [g(t̃)T 0T ]T. By Lemma 2 (shown

in Appendix G), ỹk is an optimal APAV for P
(k)
anc . However,

‖ỹk‖0 < m, which contradicts that y∗
k is the optimal APAV

with the minimum number of positive elements.

APPENDIX F

Lemma 1: Given n ∈ N and w, z ∈ R
n, if w ≻ 0 and z 6=

0, there exists t̃ ∈ R such that w+t̃ z � 0 and ‖w+t̃ z‖0 < n.

Proof: This lemma can be proved by considering a

mapping f : R → R
n

f(t) = w + t z.

Note that (i) f(0) = w is a vector with all positive elements;

(ii) either f(t) or f(−t) has at least one negative element for

sufficiently large t; (iii) f(·) is continuous on t. Thus, there

exists t̃ ∈ R such that f(t̃) � 0 with f(t̃) containing at least

one zero element, i.e., ‖f(t̃)‖0 < n.

APPENDIX G

Lemma 2: If y = y∗ + ( I −R−1Λ+ΛR )w, where y∗ is

given in (29), and w ∈ R
m is an arbitrary real vector satisfying

y � 0, then yk = [yT 0T
Nb−m ]T is an optimal APAV for

P
(k)
anc .

Proof: To prove yk is an optimal APAV for P
(k)
anc , it

suffices to prove that yk achieves the same SPEB as y∗
k in

(29) and that yk satisfies the total power constraint.

One can verify that 1 ∈ span{columns of Λ} and hence

1T (I−Λ+Λ) = 0T. Consequently,

1TR (I−R−1Λ+ΛR) = 0T. (30)

Note that

1T
Nb
Rk yk

(a)
= 1T

mRy
(b)
= 1T

mRy∗ (c)
= 1T

Nb
Rk y

∗
k (31)

where (a) is due to the relationship between yk and y, (b) is

due to (30), and (c) is due to (29). By the definition of the

pseudo-inverse matrix, Λ(I−Λ+Λ) = 0. Consequently,

RΛR (I−R−1Λ+ΛR) = 0. (32)

Note that

(yk)
TRkΛkRkyk

(d)
= (y)TRΛRy

(e)
= (y∗)TRΛRy∗

(f)
= (y∗

k)
TRkΛkRky

∗
k (33)

where (d) is due to the relationship between yk and y, (e)
is due to (32), and (f) is due to (29). Recalling the SPEB

expression in (19), equations (31) and (33) imply that yk and

y∗
k achieve the same SPEB, i.e., PA(pk;yk) = PA(pk;y

∗
k).

If 1T(I−R−1Λ+ΛR) = 0T, then 1Tyk = 1Ty∗
k , indicating

that yk satisfies the power constraint (4) and hence the proof

is complete; otherwise, it will lead to a contradiction shown

as follows.

If 1T(I−R−1Λ+ΛR) 6= 0T, then there exists ws 6= 0 such

that 1T(I−R−1Λ+ΛR)ws < 0. Moreover, there exists a suffi-

ciently small β > 0 such that y∗+
(
I−R−1Λ+ΛR

)
βws � 0

since y∗ ≻ 0. Let w = βws and then the corresponding y

and yk satisfy that

1T
Nb
yk = 1T

my < 1T
my∗ = 1T

Nb
y∗
k.

Consider a scaled APAV ỹk = yk/γ where

γ = (1Tyk)/(1
Ty∗

k).

One can verify that

PA(pk; ỹk) = PA(pk;yk/γ)

= γ PA(pk;yk)
(g)
< PA(pk;yk)

= PA(pk;y
∗
k) (34)

where (g) is true since γ < 1. Equation (34) implies ỹk

outperforms y∗
k, which contradicts the fact that y∗

k is an

optimal APAV.
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