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1 Introduction

Any liquid, when cooled sufficiently fast, turns into a glass: a peculiar state of matter,

disordered like a liquid, yet rigid like a solid (recent summaries of the state of the field

include [1–3]; pedagogical lectures include [4–6]; reviews emphasizing landscape-based the-

ories include [7–9]; reviews emphasizing kinetic approaches include [10, 11]). Black hole

horizons behave like perfect fluids [13–17] and have been used extensively to holographi-

cally model liquid states of matter [18–25]. It is natural to wonder if a class of holographic

liquids will similarly vitrify upon rapid cooling. But what, then, is a holographic glass?

This is is the question we want to address here.

1.1 The glass problem

In fact, even disregarding interpretations in terms of black holes and holography, the na-

ture of glass and the glass transition remains shrouded in mystery [1–11]. Over a century

of theoretical, experimental and numerical research have led to many new insights, but

so far no fully successful grand unified theory of the glass transition has emerged. The

central question in the field is what causes the dynamical arrest that occurs when a super-

cooled liquid approaches its glass transition temperature, signaled by an explosive growth

in relaxation time scales, leading for example to a dramatic increase in shear viscosity.

This happens without any discernible change in spatial structure or order compared to the

liquid phase. One of the diverging points of view in the field is whether the transition is

essentially thermodynamic or kinetic in nature.

– 1 –
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What is known is that in any case, the glass transition is not described by equilibrium

statistical mechanics. Glasses are thermodynamically metastable states failing to find

their way to true equilibrium on experimental time scales. As a result, their properties

depend on the details of their history, in particular on their age, that is to say on how

long it has been since they fell out of equilibrium. This often manifests itself in universal

“aging” behavior of observables. A concrete example of this is the aging of the conductivity

σ of electron glasses, which when measured at different times decreases as σ(t) − σ(t0) ∼
− log(t/t0) [157, 158, 164, 165]. Notice that instead of the usual time translation invariance

of exponential relaxation (e.g. discharge of a capacitor), we now get time scale invariance.

Non-exponential relaxation laws have been observed for many other amorphous systems,

apparently going back at least to Weber, who noticed it in the relaxation of the silk threads

he used to hang his magnets [158, 163].

A qualitative picture for how these and other features may come about is that glasses

have extremely rugged free energy landscapes, with exponentially many local minima, in

which the system gets hopelessly lost in its attempts to find the true global minimum. It

has been known for a long time that this picture can be given a precise meaning in mean

field models of spin glasses [26], in which the equations determining local magnetization

densities (the so-called TAP equations [27]) have exponentially many solutions below the

spin glass transition temperature. This is in contrast to the analogous mean field equa-

tions for the Ising model, which below the critical temperature has just two solutions for

the magnetization density, corresponding to the homogeneous spin up/down equilibrium

states. The degrees of freedom governed by TAP-like equations are local order parameters,

coarser than the fundamental microscopic degrees of freedom, but finer than the global

thermodynamic variables. They have definite expectation values in particular, metastable,

macroscopically distinguished states, with small thermal fluctuations around these expec-

tation values. This is analogous to classical backgrounds in field or string theory. Indeed

string theory likewise exhibits an exponentially large landscape of solutions, the “vacua”

of the theory.

Various incarnations of the landscape-based, essentially static thermodynamic ap-

proach, adapted to structural glasses1 have been the leading theories of the glass tran-

sition for many years [7–9]. More recently however, there has been a renewed focus on

real space-time dynamical properties, as opposed to static configuration space properties,

due in large extent to the observation, in experiments and especially numerical simula-

tions, of the ubiquitousness and importance of “dynamical heterogeneities”. As mentioned

earlier, one of the striking features of the glass transition is the complete absence of ob-

viousstatic structural changes accompanying it. The new insight is that this is not true

for dynamic structural changes. Supercooled liquids turn out to have long-lived, localized

regions of high cooperative dynamic activity, mixed with localized regions of almost no

1The standard terminology in the glass literature is that spin glass models are models with quenched

disorder (Hamiltonians with randomly frozen couplings), while structural glass models start from simple

Hamiltonians (e.g. Lennard-Jones), the disorder being spontaneously generated. The systems studied in

this work are analogous to structural glasses, existing without any quenched disorder.
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cooperative motion whatsoever.2 The size, distribution and evolution of these structures

changes significantly when approaching the glass transition, upon which the system falls

out of equilibrium. These remarkable kinetic features are hard to explain in the essentially

static landscape-based theories, and theories giving a central role to spacetime trajectories

have gained some prominence as a result [10, 11].

Neither of these different classes of theories is fully satisfactory however, and getting

the theories in line with observations often requires patching together elements from dif-

ferent approaches, which are not always logically consistent with each other. There is no

universal framework analogous to the framework statistical mechanics provides for equi-

librium thermodynamics. One of the theoretical obstacles making this such a challenging

problem is the lack of models that retain all the basic features of a structural glass while

also remaining analytically tractable. There is at this point nothing like the hydrogen atom

or the Ising model for the glass transition.

1.2 Challenges for holographic constructions

A good model for the glass transition ideally should be able to quantitatively capture

the strongly coupled physics of a liquid at all temperatures, allowing analytic study of

thermodynamic and transport properties as well as real time relaxation dynamics, making

the emergence of dynamical arrest and the salient features of glass formation manifest.

Holographic models would therefore seem to be natural candidates, as they provide exact

solutions to thermodynamic questions (at least for certain large N field theories), and have

proven to be particularly powerful exactly in modeling liquid phases of matter and their

transport properties, at arbitrary temperatures. Moreover, holography provides direct ac-

cess to the complete thermodynamic state space, including the landscape of macroscopically

distinct stable and metastable states, giving the latter a precise meaning. In other words,

it provides a precise analog to the TAP equations mentioned above, in the universal form

of the bulk gravity field equations. Explicit solutions can be constructed and probed at

will, aided by geometric intuition. The relevant local order parameters are manifest, and it

becomes possible to directly deduce whether or not a thermodynamic free energy landscape

emerges, and if so what its physical consequences are. In addition, holography automati-

cally incorporates spacetime dynamics, no matter if we are near or far from equilibrium.

This makes it possible to study within the same local but macroscopic framework also

relaxation dynamics, aging, dynamical heterogeneities and other kinetic features, without

having to go back to the microscopic details. These features make holography a potentially

useful playground for studying the glass transition.

This brings us back to our question: what, then, is a holographic glass? As mentioned

before, a black hole or black brane in AdS behaves as a holographic liquid. Famously,

the shear viscosity to entropy density ratio η/s has the universal value ~/4πkB for any

thermodynamic state dual to a black brane at finite temperature [15, 18, 20, 21]. The

entropy density s goes down with temperature, so for holographic liquids described by

2See http://prx.aps.org/supplemental/PRX/v1/i2/e021013 for some neat movies illustrating the phe-

nomenon.
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black branes, the shear viscosity η will decrease with decreasing temperature. In contrast,

for ordinary liquids such as water, the shear viscosity goes up when temperature goes down,

dramatically so in the supercooled regime, effectively diverging when approaching the glass

transition. Thus a simple homogenous black brane will never behave like a supercooled

liquid, let alone a glass.

The holographic dual of a glass should therefore break the translation invariant, homo-

geneous nature of the black brane. It is known that in certain circumstances, homogeneous

bulk geometries such as black branes may indeed become unstable to formation of inho-

mogeneities [28–31], sometimes giving rise to mildly spatially modulated, “striped” phases,

vortex lattices or other inhomogeneous structures [32–52]. These are distinct from holo-

graphic lattices that are quenched into the geometry by applying a modulated source on the

boundary of AdS such as those studied in [53–56], in the sense that they are spontaneously

generated, in the absence of explicit inhomogeneous sources. The works cited above ex-

hibit holographic geometries with lattice-like, periodic order. Not surprisingly, they have

crystal-like properties, rather than glass-like. One would expect a glassy geometry to be

disordered. Disordered holographic geometries have been studied too [53, 57–62], but as far

as we know, all examples studied to date are quenched by explicit sources. Thus, in the ter-

minology of footnote 1, they describe holographic “spin” (quenched) glasses, rather than

holographic structural (spontaneous) glasses. What we are after are holographic struc-

tural glasses, with the disordered geometry generated in the absence of explicit disordered

boundary sources.

It is possible that in the models of spontaneous breaking of translation symmetry

cited above, disordered brane geometries might exist besides the ordered ones studied so

far, the reason for the occurrence of order and lattice symmetry being more related to

the relative simplicity of constructing symmetric geometries, rather than being intrinsic.

Indeed, finding metastable disordered geometries would require finding isolated disordered

solutions to a set of coupled nonlinear partial differential equations, arguably not an easy

task. To construct simpler examples of disordered geometries in the absence of disordered

sources, one might want to try to sprinkle charged massive probe particles onto a charged

black brane background. In the dual CFT, this would correspond to adding small matter

density inhomogeneities. However, just dropping a charged particle onto a black brane

horizon will not generate a metastable structure, as the charge will quickly dissolve into

the horizon. More fundamentally, whether we treat the problem perturbatively or use the

fully nonlinear Einstein equations, we are still left with a single, smooth brane horizon,

and it is not clear (to us at least) if local inhomogeneities are enough to destroy universal

properties such as η/s = 1/4π, which as we have seen is incompatible with what one

expects from a supercooled liquid or a glass.

1.3 Black hole bound states as holographic glasses

In this paper, we explore a different idea, continuing on our work in [68]. The idea is

that glassy and supercooled liquid phases of matter are holographically dual to disordered

geometries with fragmented horizons, or more precisely to metastable black hole bound

states. A zoo of absolutely stable, supersymmetric, stationary black hole bound states has
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Figure 1. Electric (left) and magnetic (right) field lines for some bound charges. The bottom

plane is the horizon, the top plane is the boundary. The vertical coordinate is the optical distance

from the horizon (cf. (7.15)).

been known in the context of 4d N = 2 supergravity for some time [69–72], and the bound

states we will study in this paper are cousins thereof, lifted to finite temperature and to

asymptotically AdS4 space. The generalization to finite temperature, asymptotically flat

bound states was the subject of [68] (and independently [74, 75]), where existence of such

bound states was established by considering charged probe black holes in the presence

of a nonextremal background black hole. In this work we show that such bound states

persist for nonextremal charged black holes in AdS4, including planar ones. The specific

bulk gravity theory we consider is the simplest possible natural uplift of the asymptoti-

cally flat model studied in [68] to AdS4. It is given by four-dimensional Einstein gravity

coupled to two U(1) gauge fields and a non-minimally coupled scalar, with a scalar po-

tential of “Fayet-Iliopoulos” gauged supergravity form [64–66], which appears naturally

in flux compactifications of string theory. The scalar potential has a negative energy ex-

tremum, leading to AdS4 vacuum solutions, and the model has the virtue of having known

explicit nonextremal black hole solutions with running scalars, a prerequisite for construct-

ing bound states generalizing those of [68]. The probe particles are characterized by two

electric and two magnetic charges, and crucially the existence of stationary bound states

requires the charges of probe and background to be mutually nonlocal (i.e. in a duality

frame in which the background is considered electric, the magnetic charge of the probes

must be nonzero in order for a bound state to exist). As a result the bound particles are

dynamically trapped by the black hole background, the way electrons get trapped in a

magnetic background.

At sufficiently high temperature, the bound states disappear, melting away into the

background. At sufficiently low temperatures, the expulsion of particles from the mother

– 5 –
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black hole to form bound states lowers the free energy and thus becomes thermodynamically

favored. However, at equilibrium, the rates for emission and absorption of charges are

exponentially small in the semiclassical (N → ∞) limit in which the bulk gravity picture

becomes reliable, leading to a distribution of exponentially large relaxation time scales

τc ∼ ecN with c broadly distributed. As we will demonstrate, this naturally leads to aging,

with a logarithmic aging law of the type mentioned above.

A number of glassy features of these bound states is evident. A rugged free energy

landscape with an extensive configurational entropy is manifest as the space of stationary

bound state configurations. This space is large as a result of the fact that the constituents

can have a wide range of different possible charges, with frustrated Van der Waals type

static and electron-monopole type magnetic interactions between them. In the language

of [131], still in the probe approximation, we can think of the local minima in this landscape

as equilibrium configurations of “supergoop” clouds surrounding the mother black hole.

Examples are shown in figures 1 and further on in 17. Although it may well be that

there exists one particular ordered cloud configuration minimizing the free energy, there

is no straight path that takes the system there starting from say the bare black brane

state. Indeed, as we will see, even disregarding interactions between probes, it is in general

not true that transitions towards lower free energy states are faster; in fact for a range

of charges the opposite is true, with time scales for transitions to the lowest free energy

bound states being exponentially much longer than those to higher free energy states. As

a result, the system gets trapped in valleys of the free energy landscape which do not

continue down to the true lowest free energy states. In this regime (the regime in which

bound states are thermodynamically preferred over the bare brane), the probe density

will eventually increase to the point that we necessarily exit the range of validity of the

probe approximation. At higher temperatures, all bound states have higher free energy

than the bare brane, and are thus metastable. In this case, time evolution preserves the

validity of the probe approximation, and we can follow the evolution of the system for

arbitrarily long times. For example, after quenching some initial cloud configuration with

order 1 occupation numbers, we can see how it relaxes back to the bare brane configuration

with an exponentially dilute cloud, which is the equilibrium state. As already mentioned,

we observe characteristic O(t2) − O(t1) ∼ log(t2/t1) aging behavior for such relaxation

processes, similar to aging laws in other amorphous systems.

The main goals of this paper are to establish the existence of AdS black hole bound

states at finite temperature, to map out their detailed phase diagram, and to exhibit

quantitatively the crude glassy features we just sketched. In addition, we set up the basic

holographic dictionary between black hole bound states and their CFT dual thermal states.

In particular we determine the features to which the localized bulk probe particles map

in the boundary CFT — for instance localized electric charge maps to a localized excess

of matter density given by the normal component of the electric field strength at the

boundary, while localized magnetic charge maps to a localized current loop (or spin) given

by the cross product of the unit normal and the magnetic field at the boundary. The

electric and magnetic fields of some probes are shown in figure 1 and CFT charge and

current densities are illustrated for actual examples in figures 22, 23 and 24.

– 6 –
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To understand the glass transition itself in this context, to extract detailed transport

properties and to place these models in the larger framework of theories of supercooled

liquids and the glass transition, more work will be needed. In the final section of this

paper, we give a detailed discussion of the gaps in our present analysis, offering some

speculation and the general outlook we have on further progress. In a nutshell, our current

speculative view is as follows. Bound states get highly populated during a cooling quench

via classical horizon charge clumping instabilities, thus generating a finite density of local

structures that are not in equilibrium but nevertheless metastable with exponentially long

lifetimes. The bound charges backreact onto the brane, and because they are necessarily

magnetically charged, they will act as magnetic brakes onto charged horizon currents,

generating eddy current friction due to Lenz’s law. This will obstruct charge transport,

leading to a dramatic decrease in diffusion rates. Shear viscosity on the other hand, which

is transversal momentum conductivity, will get greatly enhanced with respect to the bare

black brane, as momentum can now efficiently be conducted through the supergoop cloud

covering the brane. Indeed, due to the mutual electric-magnetic nonlocality of the charges

in the cloud, implying that pairs of charges produce an intrinsic angular momentum stored

in their electromagnetic field, the cloud can be thought of as a network of gyroscopes,

resisting shearing and dynamically rigidifying the system, for any one of its configurations.

As a result, the viscosity will greatly increase. Finally, dynamical heterogeneities are

seeded by the bound charges, and their hierarchical dynamics as observed in simulations

such as [12] finds a natural geometrization in terms of the hierarchy of layers of particles

bound at different radii.

1.4 Outline

The structure of the paper is as follows. In section 2 we introduce the model. In section 3 we

review the bulk background solutions we will use, and settle on a convenient parametriza-

tion. In section 4 we discuss in detail the thermodynamic phase diagram of the background

black holes, including the identification of possible charge clumping instabilities. We also

study the small and planar black hole limits, and hyperscaling-violating limits. In section 5

we exhibit the existence of probe bound states and map out their phase diagram. We give

special attention to the planar case, and briefly discuss the opposite limit, “AdS super-

goop”, which is a possible endstate in which the horizon has completely fragmented into

small black holes. In 6 we study the relaxation dynamics of probe clouds in the ideal gas

approximation, demonstrating the appearance of logarithmic aging and relating the aging

coefficients to barrier distributions. In section 7 we give the holographic interpretation of

our bulk constructions. Finally in section 8 we summarize our conclusions, point out the

gaps in our analysis, provide some speculations and give an outlook on future directions.

The appendices provide details of some results which may be of independent interest.

2 The model

2.1 Qualitative features and motivation

The bulk gravity theory we consider consists of four-dimensional Einstein gravity coupled

to two U(1) gauge fields and a non-minimally coupled scalar. In addition it has a scalar

– 7 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

potential with an AdS4 vacuum solution, with tunable parameters controlling the scalar

vev and the AdS curvature scale. The specific Lagrangian we start from is given below

in (2.1) and the part we will actually use in this paper is given in (2.5). It can be viewed as

a bosonic truncation of the simplest possible N = 2 gauged supergravity theory, sometimes

called Fayet-Iliopoulos (FI) gauged supergravity [64–66] (for a concise review with black

holes in mind see [67]).

In the flat space limit (vanishing scalar potential), the model reduces to the one consid-

ered in [68], which was obtained there as a universal consistent truncation of any Calabi-Yau

compactification of type IIA string theory. One motivation for our choice of model is that

this flat space limit is known to have stationary BPS black hole bound states of arbitrary

complexity [69–73], which persist at finite temperatures [68, 74]. Hence by continuity we

are guaranteed that black hole bound states will also exist in the present model, at least in

the limit in which the size of the black holes is much smaller than the AdS radius. Another

motivation is that the asymptotically flat background black hole solutions used in [68] have

explicit asymptotically AdS counterparts [67, 76]. This allows us to copy the probe strat-

egy followed in [68], making manifest the specific new features induced by the lift to AdS4.

The final motivation is the plausibility that this model has a suitable (stable) embedding in

string theory, possibly with a holographic dual description as a three-dimensional conformal

field theory.

The string theory embedding will have at least one important imprint on the low

energy physics which is not determined by the 4d bulk Lagrangian (2.1) itself, namely the

spectrum of charged particles. To stay as close as possible to [68], we will assume the

charged particles in the model are all much heavier than the AdS curvature scale. This

allows treating them as well-localized probes. As detailed in section 2.3 below, we will infer

their mass by thinking of them as black holes much smaller than any of the length scales

of the background.

2.2 Bulk action

Our notation is chosen to parallel that of [68], the asymptotically flat limit of the model.3

The light field content consists of the metric gµν , a complex scalar z ≡ x+ iy and two U(1)

gauge fields AIµ, I = 0, 1, with field strengths F Iµν ≡ ∂µA
I
ν − ∂νAIµ. The four-dimensional

bulk action is taken to be the bosonic sector of Fayet-Iliopoulos N = 2 gauged supergravity

with cubic prepotential: S = 1
8π

∫
d4x
√
−gL with

L =
1

2`2p
R− 3

4`2p

(∂x)2 + (∂y)2

y2
− Vg(x, y)−GIJF IµνF Jµν + ΘIJF

I
µνF̃

Jµν , (2.1)

where F̃µν ≡ 1
2εµνρσF

ρσ, with ε0123 = +
√
−g. The scalar is neutral but is non-

minimally coupled to the electromangnetic field strengths through the coupling and theta

angle matrices

G =

(
1
6y

3 + 1
2x

2 y −1
2xy

−1
2xy

1
2y

)
, Θ =

(
1
3x

3 −1
2x

2

−1
2 x

2 x

)
. (2.2)

3To conform to more standard conventions, we will however change the normalization of the gauge fields

by a factor − 1
2
: Anew

µ = − 1
2
Aold
µ .
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The scalar potential Vg for N = 2 Fayet-Iliopoulos-gauged supergravity is schematically of

the form Vg = |DW |2 − 3|W |2 where W ∼ 1
y3/2

(
−gp1 z

2

2 + gq0
)
, which is also of the form of

Gukov-Vafa-Witten-type N = 1 superpotentials arising from flux compactifications [80].

It leads to the following potential:

Vg(x, y) = − 3

2`4p
gp1

(
gp1y + gq0

1

y
+ gp1

x2

y

)
. (2.3)

In the context of flux compactifications, the constants gp1 and gq0 would be fixed by the

choice of fluxes supporting the compactification, and by values of moduli we are taking to

be frozen here.

We will take (gp1 , gq0) to be arbitrarily tunable but fixed real valued parameters of

the theory. If they have the same sign, which we assume from now on, the potential is

extremized at a negative local maximum z = z0, giving rise to an AdS4 vacuum with AdS

length `, with

x0 = 0 , v =

√
gq0
gp1

, Vg = − 3

`4p

√
g3
p1gq0 = − 3

`2p`
2
. (2.4)

In this vacuum the scalar has the conformally coupled value m2 = −2/`2, above the

Breitenlohner-Freedman AdS tachyon bound [81], which for AdS4 is m2
BF = −2.25/`2.

For the background black hole solutions which we consider, it is consistent to put

x ≡ 0, in which case the coupling matrix G becomes diagonal and the theta angle matrix

Θ is zero. Putting furthermore y ≡ v eχ, the Lagrangian (2.1) then simplifies to

L =
1

2`2p

(
R− 3

2
(∂χ)2 +

6

`2
coshχ

)
− 1

6
v3 e3χ F 2

0 −
1

2
v eχ F 2

1 . (2.5)

Without making a commitment to any stringy interpretation at this point, we

reparametrize the gi by constants k and N as follows

gq0 ≡
1

k
gp1 ≡

1

N
. (2.6)

Then we have

v =

√
N

k
,

`2

`2p
=
N2

v
=
√
kN3 . (2.7)

If the gravity theory has a CFT dual, its central charge is proportional to the second

quantity, the AdS radius squared in four dimensional Planck units (see e.g. [82] for a

general discussion). This will also be evident from the scaling of various thermodynamic

quantities in (3.18) further down. In ABJM theory [83], a Chern-Simons-matter CFT

proposed to be dual to type IIA string theory on AdS4×CP 3 with k units of magnetic RR

2-form flux and N units of magnetic 6-form flux turned on in the CP 3, the central charge is

of the same form, with N interpreted as the rank of the gauge group, and k as the inverse

coupling constant of the Chern-Simons theory. The quantity v2 = N/k is identified with

the ’t Hooft coupling λ in this setting, and `s = `/
√
v with the string length. Further down

– 9 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

we will see that other quantities such as particle mass spectra have ABJM-like scalings

with k and N .

However, the model we are considering is not the low energy effective action of the

ABJM AdS4×CP 3 compactification, as in this theory one of the U(1)s is actually massive,

Higgsed by a charged scalar (the universal 4d axion) with D0- and D4- charges proportional

to (g−1
q0 , g

−1
p1 ) ∝ (k,N) [83]. One of the consequences of this is that D2 and D6 charges

will come with strings attached and that one of the two electrostatic forces will fall off

exponentially rather than by the usual Coulomb law.

2.3 Probe action

Since our model has two U(1)s, the electromagnetic fields couple to two magnetic charges

pI and two electric charges qI , I = 0, 1. The qI couple electrically to the AI , while the pI

couple electrically to the dual gauge potentials BI , defined as

dBI = GI = GIJ F̃
J −ΘIJF

J . (2.8)

The equations of motion for F I are the Bianchi identities for GI and vice versa. With

these dual gauge fields one can conveniently write down a general expression for the action

of a probe particle in a general background. For a probe charge γ = (p0, p1, q0, q1) this

is [70, 84]

Sγ = −
∫
mγ(z) ds−

∫
qIA

I − pIBI . (2.9)

We will take probe charges to be quantized in units of order 1, roughly thinking of them

as wrapped D6, D4, D2 and D0 brane charges in a type IIA compactification. The mass

m(p, q; z) depends on the charges and the local background scalar value z = x + iy. We

will consider probe black holes which are much smaller than the AdS radius as well as

much smaller than the background black hole, albeit at the same temperature. As argued

in [68] and as we will check again in section 5.1 below, in this limit, the background

becomes effectively cold from the point of view of the probe, in the sense that the thermal

contribution to its mass becomes negligible. Hence the probe acquires the properties of an

extremal black hole in asymptotically flat space. Extremal asymptotically flat black holes

in N = 2 supergravity may be BPS or non-BPS. In the first case, their mass is given by

the absolute value of the central charge of the asymptotically flat N = 2 supersymmetry

algebra, which for our model is

mγ(z) =
1

`p

√
3

4y3

∣∣∣∣16p0z3 − 1

2
p1z2 + q1z + q0

∣∣∣∣ . (2.10)

In the second case, the mass is strictly greater than this. As in [68], we restrict ourselves to

probe charges that are in fact BPS. Besides being the simplest to analyze systematically,

BPS probes are also the most stable. Although non strictly supersymmetric in AdS, the

phase space for decay of these nearly-BPS probes will generically be much smaller than for

probe charges which have a non-BPS flat space limit.

When x = 0, (2.10) reduces to mγ =
√

3
2`p

[
(1

6p
0y3/2−q1y

−1/2)2+(1
2p

1y1/2+q0y
−3/2)2

]1/2
.

Since we work with normalization conventions in which charges are integrally quantized, we
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can read off the orders of magnitude of the masses of various types of charge. Expressed in

terms of the AdS scale ` and the the parameters v, N and k introduced in (2.4) and (2.7),

these are:

`mD0 ∼
N

v2
= k , `mD2 ∼

N

v
=
√
Nk , `mD4 ∼ N , `mD6 ∼ Nv =

√
N3

k
. (2.11)

Notice that this agrees with the masses of wrapped D0- and D4-branes in ABJM theory [83]

(D2- and D6-branes carry magnetic charge for the massive U(1) in ABJM, and as a result

would come with additional magnetic flux strings attached to them). The condition that all

charged particles be much heavier than the AdS scale is thus 1
N � v �

√
N , or equivalently

N3 � k � 1.

As in [68, 73], we may parametrize the charges as

γ = (p0, p1, q1, q0) = p0

(
1, κ,−b+

κ2

2
, n+ bκ− κ3

6

)
. (2.12)

The parameter κ can be thought of as proportional to U(1) worldvolume flux on the

wrapped D-brane; switching it on effectively shifts z → z − κ in (2.10). The (flat) BPS

black hole entropy is independent of κ and given by Sγ = π(p0)2
√

8
9b

3 − n2 [85]. For

charges γ = p1
(
0, 1, κ, n′ − κ′2

2

)
, this becomes Sγ = π(p1)2

√
2
3n
′. Evidently the quantities

under the square root must be positive for the black hole to exist. We should note however

that not all BPS particles have a realization as a single centered black hole in supergravity,

even when we allow singular limits in which the horizon goes to zero size. Some BPS states

are realized as multi-centered bound states [70]. A notable example is a pure wrapped D4-

brane, which has a negative worldvolume curvature-induced D0-charge q0 = −p3
1/24, and is

realized as a two particle bound state of charges (1, p12 ,
p21
8 ,−

p31
48) and (−1, p12 ,−

p21
8 ,−

p31
48) [73].

However for our purposes it will be sufficient to consider single centered probes, and so we

will require 8
9b

3 − n2 ≥ 0.

3 Background solution

We consider a spherically symmetric nonextremal charged black hole metric of the form

ds2 = −V (r) dt2 +
1

V (r)
dr2 + W (r) dΩ2

2 . (3.1)

The scalar z is assumed to only depend on the radial coordinate r. Note that r is in

principle not the Schwarzschild radial coordinate; namely because it can go negative. In

general the black hole may have arbitrary electric and magnetic charges QI and P I , but

as in [68] we limit ourselves to a setup with P 0 = 0 and Q1 = 0, in which case we can

consistently set x = 0 throughout, and the field strengths

F 0 = Q0
3

y(r)3

dt ∧ dr
W (r)

, F 1 = −1

2
P1 sin θ dθ ∧ dφ (3.2)

automatically solve the Bianchi identities and equations of motion [68].
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Exact solutions satisfying this ansatz, for arbitrary charges P1, Q0 and mass M , were

constructed in [76] (related solutions were considered in [86–101]). These solutions will be

the starting point for our analysis.4

3.1 Metric, scalar and gauge potentials

For any given mass M and charges P1, Q0, the solution of [76] can be written in the

form (3.1) with x = 0 and

V (r) =
1

W

(
r2 − c2 +

1

`2
W 2

)
, W (r) =

√
f0f3

1 , y(r) = v

√
f0

f1
, (3.3)

where the fi are functions linear in r:

f0(r) = r + a0 , f1(r) = r + a1 , (3.4)

the AdS length ` and asymptotic scalar v = y|r=∞ are fixed by gq0 and gp1 as in (2.4), and

c, a0 and a1 are positive constants determined by the mass M and charges Q0 and P1 of

the black hole:

a0 =

√
c2 +

12

v3
`2pQ

2
0, a1 =

√
c2 +

v

3
`2pP

2
1 , (3.5)

with c = c(M,Q0, P1) the unique positive solution to

M`2p =
1

4
a0 +

3

4
a1 =

1

4

√
c2 +

12

v3
`2pQ

2
0 +

3

4

√
c2 +

v

3
`2pP

2
1 . (3.6)

The definition and computation of the mass M is subtle due to the presence of the m2 < 0

scalar. We computed it as in [102, 104]. The parameter c is a measure for the deviation

from extremality, as in the asymptotically flat case studied in [68]. However in the case

at hand the point c = 0 is not physically reachable: extremality occurs at some nonzero

value of c, as will be clear from the discussion further down. Notice that when a0 = a1,

i.e. when |Q0| = v2|P1|/6, the profile of the scalar field becomes constant everywhere and

the metric becomes that of the ordinary Reissner-Nordstrom-AdS black hole.

We denote the radial location of the outer horizon by r+. It satisfies V (r+) = 0, that is:

r2
+ − c2 +

1

`2
(r+ + a0)(r+ + a1)3 = 0 , (3.7)

and in addition W (r) > 0 and V (r) > 0 for all r > r+.

4This is not the most general set of solutions compatible with the ansatz. Indeed in the neutral limit, it

reduces to the standard hairless AdS-Schwarzschild solution, while it is known that there also exist hairy

solutions with the same boundary conditions [102] (for a recent discussion see [103]). The (numerically

constructed) hairy neutral black hole is thermodynamically disfavored compared to the hairless one [102],

and thus by continuity the same will be true for at least a finite range of charged black holes, for which

this restriction will not invalidate the thermodynamic analysis. It is not known however if this continues

to hold for arbitrary charges. In principle it should be possible to address this question by (numerically)

analyzing the reduced equations of motion obtained e.g. in [96].
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The gauge potentials AI and their magnetic duals BI are obtained by integrating the

field strengths F I and GI specified by (3.2) and (2.8):

A0 =

(
3

v3

Q0

r + a0
− φ0

)
dt , A1 =

1

2
P1

(
cos θ ± 1

)
dφ , (3.8)

B0 =
1

2
Q0

(
cos θ ± 1

)
dφ , B1 = −

(
v

4

P1

r + a1
− φ1

)
dt . (3.9)

We choose the integration constants φ0 and φ1 such that the electric potentials vanish at

the black hole horizon r = r+. This guarantees regularity of the gauge connection after

Euclidean continuation of the solution, and fixes

φ0 =
3

v3

Q0

r+ + a0
, φ1 =

v

4

P1

r+ + a1
, (3.10)

The asymptotic scalar profile in the standard Schwarzschild radial coordinate rs =√
W (r) is given by log y(rs) = α

rs
+ β
r2s

+· · · , where α = (a0−a1)/2 and β = −α2/2. Thus all

solutions found in [76] obey the generalized conformally invariant boundary condition β =

fα2 of [102], for a specific value of f (which depends on the normalization of the scalar).5

3.2 Parametrization

We found it most convenient to parametrize the vacua by ` and v and the black hole

solutions by r+, u0 and u1, where we define

uI ≡ r+ + aI . (3.11)

The parameters c, a0, a1 appearing in the solution as given above can be written in terms

of (r+, uI) as:

c =

√
r2

+ +
1

`2
u0u3

1 , aI = uI − r+ , (3.12)

and thus the conserved quantitities Q0, P1 and M are obtained using the relations (3.5)–

(3.6). Explicitly:

`p|Q0| =

√
v3

12

√
u0(u0 − 2r+)− u0u3

1

`2
, `p|P1| =

√
3

v

√
u1(u1 − 2r+)− u0u3

1

`2
,

`2pM =
1

4
(u0 + 3u1)− r+ . (3.13)

The AdS-Reissner-Nordstrom limit corresponds to u0 = u1 ≡ u, while the neutral AdS-

Schwarzschild limit has r+ = 1
2(u− 1

`2
u3), with M = 1

2(u+ 1
`2
u3)/`2p.

5These generalize the “standard” Dirichlet (α = 0) and “alternate” Neumann (β = 0) zero source

boundary conditions. In language of the dual CFT, the α = 0 boundary conditions corresponds to a CFT

where the operator O dual to the scalar has dimension ∆ = 2, while β = 0 boundary conditions correspond

to a CFT where this operator has dimension ∆ = 1. The α = 0 CFT is the IR fixed point of a relevant

double trace deformation ∆LCFT ∝ O2 of the β = 0 CFT, while the β + α2

2
= 0 CFT is obtained from the

β = 0 one by an approximately marginal triple trace deformation ∆LCFT ∝ O3.
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3.3 Entropy and temperature

The black hole entropy is one quarter of the horizon area, which in our parametrization

takes the simple form

S =
π
√
u0u3

1

`2p
. (3.14)

Its temperature T is obtained in the standard way by requiring regularity of the Euclidean

continuation at r = r+ by imposing Euclidean time periodicity 1/T , giving

T =
V ′(r+)

4π
=

2r+ + u2
1(3u0 + u1)/`2

4π
√
u0u3

1

. (3.15)

Notice that in the flat space limit, the BPS black holes would have r+ = 0 and are

thus connected to finite temperature black holes in AdS where we do not take the strict

`→∞ limit.

3.4 Physical region of parameter space

The physical parameter range is given by the values of (r+, u0, u1) for which the constants

aI and c appearing in the metric are all positive, and for which T > 0 and φI ∈ R. This

implies in particular that uI > 0, as can be seen by making use of (3.5) and (3.12). The

horizon radial position can be either positive or negative: for example a large neutral

AdS-Schwarzschild black hole has r+ < 0 while a small neutral black hole has r+ > 0.

To obtain all possible black hole solutions for a given (T, φ0, φ1), we solve numerically

for (r+, u0, u1) and retain the solutions with u0, u1 > 0. This guarantees the solution is

physical and that r+ is indeed the outer horizon, i.e. V (r) > 0, W (r) > 0 for all r > r+.6

3.5 Scaling symmetries and invariant parametrization

We have parametrized the solutions by a total of 5 parameters (v, `, r+, u0, u1), with the first

two fixing the AdS vacuum and the last three parametrizing the black hole solutions within

a given vacuum. However, as in the asymptotically flat case [68], there are two scaling

symmetries trivially relating different solutions. They act as X → λn1
1 λn2

2 X, λi ∈ R+, on

the various quantities X defined so far, with the exponents (n1, n2) indicated in the first

two lines of this table:

` v k N r+ u0 u1 M Q0 P1 S T φ0 φ1 r

n1 1 0 1 1 1 1 1 1 1 1 2 −1 0 0 1

n2 0 1 −3
2

1
2 0 0 0 0 3

2 −1
2 0 0 −3

2
1
2 0

δ −1 0 0 0 −1 −1 −1 1 0 0 0 1 1 1 −1

N# 0 0 1 1 0 0 0 2 1 1 2 0 1 1 0

v# 0 1 −2 0 0 0 0 −1 1 −1 −1 0 −2 0 0

6To see this, express V and W in terms of (r+, u0, u1) and x ≡ r− r+. Then W =
√

(u0 + x)(u1 + x)3,

which is manifestly positive for x > 0, since uI > 0. Furthermore WV =
(
2r+ + 1

`2
u2
1(3u0 + u1)

)
x +(

1 + 3
`2
u1(u0 + u1)

)
x2 + 1

`2
(u0 + 3u1)x3 + 1

`2
x4, which is also manifestly positive, since the coefficient of x

equals 4ST > 0, and uI > 0.
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The third line shows the mass dimension δ. Physical observables will depend only on

invariant combinations of the parameters, up to an overall factor determined by the scaling

properties of the observable. Specifically, we will express any quantity X of mass dimension

δ and scaling exponent (n1, n2) in terms of a dimensionless, scaling invariant X̃, as follows:

X = `−δNn1+δ vn2−(n1+δ)/2X̃ . (3.16)

The quantities N and k were introduced in (2.7). The last two lines of the table indicate

the powers of N and v appearing in various quantities. We will display our phase diagrams

as functions of the rescaled intensive variables
(
T̃ , φ̃0, φ̃1

)
related to the original ones by

T =
1

`
T̃ , φ0 =

N

v2`
φ̃0 , φ1 =

N

`
φ̃1 . (3.17)

The extensive variables (3.13) and (3.14) are related to their invariant counterparts by

Q0 = Nv Q̃0 , P1 =
N

v
P̃ 1, M =

N2

v`
M̃ , S =

N2

v
S̃ . (3.18)

Working consistently with the rescaled variables instead of the original ones effectively sets

`p ≡ 1, ` ≡ 1 v ≡ 1 (3.19)

in the expressions of the previous sections. In what follows we will always use rescaled

variables, and to avoid cluttering we will therefore drop the tildes, keeping in mind that in

order to get the actual physical quantities, we need to rescale as indicated above.

Finally note that besides the obvious charge conjugation symmetry (P1, Q0) →
(−P1,−Q0), the background metric and scalar profile are also invariant under (P1, Q0)→
(P1,−Q0). This descends from an enhanced Z2 symmetry of the action that exists only

when the pseudoscalar x is zero.

4 Background thermodynamics

Before moving on to examine probe black holes in the black hole background, we analyze

the phase structure of the background itself, which is already quite interesting. This comes

down to a generalization of the classic work [106] on phases of pure AdS-Reissner-Nordstrom

black holes to the case with running scalars, with the former retrieved in our setup as the

special case u0 = u1, which indeed has y(r) = v constant. The presence of running scalars

leads to a considerably more intricate structure.

4.1 Thermodynamic equilibrium and stability

We will mostly work in a thermodynamic ensemble with fixed temperature T and chemical

potentials φ0, φ1 dual to the charges Q0 and P1, and fixed charges P 0 = 0, Q1 = 0.

That is to say, if we imagine coupling the system to a reservoir at fixed temperature

T and potentials φI , the total (system plus reservoir) entropy will change as ∆Stot =
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∆S − 1
T ∆E + φ0

T ∆Q0 + φ1
T ∆P1 = −∆F/T , where ∆E, ∆Q0, ∆P1 and ∆S refer to the

system, and we have defined

F ≡ E − T S − φ0Q0 − φ1P1. (4.1)

Stable equilibrium with the reservoir requires Stot to be maximized, or equivalently F to

be minimized under variations of energy and charges; locally this requires

F ′ = 0 , F ′′ > 0 . (4.2)

The derivatives are understood to be with respect to the system’s extensive variables,

at fixed, externally tuned values of T , φ0 and φ1. The parametrization of the extensive

variables can be arbitrary. We will work with the black hole metric parameters (u0, u1, r+)

defined in 3.2. Thus, using (3.13) and (3.14) keeping in mind (3.19),

F =
1

4
u0+

3

4
u1−r+−πT

√
u0u3

1−
φ0

2
√

3

√
u2

0−2u0r+−u0u3
1−
√

3φ1

√
u2

1−2u1r+−u0u3
1. (4.3)

Solving F ′ = 0 in (4.2) at fixed (T, φ0, φ1) then provides the local equilibrium relation

between (T, φ0, φ1) and (r+, u0, u1):

T =
2r+ + 3u0u

2
1 + u3

1

4π
√
u0u3

1

, φ0 =

√
3

2

√
u2

0 − 2u0r+ − u0u3
1

u0
, φ1 =

√
3

4

√
u2

1 − 2u1r+ − u0u3
1

u1
,

(4.4)

in agreement with the values obtained earlier in (3.10) and (3.15) by requiring reg-

ularity of the Euclidean continuation. The corresponding equilibrium free energy is

remarkably simple:

Feq =
r+

2
. (4.5)

This can also be obtained as the on shell Euclidean action IE = F/T , provided the action

is defined with the appropriate boundary counterterms, as in [102]. Note that this simple

expression suggests a nice interpretation of the radial coordinate r. Roughly, it is to

free energy what the Schwarzschild radial coordinate is to entropy. We can also give a

more physical interpretation to the parameters u0, u1 by noticing that at equilibrium

u0 = 3Q0/φ0, u1 = P 1/4φ1. This shows that u0 and u1 can be thought of as the black

hole’s D0- and D4-charge susceptibilities.

For the system-reservoir equilibrium to be stable under small fluctuations, we need a

positive definite Hessian, that is F ′′ > 0 at fixed T, and φI . Stability under arbitrarily

large fluctuations requires the minimum to be global.

Note that although we are analyzing stability in this (partial) grand canonical ensem-

ble, this does not necessarily mean we are actually considering a physical situation in which

the system is truly coupled to a reservoir. Indeed, in the case of global AdS black holes

(dual to thermal states of a CFT3 living on a 2-sphere), it is physically most natural to

consider the physical system to be isolated, since there is no natural “outside” environment

for the 2-sphere. However even for isolated systems, a grand canonical stability analysis

provides information. More specifically, an instability in the grand canonical ensemble will,
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Figure 2. AdS-Schwarzschild free energy F for a black hole of size u coupled to a heat bath at

temperatures (from left to right) πT = 0.75, 0.95, 1.15. A local minimum corresponds to a pertur-

batively stable black hole, which is globally stable if it is negative. A local maximum corresponds

to a perturbatively unstable black hole.

for sufficiently large isolated systems, indicate a thermodynamic tendency towards the for-

mation of inhomogeneities in the distribution of the energy and charge. Essentially, for a

subsystem small compared to the complete system, this is because the remainder of the

system acts as a reservoir. In view of the fact that instabilities towards the formation of

inhomogeneities is exactly what we want to investigate in this paper, this is therefore an

appropriate ensemble to consider.7

4.2 Schwarzschild illustration

As a simple check and illustration of the above discussion, consider first the AdS-

Schwarzschild black hole (figure 2). This amounts to setting u0 = u1 ≡ u and r+ =
1
2(u− u3), so S = πu2, M = 1

2(u+ u3), and:

F = M − TS =
1

2
(u+ u3)− πTu2 . (4.6)

The local equilibrium condition (4.2) is ∂uF = 1
2 + 3

2u
2−2πTu = 0 and ∂2

uF = 3u−2πT > 0.

The first equation expresses the equilibrium temperature in terms of u: Teq(u) = 1
4π (u−1 +

3u). Plugging this value for T into (4.6) gives Feq = 1
4(u − u3) = 1

2r+, confirming (4.5).

The minimum value of Teq(u), reached at u = 1/
√

3, is Tmin =
√

3/2π; there are no black

holes at temperatures below this. For any given T > Tmin, there are two solutions u to

the equilibrium equation, hence two black hole solutions. The larger one will be at a local

minimum of F (u) (F ′′(u) > 0), the smaller one at a local maximum. The local minimum

of F (u) is not necessarily a global minimum. To verify global minimality, we also have to

compare to the free energy at the boundary points of state space, in this case at u = 0.

From the third expression in (4.6), it follows that for any value of T , we have F = 0 when

7By the same token, it would actually have been even more appropriate for us to consider the ensemble

where all charges are allowed to fluctuate, including P 0 and Q1. Unfortunately this is obstructed by the

lack of explicit black holes solutions for the general charge case.
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Figure 3. Phase diagrams for the black hole background. On the left we have φ1 = 0.4φ0 and

on the right φ1 = φ0. The different regions are labeled by a the signs of the free energies of the

black hole solutions in the region. For example (−+) is a region with two black holes, one with

negative and one with positive free energy, while (−) indicates a region with just one black hole,

with negative free energy. Across the dotted lines either ∆0 or ∆1 changes sign. The white regions

represent configurations where no black holes exist. The Hawking-Page transition occurs at the

thick black line, terminating in the orange dot.

u = 0.8 Therefore global stability requires Feq < 0. This is the case if and only if u > 1.

Hence a first order phase transition occurs at u = 1, where Teq = 1/π. This was first

pointed out by Hawking and Page [108]. The transition is accompanied by a macroscopic

jump in mass and entropy in the large N limit and can thus be considered to be a first order

phase transition. In the context of the AdS-CFT correspondence, it can be interpreted as

a confinement-deconfinement phase transition occurring on the sphere at a temperature of

the order of the inverse curvature radius [109].

4.3 Background phase diagram

Figure 3 shows the phase diagrams in the (φ0, T ) plane, for two different fixed φ1/φ0 ratios.

The diagrams are obtained by solving (4.4) for r+, u0 and u1. For the φ0 and φ1 equations

this can be done in a relatively simple closed form:

r+ =
u1

2

∆0∆1 − u4
1

∆0 + u2
1

, u0 = u1
∆1 + u2

1

∆0 + u2
1

, where ∆0 ≡ 1− 4

3
φ2

0, ∆1 ≡ 1− 16

3
φ2

1 ,

(4.7)

The remaining relation to be inverted is

T =
∆0 + 3u2

1

4πu1

√
∆1 + u2

1

∆0 + u2
1

. (4.8)

8This is true in the classical gravity approximation N →∞ where N was defined in (3.16). At one loop,

there will be a contribution from thermal fluctuations, capturing the free energy of an ideal thermal gas in

global AdS, but this will be of order 1 in a large N expansion, and hence negligible to leading order.
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This can be reduced to finding the roots of a cubic polynomial but as usual the explicit

expression for the solutions is not illuminating. The charges and entropy in terms of u1

and φ0, φ1 are

Q0 =
u1φ0

3

∆1 + u2
1

∆0 + u2
1

, P1 = 4u1φ1 , S = πu2
1

√
∆1 + u2

1

∆0 + u2
1

= π

√
Q0P 3

1√
φ0φ3

1

, (4.9)

the free energy is F = r+/2 with r+ as in (4.7), and the energy is

M =
u1

4

4u2
1 + 2u4

1 + 3∆0 + ∆1 − 2∆0∆1

∆0 + u2
1

. (4.10)

Recall that the Reissner-Nordstrom limit corresponds to u0 = u1, which implies ∆0 = ∆1,

or φ1 = φ0/2.

We list some notable features:

1. The temperature (4.8) diverges for u1 →∞, so at high temperatures there will always

be at least one solution, with negative free energy. It is continuously connected to

the large AdS-Schwarzschild black hole by tuning φ0 and φ1 to zero. As long as ∆0

and ∆1 are positive (corresponding to the region below the lower dotted line in the

figure), the temperature goes infinite again when u1 → 0, providing a second high

temperature solution branch. This solution is continuously connected to the small

Schwarzschild black hole. It ceases to exist when crossing over to ∆0 < 0 or ∆1 < 0

(from below to above the (lower) dotted line in the figure), as the quantity under the

square root then becomes negative for u1 → 0. When ∆0 > 0 and ∆1 < 0 (region

between the dotted lines), there is only one high temperature solution. However

when ∆0 < 0 (region above the (upper) dotted line), a new high temperature branch

emerges for values of u1 approaching the zero of the denominator, i.e. for u2
1 → −∆0.

In contrast to the small u1 branch, it has negative free energy.

2. In regions with two black holes, the one with the lowest free energy is locally stable

(F ′′ > 0), the other one unstable. When there is a unique black hole solution, it

is locally stable. When crossing the dotted lines (corresponding to sign changes of

the ∆I), the stable black hole always continues smoothly, whereas the unstable black

hole becomes singular. Consider for example the case ∆1 > 0 with ∆0 small and

negative. Putting u1 = w
√
−∆0 and dropping subleading terms turns (4.8) into

T ≈
√

∆1(3w2−1)

4πw
√
w2−1

, which relates a finite fixed w to a finite fixed T . Sending ∆0 up to

zero at fixed w thus corresponds to a black hole with u1 → 0, u0 ≈ w∆1√
−∆0(v2−1)

→∞,

r+ ∼ −
√
−∆0 → 0−, Q0 ∼ 1/

√
−∆0 → ∞, and M ∼ 1/

√
−∆0 → ∞. The scalar

profile and geometry becomes singular in this limit; for instance at the horizon we

have y =
√
u0/u1 ∼ −1/∆0 →∞.

3. The white gaps in the plot occur when the black hole free energy at fixed reser-

voir temperature and potentials fails to have a local extremum as a function of

the extensive variables (r+, u0, u1), the analog of the upper curve in figure 2. In
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this case none of the family of black holes we consider can exist in equilibrium

with the reservoir. When crossing over into a white gap a stable and an un-

stable saddle point of the free energy coalesce and disappear. At the boundary

the Hessian F ′′ develops a zeromode and detF ′′ = 0. It can be checked that

detF ′′ ∝ (3u0 + u1 − 4 r+)(2u0u
5
1 + r+(u0 − u1)u2

1 − 2 r2
+), up to factors that re-

main positive throughout; this provides the boundaries of the white gaps.

4. For the white gaps below the dotted line (∆0,∆1 > 0), a Hawking-Page transition

occurs before reaching the gap. This is indicated by the thick line forming the bound-

ary between the yellow and red regions. In the red region the free energy still has

a local minimum, but it is positive, so the black holes we consider are thermody-

namically disfavored compared to a thermal gas in empty AdS. This is the analog of

the middle curve in figure 2. The transition temperature THP is obtained by solving

F = 1
2r+ = 0, which gives u1 = (∆0∆1)1/4 and

THP =

√
∆0 + 3

√
∆1

4π
. (4.11)

which is real if ∆0,∆1 > 0. On the Reissner-Nordstrom locus, we have ∆0 = ∆1

and this becomes THP =
√

∆0/π, reproducing [106]. For neutral black holes we have

∆0 = ∆1 = 1 and THP = 1/π, reproducing [108].

5. When ∆0 < ∆1, as is the case in the figure on the left, there is also a white gap above

the dotted line, i.e. for ∆0 < 0. The instability associated to it is of a very different

nature than the Hawking-Page instability. It is still true that the disappearance of

black hole solutions is due to the coalescence and then disappearance of a pair of

saddle points of the free energy (4.3) (one locally stable, the other one unstable), but

now this happens for saddle points at a negative value of F , so the thermodynamically

preferred state cannot possibly be that of a thermal gas in empty AdS (which has

F = 0). Indeed there is a much more violent instability in this regime: whenever

φ0 >
√

3
2 , the free energy (4.3) is unbounded below, with a runway in the large u0

direction. To see this, it is convenient to first eliminate r+ in favor of the charge

P1 = ∂φ1F =
√

3
√
u1(u1 − 2r+)− u0u3

1, in terms of which

F =
u0

4

(
1+2u2

1−
2φ0√

3

[(
1−u1

u0

)(
1+u2

1

)
+

P 2
1

3u0u1

]1/2)
−πT

√
u0u3

1−φ1P1+
P 2

1

6u1
+
u1

4
.

(4.12)

In the large u0 limit at fixed u1 and P1, the leading term is linear in u0, with coefficient

proportional to 1 + 2u2
1 −

2φ0√
3

√
1 + u2

1. When φ0 >
√

3
2 , this becomes negative for

a range of u1 values, implying the free energy is unbounded below in this regime.

When brought in contact with an infinite reservoir, the system will soak up Q0-

charge without bound. For large systems in isolation, one expects a corresponding

instability to formation of clumps with large Q0 densities. In the limit of an infinitely

large system (the planar limit, which will be detailed in section 4.5), the system acts

as an infinite reservoir for finite subsystems, and there again appears to be no limit

– 20 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

on how large the charge accumulation can get. This would appear rather unphysical.

However, in this limit the solution becomes singular, with the scalar y and curvature

growing without bound towards the black hole, outside the regime of validity of the

4d (truncated) supergravity approximation. Presumably, assuming the model has a

UV completion, the runaway will therefore be cured by degrees of freedom beyond

those considered in our setup. .

6. The limit ∆1 → ∆0 is subtle when ∆0 < 0. Naively, (4.7) would seem to imply that

the limiting solution is just the u0 = u1 AdS-Reissner-Nordstrom black hole with

constant scalar profile. This is indeed one of the limiting solutions, but it misses

the solution branch with u2
1 approaching −∆0: from (4.7) and (4.8) it follows that

with ∆1 −∆0 ≡ δ and u2
1 + ∆0 ≡ ε both small, we have 2πT ≈

√
−∆0(1 + δ/ε) and

u0/u1 ≈ 1 + δ/ε ≈ −(2πT )2/∆0. This is different from 1 in general so the limiting

black hole will not be the RN solution and in particular it will have a nontrivial

scalar profile. For T <
√
−∆0
2π , this black hole has lower free energy than the AdS-

RN solution, for T >
√
−∆0
2π it has higher free energy. When T =

√
−∆0
2π the two

solutions coincide with u0 = u1 =
√
−∆0, and the Hessian degenerates. This is also

the location where the white gap begins to open up when ∆0 < ∆1.

7. The orange dot in the figure corresponds to the singular point u1 → 0 with either

∆0 = 0 and T = 3
√

∆1
4π (as in the left panel of the figure) or ∆1 = 0 and T =

√
∆0

4π

(as in the right panel). When ∆1 = 0, Q0/P1 diverges, and when ∆0 = 0, P1/Q0

diverges. This results in singular limiting solutions, similar to the other degenerations

we discussed.

4.4 The flat space/small black hole limit

The asymptotically flat space limit (analyzed in [68]) corresponds to taking N ∝ `/`p →∞
keeping the original, unrescaled Q0, P1 and M`p fixed. From (3.18) it can be seen that in

terms of the rescaled variables we are working with here (which were indicated by tildes

in (3.18)), this means we take (Q0, P1,M) ∼ 1
N → 0, or equivalently (r+, u0, u1) ∼ 1

N → 0.

From (4.4) it follows that for generic nonextremal black holes in this scaling limit we have

T → ∞ while the φI remain finite. This is evident as well from (3.17)), as we are taking

the limit with fixed physical temperature and potentials in Planck units. At any rate,

since we can now drop terms of higher order in u1 in expressions such as (4.8), it becomes

easy to invert the relations between intensive and extensive variables; in particular Q0 =
φ0

12π T

√
∆3

1
∆0

, P1 = φ1
πT

√
∆0∆1, M =

√
∆0∆3

1

16πT ( 1
∆0

+ 3
∆1
−2), S =

√
∆0∆3

1

16πT 2 , and F =

√
∆0∆3

1

16πT > 0.

From these expressions we see there is another limit which sends the extensive quan-

tities to zero in the appropriate way, namely taking (∆0,∆1) ∼ 1
N → 0 (hence |φ0| →

√
3

2 ,

|φ1| →
√

3
4 ), keeping T , the physical temperature in AdS units, fixed. Curiously, from the

flat space point of view, this is in fact an extremal limit, since the temperature goes to zero

in Planck units: T`p ∼ 1/N . Indeed in this limit the entropy becomes S = π
√

2
3 |Q0P 3

1 |,
reproducing the well-known flat space extremal D4-D0 entropy formula.
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Figure 4. Left : planar black hole temperature T/φ0 as a function of u1/φ0, for φ1/φ0 =

0.1, 0.4, 0.495, 0.505, 0.7, corresponding respectively to the dash-dotted, dashed and solid blue

curves, and to the solid and dotted red curves. Lines of constant T/φ0 intersect the curves in

two points or not at all, illustrating that for given intensive variables, there are always either two

black hole solutions or none at all. Right : planar black hole phase diagram. The colored region has

two black holes, the white has none. It corresponds to the gaps in accessible temperatures for the

curves on the left. The dotted lines denote the Reissner-Nordstrom locus, where one of the planar

solutions has no scalar hair. In the white gap, the background becomes unstable to soaking up Q0

charge as discussed in remark 5 in the previous section.

4.5 The planar/large black hole limit

It is often simpler to work in a limit in which we can effectively replace the spherical S2 black

hole geometry by an R2 planar one. This is achieved by zooming in on a small solid angle

of the geometry, say around the north pole, while simultaneously scaling up all extensive

quantities. In the dual CFT this limit can be thought of as a thermodynamic limit in which

the system of interest is living on a flat two-dimensional plane and in contact with a heat

reservoir with which it can exchange energy and charge, through a far away boundary.

The required scalings parallel those used in [106] in the RN case. Introducing a new

radial coordinate ρ > 0 related to the old one r by r = r+ + ρ, we put:

u0 = λ ū0 , u1 = λ ū1 , r+ = λ3 r̄+ , ρ = λ ρ̄ , t = t̄/λ , θ = θ̄/λ , φ = φ̄ , (4.13)

sending λ → ∞ while keeping the barred quantities fixed. For the conformal boundary

metric we thus get dΩ2
2 = dθ2 + sin2 θdφ2 → (dθ̄2 + θ̄2dφ̄2)/λ2. The quantity in brackets

is the flat planar metric in polar coordinates; let x̄, ȳ be the corresponding Cartesian

coordinates. Then in the limit λ→∞ the metric and scalar (3.1) become9

ds2 = −V̄ dt̄2 +
1

V̄
dρ̄2 + W̄ (dx̄2 + dȳ2) , y =

√
ū0 + ρ̄

ū1 + ρ̄
, (4.14)

9Explicit factors of ` or v do not appear here because we are still working in the rescaled invariant

coordinates of section 3.5, including for the metric and coordinates.
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where

V̄ =
2 r̄+ρ̄+ (ū0 + ρ̄)(ū1 + ρ̄)3 − ū0ū

3
1√

(ū0 + ρ̄)(ū1 + ρ̄)3
, W̄ =

√
(ū0 + ρ̄)(ū1 + ρ̄)3 . (4.15)

The gauge potentials (3.8) remain unchanged, apart from the small θ expansion:

Ā0 = φ̄0

(
ū0

ū0 + ρ̄
− 1

)
dt̄ Ā1 = −1

4
P̄1θ̄

2dφ̄ , (4.16)

B̄0 = −1

4
Q̄0θ̄

2dφ̄ , B̄1 = −φ̄1

(
ū1

ū1 + ρ̄
− 1

)
dt̄ . (4.17)

Here we used the relations (3.10), Q0 = u0φ0/3 and P1 = 4u1φ1. In fact the original

spherical solution differs from this one only in that we have dropped a term ρ̄2/λ2 in the

numerator of V̄ . Under this scaling we have M ∼ λ3, Q0 ∼ λ2, P1 ∼ λ2, φI ∼ λ, T ∼ λ.

In the global phase diagram discussed in section 4.3, the planar limit thus corresponds to

going along diagonal rays out to infinity. Analogous to (4.13) we can introduce barred

quantities for these physical variables. These satisfy largely the same relations as the

unbarred quantities in section 4.3, except that the constant +1 drops out in the relation

between φI and ∆I in (4.7), and that the lower order terms drop out in the expression for

the mass in (4.10), so that in fact M̄ = −r̄+ = −2F̄ . Since the mass must be positive,

the free energy of planar black holes must be negative. Similarly, in (4.4), the quadratic

terms u2
0 and u2

1 under the square roots in the expressions for the potentials drop out in

the planar limit. Due to the rescalings, we should consider M̄ , P̄ 1 and Q̄0 to be energy

and mass densities per unit area.

In what follows we will drop the bars in the notation for the rescaled planar variables;

whenever planar black holes are considered, all quantities are understood to be rescaled as

indicated above.

For later convenience, let us recapitulate. The energy and mass densities are given in

terms of the parameters of the black hole solutions by

M = −r+ , Q0 =
1

2
√

3

√
−2u0r+ − u0u3

1 , P 1 =
√

3
√
−2u1r+ − u0u3

1 , S = π
√
u0u3

1 .

(4.18)

The equilibrium values of the intensive quantities are given by

T =
2r+ + 3u0u

2
1 + u3

1

4π
√
u0u3

1

, φ0 =

√
3

2

√
−2u0r+ − u0u3

1

u0
, φ1 =

√
3

4

√
−2u1r+ − u0u3

1

u1
.

(4.19)

The energy and charge densities can be obtained from the temperature and potentials

by eliminating r+, u0 and u1 from the above equations. This can be reduced to solving

T =
∆0+3u21

4πu1

√
∆1+u21
∆0+u21

for u1, where ∆0 ≡ −4
3φ

2
0 and ∆1 ≡ −16

3 φ
2
1. This equation has zero

or two solutions u1, from which we then get the extensive variables:

M =
u1

2

u4
1 −∆0∆1

∆0 + u2
1

, Q0 =
u1φ0

3

∆1 + u2
1

∆0 + u2
1

, P1 = 4u1φ1 , S = πu2
1

√
∆1 + u2

1

∆0 + u2
1

.

(4.20)
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Figure 5. Lines of constant charge for P 1 = 1, ±Q0 = 10−5, 10−4, 10−3, 10−2, 10−1, 1/6, 0.316,

1, with the larger values of |Q0| being closest to the φ1 = 0 axis at high temperatures. The value

Q0 = 1/6 corresponds to the Reissner-Nordstrom solution. In the lower half of the plane, the hue

of the lines goes up according to entropy (going up in red to yellow direction), while in the upper

half of the plane, the mass (=free energy) is indicated in this way. The lower values of |Q0| have

the lower free energy and entropy. The stable and unstable branches connect at the boundary of

the white gap.

It is possible to write a polynomial relation between entropy, energy and charge densities,

which can be viewed as the black brane equation of state:(
S2 + 12π2Q2

0

)(
3S2 + π2P 2

1

)3
= 432π6M4 S2 . (4.21)

Notice that we get (by construction) an additional scaling symmetry X → λn3X besides

those listed in section 3.5, with scaling exponents k given by

v ` r+ u0 u1 M Q0 P 1 S T φ0 φ1 ρ

n3 0 0 3 1 1 3 2 2 2 1 1 1 1

This scaling is that of a CFT in a 2d box of fixed size L, in the limit that T and the φI are

all much larger than the IR cutoff 1/L imposed by the box. Thermodynamic quantities

will only depend nontrivially on scale invariant ratios. This allows us to plot the full planar

phase diagram in terms of the two scale-invariant variables, for example T/φ0 and φ1/φ0

as shown in the panel on the right of figure 4.

4.6 Hyperscaling violating limits

Upon setting P1/Q0 or Q0/P1 to zero, as was the case for most degenerations discussed

in section 4.3, our planar backgrounds reduce to the hyperscaling violating geometries

studied in [110–114] and other recent works. These are characterized in general by a

dynamic critical exponent z and a hyperscaling violation exponent θ, parametrizing the

radial scaling behavior of the metric (cf. eq. (1.1) of [111]).
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To see this, we fix the temperature T and use (4.4) to write r+ = −3
2u0u

2
1 − 1

2u
3
1 +

2πT
√
u0u3

1, and obtain from (4.15)

V =
4πT

√
u0u3

1 ρ+ 3(u0u1 + u2
1) ρ2 + (u0 + 3u1) ρ3 + ρ4

W
, W = (ρ+ u0)1/2(ρ+ u1)3/2 .

(4.22)

For finite nonzero u0 and u1, the solution is regular; in particular when T = 0 it has an

AdS2 × R2 near horizon geometry. However if we send u1 → 0 then for ρ� u0:

ds2 = −u1/2
0 ρ3/2dt2 +

dρ2

u
1/2
0 ρ3/2

+ u
1/2
0 ρ3/2

(
dx2 + dy2

)
, y =

√
u0/ρ . (4.23)

This is a hyperscaling violating geometry with θ = −1 and z = 1. Similarly, if we send

u0 → 0 then for ρ� u1:

ds2 = −3u
1/2
1 ρ3/2dt2 +

dρ2

3u
1/2
1 ρ3/2

+ u
3/2
1 ρ1/2

(
dx2 + dy2

)
, y =

√
ρ/u1 . (4.24)

This is a hyperscaling violating geometry with θ and z tending to infinity with the ratio

η ≡ −z/θ = 1 fixed. Notice that the above metric (4.24) is conformal to AdS2 × R2.

These geometries were studied in the context of the U(1)4 truncation of N = 8 gauged

supergravity in [115].

To see what this limit corresponds to in our phase diagram, we use the various relations

summarized in the previous section, obtaining φ0 =
√

3
2

√
3u2

1 − 4πT
√
u3

1/u0 and φ1 =
√

3
4

√
u2

1 + 2u0u1 − 4πT
√
u0u1, and from this the charges Q0 = u0φ0/3 and P1 = 4u1φ1.

Notice that for these expressions to be real, and therefore the solution to be physical, T must

be bounded above for a given u0, u1. Specifically when u1 → 0, we need 4πT <
√
u0u1 → 0

and when u0 → 0, we need 4πT < 3
√
u0u1 → 0.

Thus, when u0 → 0 (metric (4.24)), we get φ0 ∝ u1, φ1 ∝ u1 and T ∝ √u0u1,

implying T/φ0 → 0 while φ1/φ0 remains finite and tunable to any desired value satisfying

|φ1/φ0| > 1/
√

12. Hence this limit corresponds to the zero temperature boundary in the

phase diagram figure 4. The charge ratio in this limit is P1/Q0 ∝ u1/u0 →∞, that is the

black hole becomes purely D4-charged in this limit.

Similarly, when u1 → 0, we get φ1/φ0 → ∞, while T/φ1 remains finite; this is the

boundary at infinity in figure 4. The charge ratio is P1/Q0 ∝
√
u1/u0 → 0; the black hole

becomes purely D0-charged in this limit.

Besides the u0 → 0 solutions we just described, there are also regular T = 0 solutions

with u0 and u1 finite that have AdS2 × R2 near-horizon geometries. Their free energy is

F = −4
3φ0φ

2
1 + 1

27φ
3
0, whereas the free energy of the u0 = 0 solution is F = − 16

3
√

3
φ3

1. Away

from the boundary point φ1/φ0 = 1/
√

12, the latter is always lower than the former, so the

hyperscaling-violating geometry is always thermodynamically preferred. At the boundary

point, the two solutions coincide.

The entropy S = π
√
u0u3

1 vanishes when u0 = 0 or u1 = 0. Hence we conclude that at

T = 0, the system under study has vanishing entropy in its thermodynamically preferred

state; it does not suffer from the entropy anomaly typical for Einstein-Maxwell setups with

scalar-independent couplings.
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4.7 Clumping instability

The grand canonical ensemble has an instability for all values of the parameters, perturba-

tive for some, nonperturbative for others, because at fixed temperature and potentials, the

free grand canonical free energy F = M−TS−φ0Q0−φ1P
1 is unbounded from below. The

unbounded direction corresponds to infinite D0-charge density Q0 keeping the D4-charge

density P 1 fixed. This limit can be reached e.g. by letting u0 →∞ with u1 = c u
−1/3
0 and

r+ = −3c2

2 u
1/3
0 . Using (4.18) this gives Q0 ≈ c

2u
2/3
0 , P 1 ∼ c3/2, M = −r+ ∼ P 1

√
|Q0|,

S ∼ c3/2, and (dropping irrelevant numerical factors):

F ∼ P 1
√
Q0 − TP 1 − φ0Q0 − φ1 P

1 . (4.25)

For φ0 6= 0, this is unbounded below when Q0 → ∞. Thus, once the D0-density is

sufficiently large, the system will be able to lower its free energy without bound by sucking

in D0-charge from the reservoir. The local (wannabe) equilibrium values of the temperature

and potentials scale as T ∼ P 2
1 /Q

3/2
0 , φ1 ∼

√
Q0, φ0 ∼ P 1/

√
Q0. So we see that the local

equilibrium chemical potential φ0 in fact decreases withQ0, in other words we get a negative

capacitance, hence the runaway instability.10

On the other hand, as suggested by (4.25) and as can be checked more generally, for

smaller values of Q0, the free energy slope goes the other way, towards zero Q0. So for

sufficiently small values of Q0, the instability is nonperturbative; a free energy density

barrier must be overcome before the runaway regime is reached.

Notice that for the D4-charge density there is no such instability. If we similarly take

P 1 → ∞ while keeping Q0 fixed (which requires scaling u0 ∼ u−3
1 and r+ ∼ −u3

1), we

obtain S ∼ 1, M ∼ |P1|3/2, so F ∼ |P1|3/2−φ1P
1 + · · · , which is bounded and stable. The

crucial difference between the two is the asymptotic growth of the energy with the charge,

which has an exponent 1/2 < 1 for the D0 and 3/2 > 1 for the D4 charge.

To have a physically more stable setup, we could therefore work for example at fixed

temperature and fixed charges rather than at fixed temperature and fixed chemical poten-

tials. This will eliminate the runaway charge transfer from the reservoir, but nevertheless

there will be a remnant in the form of a clumping instability, i.e. towards formation of

inhomogeneities. This is because we can consider any finite subregion of our black brane

horizon to be a system held at fixed potentials, with the remainder of the brane playing

the role of reservoir. The D0-charge accumulation instability will now correspond to a

thermodynamic instability towards accretion of D0-charge in the subregion.

This can be seen more directly. At fixed temperature and fixed total brane charges, the

thermodynamically preferred equilibrium state is the state that minimizes the canonical

free energy Fc = M −TS. This includes minimization over possible inhomogeneities in the

charge and energy densities. Now imagine concentrating a total amount of charge Q0,tot in

some finite area A, giving a charge density Q0 = Q0,tot/A, and let us assume we are in the

high D0-charge density regime described earlier. Keeping the D4-charge density P 1 fixed,

we thus obtain a region with a canonical free energy density Fc ∼
√
Q0 ∼

√
Q0,tot/

√
A.

10Somewhat different limits can be considered to produce different asymptotics of the temperature and

potentials, but the feature of having dφ0/dQ0 < 0 persists.
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The contribution to the total free energy of this region is therefore ∆Fc,tot ∼
√
Q0,tot

√
A,

which becomes smaller when A→ 0. It is thus thermodynamically favored to concentrate

the charge Q0,tot into an ever smaller area A → 0, since in addition also the surrounding

region will decrease its free energy in this way (as it lowers its D0-charge density). Thus,

according to this simple-minded thermodynamic picture, the initially homogeneous D0-

charge will tend to implode into point-like chunks.

This analysis is of course rather crude. We have not taken into account possible

quantum or stringy corrections, which become important in the singular limit under con-

sideration, and may well regulate the singularities. We have not taken into account density

gradient contributions to the energy, which would give rise to bubble wall tensions and

may also regulate singularities. Finally, even within these approximations, we have fixed

by hand the D4-charge density, but in general this density will also run. This may lead for

instance to a complete separation of charge, with pure D0-dots inside a pure D4-sea. In

any case, to determine the true final state, a more detailed analysis is clearly in order, but

this falls outside the scope of this paper.

5 Bound states

We now proceed to establish the existence of bound states of these black holes with suitably

charged probes. The probes are assumed much heavier than the AdS scale, and in particular

they can be black holes themselves, as long as they are much smaller than the length scales

set by the background solution. We compute the probe potentials from (2.9); a local

minimum indicates a bound state. We take the probe potential to be zero at the horizon,

so negative/positive values of the potential energy indicate stable/metastable bound states.

On the other hand, since the probes are massive, an escape to infinity would require an

infinite amount of energy; the global AdS metric acts as a confining box. This is a significant

difference with the asymptotically flat case studied in [68].

Most of our analysis is numerical. We provide some analytic results in the planar zero

temperature limit in section 5.5.

5.1 Probe potential and validity of the approximation

Consider a probe with (D6,D4,D2,D0)-brane charge (p0, p1, q1, q0). In the spirit of sec-

tion 3.5 it will be convenient to introduce rescaled charges

p̂0 = v2 p
0

g
, p̂1 = v

p1

g
, q̂1 =

q1

g
, q̂0 =

1

v

q0

g
, (5.1)

with g an at this point arbitrary constant. This differs from the rescaling used for the

background black hole charges (3.18) in that there is no factor of N involved here; in

its place we now have g, which we can think of as parametrizing the order of magnitude

of the probe charges. We do this because we want to keep the quantized probe charges

fixed and finite while taking the N → ∞ limit. Notice that since charge is quantized in

order 1 units in our conventions, the hatted probe charges are quantized in units given

by the above scaling factors. At fixed finite v, these can be made arbitrarily small by
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taking g large, making the rescaled charges effectively continuous. Furthermore, ratios of

probe to background charges, masses and length scales will involve the rescaled variables

(tilde-variables for the background, hatted variables for the probes) and a universal overall

factor g
N . For example q0

Q0
= g

N
q̂0
Q̃0

and, using (2.11),
mp0D6

M ∼ g
N
p̂0

M̃
. The discussion in

section 2.3 implies that for order 1 rescaled probe charges, the probe black hole entropy

will be of order g2v−1, hence the ratio of its linear size over the AdS length scale will be of

order gv−1/2`p/` = g
N . Thus, for finite rescaled variables, the probe approximation will be

justified provided g � N .

The static potential Vp obtained from (2.9) and the solutions described in section 3.1

consists of two parts, a gravitational part Vgrav(r) =
√
V (r)mγ(y(r)) and an electromag-

netic part Vem = qIA
I − pIBI . Explicitly

Vp =
gN

`v
V̂p , V̂p = V̂grav + V̂em , (5.2)

with:

V̂grav =

√
3

2

√(
ρ(ρ+ 2r+) + f0f3

1 − u0u3
1

) [( p̂1

2f1
+
q̂0

f0

)2

+
f0

f1

(
p̂0

6 f1
− q̂1

f0

)2]
, (5.3)

and

V̂em = −φ0q̂0ρ

f0
− φ1p̂

1ρ

f1
, (5.4)

where as before

f0 = ρ+ u0 , f1 = ρ+ u1 , ρ ≡ r − r+ . (5.5)

The radial coordinate ρ vanishes at the horizon. In the above expressions, the background

variables are understood to be rescaled as in section 3.5, but we have suppressed the tildes

here.

In contrast to the background metric and scalar, the probe potential is qualitatively

altered when flipping the sign of Q0 or P 1. Because of this we have to consider both possible

signs of φ1/φ0 separately. Notice however that we still have the following symmetry:

(p̂0, p̂1, q̂1, q̂0)→ (−p̂0,+p̂1,−q̂1,+q̂0) . (5.6)

This allows us to assume p̂0 ≥ 0 without loss of generality.

Finally let us check the claim made in section 2.3 that from the probe point of view

the background temperature is effectively zero. The fraction of the probe’s energy that is

thermal when it has the same temperature as the background is, for order 1 values of the

rescaled variables, Tsγ/mγ ∼ (g2v−1)/(gNv−1) = g/N , so again if g � N , the probe will

effectively be extremal.

In what follows we will mostly drop the hats (and tildes) in our notation, which is

equivalent to setting ` ≡ 1, N ≡ 1, v ≡ 1, g ≡ 1. To restore the factors `, N , v and

g in equations, one should keep in mind the following scaling weights: [`] = (1, 0,−1, 0),

[v] = (0, 1, 0, 0), [N ] = (1, 1
2 , 0, 0), [g] = (0, 1

2 , 0, 1). The first two entries correspond to the

weights (n1, n2) for background quantities given in section 3.5, the third one is the mass
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dimension, and the fourth one indicates nonzero only for quantities involving the probe;

it indicates the scaling with the overall size (charge/mass) of the probe. For example the

weights of the probe potential are [Vp] = (0, 0,−1, 1), hence Vp ∝ gN/v`. We will restore

the original factors in the concluding sections.

5.2 Thermodynamic interpretation

When a small probe charge is expelled from a black hole, the black hole entropy changes

by an amount

δSBH =
1

T
δEBH −

φ0

T
δQ0,BH −

φ1

T
δP 1

BH . (5.7)

Here we used the microcanonical definitions of temperature and chemical potentials, taking

into account that the potentials for D2 and D6 charge are zero. Conservation of charge

implies δQ0,BH = −q0 and δP 1
BH = −p1. Conservation of energy implies δEBH = −Etot

p ,

where Etot
p is the sum of the probe’s rest mass energy plus the binding energy due to the

probe-black hole interaction. Up to an additive constant E0 this equals the natural total

energy Ep obtained from the probe action given in section 2.3:

Etot
p = Ep + E0 , Ep ≡ Vp + Ekin

p , (5.8)

where Vp is the probe potential derived there, and Ekin
p is the probe kinetic energy. The

additive constant E0 is easily obtained by considering a probe at rest asymptotically far

away from the black hole. In this case there is no binding energy so Etot
p is just the probe’s

gravitational rest mass energy Vgrav, defined in (5.3). On the other hand in this situation

we have Ep = Vp = Vgrav−q0φ0−p1φ1, as can be seen from (5.4). Hence E0 = q0φ0 +p1φ1.

Putting everything together, the constant term cancels with the other potential dependent

terms in δSBH, leaving us with the simple result

δSBH = −Ep
T
, (5.9)

where Ep = Vp(ρ) + Ekin
p . The change in the total microcanonical entropy of the system

for a given final state |α〉 of the probe viewed as a particle (here α is a one particle state

label which includes charge and energy Ep) is thus

δS|α = Sp −
Ep
T
≡ −Fp

T
, (5.10)

where Sp is the probe’s internal entropy. Recall that Vp/T ∝ gN
v while Sp ∝ g2

v , so in the

probe limit g � N , the probe’s internal entropy contribution to Fp is generically subleading.

In the planar limit it is also natural to take the system S of interest to correspond to

a finite (but parametrically large) part of the xy-plane, with the remainder of the plane

viewed as the reservoir. In this case, by definition, δStot = −δFS/T , and (5.10) reduces to

δFS = Fp . (5.11)

We can now take the system size to infinity, and view this as a formula for the change of

total free energy in the grand canonical ensemble.
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Thus, in equilibrium, the probability of finding a single probe in a given state α relative

to the probability of having no probes is e−Fα/T . In particular we see that if the minimum

of the probe potential is negative, ejecting such probes is thermodynamically preferred at

large N , while if it is positive, swallowing them is preferred. If Fα is positive for all possible

probe charges, we get a cold, exponentially dilute gas in the large N limit (so interactions

can be neglected), with average occupation number of the 1-particle state |α〉 given by

〈Nα〉 = e−Fα/T . (5.12)

Alternatively these occupation numbers can be obtained by considering the thermal atmo-

sphere of the black hole as a statistical mechanical system in the grand canonical ensemble,

with the black hole acting as a reservoir. We do not distinguish between Bose or Fermi

statistics here because the gas is dilute (the average occupation number is e−N suppressed).

The average number of probe particles of a given charge γ is obtained (still in the dilute

gas approximation) by summing this over all fixed charge 1-particle states, or semiclassically

by integrating over the relevant phase space volume.11 This is detailed in appendix A.

The final result for the semiclassical spatial number density of particles of charge γ is

(equation (A.8) in the appendix):

〈nγ(~x)〉 =
1

(2π)3

4πW

V 2

√
π

2
(Vgrav,γT )3/2 Ω(γ) e−Vp,γ/T , (5.13)

where Ω(γ) = 1 if the probe is a structureless particle and Ωp(γ) = eSp(γ) if the probe is a

black hole. The expected total number of probes of charge γ in a spatial region R is then

given by
∫
R d

3x 〈nγ(~x)〉.

5.3 Probe bound states for spherical black holes

We will focus in particular on bound states with “pure fluxed D6” probes — these are probes

with charges γ̂ = (p̂0, p̂1, q̂1, q̂0) defined by expanding eκx = 1+p̂1x+q̂1x
2−q̂0x

3+O(x4), i.e.:

γ̂ =

(
1, κ,

κ2

2
,−κ

3

6

)
 γ =

g

v2

(
1, κv,

(κv)2

2
,−(κv)3

6

)
, (5.14)

in other words b = n = 0 in the parametrization introduced at the end of section 2.3. Such

probes can be thought of as wrapped D6-branes with worldvolume flux F2 ∝ κv turned on,

which lift to smooth, locally Taub-NUT “bubbling” geometries in M-theory [116, 117]. The

motivation for this restriction is in part simplifying the search for bound states, and in part

the observation made in [68] that in the asymptotically flat case, at least in a large part of

parameter space, these charges form bound states more easily than any other charge which

has a single centered realization. Numerical explorations in the present setup confirm this,

although we do not investigate this exhaustively.

11If extended all the way to the horizon ρ = 0, this phase space volume is actually infinite due to the

infinite redshift. Similarly, with Dirichlet boundary conditions at the horizon, the naive sum over quantum

states is infinite, for the same reasons. At the same time, and related to this, the dilute gas approximation

breaks down near the horizon, since Vp(ρ) → 0 when ρ → 0. Thus we can only make reliable statements

for the average number of probes at separations larger than some IR cutoff ρ∗.
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Figure 6. Probe potentials at different temperatures for φ1/φ0 = −0.49 and φ0 = 1.15. The

coordinate σ used here is defined as σ ≡ ρ/(1 + ρ). The plots are made for pure fluxed D6 probes.

Left : κ = 0.2908 and the probe potential is plotted for T = 0.01, 0.02, and 0.04 for probes around

the stable background. Right : κ = 1.0566 and the probe potential is plotted for T = 0.01, 0.02 and

0.06 for probes around the unstable background.

The search for bound states proceeds by looking for local minima of Vp = Vgrav + Vem

defined in equations (5.3) and (5.4), for all possible values of κ. This is done numerically.

Note that Vp = 0 at the event horizon and therefore probe bound states with Vp < 0 are

thermodynamically favorable configurations as explained in section 5.2. Thus, such bound

states are stable, and conversely, local minima of the probe potential such that Vp > 0 are

metastable to tunneling into the black hole. Some examples are shown in figure 6.

A universal feature we observe is that for any given (φ0, φ1) all bound states with

fixed charges disappear at sufficiently high temperatures (depending on the probe charge).

Intuitively the reason is clear: when the temperature is increased, black holes gain mass

rather than charge, the gravitational pull becomes stronger, and eventually gravitational

collapse is inevitable — the probe is pulled into the black hole.

We display the existence regions of probe bound states in figures 7–10 which corre-

spond to slices of phase space where the background potentials satisfy φ1/φ0 = ±0.49 ,±0.6

and ±1. The bound state existence regions have many common features which we

describe below.

1. Bound states around the stable black hole background —the black hole with lowest

free energy— are represented by the green and yellow regions with labels (s±) in

figures 7–10. The green (s−) regions demarcate where stable bound states exist, in

the sense that these bound states have negative potential energy. Metastable bound

states live in the yellow (s+) regions. Bound states around the unstable black hole

background are shown in the orange (u+) and blue (u−) regions of our diagrams,

with the (u−) regions representing stable bound states and (u+) regions labelling

metastable bound states.

2. Recall that the probes are sensitive to the signs of φ0 and φ1. Figures 7, 8 and 10 are

slices of phase space where the potentials satisfy, respectively, φ1/φ0 = ±0.49 ,±0.6

and ±1, with the minus sign holding in the left hand columns. When the potentials

have opposite sign, there exist stable bound states between the probe and the black
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holes. As in [68], in a small region, there also exist stable (negative energy) bound

states when the potentials have the same sign. In this case the (u−) bound states lie

in a thin sliver below the lower dotted line (where ∆1 changes sign). This happens

for φ1/φ0 > 1/2 for arbitrarily high T .

3. The (u±) regions disappear as we cross the lower dotted line from below. This is

expected since the background to which the probes are bound have diverging charge

as we cross the dotted line from below and stop existing altogether above it. One

caveat is shown in figure 7 where the (u±) regions seep across the dotted line near

the orange dot. These are probes bound to a black hole with negative free energy and

are closer in nature to the bound state regions across the white gap than those across

the dotted line. Naturally there are no bound states of type (u±) above the dotted

line when φ1/φ0 > 1/2 as we cross into a region where only one black hole exists.

4. While the (u±) bound states generically disappear when crossing the lower dotted

line from below, nothing analogous can be said for the (s±) bound states above the

dotted line as we cross it from above. Since nothing singular happens for the stable

backgrounds as the lower dotted line is crossed, this matches with our expectations.

A clear example of bound states dipping below the dotted line can be seen in the left

hand column of figure 9.

5. When |φ1/φ0| = 1 there are no (u±) regions above the dotted lines, even when the

potentials have opposite signs. This should not be taken to mean that there are no

bound states around the unstable black hole above the dotted line beyond a certain

ratio of φ1/φ0. As in [68], the disappearance of bound states may indicate that the

favored probes for forming bound states are not pure fluxed D6 branes in this region

of parameter space.

6. In all cases considered, the (s+) regions open up at large φ0. By this we mean that

bound states at large chemical potential exist for larger values of T . This is consistent

with the existence of a large region of (s+) bound states in the planar limit as shown

in section 5.4 below.

5.4 Probe bound states in the planar limit

One can obtain the probe potential in the planar limit (4.13) either directly from the

probe particle action (2.9) or by scaling the parameters in (5.3)–(5.4). In the latter case

one must be careful to divide by an overall factor of λ coming from the fact that we have

scaled dt = dt/λ in the probe action. The planar black hole probe potential equals the

spherical black hole potential except that the ρ2 term under the square root disappears:

Vgrav =

√
3

2

√(
2ρr+ + f0f3

1 − u0u3
1

) [( p1

2f1
+
q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2]
, (5.15)

and

Vem = −φ0q0ρ

f0
− φ1p

1ρ

f1
. (5.16)
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Figure 7. Existence regions for probe bound states with background potentials set at φ1/ φ0 =

±0.49, with the negative ratio in the left column. We label bound state regions with (s/u±). A

bound state region labeled s means it forms around the stable black hole and similarly, u regions

represents probes bound to the unstable black hole. The ± denote whether the bound state has

positive resp. negative potential energy. States with positive potential energy are unstable to

tunneling into the black hole. The grayscale background echoes the background phase diagrams of

section 4.3. The rightmost panel shows a close-up near the orange dot cusp for φ1/ φ0 = −0.49.

Notice that the top corner of the (s+) region smoothly connects to the top corner of the (u+)

region. The top of the (s−) region connects to the (u−) region in the same way. This can be

understood simply from continuity in the extensive variable u1.

Figure 8. Existence regions for probe bound states with φ1/ φ0 = ±0.6, with the negative ratio

being in the left column.

Because of the extra scaling symmetry discussed in section 4.5, we can scale out the appro-

priate powers of φ0 from the various quantities occurring in the expression for the potential,

reducing its dependence on φ0 to an overall factor. Accordingly all nontrivial dependence

of the probe potential on the electric potentials and temperature will be in terms of scale

invariant quantities e.g. the ratios φ1/φ0 and T/φ0. The bound state existence regions are

shown in figure 11.

As expected from our spherical analysis, bound states with negative energy only exist

when φ1/φ0 < 0. Bound states about the unstable black hole only live in a very thin sliver

of parameter space for φ1/φ0 > 0.
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Figure 9. Left : probe bound states with φ1/ φ0 = −0.6, around the stable background. Note that

the (s±) regions dip below the dotted line. Right : zoom of the (u+) bound states above the dotted

line with φ1/ φ0 = 0.6.

Figure 10. Existence regions for probe bound states with φ1/ φ0 = ±1, with the negative sign

holding in the left hand column.

Figure 11. Existence regions for planar bound states. The regions labeled (s+) show bound

states around the stable black brane with positive potential energy. If we zoom in closer to small

T/φ0 near the boundary of the white gaps, we see more interesting features as shown in the two

rightmost panels.
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Figure 12. Left : minimal values of the potential as a function of probe charge parameter κ and

background parameter φ1/φ0, computed using the expansion of Vp to second order in τ . The minima

are negative above the dotted line, positive below. The lowest minimum attained for a given value

of φ1 is Vmin ≈ −4 × 10−4φ1. Right : separation ρeq = u1τeq of the minimum from the horizon,

where u1 = 4|φ1|/
√

3. Lighter is further away. The rescaled separation τeq only depends on κ, not

on the potentials. The maximal separation is given by τmax ≈ 0.025; at the edge values of κ the

separation drops to zero.

5.5 Analytic results for T = 0

In simple limits, it is straightforward to confirm our numerical results analytically. At

zero temperature, the thermodynamically preferred planar solution is the u0 = 0 solution

discussed in section 4.6. In this limit the explicit probe potential for the charges (5.14)

becomes quite simple:

Vp =
φ0κ

3

6
− φ1 κ τ

1 + τ
+
|φ1|
3

√
(3 + 3τ + τ2)

(
κ2 +

τ

1 + τ

)3

, τ ≡ ρ/u1 , (5.17)

with u1 = 4|φ1|/
√

3. Expanded to first order at small τ , this becomes, say for φ1 > 0:

Vp
φ1

=
|κ|3

6

(
sgnκ · φ0

φ1
+
√

12

)
+
|κ|√
12

(
|κ|2 + 3−

√
12 sgnκ

)
τ +O(τ2) . (5.18)

Since we need |φ1/φ0| ≥ 1/
√

12 to have a black hole solution, the zeroth order term is

always nonnegative.12 The first order term is negative if 0 < κ <
√√

12− 3 ≈ 0.68125.

In this case a bound state exists, which may have negative energy if φ1/φ0 is sufficiently

close to −1/
√

12, This is illustrated in figure 12. These observations are consistent with

the numerical results of figure 11.

We can repeat this analysis for the thermodynamically disfavored planar solution,

again at T = 0. In this branch, u1 = 2|φ0|/3 and u0 = |φ0|
3 (12φ2

1/φ
2
0 − 1). In this limit,

Vp is slightly more complicated than (5.17), however expanded to first order in τ = ρ/u0

12The fact that this is nonzero is an artifact of the degenerate limit u0 → 0. At any finite u0, the potential

will drop to zero for ρ� u0.
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Figure 13. Left : minimal values of the potential as a function of probe charge parameter κ and

background parameter φ1/φ0, using the expansion of Vp to second order in τ . Minima exist (and are

negative) within the black curve. Right : separation ρeq = u0τeq of the minimum from the horizon.

Lighter is further away, along the black curve the distance drops to zero.

we find:

Vp
|φ0|

=

−κ3

6
− κ

2

φ1

φ0

(
12
φ2

1

φ2
0

− 1

)
+

1

24

√(
1 + 12

φ2
1

φ2
0

)(
−1 + 2κ2 + 12

φ2
1

φ2
0

)3
 τ+O(τ2) .

(5.19)

If the coefficient of τ is negative in this expansion, then the potential admits a minimum

with negative energy. It is straightforward to check that this only happens for a special

range of values with 0 < κ < 1 and −1/2 < φ1/φ0 < −1/
√

12 shown in figure 13. These

results are consistent with those presented in figure 11.

The thick lines in figures 12 and 13 coincide with ρeq = 0 and represent the boundary

of the allowed region of κs admitting bound states for a given φ1/φ0 at T = 0. Naturally,

one might wonder if ρeq = 0 identically at the edges of the various (s/u±) regions in

figure 11. The answer is no. To show this, in figure 14 we plot ρeq as a function of T/φ0

for fixed φ1/φ0 = −0.297 and −0.32 for the numerically found probe charge such that Vp
is lowest at its minimum. Within the exitence region, ρeq never vanishes, remaining finite

until the bound state disappears completely.

5.6 Small black holes, caged wall crossing and AdS-goop

5.6.1 Small black hole limit

Consider again the small black hole / asymptotically flat space limit discussed in section 4.4,

more specifically the flat space BPS limit, i.e. ∆0 = εδ0, ∆1 = εδ1, ε → 0, φ0 →
√

3
2 ,

φ1 →
√

3
4 . In this limit (4.8) is solved on the small black hole branch by

u1 =
ε

4πT

√
δ0δ1 , (5.20)

where T is the temperature in AdS units, which can take any finite value. Furthermore

r+ = ε2

4πT

√
δ0δ3

1 and u0 = ε
4πT

√
δ31
δ0

, and if we restrict to values of ρ of order ε, the probe
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Figure 14. Left : equilibrium distances ρeq/φ0 for φ1/φ0 = −0.297 with φ0 > 0. The upper curve

shows bound state distances for probes bound to the stable black brane, the lower curve for probes

bound to the unstable brane. The probe charge is chosen such that Vp is lowest at its minimum.

The two curves meet at the boundary of the white region where the solutions degenerate. Right :

equilibrium distances ρeq/φ0 for φ1/φ0 = −0.32 and φ0 > 0. Again the upper curve shows bound

state distances for probes bound to the stable black brane. Note that ρeq never vanishes within the

existence regions for bound states.

potential is given by

Vp =

√
3

2
ρ

[√(
p1

2f1
+
q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2

−
(
p1

2f1
+
q0

f0

)]
, (5.21)

up to subleading terms at small ε→ 0. This is minimized at Vp = 0 when p0
6 f1
− q1

f0
= 0, or

equivalently at r ≈ ρ = ρeq where

ρeq =
ε

4πT

√
δ1

δ0

p0δ1 − 6 q1δ0

6 q1 − p0
=
√

12
p0Q0 − q1P

1

6 q1 − p0
. (5.22)

Returning to the original, non-rescaled variables, this becomes

ρeq = `p
p0Q0 − q1P1

q1

√
3
v − p0

√
v3

12

, (5.23)

reproducing the well known BPS equilibrium separation formula [70]. Bound states of this

kind exist if 1 < ξ < α or α < ξ < 1, where α ≡ ∆1
∆0

= 6Q0

P1v2
and ξ ≡ 6 q1

p0v2
(restoring

the original v dependence here to make the dependence on the scalar manifest). When

ξ → 1, the expression for ρeq given in (5.23) diverges. In the asymptotically flat case, this

corresponds to decay at marginal stability, also know as wall crossing: the bound state

disappears from the spectrum once ξ has crossed the wall. In the present case however,

the divergence merely signals we exit the regime of validity of the small ρ approximation.

Indeed, since AdS acts as an infinitely deep gravitational potential well, the true radius

cannot diverge; instead when ρeq becomes of order ` the bound state will start feeling the

confining effect of AdS. We return to this below. When ξ → α, the bound state radius

vanishes and the two centers merge. When α = 1, the bound states around the small

black hole disappear altogether. This is easy to understand: at this locus, the background

solution reduces to the constant scalar Reissner-Nordstrom solution, and without running

scalars, there cannot be a stable potential. We refer to [68] for further discussion.
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5.6.2 Caged wall crossing

When ρ is no longer restricted to order ε values and is allowed to get larger, the potential

given in (5.21) — i.e. the probe potential in asymptotically flat space — is no longer

accurate. Instead of the factor ρ, the gravitational part of the potential gets a factor√
ρ2 + ρ4. Thus the proper potential is Vp = Vp(above) + δVp, where the correction term

is (still to leading order at small ε):

δVp =
(√

1 + ρ2 − 1
)
·
√

3

2
ρ

√(
p1

2f1
+
q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2

. (5.24)

When ρ is of order ε, this is a negligible correction. When ρ � ε on the other hand, we

have f0 ≈ f1 ≈ ρ, and

δVp ≈
(√

1 + ρ2 − 1
) √3

2

√(
p1

2
+ q0

)2

+

(
p0

6
− q1

)2

. (5.25)

The quantity multiplying the ρ-dependent factor is nothing but the (rescaled) mass of the

probe in the vacuum; that is, δVp ≈ mγ(
√

1 + ρ2−1). As alluded to earlier, the presence of

this confining potential term is that no actual decay will happen when crossing the analog

of a wall of marginal stability, i.e. when varying parameters such that we pass through

ξ ≡ 6 q1
p0v2

= 1 (from above or below depending on the ratio ∆1
∆0

). However, something

nontrivial does happen when ξ approaches 1. As long as ξ is bounded away from 1,

the minimum of the potential ρeq will be of order ε. When ξ approaches 1, this will

rapidly increase to a much large radius, and roughly stabilise there. At the same time,

the local minimum will get lifted well above its near-BPS value, thus becoming metastable

for decay back into the global minimum at ρ = 0. Eventually the local minimum may

disappear altogether.

To get some intuition, let us use the following toy model for the potential:

V (ρ) =

(
ε

ρ
+ θ

)2

+ ρ2 . (5.26)

The first term represents the flat space potential, the second term the AdS correction.

This captures the typical behavior of the probe potential of interest quite well as long as

ρ is well below 1 but not much smaller than ε. Now, as long as θ � −ε, there will be a

local minimum near ρ = −ε/θ (obtained by minimizing the first term at zero), with energy

V ∼ ε2/θ2 (from the correction). This corresponds to bound state of size ε, very close to

its flat space BPS analog. When θ becomes positive, the flat space state disappears. In

contrast, the full potential in AdS still has a local minimum, at ρ ≈ θ1/3ε1/3, with an energy

V ∼ θ2 (for θ �
√
ε). These scalings with ε are consistent with numerical observations.

Note however that this is entirely due to the gravitational trapping effect of AdS, the

additional inter-particle interaction being now repulsive over the entire range of distances.

5.6.3 AdS supergoop

A natural question is how to generalize the two-particle black hole - probe picture developed

so far to a system of n > 2 interacting dyonic particles in AdS. In asymptotically flat
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space with unbroken N = 2 supersymmetry, at low energies and for well-separated dyons

(which can be black holes, solitons or D-particles), a universal description is provided by a

particular N = 4 supersymmetric “quiver” quantum mechanics [118] (see also [119–135]).

The supersymmetry completely fixes the static potential and magnetic interactions up to

a set of integers κij equal to the symplectic product of the electromagnetic charges of

particle pairs (i, j), i, j = 1, . . . , n, and a set of real numbers θi determined by the charges

and by vacuum moduli. In turn this completely determines the degeneracies of BPS bound

states (which tends to be large due to the large Landau level degeneracies induced by the

simultaneous presence of magnetic and electric monopole charges). Explicitly in flat space

the n-particle static potential is of the form

V
(n)

flat =
n∑
i=1

1

2mi

( n∑
j=1

κij
2|xi − xj |

+ θi

)2

. (5.27)

The magnetic interaction is of Dirac monopole form and completely determined by the κij ;

we refer to [118] for details.

In AdS we do not have the same bulk supersymmetry structure, and hence it is not

obvious what the appropriate generalization should be. However the considerations made in

section 5.6.2, as well as more elementary considerations regarding the effective Newtonian

description of nonrelativistic particles confined to global AdS, suggest the following simple

modification of the static potential:

V
(n)

AdS = V
(n)

flat +

n∑
i=1

1

2

mix
2
i

`2
, (5.28)

where ` is the AdS length and xi is the position of the i-th particle in isotropic coordinates.

Indeed this is the effective Newtonian potential one gets for a nonrelativistic probe particle

moving in global AdS4, when expanding the metric in isotropic coordinates,

ds2 =
−
(
1 + x2

4`2

)2
dt2 + dx2(

1− x2

4`2

)2 , (5.29)

at small velocities and small potential energies. Isotropic coordinates are appropriate here,

as they allow us to keep the translationally invariant flat space expressions for the static

and magnetic interaction potentials.

It would be interesting to study dynamical aspects of this system, along the lines of

the analogous flat space study of [131]. Due to the magnetic interactions, the dynamics

has rather peculiar properties, with magnetic trapping, dynamical rigidity and precession

drift being some of the more striking features. A key differences with the flat space system

is that supersymmetry is broken. At the classical level one expects the high-dimensional

moduli space to get lifted; at the quantum level one expects similarly the lowest Landau

level to split up.

6 Relaxation dynamics

In this section we initiate a study of the relaxation dynamics of metastable probe clouds.

We will see that even when ignoring interactions between the probes, the system exhibits
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“aging” behavior typical for glasses. We begin by outlining the general ideas, and then

apply this to our setup.

6.1 Slow relaxation and aging: general idea

As observed in section 5.2, to leading order in the probe approximation, the probe poten-

tial can be identified with the system’s free energy relative to the probe being inside the

black hole. In particular, bound states with Vmin < 0 are thermodynamically preferred

and thus can be expected to be populated over time, while bound states with Vmin > 0

are metastable.

However, transitions of probes in and out of the black hole will generically be expo-

nentially slow at large N . A transition induced by thermal activation will have a rate

suppressed by e−∆F/T , where ∆F is the free energy barrier, while a transition mediated

by quantum tunneling will have a rate suppressed by e−I , where I =
∫
pdq is the tun-

neling action for a trajectory crossing the barrier. Both exponents scale linearly with N ,

hence transition rates will be exponentially suppressed at large N . The coefficients c in

the transition rates Γ ∼ e−cN depends on the charges of the probe and on the background

parameters. As we will see, at large N and v, there is a parametrically large number of

probe charges that form bound states, leading to a broad, quasi-continuous distribution of

values for c, and hence to a broad distribution of exponential time scales.

6.1.1 Aging

On general grounds, in such a situation, one may expect “aging” phenomena to occur,

i.e. the system exhibits age-dependent relaxation behavior which breaks time translation

invariance but exhibits approximate scale invariance. More concretely this means the fol-

lowing. Consider a system “born” at a time t = 0, and say we are interested in some

observable O. The system could for example be a glass sample produced by a rapid cool-

ing quench at t = 0, and the observable O its dielectric constant. For ordinary, non-aging

systems, equilibrium will be reached on microscopic time-scales, after which O will be con-

stant, up to small fluctuations decaying exponentially on some characteristic microscopic

time scale τ , independent of its age. In contrast, for an aging system, O(t) will forever

evolve, and in addition obeys

O(t2)−O(t1) ∼ f(t2/t1) (6.1)

for some function f . Thus, there is no time translation invariance, but instead we have

scale invariance: the relaxation behavior depends on the age of the system, with all relevant

time scales growing in proportion to age.

6.1.2 Relation to metastability

Let us sketch the basic idea of how aging can emerge from the presence of a very large

number of exponentially long relaxation time scales with broadly and densely distributed

exponents [157–162]. Below, we will see in more detail how this is concretely realized in

our setup. For now, let us just assume that at t = 0 we quench the system of interest
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in some state that is not its equilibrium state, and that after this time it relaxes towards

equilibrium along many different decay channels, characterized by exponentially large time

scales τ(c) = τ0e
cN , with the set of values of c smoothly distributed over some finite range.

Suitable observables O(t) will evolve in time accordingly, picking up contributions from a

broad range of the metastable, decaying modes. Assuming the set of relaxation modes can

be viewed as a continuum,13 we can write

O(t) =

∫
dc g(c) e−t/τ(c) , τ(c) = τ0 e

cN . (6.2)

Here g(c) is determined by the number density of relaxation modes with decay coefficient c,

by the dependence of the observable on these modes, and by the initial occupation numbers

of the modes, set by the quench at t = 0. Let us assume all of these factors depend in

a smooth, N -independent way on c, so that g(c) can be taken to be a smoothly varying,

N -independent function. Differentiating with respect to time and changing integration

variables from c to τ , we get:

∂

∂t
O(t) = − 1

N

∫
dτ

τ2
g(cτ ) e−t/τ ≈ −g(ct)

N

1

t
, ct =

log(t/τ0)

N
. (6.3)

In the last step we made use of the assumption that g is a slowly varying, N -independent

function, implying that at large N , the integral only receives significant contributions from

values of τ of the same order of magnitude as t, i.e. cτ ≈ ct. More explicitly, by expanding

g(c) around c = ct, we get a 1/N -expansion ∂
∂tO(t) = − 1

N
1
t

(
g(ct) + γ

N g
′(ct) + · · ·

)
.

Since the dependence on t of ct is logarithmic and 1/N -suppressed, we can take ct to

be approximately constant over many orders of magnitude.14 Thus, if t∗ is the rough time

scale at which we are doing measurements, (6.3) integrates simply to

O(t2)−O(t1) ≈ −g(ct∗)

N
log

t2
t1
. (6.4)

In other words, the system exhibits the (approximate) scale invariant aging behavior dis-

cussed above, with an aging rate set by ct∗ and by the nature of the quench and other

details of the system (which determines g). The essential feature leading to this conclusion

is an approximately scale invariant distribution of relevant time scales, dn ∼ dτ
τ .

This kind of logarithmic aging behavior is observed in a huge variety of glassy ma-

terials, ranging from the length of wires carrying weights to the conductivity of electron

glasses [158, 163, 164].

6.1.3 Discrete case

For our black hole system, we will not really have a continuum of time scales, but rather

a discrete set, corresponding to the probe charges allowing bound states. Nevertheless, a

sufficiently finely spaced set of charges is sufficient to get the logarithmic aging behavior

13we will give a discrete version of the argument below.
14For example if say N = 250 and the microscopic time scale is τ0 = 10−22 s, then for the range of time

scales between t ∼ 1 sec and t ∼ 1 day, ct ranges from 0.5 to about 0.6. For t ∼ 10 years, we get to ct ∼ 0.7.
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described above. To see this, start from the discrete version of (6.2), that is O(t) =∑
i ai e

−t/τi , where τi = eciN . The rate of change of O at time t is then given by

∂

∂t
O(t) = −1

t

∑
i

ai
t

τi
e−t/τi .

The idea is again that under suitable circumstances, this sum is dominated by terms with

time scales τi of order t, that is by values of ci ≈ ct = log(t/τ0)
N . To see in more detail what

suitable means, write ci = ct + δi, so ∂
∂tO(t) = −1

t

∑
i ai e

−δiN−exp(−Nδi). The exponential

factor is of order 1 when |δi| . 1/N . It becomes exponentially small when δi � 1/N ,

and double-exponentially small when δi � −1/N . Hence, provided the spacing of ci
values is finer than 1/N and there are no sharp peaks or gaps in the values of ai, we have
∂
∂tO(t) ≈ −1

t

∑
i:|δi|.1/N ai, hence for times t1, t2 roughly of order t∗:

O(t2)−O(t1) ≈ −at∗ log
t2
t1
, at∗ =

∑
i:|ci−ct∗ |. 1

N

ai . (6.5)

In other words, we get smooth logarithmic aging provided the values of log τi are roughly

uniformly distributed with spacings of order 1 or less.

6.2 Application to metastable clouds of probe charges

Consider first a black brane in a region of parameter space where only metastable bound

states exist, that is to say V min
γ > 0 for all probe charges γ. In this case the equilibrium

density (5.13), neq
γ ∼ e−V

min
γ /T , will be exponentially small at large N for all probe charges,

since the probe potential Vγ scales linearly with N . Imagine however that by a suitable

quench procedure,15 we populate the metastable states such that for a large set of charges γ,

the densities nγ at time t = 0 are not exponentially small. The sizable, metastable charge

cloud we have thus created will then slowly decay back into the black hole, with a broad

distribution of many exponentially large time scales. Observables depending significantly

on the amount of electric or magnetic charges in the cloud may therefore be expected to

exhibit aging behavior. We will now argue in more detail that this is indeed the case.

6.2.1 Time evolution of cloud particle densities

In a classical stochastic picture, ignoring interactions between the probes, the time evolu-

tion of the probe number densities nγ(t) is given by

dnγ
dt

= Γout
γ − Γin

γ nγ , (6.6)

15We will not try to explicitly describe such a procedure here but assume it can be done and only study

the subsequent relaxation dynamics. Possibilities could include the injection of a hot gas of many particles

in a cold black hole background, the collision of two black holes at very high energies, creating a plasma ball

which subsequently decays into many charged particles (the analog of a collision of heavy ions hadronizing

into jets of baryons), or a rapid change in the asymptotic parameters of the solution which may thermalize

in part into a gas of charged particles of which a fraction will get trapped in potential wells. Since thermal

relaxation proceeds on non-exponential time scales, the cloud thus formed will cool down relatively rapidly,

after which it will follow the slow relaxation dynamics described here.
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Figure 15. Examples of probe potentials (divided by T ) for a range of parameters. In each plot, we

show the potential for κ = 0.15, 0.2, 0.25 and 0.3, respectively in blue, red, yellow, green. (Recall the

probe charge parametrization by (κ, b, n) given in (2.12).) The temperature and chemical potential

are indicated above the plots. We label the panels by (row, column). In panel (1,1) we have P 1 = 1,

Q0 = −10−3 and δm ≡ (M −M0)/M0 = 3 × 10−7, where M0 is the energy at zero temperature.

In panel (1,2) we increased the energy to δm = 10−6, and in (1, 3) to δm = 10−4. In panel (2,1)

on the other hand we kept δm as in (1,1), but changed the D0-charge to Q0 = −10−2. Finally

panels (2,2) and (2,3) have the same background values as (1,1), but we changed the probe charge

parameters b and n as indicated.

where Γout
γ is the transition rate of probes out of the black hole into the metastable minimum

and Γin
γ the reverse (absorption) rate. This is solved in general by

nγ(t) = neq
γ +

(
nγ(0)− neq

γ

)
e−Γin

γ t , neq
γ ≡

Γout
γ

Γin
γ

, (6.7)

where neq
γ is the equilibrium density. For simplicity we will ignore the possibility of quantum

tunneling here and only consider classical thermal activation processes. We will also ignore

non-exponential prefactors. In this case the transition rates are

Γ+
γ = e−E

in
γ /T , Γ−γ = e−E

out
γ /T (6.8)

where Ein
γ and Eout

γ are the potential barrier heights in and out of the black hole, respec-

tively, that is, Ein
γ = V max

γ − V min
γ and Eout

γ = V max
γ − V hor

γ = V max
γ . This leads to the

correct detailed balance equilibrium densities neq
γ ∼ e−V

min
γ /T . The relaxation dynamics

will thus be entirely determined by the barrier properties of the probe potentials. To get
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an idea of how these depend on the background and probe parameters, we display some

examples of potentials in figure 15.

6.2.2 Distribution of relaxation time scales and condition for aging

In the case under study (only metastable bound states), we can set neq
γ = 0 for all practical

purposes, so (6.7) reduces to a simple exponential decay of the densities nγ , with time scale

τγ = ecγN , cγ =
1

N

Ein
γ

T
= p0v ĉγ , ĉγ =

Êin
γ

T̃
. (6.9)

Here we explicitly reinstated the scaling with N and v =
√

N
k , using V ∝ Ng

v and g = p0v2.

Observables depending on the cloud charge densities (for example the conductivity and

other transport coefficients, which will pick up a contribution from the cloud) can be

expected to evolve in time with this spectrum of exponential decay time scales, matching

the assumptions of our general discussion in section 6.1.3. Thus observables of this kind

can generically be expected to exhibit smooth logarithmic aging behavior, provided at least

the spacing ∆cγ of cγ values is much smaller than 1/N .

To see under which conditions this is true, we need to take into account charge quanti-

zation. Besides p0, the integrally quantized probe charges are then p1 = p0vp̂1, q1 = p0v2q̂1

and q0 = p0v3q̂0, where we recall that p̂1 = κ, q̂1 = κ2

2 − b, q̂0 = −κ3

6 + bκ + n. This

implies that the quantized values of the rescaled charge variables are quantized with the

following spacings:

∆κ = ∆p̂1 =
1

p0v
, ∆b = ∆q̂1 =

1

p0v2
, ∆n = ∆q̂0 =

1

p0v3
. (6.10)

The region in (p̂1, q̂1, q̂0)-space allowing bound states has finite volume. At fixed p0, the

number of quantized charges in this volume scales as 1/(∆p̂1 ∆q̂1 ∆q̂0) = (p0)3v6. Recall

that the validity of the probe approximation requires g � N , that is p0 � N/v2 = k. If

we allow values of p0 up to p0
max = εN/v2 for some fixed ε� 1, we thus get

N ≡ Total number of charges forming bound states ∼ ε4N4

v2
. (6.11)

Over this range of charges, cγ takes values from 0 to an order (p0)maxv upper bound.

The average spacing of cγ values near a generic point can therefore be expected16 to scale

as ∆cγ ∼ p0
maxv/N = v/ε3N3. Hence the time scale spacing condition discussed in sec-

tion 6.1.3, |∆cγ | � 1/N , reduces to

N2

v
� 1

ε3
. (6.12)

Recalling (2.7), we see that the left hand side equals (`/`p)
2 (or the central charge of the

CFT if there is a holographic dual), so this is nothing but the condition that the classical

gravity description is reliable!

16This is somewhat naive, but borne out by explicit enumeration of barriers in examples, as exemplified

in figure 16.
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Figure 16. Distributions of absorption barriers and potential minima for v = 100, Q0 = −10−3,

P 1 = 1, δm = 10−5 (T = 1.3× 10−3, φ0 = −1.1, φ1 = 0.33). In this case there are 15,862 charges

with p0 = 1 leading to bound states, displayed as dots in the upper left panel. When the system

ages, states are decimated at a logarithmic pace from the left to the right. The upper right panel

shows a close-up for very small values of the absorption barrier heights. The lower panels show

histograms of respectively absorption barriers and potential minima. For p0 = 2, there would be

23 = 8 times as many points, distributed over a region scaled up by a factor of 2, and similarly for

higher values of p0. The peak in the density of states at small absorption barriers means that there

will be a deviation of perfect logarithmic aging behavior over many orders of magnitude of time;

more specifically aging will be faster when the system is young.

We conclude that whenever we trust the gravitational description, metastable probe

clouds quenched to order one densities at time t = 0 will exhibit logarithmic aging behavior

when relaxing back to the pure black hole state.
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Figure 17. Random samples of probe bound states for Q0 = −10−3, P 1 = 1, δm = 10−5, v = 100,

quenched at nγ(0) ∝ e−mγ/T0 with T0 = vN/20. The height dh = υh − υp is the “optical distance”

between probe and horizon, as defined in (7.15). The sample on the left has 300 probes in the

cloud, i.e. a density ntot = 0.75× 10−2. The sample on the left has 10,000 probes, i.e. ntot = 0.25.

6.2.3 Explicit example: aging of cloud D0-charge

To check the above assertions, we consider an explicit example. Let the observable of

interest be the total D0-charge in the cloud:

O(t) = Qcloud
0 =

∑
γ

γ0Nγ(0) e−t/τγ . (6.13)

Here γ0 is the D0-charge component of the charge vector γ, and Nγ(0) =
∫
nγ(0) is the

total charge in the region of interest, at time t = 0. To be concrete, we will assume we

quench the initial particle densities to be proportional to what their abundance would be in

flat space at a high temperature T0 = vN/20, i.e. nγ(0) ∝ e−mγ/T0 . (At this temperature,

the distribution of charges is dominated by charges with p0 = ±1,±2.) We show the exact

results for a specific choice of parameters in figure 18. Clearly the results are in excellent

agreement with the general discussion above.

A natural question is whether there is a correlation between the distance of a bound

probe to the horizon and the life expectancy of the bound state. Translated to the dual

CFT, this becomes the question whether there is a correlation between the size of the

inhomogeneity corresponding to the probe bound state and its life expectancy, with larger

size mapping to shorter distances to the horizon. In section 7.3 we will see that the relevant

notion of distance here is the “optical distance”, defined in (7.15). The optical distance to

the black hole horizon is proportional to the size of the charge inhomogeneity in the CFT.

A similar question can be asked about correlations between free energy and distance/size.

To explore these questions, we plot in 19 the optical distance versus barrier height

and free energy for all 15,862 charges with p0 = 1 forming bound states. A first thing to
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Figure 18. Logarithmic aging of the cloud D0-charge. The background and quench parameters

are the same as for figures 16 and 17, and we took N = 200. If we imagine for concreteness the

microscopic scale τ0 to be τ0 = 10−22 s, then the plot on the left shows the aging behavior for t

ranging from 1 second to 1 year. The plot on the right then shows the aging behavior for t ranging

from femtoseconds to 10100 years. The deviation from exact logarithmic aging at this range of scales

is due to the fact that the density of states is higher for smaller barrier heights Ein/T , as can be

seen in figure 16.

note is that all bound states are localized within a fairly narrow band of distances, roughly

in-between the horizon and the boundary of AdS. This is also evident from figure 17. Thus,

in the CFT, the inhomogeneities will have a fairly narrow range of characteristic scales.

There is a mild correlation between distances and barrier heights, with the probes closest

to the black hole having relatively low absorption barriers, and therefore relatively short

lifetimes, and the probes most far away having the longest lifetimes. In the CFT, this

translates to the smallest structures being the most stable. The bound states closest to

the black hole also all have relatively low free energies, although those the most far away

are not the ones with the highest free energies.

6.3 Relaxation when stable bound states exist

When stable bound states exist, that is states with Vmin < 0, the relaxation dynamics

changes considerably. In fact in the presence of such minima, the system quickly runs out

of the regime where we have the simplifying control of the probe approximation, since now

the formal equilibrium densities are exponentially large rather than exponentially small.

Of course what this really means is that the probe approximation breaks down after some

finite time. At least three effects may be expected to play a key role in the subsequent

dynamics. First, due to charge depletion, the background will change by a non-negligible

amount. Second, the presence of a large density of probes in a potential well may favor

or disfavor the arrival of other probes, depending on their charges. And third, probes

may begin to cluster and clump together, thus either forming larger black holes, or multi-
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Figure 19. Correlation between optical distances dh of bound probes from the horizon and their

absorption barrier heights (left) and free energies (right). dh = 0 is the horizon, dh = 7.4 the

boundary of AdS.

centered bound states amongst each other. Over time, the system may thus be expected to

sink irreversibly deeper into complicated bound states involving large numbers of centers

of which the backreaction can no longer be neglected.

Although this is conceivably the truly glassy regime, it clearly falls outside of the

scope of the probe approximation. Nevertheless, some qualitative features about the onset

of this phase can be made already with the results we have in hands. Let us assume we

start with a black brane without any bound probes, for example by a cooling quench of

the temperature or the chemical potentials, starting from a high temperature black brane.

From this point in time on, the negative potential minima will start to get populated, at

a rate given by Γout
γ ∼ e−Eout/T . Naively, one might think the minima with the lowest

Vmin will get populated first, but interestingly, this is not so. In fact quite the opposite is

happening, as is evident from figure 20: the lowest minima are shielded by high barriers,

and they get populated at time scales many orders of magnitude larger than the shallower

minima. In fact, the system will be far out of the probe regime long before the lowest free

energy minima have even started to accumulate any noticeable charge. This is an explicit

example of how for glassy systems, the relaxation path followed over time does not need to

coincide at all with the steepest descent path towards the formal static equilibrium point.

7 Holographic interpretation

In the previous sections we have demonstrated the existence of black hole bound states

in the probe approximation. The total number of different probe charges allowing bound

states is proportional to N2/v � 1, and besides the constraints related to the validity

of the probe approximation, there is no limit in principle on the size or number of bound

black holes. In the large N limit, each of these configurations corresponds to a (meta)stable

macroscopic thermodynamic state, with individual black holes representing “pockets” of
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Figure 20. Distributions of absorption and emission barriers for v = 100, Q0 = −10−3, P 1 = 1,

δm = 10−7 (T = 1.3×10−4, φ0 = −1.1, φ1 = 0.33). In this case there are 72,240 charges with p0 = 1

leading to bound states. Occupied metastable (Vmin > 0) states are decimated at a logarithmic

pace from the left to the right in the upper left panel. Unoccupied stable (Vmin < 0) states are

populated from the left to the right in the upper right panel. Notice that the lower free energy states

take exponentially longer to populate than the higher ones, conceivably causing massive failure to

properly equilibrate.

thermalized degrees of freedom existing at different positions and scales. They survive

out of equilibrium for exponentially long times, and as we have seen in section 6, their

relaxation dynamics naturally gives rise to logarithmic aging, eternally long in the large N

limit. These features are typical for glassy / amorphous systems, and thus we are lead to

the hypothesis that these black hole bound states are in fact holographic descriptions of

glassy phases of CFTs with a gravity dual.
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Figure 21. Correlation between distances and barriers, analogous to figure 19, except that the

plot on the right now has Eout/T on the vertical axis (as this is what sets the (naive) time scales for

population of the stable minima). A sharper correlation is noticeable between absorption barrier

heights and distances. A mild correlation exists between distances and emission barrier heights; the

stable bound states closest to the horizon will form at the earliest times. A striking feature is again

that bound states have a characteristic scale of order half the optical distance between horizon and

boundary, despite the considerably lower temperature.

As a first step to make this idea more precise, we now turn to a number of observations

relevant to the holographic interpretation of our results, assuming a dual CFT exists. For

simplicity, and because it has the most straightforward thermodynamical interpretation,

we will again focus on the planar limit. In this section we will make the distinction between

rescaled variables introduced in section 3.5 and the original variables explicit again.

7.1 Holographic dictionary for background

In this section we review the standard AdS-CFT dictionary for thermodynamic states dual

to plain black holes or black branes. We will use the opportunity to fix some normaliza-

tions conventions.

The putative dual CFT has central charge proportional to

CCFT ≡
`2

`2p
=
N2

v
. (7.1)

Spherical black holes are dual to thermal states of the CFT on a 2-sphere of radius R.

Bulk energies in units of 1/` are identified with CFT energies in units of 1/R; for example

` T = RTCFT, ` φ = RφCFT, `M = RECFT, and so on. Planar black holes are dual to

thermal states on the infinite 2-dimensional plane. They are obtained by zooming in on a

small solid angle of the 2-sphere and taking the radius R of the 2-sphere to infinity while

keeping the intensive variables fixed in the CFT. Indeed, defining λ ≡ R/`→∞, thermo-

dynamic quantities will scale with λ exactly as in the planar limit discussed in section 4.5.
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With this identification, the barred intensive thermodynamic variables introduced there

are directly identified with their CFT counterparts: TCFT = `
RT = T , φCFT = φ. The

barred extensive quantities on the other hand get identified with planar densities of the

CFT, upon multiplication by a factor 1/4π`2; for example the entropy density of the CFT,

defined as the entropy per unit coordinate volume, is s ≡ sCFT ≡ S
4πR2 = S

4π`2
, and the

energy density is e ≡ eCFT = M
4π`2

.

The CFT interpretation of bulk electromagnetic response properties depends on the

duality frame chosen in the bulk [136], for the following reason. In the standard AdS-

CFT dictionary, changes of the asymptotically constant mode of a bulk vector potential

correspond to changes of external sources from the point of view of the CFT. In particular

the bulk path integral is to be performed with these boundary values held fixed. The vector

potential modes falling off as 1/r on the other hand are interpreted as currents; they are

the response to the sources. More precisely, in gauge invariant terms, the component of the

electric field normal to the boundary is identified with the charge density, j0 ∼ ~n · ~E, and

components of the magnetic field parallel to the boundary are identified with the current

density: ~j ∼ ~n× ~B. On the other hand the components of the electric field parallel to the

boundary and the magnetic field component normal to the boundary are identified with

external sources. Electromagnetic duality exchanges electric and magnetic fields, and from

the above it is clear that this symmetry does not commute with the dictionary. In fact,

4-dimensional S-duality acts as a symmetry relating different 3-dimensional CFTs [136].

In the explicit bulk Lagrangian (2.1), we assumed a duality frame in which Q0 is electric

and P 1 is magnetic. On the other hand, in our discussion of the thermodynamics of the

background, we have been working in a grand canonical ensemble with fixed potentials φ0

and φ1, which are more naturally interpreted in a duality frame in which both Q0 and P 1

are considered to be electric. So let us begin by assuming we are working in the latter

frame. The bulk D0- and D4-charges are then identified with two global U(1) charges

in the CFT. Denoting the associated CFT charge densities by J t0 and J t1, we have (for

homogeneous planar solutions) the identifications J t0 = Q0

4π`2
, J t1 = P1

4π`2
.

To summarize, CFT quantities are related as follows to the dimensionless, scaling

invariant tilde-variables of section 3.5 (which we used for example in all the phase diagrams

of the preceding sections):

TCFT =
1

`
T̃ , φ0,CFT =

N

v2`
φ̃0 , φ1,CFT =

N

`
φ̃1 , (7.2)

and

s =
N2

v

S̃

4π`2
, e =

N2

v`

M̃

4π`2
, J t0 = Nv

Q̃0

4π`2
, J t1 =

N

v

P̃ 1

4π`2
, (7.3)

where for example S̃ = π
√
ũ0ũ3

1. Transport coefficients are easily obtained by making use

of the general formulae of e.g. [15]. The D0-charge DC conductivity σ0, susceptibility Ξ0

and diffusion coefficient D0 are:

σ0 =
y3

hor

12π
=

v3

12π

ũ
3/2
0

ũ
3/2
1

, Ξ0 =
J t0

φ0,CFT
=

v3

12π`
ũ0 , D0 = `

ũ
1/2
0

ũ
3/2
1

. (7.4)
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Here we made use of the explicit expressions given in section 4.5. Similarly the D4-charge

transport coefficients are

σ1 =
1

πyhor
=

1

πv

ũ
1/2
1

ũ
1/2
0

, Ξ1 =
J t1

φ1,CFT
=

1

πv`
ũ1 , D1 = `

1

ũ
1/2
0 ũ

1/2
1

. (7.5)

The charge transport coefficients satisfy the Einstein relation σ = ΞD, as they should [15].

As always (in single black hole setups at finite temperature), the viscosity is given by

η = s/4π. The expressions given above imply various relations between CFT quantities

which are specific to the system under study, for instance s = CCFT/4
√
D0D3

1.

Finally, we briefly return to the issue of the choice of duality frame. If we had chosen

a frame in which the D4 is magnetic and the D2 electric, then our background would

have been interpreted in the CFT (different from the original CFT) as having zero charge

density J
′t
1 and chemical potential φ′1,CFT, but a nonzero magnetization field and a constant

magnetization density. At this level, this can perhaps be viewed as merely a different use

of words, but it becomes important when we want to deduce the effect of the presence of

probes bound to the black hole, to which we turn next.

7.2 Holographic dictionary for probes

We now turn to the holographic interpretation of the black hole bound states. Consider

first the case of pure Maxwell electrodynamics with Lagrangian L = − 1
4g2
FµνF

µν , and a

particle with q units of electric charge at rest in a fixed planar empty AdS background,

i.e. in a metric ds2 = `2−dt
2+dz2+dx2+dy2

z2
(where z ≡ `2/ρ). Without loss of generality we

can assume the particle to be at (x, y, z) = (0, 0, zp). Since the metric is conformally flat

and Maxwell’s equations are conformally invariant, the electromagnetic field is identical to

the field produced by a particle at rest in flat space. The electrostatic potential satisfies

Dirichlet boundary conditions at the plane z = 0, that is At = 0 and hence Ftx = Fty = 0

(or E‖ = 0) at z = 0. This is nothing but the classic textbook problem of a charge in the

presence of an infinite perfect conductor at z = 0, solved most elegantly by the method of

image charges. The potential is thus, with our charge conventions (compare to (2.5), (2.9)

and (3.8)):

At =
g2q

4π

(
1√

(z − zp)2 + x2 + y2
− 1√

(z + zp)2 + x2 + y2

)
. (7.6)

The expectation value of the charge density in the dual CFT is given by the electric field

strength at the boundary [137] (as is the induced charge density on the conducting plate

in the classic electrostatics problem):

jt =
1

g2
Fzt|z=0 =

q

2π

zp

(z2
p + x2 + y2)3/2

. (7.7)

We fixed the normalization by requiring the density to integrate to the total charge q. The

radius of the charge density peak is R ∼ zp = `2/ρp.

Let us now consider instead a magnetically charged particle. Dirichlet boundary con-

ditions on the vector potential imply B⊥ ≡ Fxy = ∂xAy − ∂yAx = 0; they forbid magnetic
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Figure 22. Left : a random collection of probe black holes (artificially made up, unrelated to

any of our actual examples), represented by spheres. The size of each sphere is proportional to

the D0-charge, while the thickness of the line projecting the probe onto the boundary z = 0 is

proportional to the D6-charge. Red/blue = positive/negative D6-charge. Notice that because of

the symmetry (5.6), one expects positive and negative D6-charge probes to be present in equal

abundance. Right : corresponding 3-currents in the CFT. Brighter means higher charge density jt0,

flow lines indicate the direction of the current ~j0. D0-charge determines charge density, D6-charge

determines current density. Smaller values of zp lead to smaller structures. Positive and negative

D6-charges produce oppositely circulating currents.

flux through the z = 0 boundary surface. The boundary conditions thus break electromag-

netic duality: the magnetic field sourced by a magnetic charge, subject to the boundary

conditions at hand, is not obtained by dualizing the electrostatic field 7.6, as this would

give a magnetic field with B‖ = 0 instead of B⊥ = 0. Rather it is obtained by dualizing the

electrostatic field of a point charge with boundary conditions E⊥ = 0. This can again be

constructed by the method of image charges, but this time with an image charge +q instead

of −q. The nonvanishing components of the electromagnetic field strength at z = 0 are then

(Fxt, Fyt) = g2q
2πs3

(x, y). This dualizes to the magnetostatic fields (Fzx, Fzy) = p
s3

(−y, x)

where p is now the magnetic charge. In the CFT dual, this corresponds to a medium with

zero net charge density but with a nontrivial stationary vortex current,

(jx, jy) =
p

g2(z2
p + x2 + y2)3/2

(−y, x) . (7.8)

This can also be viewed as a “magnetization” current j = ∇ ×m = (∂ym,−∂xm) where

the magnetization density is

m =
p

g2(z2
p + x2 + y2)1/2

. (7.9)

In the context of two dimensional incompressible fluid dynamics (see e.g. [138]), m is called

the stream function, and ω ≡ ∇ × j = −∇2m is called the vorticity. The total current

through a line from the origin to infinity is given by m(∞)−m(0) = p
2πzp

.
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Putting things together, we see that a general dyonic particle with charge (q, p) at

(x, y, z) = (0, 0, zp) will correspond to a charge density jt =
qzp

2π(z2p+x2+y2)3/2
and a magne-

tization density m = p
g2(z2p+x2+y2)1/2

.

Applying this to our model in the duality frame where the D0 and D4 charges are

considered to be electric charges (and the scalar kept fixed), we see from (2.5) that we have

g2
0 = g2

D0 = 3
2πv3

and g2
1 = g2

D4 = v
4π . Hence for an arbitrary probe charge (p0, p1, q1, q0),

we get, in the notation (5.1) with p̂0 ≡ 1, the following D0 and D4 charge and magnetiza-

tion densities:

jt0 =
p0v3

2π

q̂0zp

(z2
p + x2 + y2)3/2

, jt1 =
p0v

2π

p̂1zp

(z2
p + x2 + y2)3/2

, (7.10)

m0 =
p0v3

12π

1

(z2
p + x2 + y2)1/2

m1 =
p0v

π

q̂1

(z2
p + x2 + y2)1/2

. (7.11)

Note that under the symmetry (5.6), the magnetizations flip sign, while the charge densities

remain invariant. In a duality frame with D4-charge considered to be magnetic, the roles

of p̂1 and q̂1 would be exchanged, with the former giving rise to a magnetization density

and the latter to a charge density.

For values of ρ̃p = ρp/` of order 1, zp is of order `, causing the current density to be

concentrated in a region of order `. The charge density due to the probe will generically

be much smaller than the background charge density (7.3) provided p0v2 � N , which, not

surprisingly, was the condition for the probe approximation to be valid. However since the

background magnetic field vanishes, the magnetizations and corresponding spatial currents

are entirely due to the probe.

Probes located at different positions will produce these currents appropriately trans-

lated in the (x, y)-plane, and multiple probes will produce currents which are superpositions

of single probe currents. An example is shown in figure 22.

More generally, the probes will also source the scalar and the metric, which in the

CFT corresponds to fluctuations in the expectation value of some scalar operator and in

the energy-momentum tensor. This can be studied in a similar way but we will not do

this here.

For global AdS, a similar analysis can be done, although we can no longer make use of

the simple map to flat space electromagnetism, so the gauge field propagator is somewhat

more involved. We give the relevant expressions in appendix B. To get a solution involving

magnetic charges which is also consistent with Dirichlet boundary conditions on the vector

potential associated to our choice of duality frame, the total magnetic charge must be zero.

In a dynamic setup, where we start off with a purely electrically charged black hole, this

will be guaranteed by charge conservation.

7.3 Probes in a black brane background

We now consider the system of actual interest, a probe charge in a general planar black

hole background with a radially varying coupling constant. The background metric has

the general form

ds2 = −gtt(ρ) dt2 + gρρ(ρ) dρ2 + gxx(ρ)
(
dx2 + dy2

)
, (7.12)
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Figure 23. Holographic projection of D2 (top) and D0 (bottom) charge density fluctuations due

to the cloud shown in figure 17 on the left, for the choice of duality frame in which the D0 and

D2 charges are electric. Red = positive, blue = negative. Notice the lumps always have negative

D0 charge (same as background), while the D2 charge can have either sign. At this fairly low

density, the individual lumps are still clearly discernible. In a duality frame in which the D0 or D2

charge is considered magnetic, we get smilar looking magnetization or vorticity densities instead,

i.e. circulating vortex currents analogous to figure 22.

with AdS4 asymptotics at ρ = ∞, and the Maxwell Lagrangian takes the form L =
1

4g(ρ)2
FµνFµν . In our setup, we have gtt = V (ρ), gρρ = 1/V (ρ), gxx = W (ρ) and e.g.

1
g2D0

= 2πv3

3 y(ρ)3, with the relevant explicit expressions given in (4.14)–(4.15).

In this case, it is no longer possible to find analytic solutions. In appendix C we

obtain a general approximate solution based on a WKB analysis. The final result is given
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in (C.21), to which (C.23) is a good enough approximation for our purposes:

jt(r) =
q

2π
ηp

(
υp

(x2 + y2 + υ2
p)

3/2
− 2υh − υp

(x2 + y2 + (2υh − υp)2)3/2

)
. (7.13)

Here

ηp ≡
g(ρp)

g(∞)

g
1/4
tt (ρp)

g
1/4
xx (ρp)

, (7.14)

and υh, υp are the “optical distances”17 from the boundary ρ = ∞ of AdS to the horizon

ρ = 0 and to the probe ρ = ρp, that is

υh ≡
∫ ∞

0
dρ

√
gρρ
gxx

, υp ≡
∫ ∞
ρp

dρ

√
gρρ
gxx

. (7.15)

The first term in (7.13) is similar to the empty AdS solution (7.7), and the second term

can be interpreted as due to an image charge behind the black hole horizon. Higher order

corrections to this formula can similarly be interpreted as due to more image charges,

obtained by subsequent mirroring over the horizon and boundary planes; see the appendix

for more details.

Using this, we can now compute the CFT charge density profiles corresponding to any

cloud of bound probe particles. Actual examples are shown in figures 23 and 24. At low

density (figure 23), we can still discern the charge disks associated to individual probes, at

high density (figure 24) this is no longer the case. (In this regime we would also expect the

probe approximation to break down and interaction effects to become important.) From

the boundary CFT point of view, the aging process described in section 6.2 corresponds to

a gradual, exponentially slow “melting” of the charged/magnetized lumps into the homo-

geneous background. On the other hand, the decay of the homogeneous state into stable

bound states outlined in section 6.3 corresponds to a gradual increase in inhomogeneity,

up to and beyond the situation shown in figure 24.18

7.4 Probe dynamics and transport

Recall that the bound probe charges are all magnetically charged with respect to the back-

ground black hole, which means that they will be magnetically trapped by the background

— classically, when kicked, they get stuck on circular orbits, quantum mechanically they

form localized Landau droplets. Another way of thinking about this is that separated

electric and magnetic charges come with intrinsic angular momentum stored in the electro-

magnetic field, so conservation of angular momentum will tend to obstruct free motion of

the probes. Similar rigidifying magnetic interactions occur between the different probes, as

well as through backreaction polarization effects of the probes on the black hole horizon.

17Notice that in terms of the υ coordinate defined by dυ =
√
gρρ/gxx dρ, de metric becomes spatially

isotropic: ds2 = −gttdt2 + gxx(dυ2 + dx2 + dy2).
18If this transition must proceed through thermal activation, the process will be exponentially slow again.

If it can proceed through some classical dynamical instability — which we did not analyze — the process

may be fast.
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Figure 24. Same as in in figure 23 but now showing the profiles corresponding to the high

density case, 17 on the right. Although the individual charge disks are no longer discernible, their

characteristic size would show up in a spectral analysis of the plot.

Thus we get a significant obstruction to spontaneous clumping or ordering effects one might

naively have expected in the cloud, and various transport coefficients such as conductivity

and viscosity may be strongly affected.

At a more basic level, due to thermal activation, we may expect some of the probes to

wobble around in their magnetic traps while other lay dormant. Furthermore, clusters of

cloud particles may rearrange themselves and relax in a hierarchical cascade due to mutual

interactions. In the CFT, this will show up as dynamical inhomogeneities. Even at high

density, in contrast to the charge densities themselves, these may still be expected to show

up as distinguishable, locally active regions, since such regions will be relatively sparse,

and their kinetic energy will only slowly be dissipated to other regions. In this way, inho-

– 57 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

mogeneities caused by probes will be different from inhomogeneities caused by a disordered

horizon. The emergence of dynamical inhomogeneities appears to be a characteristic though

not fully understood features of supercooled liquids near the glass transition [1–3, 10–12].

The effect we just described may be a holographic incarnation of this.

The presence of a sufficiently dense probe cloud may also lead to a dramatic increase

in viscosity, characteristic of approach to the glass transition. The shear viscosity η can

be viewed as momentum conductivity, more precisely e.g. conductivity of py-momentum in

the x-direction. When black branes are stirred in the y-direction, the induced momentum

does not propagate far along x on the horizon — rather it falls quickly into the black

hole. As a result, the viscosity of a black brane is very low, leading to the famously low

η/s = 1/4π. However, this changes completely in the presence of a cloud with rigidifying

magnetic interactions, as these interaction may have a strong drag effect, possibly leading to

an enormous increase in momentum transport, i.e. an enormous increase in shear viscosity.

Moreover, magnetic charges in the cloud may be expected to dramatically reduce charge

transport efficiency by the black brane, by the “eddy current brake” mechanism [168].

Such a dramatic drop in (global) charge (i.e. matter) transport efficiency is another feature

characteristic of the approach to the glass transition.

We leave exploration of these intriguing ideas to future work.

7.5 Strings as an obstruction to string theory realizations

It would be desirable to have an explicit dual CFT realization of our setup. The model

we have studied can be characterized as the bosonic sector of an N = 2 Fayet-Iliopoulos

gauged supergravity with cubic prepotential. The two massless U(1)s we have are sourced

by charges which are parametrically heavier than the AdS scale — they can be thought of

as wrapped D0, D2, D4 and D6 branes in type IIA.

In the flat space case, this model is a universal subsector of any type IIA Calabi-Yau

compactification, providing a consistent truncation of the corresponding four dimensional

effective theories. The model we studied is basically the simplest possible uplift of this to

AdS. It would therefore seem logical that it should be equally easy to embed this model in

string theory. In particular, flux compactifications, such as type IIA on CP3 with N units of

RR 6-form flux and k units of RR 2-form flux through the CP3 (this one specifically being

dual to the ABJM quiver Chern-Simons CFT [83]), or related compactifications [139–149],

would appear to be natural candidates.

However there is a general obstruction to this idea. Any AdS4 ×M6 compactification

of type IIA string theory which is supported by fluxes will have the property that some

linear combination of the U(1)s obtained by naively reducing the RR potentials coupling

to wrapped D-branes is in fact Higgsed and thus massive. The mechanism for this was

exhibited explicitly for CP3 e.g. in [83]. A general diagnostic for a U(1) being Higgsed is

that magnetic monopole charges necessarily come with confining strings attached; they are

magnetic flux lines squeezed together by the Meissner effect. Now, if some compact p-cycle

is threaded by n units of Ramond-Ramond magnetic p-form flux, a Dp-brane wrapped

around this cycle will necessarily come with n fundamental strings attached. This follows

directly from Gauss’ law for the D-brane worldvolume gauge theory: the flux creates a
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background charge for this gauge field, which due to the compactness of the brane must

be canceled by the charge carried by open string endpoints. Thus, at least one of the RR

U(1)s present in the original Calabi-Yau compactification must be Higgsed by turning on

fluxes. This can also be seen more directly in flux compactifications of supergravity, with

the Higgs scalar emerging from the reduction of the dilation-axion. More specifically, for

compactifications on CP3 with N units of RR 6-form flux and k units of RR 2-form flux,

wrapped branes carrying D6- and D2-charge will generically come with strings attached,

except for the specific ratio (proportional to N/k) of the charges for which the two flux

tadpoles exactly cancel each other. Only the corresponding combination of the D0- and

D4- U(1)s survives as a gauge symmetry, the other one becomes massive.

Thus, if we try to embed our model in string theory in this way, we would have

to accommodate these features. Generic probes would have to come with fundamental

strings attached (stretched from the horizon to the probe or between the probes), and the

massive photon would decay exponentially rather than polynomially. It can be checked

that generically these “stringy” effects scale in exactly the same way with N and v as

the other forces we considered. For example the probe potential (5.2) for a D6 scales as

Vp ∼ Nv/`. On the other hand, making the identification of the string length as in [83],

`s = `/
√
v, a string stretched over a coordinate distance ∆ρ would have an energy of order

Es ∼ ∆ρ/`2s ∼ v/` (times something of order 1, assuming ∆ρ/` is of other 1). But by the

above arguments, a single D6 comes not with one, but with N strings attached. Hence

Es ∝ Nv/`, the same scaling as the potential. This turns out to be the case for various

other similar comparisons of scales. We conclude that in these models, the features we

have exhibited are not obviously obliterated, nor are they obviously preserved.

There are of course compactifications which can consistently be truncated to the model

we consider. The simplest case in perhaps M-theory on AdS4 × S7, which corresponds to

the case k = 1 of the IIA CP3 compactification considered above. The problem with

these is that they have very light charged matter, with masses of the order of the AdS

scale, which will tend to condense and form superconducting condensates [77, 78]. This

would again qualitatively affect our discussion. To physically trust our model, we need

all charged matter to be parametrically heavy, which in at least the simpler examples

means charges should be wrapped D-branes in a type II picture; in the usual Freund-

Rubin compactifications, towers of charged KK modes tend to have masses going all the

way down to the AdS scale [150]. This is not to say that in such cases glassy models are

excluded. It is quite possible that analogous considerations can be made in the presence

of light charged matter. But it would alter the analysis of this paper.

Borrowing language originating from the study of AdS5 - CFT4 pairs [151–153], we

might call the heavy charges we have been assuming “baryonic” charges. Indeed since it

takes as many quarks as there are colors to make a baryon, states with nonzero baryon

number in the CFT are guaranteed to be heavy at large N . From the bulk dual point of

view, baryons are heavy because they correspond to internally wrapped branes. Similar

considerations hold for the AdS4 × Y7 - CFT3 analogs [154, 155]. Examples are M-theory

compactifications on Sasaki-Einstein manifolds with nonzero betti number, such as Q111 =

SU(2)3/U(1)2, or quotients thereof [139–142, 145–148, 154, 155]. Although this comes
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closer, our model is again not quite a consistent truncation of the low energy effective

action of such models [139, 140, 156]; there are additional light scalars involved, which

again may be expected to qualitatively change the analysis. A rather different class of

flux compactifications involving Calabi-Yau orientifolds was studied in [169] and black

brane solutions in this setup were constructed in [170]. In this case the obstruction to

the most obvious attempts at embedding the model appear to be that the orientifold

projection eliminates the desired massless U(1)s, which is surely related to the above general

considerations.

It would be very interesting to follow a more direct top-down approach and see if bound

states of the type we have analyzed here persist in models with a UV completion in string

theory. In particular, in view of its genericity, it would be of interest to investigate the

effect of the Higgsed U(1), specifically the impact of necessarily having strings attached to

the probes.

8 Conclusions and outlook

We have accomplished the following in this work:

1. We have mapped out the complete thermodynamic phase diagram of a general class

of nonextremal charged AdS black hole solutions with running scalars, uncovering a

rich phase structure.

2. We have established the existence of finite temperature stationary bound states of

these black holes with probe black holes. This implies the existence, in principle, of

the corresponding nonlinear solutions to the coupled Einstein equations. Black branes

can form stable and metastable bound states with arbitrary numbers of different

charges, to a large extent trapped by magnetic forces. This leads to metastable,

strongly disordered states with an extensive configurational entropy. In contrast to

other studies of disordered holography [53, 57–62], the disorder is not induced by

sources (which remain uniform), but is spontaneously generated.

3. We have mapped out the regions in thermodynamic state space where such bound

states can form, and have extensively studied their properties, including their dy-

namical and thermodynamical stability and the distributions of their radial sizes and

barrier heights.

4. To the extent allowed by the probe approximation, and neglecting mutual probe in-

teractions, we have studied the relaxation dynamics of clouds of bound probes, and

established they exhibit logarithmic aging behavior characteristic for many amor-

phous systems. The aging rate at a given time scale is set by the density of states

with a given barrier height set by the logarithm of the time scale.

5. We have determined the detailed holographic map from bulk bound probe configura-

tions to charge and vorticity densities in the dual CFT. Typically, quenched clouds of

bound states map to structures of comparable characteristic sizes, but vastly different
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exponential lifetimes. At the static level, these bound state homogeneities may be

hard to distinguish from horizon inhomogeneities. However they will have rather dif-

ferent dynamical signatures. In particular since the tunneling of bulk probes marks

a cooperative rearrangement of a certain size in the dual CFT, they may potentially

be used to understand the striking dynamical heterogeneities and correlations that

are observed in supercooled liquids.

The overall picture we propose is that whereas plain, smooth black branes are holographic

duals of fluids, amorphously “fragmented” black branes represent more glassy phases of

matter. Most of the analysis of this paper was done in a probe approximation, and there-

fore the kind of fragmented branes we had actual control over were black branes dressed

with clouds of charged probe black holes. Nevertheless, already at this level we could

demonstrate characteristic features of glassy relaxation, including logarithmic aging. If

our overall picture is correct, such cloudy branes can be expected to interpolate between

fluids and genuine glasses, and may also potentially exhibit the properties of supercooled

liquids approaching the glass transition. If so, holography may provide important new

insights into the still elusive nature of the glass transition, as it provides direct access to

the thermodynamic state space, allows for efficient computation of transport coefficients

(which are the prime diagnostic for the approach to the glass transition), and is particu-

larly powerful exactly in regimes that are relevant to glassy physics. However, more work

is needed towards this goal, including the following:

1. As we have seen, the black hole horizon itself is thermodynamically unstable (pertur-

batively in some case, nonperturbatively in others) to formation of inhomogeneities,

similar to the instabilities found in [28–31, 33, 37, 38, 40–47]. The relative impor-

tance of this compared to the inhomogeneities caused by bound particles needs to

be assessed. For some but not all of the black branes forming bound states, there

is indeed a perturbative thermodynamic instability in the grand canonical ensemble,

which suggests instability towards inhomogeneities (phase mixtures) in the micro-

canonical ensemble. One may wonder if such phase mixtures may be exhibited by a

purely thermodynamic analysis, similar to [63]. If we restrict to mixtures of the black

brane phases described in this paper, the answer is no. For two phases to coexist,

their temperature, chemical potentials and pressure (free energy density) must be

equal. It can be checked that for our black brane phases, this implies the phases

are identical. It seems therefore that a direct analysis of spatially inhomogeneous

solutions, along the lines of [28–31, 33, 37, 38, 40–47], will be necessary to investigate

this question.

2. Both supercooled liquids and glasses are produced by thermal quenches, i.e. fast

cooling of the liquid phase. The properties of the resulting phase depend crucially on

the cooling rate. We did not work out in any detail a concrete holographic realization

of such a quench (although we did give some suggestions in footnote 15). It would

be interesting to do so. Since the result of a quench is effectively immediate, it is

plausible that the classical instabilities mentioned above may play an important role;
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for example one could imagine a Gregory-Laflamme type instability [28] (augmented

by quantum effects to allow horizons to split off) spitting out large droplets of black

hole brane, along the lines of e.g. [31], getting subsequently trapped in metastable

potential wells.

3. The setups we studied in which the probe approximation remains valid at all times,

namely clouds of probe charges that are not too dense and that are metastable, do not

describe genuine glasses, since they ultimately return to the liquid (bare black brane)

state. To get a system that does not relax back to the liquid phase, we need to go

to regimes where stable bound states exist. Here we did see indications of relaxation

dynamics getting irreversibly lost in the free energy landscape, a characteristic feature

in many theories of glasses. However in this case we exit the probe regime in finite

time. Therefore to really probe the glass phase and the glass transition, it will be

important to go beyond the probe approximation. Some of the features that can be

expected to arise were outlined in section 6.3. We should also point out that even

within the probe approximation, neglecting probe-probe interactions on exponentially

long time scales is physically not justified, in particular not if these interactions may

lead to probe black holes merging into larger and therefore more stable black holes.

Taking probe interactions into account at this level can be done without having to

solve for the fully backreacted geometries.

4. We restricted to relaxation through classical thermal activation. At sufficiently low

temperatures, quantum tunneling will become the dominant channel. The amplitude

for tunneling through a barrier is suppressed by an exponential factor e−
∫
|p|dq, which

can be computed directly from e.g. (A.1).

5. It would be very interesting to compute holographic transport coefficients in the

presence of black hole bound states. As equilibrium supercooled liquids approach

the glass transition temperature, the system exhibits dynamical arrest without any

clear static structural changes, and associated to this is a dramatic increase in shear

viscosity and a decrease in diffusion coefficients. Since we no longer have a single

horizon, but rather a fragmented conglomerate of horizons, there is no reason for the

universal results for viscosity and conductivity to remain valid. In fact, tracing the

reasoning of [15], it is clear that the presence of matter in the bulk will significantly

alter these universality results. As we mentioned in section 7.4, there are good reasons

to believe even modest clouds could lead to dramatic increase in the shear viscosity.

6. As discussed in section 7.5, there are obstacles to finding an explicit holographic dual

of our model as it stands. Although the theory we start from is very similar to the low

energy effective theory dual to the ABJM CFT [83], it misses the Higgs scalar that

renders one of the U(1)s massive, and forces D6- and D2-charges to come with strings

attached. We argued that this feature is in fact universal for any Freund-Rubin-like

string flux compactification. It would therefore seem quite important to see what the

impact is of adding this feature to the analysis.
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7. More generally, it would be useful to propose simplified models to capture the essential

physics of glassy holography in a more transparent way. Our model was motivated

primarily because it was the simplest uplift of asymptotically flat N = 2 supergravity

to AdS, making it likely a priori that black hole bound states would be found. But

obviously, if we do not insist to this relation, much simpler models might be possible.

Indeed if we extrapolate to the fullest extent the real-world observation that virtually

all known liquids form glasses when cooled sufficiently fast, we should expect glassy

states to appear in setups simpler than ours.

8. Finally, it would be extremely interesting to ultimately extract lessons for the general

theory of the glass transition from the holographic picture. The geometrization of

scale hierarchies, the natural symbiosis of thermodynamic and kinetic aspects and

the easy access to out-of-equilibrium physics that are offered by holography, all of

crucial importance for any theory of glasses, make us think that there are indeed

important lessons to be learned from the holographic approach. Conversely, one may

hope that empirical knowledge of the properties of glasses will then lead to a better

understanding of the fundamental landscape of quantum gravity, de Sitter space, and

the universe itself.
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A Probe degeneracy of states and cloud densities

The energy of a probe of charge q and position dependent rest mass m in a background

metric ds2 = −ν2dt2 + hijdx
idxj and electromagnetic field Aµ is

H = ν
√
m2 + hij(pi + qAi)(pj + qAj) + qA0 . (A.1)

The semiclassical 1-particle density of states per unit volume and energy is

g(E, ~x) =
1

(2π~)3

∫
d3p δ(H − E) Ω(q,m) , (A.2)

– 63 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

where Ω(q,m) corresponds to the internal state degeneracy for the given charge and local

rest mass. Integrating this over a large range of coordinates and energies gives the number

of states available to the particle in this range. Doing the integral with the above expression

for H substituted and denoting the kinetic energy by ε ≡ E− qA0−mν ≥ 0, this becomes

g(ε, ~x) =
Ω(q,m)

(2π)3

4π
√
h

ν3

√
ε(2mν + ε) (mν + ε) . (A.3)

Assuming a dilute gas so interactions are negligible and particle densities are exponentially

small, the expected number density of particles of mass m and charge q at temperature T

and chemical potential µ is then

〈nq,m(~x)〉 =

∫ ∞
0

dε g(ε, ~x) e−(q(A0−µ)+mν+ε)/T . (A.4)

(The density is defined such that the total number in a region R is
∫
R d

3xnq,m(~x).) In the

nonrelativistic regime, i.e.

T � mν , (A.5)

this is approximately

〈nq,m(~x)〉 ≈ Ω(q,m)

(2π)3

4π
√
h

ν3

√
π

2
(mνT )3/2 e−(q(A0−µ)+mν)/T . (A.6)

To apply to our setup, note that we can identify

Vem = qA0 , Vgrav = mν Vp = qA0 +mν ν =
√
V
√
h =

W√
V
, (A.7)

with the various quantities appearing here defined in sections 3 and 5. By comparing to

the discussion in section 5.2, we see moreover that we should take µ = 0, if, as we do, we

take A0 to be zero at the black hole horizon. Equation (A.6) then translates to

〈nγ(~x)〉 ≈ 1

(2π)3

4πW

V 2

√
π

2
(Vgrav,γT )3/2 Ω(γ) e−Vp,γ/T , (A.8)

where Ω(γ) = 1 if the probe is a structureless particle and Ω(γ) = eS(γ) if the probe is a

black hole. The low temperature condition (A.5) needed for the nonrelativistic approxi-

mation to be valid translates to T � Vgrav, which at finite separation from the horizon is

satisfied under our assumptions, since Vgrav ∝ N . Of course at the horizon, the nonrela-

tivistic approximation breaks down together with the rest of low energy field theory.

B Gauge field propagator in global AdS4

The electric potential due to a stationary charge q sitting at a point ~xp in Minkowski space

is given by

At =
q

4π|~x− ~xp|
. (B.1)
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This seemingly simple expression gives us a lot of information about the electric field of a

particle in flat space. Notably, we can discern that multipole moments of the electric field

get washed out as we get farther away from the particle. This is an obvious sanity check,

as a point charge sitting at ~xp is no different than a point charge sitting at the origin when

regarded by a far away observer.

We wish to determine the exact form of Aµ in analogy with (B.1). That is, for a static

particle sitting at an arbitrary point ~xp in the bulk of AdS4 with metric given by

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2(
1 + r2

`2

) + r2dΩ2 . (B.2)

We follow the derivation of [167], which is formulated in Euclidean space. This amounts

to taking t→ iτ in (B.2).

The action of a gauge field in Euclidean AdS4 is given by

SA =

∫
d4x
√
g

(
1

4
FµνFµν −AµJµ

)
, (B.3)

and its response to an external current Jν is

Aµ(x) =

∫
d4x′
√
g Gµν′

(
x, x′

)
Jν
′ (
x′
)
, (B.4)

where Gµν′ (x, x
′) is the propagator. Maxwell’s equations ∇µFµν = −Jν impose

∇µ
(
∂µGνν′ − ∂νGµν′

)
= −gνν′

δ(x, x′)
√
g

. (B.5)

The expression for the gauge invariant part of Gµν′ (x, x
′) can be given in a manifestly

coordinate independent way. To do this we note that Euclidean AdS can be constructed

by embedding the hyperboloid

−X2
0 +X2

E +X2
1 +X2

2 +X2
3 = −`2 (B.6)

in 5-dimensional minkowski space with metric

ds2
5d = g5d

µνdX
µdXν = −dX2

0 + dX2
E + dX2

1 + dX2
2 + dX2

3 . (B.7)

We obtain the metric (B.2) by parametrizing the hyperboloid as

X1 = x = r sin θ cosφ , X2 = y = r sin θ sinφ , X3 = z = r cos θ

X0 =
√
`2 + r2 cosh (τ/`) , XE =

√
`2 + r2 sinh (τ/`) . (B.8)

For two points corresponding to ~X and ~X ′ on the hyperboloid in (B.6), we define a bilinear

u
(
X,X ′

)
= −1− P (X,X ′)

`2
(B.9)
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where P (X,X ′) = gµνX
µX ′ν is the dot product in the ambient minkowski space.

The quantity P is related to the geodesic distance D between points ~X and ~X ′ by

P = `2 cosh D/`. In terms of u, the gauge invariant part of the propagator is given by

Gµν′
(
x, x′

)
= − (∂µ∂ν′u)F (u) , (B.10)

where

F (u) =
1

4π2

1

u(2 + u)
. (B.11)

In terms of the coordinates (B.8), u (X,X ′) is given by

u = −1− ~x · ~x′

`2
+

√
1 +

r2

`2

√
1 +

r′2

`2
cosh

(
τ − τ ′

`

)
, (B.12)

where ~x ·~x′ the standard flat Euclidean dot product between the two vectors and r2 = ~x ·~x.

We wish to evaluate (B.4) for a point charge sitting motionless at ~xp, that is

Jν
′ (
~x′
)

=

(
q
δ (~x′ − ~xp)√

g
, 0, 0, 0

)
. (B.13)

This boils down to computing

Aµ = − q

4π2

∫
dτ ′ (∂µ∂τ ′u)

1

u(2 + u)

∣∣∣∣
~x′=~xp

. (B.14)

Because F (u) is even in τ ′ and ∂τ ′u is odd, the integral vanishes for all components of Aµ
except Aτ . Computing the integral is straightforward and the final result is

Aτ =
q

4π2`

(
2 + w − v√
v (2 + w)

arctan

[√
v (2 + w)

v

]
+

2 + v − w√
w (2 + v)

arctan

[
w√

w (2 + v)

])
,

(B.15)

where we have defined the quantities

v ≡ −1− ~x · ~xp
`2

+

√
1 +

r2

`2

√
1 +

r2
p

`2
and w ≡ −1 +

~x · ~xp
`2

+

√
1 +

r2

`2

√
1 +

r2
p

`2
. (B.16)

For large ` we find

v =
(~x− ~xp)2

2`2
+O

(
`−4
)
, w =

(~x+ ~xp)
2

2`2
+O

(
`−4
)
, (B.17)

and

Aτ =
q

4π|~x− ~xp|
+O

(
`−2
)
. (B.18)

We have chosen our normalization such that we get the correct result in the `→∞ limit,

this is why our conventions differ by a factor of 4 in F (u) from those used in [167].

The charge density induced on the conformal sphere is given simply by σ0 =

limr→∞ r
2F tr. We provide some plots of this charge density in figure 25. We have checked

that our expression correctly gives q when integrated over the S2.
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Figure 25. Charge density σ0 for a point charge with q = 1 induced on the conformal sphere in

units where ` = 1. We take φ = 0. Left : the charge is located at ~xp = (0.4, 0, 0). Right : the charge

is located at ~xp = (8, 0, 0).

In order to obtain the U(1) currents induced by a magnetic charge, as explained in the

main text, it is not possible to dualize the field strength formed by Aτ as the corresponding

magnetic field would not obey the correct Dirichlet conditions on the boundary sphere. The

currents are obtained by dualizing the field strength obtained from

Amag
τ =

p

4π2`

(
2 + w − v√
v (2 + w)

arctan

[√
v (2 + w)

v

]
− 2 + v − w√

w (2 + v)
arctan

[
w√

w (2 + v)

])
,

(B.19)

in which case (jθ, jφ) = limr→∞ r
2(F̃ rθmag, F̃

rφ
mag).

C Static charged particles in black hole backgrounds

In this appendix we work out approximate expressions for the electrostatic field produced

by a point particle in a general planar black hole background with non-constant electro-

magnetic coupling constant.

The history of electrically charged static point particles in a black hole background

dates back almost a century. In 1927, Whittaker wrote down an infinite series expan-

sion for the electric field of a charged particle in a Schwarzschild background [171] and

subsequently Copson [172], in the same year, found the analytic re-summed solution with

the aid of Hadamard’s “elementary solution” to general second order partial differential

equations [173]. Fifty years later, Copson wrote down the analytic solution of the electric

field of a charged particle in an asymptotically flat Reissner-Nordstrom background [174].

Considerations of the electric field of a charged particle in Rindler space began with the

work of Bradbury in 1962 [175] (see also [176] for a more complete historical account).

As far as we know, the problem of the electric field of a static charged particle in a

charged AdS black hole/brane background with non-constant scalar couplings has not been

addressed. In this appendix, we discuss a simple WKB approximation to the problem for

the charged black branes considered in the main text.
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General setup. Consider an action governing the dynamics of a U(1) gauge field Aµ in

of the form:

S = −
∫
d4x
√
−g σ(z)

4
FµνF

µν +Q

∫
Aµdx

µ , (C.1)

where we have assumed a background:

ds2 = −gtt(z)dt2 + gzz(z)dz
2 + gxx(z)

(
dx2 + dy2

)
, (C.2)

and an z-dependent coupling σ(z). We assume that the horizon is located at z = zh where

gtt(zh) = 0 and the asymptotic boundary of the space is at z = zb where zb < zh.

We are interested in an electrostatic problem, and so we set Ax = Ay = 0. The

equation of motion governing a time independent At is given by:

∂z

(
σ gxx√
gzzgtt

∂zAt

)
+ σ

√
gzz
gtt

(∂2
x + ∂2

y)At = Qδ(z − zp)δ(x)δ(y) . (C.3)

We have included a time independent delta function source at (rp, 0, 0). Thus we are led

to solve an ordinary differential equation of general form (going to Fourier space in the

(x, y)-coordinates):

∂z (α(z)∂zAt)− β(z)k2At = Qδ(z − zp) . (C.4)

The effect of the delta function comes in the boundary conditions between the z < zp and

z > zp solutions. It is convenient to define γ(z) ≡ β(z)/α(z) and ζ(z) ≡ α(z)β(z). In

terms of the original metric variables:

γ(z) =
gzz
gxx

, ζ(z) = σ2 gxx
gtt

. (C.5)

We now propose a WKB approximation to solve the equations of At:

At(z) = exp
1

λ
[W0(z) + λW1(z) + . . .] , ∂z → λ∂z , (C.6)

where λ is a formal small parameter used to keep track of the expansion and then set to

one (analogous to ~ in quantum mechanics). The equation obeyed by W0 is given by:

(∂zW0)2 = k2γ(z) , (C.7)

from which it follows that W0(z) = ±k
∫
dz
√
γ(z). It is convenient to define a “flat”

coordinate

υ ≡
∫
dz
√
γ(z) , (C.8)

in terms of which W0 = ±kυ + constant. From this solution one can readily find that:

W1(z) = −1

4
log ζ(z) . (C.9)

Validity of the WKB approximation requires W ′0 � W ′1, that is k
√
γ � ζ ′/ζ. The general

solution is the linear combination:

At(z) = ζ(z)−1/4
(
ck e

kυ(z) + dk e
−kυ(z)

)
. (C.10)
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We denote the coefficients of the solution in the z > zp region by
(
c

(−)
k , d

(−)
k

)
and those

in the z < zp region by
(
c

(+)
k , d

(+)
k

)
. Similarly υ(+)(z) =

∫ z
zb
dz
√
γ(z) and υ(−)(z) =∫ zh

z dz
√
γ(z). Notice that υ(−)(z) + υ(+)(z) = υ(+)(zh) = υ(−)(zb). Also note that υ(+)(z)

is monotonically increasing with increasing z.

Boundary conditions near AdS bondary. To fully specify the solution we must

impose appropriate boundary conditions. We now assume we are in an asymptotically

AdS space and that the boundary lies at zb = 0 and the horizon at z = zh � 1. Naturally,

the point charge lies in the interval 0 < zp < zh.

For z < zp one requires that the solution is fast-falling near the AdS boundary. So our

boundary condition at z = 0 leads to the following z < zp solution:

A
(+)
t = c

(+)
k ζ(z)−1/4 sinh kυ(+)(z) . (C.11)

Matching at z = zp. We must also impose continuity at z = zp. In addition to

continuity, the delta function source imposes a condition on the first derivative of At at

z = zp:

lim
ε→0+

(∂zAt(zp + ε)− ∂zAt(zp − ε)) =

√
γ(zp)

ζ(zp)
Q . (C.12)

The above conditions at zp fix the remaining coefficients to:

d
(−)
k =

ekυ
(+)
h

2

(
c

(+)
k − Qe−kυ

(+)
p

k ζp
1/4

)
, c

(−)
k =

e−kυ
(+)
h

2

(
−c(+)

k +
Qekυ

(+)
p

k ζp
1/4

)
, (C.13)

where we have defined υ
(+)
p ≡ υ(+)(zp) and ζp ≡ ζ(zp).

Boundary conditions near the horizon. Let us assume that the metric very near

the horizon is Rindler space, i.e. we are dealing with a non-extremal black brane. For our

purposes here we may take the Rindler horizon to be at z = 1, with σ(z) ≡ σh constant, and

ds2 = −(1− z) dt2 +
dz2

(1− z)
+ dx2 + dy2 , (C.14)

where z ranges from −∞ to 1. For this geometry we have γ(z) = 1/(z − 1) and ζ(z) =

σh/(1−z). Validity of the WKB approximation requires k
√
γ � ζ ′/ζ, that is k � 1/

√
1− z.

This is satisfied asymptotically for z → −∞ but breaks down when z → 1, when the

horizon is approached. Fortunately, we can obtain the analytic Fourier modes in the

Rindler near horizon region and match to the WKB ansatz at the asymptotic boundary

of the Rinder region, where it becomes reliable. This will allow us to obtain the proper

boundary conditions on the WKB modes.19

19This is analogous to how in quantum mechanics the proper WKB boundary conditions at turning

points are obtained from matching to the asymptotics of the exact solution of the Schrödinger equation in

a linear potential.

– 69 –



J
H
E
P
0
4
(
2
0
1
5
)
0
2
7

As a boundary condition at the horizon we impose that the gauge field vanishes at the

horizon z = 1. This means that the black hole horizon is an equipotential. In the Rindler

region we can solve the equation for At exactly and find:

A
(h)
t (z) ∝

√
1− z I1

(
2k
√

1− z
)
, (C.15)

where Iν(z) is the modified Bessel function of the first kind. For z → −∞ we can expand

our solution and find:

A
(h)
t (z) ∝ (1− z)1/4 sinh

(
2k
√

1− z
)

(C.16)

The above takes a WKB form which fixes the coefficients of the z > zp WKB solu-

tion (C.10) to:

c
(−)
k = −d(−)

k . (C.17)

We can now combine (C.13) with (C.17) to solve for c
(+)
k :

c
(+)
k =

Q

ζ
1/4
p k

sinh k
(
υ

(+)
h − υ(+)

p

)
sinh kυ

(+)
h

. (C.18)

Boundary CFT charge density. We would like to obtain the holographic charge den-

sity corresponding to the probe field. In general this is given by jt = σ∂zAz|z=0. In Fourier

space, this is given by:20

jt(k) = σb ∂zA
(+)
z (0) =

Qσ
1/2
b

ζ
1/4
p

sinh k (υh − υp)
sinh kυh

. (C.19)

Consistent with the WKB approximation scheme, we ignored the contribution from the

z-dependence of the normalization factor, since this is a higher order term in the WKB

expansion, which we have been neglecting.

To obtain its expression in the (x, y)-coordinates, we must Fourier transform jt(k):

jt(r) =
1

(2π)2

∫ 2π

0
dθ

∫ ∞
0

dk k e−ikr cos θjt(k) . (C.20)

This integral can be performed by series expanding jt(k) in powers of e−kυh , integrating

over k and then over θ:

jt =
Q

2π
ηp

∞∑
n=0

(
υp + 2nυh

(r2 + (υp + 2nυh)2)3/2
− 2(n+ 1)υh − υp

(r2 + (2(n+ 1)υh − υp)2)3/2

)
, (C.21)

where

ηp =
σ

1/2
b

ζ
1/4
p

=

√
σb
σp

g
1/4
tt

g
1/4
xx

∣∣∣∣∣
zp

. (C.22)

In the large vh limit, the n = 0 term in (C.21) dominates and we can write

jt(r) =
Q

2π
ηp

(
υp

(r2 + υ2
p)

3/2
− 2υh − υp

(r2 + (2υh − υp)2)3/2

)
. (C.23)

20Here and in what follows we drop the (+) index from υ.
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Notice that the second term can be thought of as due to an image charge behind the

horizon, or equivalently due to an induced charge on the horizon, mimicking an image

charge behind the horizon. As zp → zh the charge and its image cancel each other and

the profile goes to zero. As we saw in the pure AdS case (cf. eq. (7.6)), the first term can

furthermore be thought of as being due to the combination of a charge and an image charge

reflected across the AdS boundary. The higher n corrections in (C.21) can be interpreted

as contributions from further image charges, obtained by sequences of mirroring across the

two conducting boundary surfaces z = 0 and z = zh. These are suppressed by inverse

powers of υ
(+)
h , the “optical distance” between the boundary of AdS and the horizon.

As a check, notice that for σb = σp = 1
4g2

, gtt = gzz = gxx = 1/z2, zh =∞, we recover

the Poincaré AdS result (7.7).
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