Partially Symmetric Functions Are Efficiently Isomorphism Testable

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published: http://dx.doi.org/10.1137/140971877

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: http://hdl.handle.net/1721.1/97228

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
PARTIALLY SYMMETRIC FUNCTIONS ARE EFFICIENTLY ISOMORPHISM TESTABLE

ERIC BLAIS†, AMIT WEINSTEIN†, AND YUICHI YOSHIDA§

Abstract. Given a Boolean function \(f \), the \(f \)-isomorphism testing problem requires a randomized algorithm to distinguish functions that are identical to \(f \) up to relabeling of the input variables from functions that are far from being so. An important open question in property testing is to determine for which functions \(f \) we can test \(f \)-isomorphism with a constant number of queries. Despite much recent attention to this question, essentially only two classes of functions were known to be efficiently isomorphism testable: symmetric functions and juntas. We unify and extend these results by showing that all partially symmetric functions—functions invariant to the reordering of all but a constant number of their variables—are efficiently isomorphism testable. This class of functions, first introduced by Shannon, includes symmetric functions, juntas, and many other functions as well. We conjecture that these functions are essentially the only functions efficiently isomorphism-testable. To prove our main result, we also show that partial symmetry is efficiently testable. In turn, to prove this result we had to revisit the junta testing problem. We provide a new proof of correctness of the nearly optimal junta tester. Our new proof replaces the Fourier machinery of the original proof with a purely combinatorial argument that exploits the connection between sets of variables with low influence and intersecting families. Another important ingredient in our proofs is a new notion of symmetric influence. We use this measure of influence to prove that partial symmetry is efficiently testable and also to construct an efficient sample extractor for partially symmetric functions. We then combine the sample extractor with the testing-by-implicit-learning approach to complete the proof that partially symmetric functions are efficiently isomorphism testable.

Key words. Boolean functions, property testing, partial symmetry

AMS subject classifications. 05E05, 06E30, 05C60, 68W20

DOI. 10.1137/140971877

1. Introduction. Property testing considers the following general problem: given a property \(\mathcal{P} \), identify the minimum number of queries required to determine with high probability whether an input has the property \(\mathcal{P} \) or whether it is “far” from \(\mathcal{P} \). This question was first formalized by Rubinfeld and Sudan [36].

Definition 1.1 (property tester). Let \(\mathcal{P} \) be a set of Boolean functions. An \(\epsilon \)-tester for \(\mathcal{P} \) is a randomized algorithm which queries an unknown function \(f: \{0, 1\}^n \rightarrow \{0, 1\} \) on a small number of inputs and

1. accepts with probability at least \(2/3 \) when \(f \in \mathcal{P} \),
2. rejects with probability at least \(2/3 \) when \(f \) is \(\epsilon \)-far from \(\mathcal{P} \),

where \(f \) is \(\epsilon \)-far from \(\mathcal{P} \) if \(\text{dist}(f, g) := |\{x \in \{0, 1\}^n | f(x) \neq g(x)\}| \geq \epsilon 2^n \) holds for every \(g \in \mathcal{P} \).
Goldreich, Goldwasser, and Ron [29] extended the scope of this definition to graphs and other combinatorial objects. Since then, the field of property testing has been very active. For an overview of recent developments, we refer the reader to the surveys [34, 35] and the book [28].

A notable achievement in the field of property testing is the complete characterization of graph properties that are testable with a constant number of queries [5]. An ambitious open problem is obtaining a similar characterization for properties of Boolean functions. Recently there has been a lot of progress on the restriction of this question to properties that are closed under linear or affine transformations [9, 30]. More generally, one might hope to settle this open problem for all properties of Boolean functions that are closed under relabeling of the input variables.

An important subproblem of this open question is function isomorphism testing. Given a Boolean function \(f \), the \(f \)-isomorphism testing problem is to determine whether a function \(g \) is isomorphic to \(f \)—that is, whether it is the same up to relabeling of the input variables—or far from being so. A natural goal, and the focus of this paper, is to characterize the set of functions for which isomorphism testing can be done with a constant number of queries.

1.1. Previous work. The function isomorphism testing problem was first raised by Fischer et al. [24]. They observed that fully symmetric functions are trivially isomorphism testable with a constant number of queries. They also showed that every \(k \)-junta, that is, every function which depends on at most \(k \) of the input variables, is isomorphism testable with poly\((k)\) queries. This bound was recently improved by Chakraborty, García-Soriano, and Matsliah [17], who showed that \(O(k \log k) \) queries suffice. These results imply that juntas on a constant number of variables are isomorphism testable with a constant number of queries.

The first lower bound for isomorphism testing was also provided by Fischer et al. [24]. They showed that for small enough values of \(k \), testing isomorphism to a \(k \)-linear function (i.e., a function that returns the parity of \(k \) variables) requires \(\Omega(\log k) \) queries.1 Following a series of recent works [27, 11, 12], the exact query complexity for testing isomorphism to \(k \)-linear functions has been determined to be \(\tilde{\Theta}(\min(k, n - k)) \).

More general lower bounds for isomorphism testing were obtained by Blais and O’Donnell [13]. In particular, they showed that testing isomorphism to any \(k \)-junta that is far from being a \((k - 1) \)-junta requires \(\Omega(\log \log k) \) queries. This lower bound gives a large family of functions for which testing isomorphism requires a superconstant number of queries. Alon et al. proved even more general lower bounds showing that for almost every function \(f \), testing isomorphism to \(f \) requires \(\tilde{\Theta}(n) \) queries [4] (see also [3, 17]).

1.2. Partially symmetric functions. As seen above, the only functions which we know are isomorphism testable with a constant number of queries are fully symmetric functions and juntas. Our motivation for the current work was to see if we can unify and generalize the results to encompass a larger class of functions. While symmetric functions and juntas may seem unrelated, there is in fact a strong connection. Symmetric functions, of course, are invariant under any relabeling of the input variables. Juntas satisfy a similar but slightly weaker invariance property. For every \(k \)-junta, there is a set of at least \(n - k \) variables such that the function is invariant

1More precisely, they showed that nonadaptive testers require \(\tilde{\Omega}(\sqrt{k}) \) queries. Here and in the rest of this section, tilde notation is used to hide logarithmic factors.
to any relabeling of these variables. Functions that satisfy this condition are called *partially symmetric*.

Definition 1.2 (partially symmetric functions). For a subset $J \subseteq [n] := \{1, \ldots, n\}$, a function $f : \{0,1\}^n \to \{0,1\}$ is J-symmetric if permuting the labels of the variables of J does not change the function. Moreover, f is called t-symmetric or $(n-t)$-cosymmetric if there exists $J \subseteq [n]$ of size at least t such that f is J-symmetric.

Shannon first introduced partially symmetric functions as part of his investigation on the circuit complexity of Boolean functions [38]. He showed that while most functions require an exponential number of gates to compute, every partially symmetric function can be implemented much more efficiently. Research on the connection between partial symmetry and the complexity of Boolean functions has remained active ever since [7, 8, 18, 19, 31, 32, 33, 37, 39, 42].

1.3. Our results. The set of partially symmetric functions includes both juntas and symmetric functions, but the set also contains many other functions as well. A natural question is whether this entire class of functions is isomorphism testable with a constant number of queries. Our first main result gives an affirmative answer to this question.

Theorem 1.3. For every k-cosymmetric function $f : \{0,1\}^n \to \{0,1\}$ there exists an ϵ-tester for f-isomorphism that performs $O(k \log k / \epsilon^2)$ queries.

A simple modification of an argument in Alon et al. [4] can be used to show that the bound in the above theorem is tight up to logarithmic factors. Indeed, by this argument, testing isomorphism to almost every k-cosymmetric function requires $\Omega(k)$ queries.

We believe that the theorem might also be best possible in a different way. That is, we conjecture that the set of partially symmetric functions is essentially the set of functions for which testing isomorphism can be done with a constant number of queries. We discuss this conjecture with some supporting evidence in section 6.

The proof of our first main theorem follows the general outline of the proof that isomorphism testing to juntas can be done in a constant number of queries. The observation which allows us to make this connection is the fact that partially symmetric functions can be viewed as junta-like functions. More precisely, a k-cosymmetric function is a function that has k special variables where for each assignment for these variables, the restricted function is fully symmetric on the remaining $n-k$ variables.

The proof for testing isomorphism of juntas has two main components. The first is an efficient junta testing algorithm. This enables us to reject functions that are far from being juntas. The second is a query efficient sampler of the “core” of the input function given that the function is close to a junta. The sampler can then be used in order to verify if the two juntas are indeed isomorphic. We generalize both of these components for partially symmetric functions.

Our second main result, and the first component of the isomorphism tester, is an efficient algorithm for testing partial symmetry.

Theorem 1.4. The property of being k-cosymmetric for $k < n/10$ is testable with $O(\frac{k}{\epsilon} \log \frac{k}{\epsilon})$ queries.

Different definitions of partial symmetry have been introduced since the original work of Shannon [38]. All of these definitions are related and, in fact, many of them are equivalent [15].
The natural approach for proving this theorem is to try to generalize the result on junta testing in [10]. That result heavily relied on the notion of influence of variables. The influence of a set \(S \) of variables in a function \(f \) is the probability that \(f(x) \neq f(y) \) when \(x \) is chosen uniformly at random and \(y \) is obtained from \(x \) by re-randomizing the values of \(x_i \) for each \(i \in S \). The notion of influence characterizes juntas: when \(f \) is a \(k \)-junta, there is a set of size \(n - k \) whose influence is 0, whereas when \(f \) is \(\epsilon \)-far from being a \(k \)-junta, every set of size \(n - k \) has influence at least \(\epsilon \).

We introduce a different notion of influence which we call symmetric influence. The symmetric influence of a set \(S \) of variables in \(f \) is the probability that \(f(x) \neq f(y) \) when \(x \) is chosen uniformly at random and \(y \) is obtained from \(x \) by permuting the values of \(\{x_i\}_{i \in S} \). This notion characterizes partially symmetric functions and satisfies several other useful properties. We provide the details in section 3.

The proof of the junta testing result in [10] relies on nice properties of the Fourier representation of the notion of influence. While symmetric influence also has a clean Fourier representation, it unfortunately does not have the properties needed to carry over the proof in [10] to the setting of partially symmetric functions. Instead, we must come up with a new proof technique.

Our proof of Theorem 1.4 uses a new connection to intersecting families. A family \(\mathcal{F} \) of subsets of \([n] \) is \(t \)-intersecting if for every pair of sets \(S, T \in \mathcal{F} \), their intersection size is at least \(|S \cap T| \geq t \). This notion was introduced by Erdős, Ko, and Rado, and a sequence of works led to the complete characterization of the maximum size of \(t \)-intersecting families that contain sets of fixed size [22, 25, 41, 2]. Dinur, Safra, and Friedgut recently extended those results to give bounds on the biased measure of intersecting families [21, 26]. We use these bounds to obtain a new and purely combinatorial\(^3\) proof of the junta testing result in [10]. We describe this proof and its connection to intersecting families in section 2. The same technique can also be extended to complete the proof of Theorem 1.4. We present this proof in section 4.

The second and final component of the isomorphism test for partially symmetric functions is an efficient way to sample the core of such functions. A \(k \)-cosymmetric function \(f \), which is symmetric over the complement of a set \(J \subseteq [n] \) of size \(|J| = k \), has a concise representation as a function \(f_{\text{core}} : \{0,1\}^k \times \{0,1,\ldots,n-k\} \to \{0,1\} \), which we call the core of \(f \). The core is the restriction of \(f \) to the variables in \(J \) (in the natural order), with the additional Hamming weight of the variables outside of \(J \). To determine whether two partially symmetric functions are isomorphic, it suffices to determine whether their cores are isomorphic. We do so with the help of an efficient sample extractor.

Definition 1.5. A (1 query) \(\delta \)-sampler for \(k \)-cosymmetric function \(f : \{0,1\}^n \to \{0,1\} \) is a randomized algorithm that queries \(f \) on a single input and returns a triplet \((x,w,z) \in \{0,1\}^k \times \{0,1,\ldots,n-k\} \times \{0,1\} \) where

- the distribution of \((x,w)\) is \(\delta \)-close, in total variation distance, to \(x \) being uniform over \(\{0,1\}^k \) and \(w \) being binomial over \(\{0,1,\ldots,n-k\} \) independently, and
- \(z = f_{\text{core}}(x,w) \) with probability at least \(1 - \delta \).

Our third main result is that for any \(k \)-cosymmetric function \(f \), there is a query-
efficient algorithm for constructing a δ-sampler for f.

Theorem 1.6. Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be k-cosymmetric with $k < n/10$. There is an algorithm that queries f on $O(\frac{k}{\sqrt{\eta}} \log \frac{k}{\eta})$ inputs and with probability at least $1 - \eta$ outputs a δ-sampler for f.

This theorem is a generalization of a recent result of Chakraborty, Garcia-Soriano, and Matsliah [16], who gave a similar construction for sampling the core of juntas. Their result has many applications related to testing by implicit learning [20]. Our result may be of independent interest for similar such applications. We elaborate on this topic and present the proof of Theorem 1.6 in section 5.

1.4. Parallel and subsequent work. Chakraborty et al. [15] independently and simultaneously obtained a different proof that testing isomorphism to partially symmetric functions can be done with a constant number of queries. Their proof is significantly different than ours. The key to their argument is a clever reduction from the problem of testing partial symmetry to testing juntas. Thus, instead of having to generalize the junta testing algorithm (as we do in the current paper), they are able to use it as a black box to obtain an efficient partial symmetry tester. Our approach has a couple of advantages. Notably, we obtain a nearly optimal bound of $O(k \log k)$ queries for testing k-cosymmetry, whereas the result in [15] gives a weaker $O(k^4 \log k)$ bound for the same task.

Another advantage of our approach is that the notion of symmetric influence, introduced in section 3 and a key component of our analysis, appears to be a valuable tool for the study of partially symmetric functions in other contexts. Indeed, since the completion of the current work, Alon and Weinstein [6] have used symmetric influence in the analysis of a new algorithm for the local correction of partially symmetric functions.

2. Intersecting families and testing juntas. We begin by revisiting the problem of junta testing. In this section, we give a new proof of the correctness of the k-junta tester first introduced in [10]. At a high level, the junta tester is quite simple: it partitions the set of indices into a large enough number of parts, then tries to identify all the parts that contain a relevant variable. If at most k such parts are found, the test accepts; otherwise it rejects. The algorithm is described in **JUNTA-TEST**.

Algorithm JUNTA-TEST(f, k, ϵ)

1: Create a random partition \mathcal{I} of the set $[n]$ into $r = \Theta(k^2)$ parts, and initialize $J = \emptyset$.
2: for each $i = 1$ to $\Theta(k/\epsilon)$ do
3: Sample $x, y \in \{0, 1\}^n$ uniformly at random.
4: if $f(x) \neq f(x \cup \mathcal{T})$ then
5: Use binary search to find a set $I \in \mathcal{I}$ that contains a relevant variable.
6: Set $J := J \cup I$.
7: if J is the union of $> k$ parts then reject.
8: Accept.

See also [10] for more details on this algorithm.
It is clear that the Junta-Test always accepts k-juntas. The nontrivial part of the analysis involves showing that functions that are far from k-juntas are rejected by the tester with sufficiently high probability. To do so, we must argue that the inequality in step 4 is satisfied with nonnegligible probability whenever f is far from k-juntas and J is the union of at most k parts. This is accomplished by considering the influence of variables in a function.

The influence of the set $J \subseteq [n]$ in $f: \{0, 1\}^n \rightarrow \{0, 1\}$ is $\text{Inf}_f(J) := \Pr_{x,y}[f(x) \neq f(x'y_J)]$. By definition, the probability that the inequality in step 4 is satisfied is exactly $\text{Inf}_f(J)$. To complete the analysis of correctness of the algorithm, we want to show that when f is ϵ-far from k-juntas, then with high probability over the choice of the random partition \mathcal{I}, for every set J obtained by taking the union of at most k parts in \mathcal{I}, $\text{Inf}_f(J) \geq \frac{\epsilon}{4}$. We do so by exploiting only a couple of basic facts about the notion of influence.

Lemma 2.1 (Fischer et al. [24]). For every $f: \{0, 1\}^n \rightarrow \{0, 1\}$ and every $J, K \subseteq [n]$, $\text{Inf}_f(J) \leq \text{Inf}_f(J \cup K) \leq \text{Inf}_f(J) + \text{Inf}_f(K)$. Also, if f is ϵ-far from k-juntas and $|J| \leq k$, then $\text{Inf}_f(J) \geq \epsilon$.

We also use the fact that when f is far from k-juntas, the family of sets $J \subseteq [n]$ whose complements have small influence in f is an intersecting family. For a fixed $t \geq 1$, a family \mathcal{F} of subsets of $[n]$ is called t-intersecting if any two sets J and K in \mathcal{F} have intersection size $|J \cap K| \geq t$. Much of the work in this area focused on bounding the size of t-intersecting families that contain only sets of a fixed size. Dinur and Safra [21] considered general families and asked what the maximum p-biased measure of such families can be. For $0 < p < 1$, this measure is defined as $\mu_p(\mathcal{F}) := \Pr_{J \in \mathcal{F}}[J \in \mathcal{F}]$, where the probability over J is obtained by including each coordinate $i \in [n]$ in J independently with probability p. They showed that 2-intersecting families have small p-biased measure [21], and Friedgut showed how the same result also extends to t-intersecting families for $t > 2$ [26].

Theorem 2.2 (Dinur and Safra [21]; Friedgut [26]). Let \mathcal{F} be a t-intersecting family of subsets of $[n]$ for some $t \geq 1$. For any $p < \frac{1}{t+1}$, the p-biased measure of \mathcal{F} is bounded by $\mu_p(\mathcal{F}) \leq p^t$.

We are now ready to complete the analysis of Junta-Test.

Lemma 2.3. Let $f: \{0, 1\}^n \rightarrow \{0, 1\}$ be a function that is ϵ-far from k-juntas and \mathcal{I} be a random partition of $[n]$ into $r = 20k^2$ parts. Then with probability at least $5/6$, $\text{Inf}_f(J) \geq \epsilon/4$ for any union J of k parts from \mathcal{I}.

Proof. For $0 \leq t \leq \frac{1}{2}$, let $\mathcal{F}_t = \{J \subseteq [n] : \text{Inf}_f(J) < \epsilon t\}$ be the family of all sets whose complements have influence at most ϵt. For any two sets $J, K \in \mathcal{F}_{t/2}$, the subadditivity of influence implies that

$$\text{Inf}_f(J \cup K) = \text{Inf}_f(J \cup K) \leq \text{Inf}_f(J) + \text{Inf}_f(K) < \epsilon.$$

But f is ϵ-far from k-juntas, so every set $S \subseteq [n]$ of size $|S| \leq k$ satisfies $\text{Inf}_f(S) \geq \epsilon$. Therefore, $|J \cap K| > k$ and, since this argument applies to every pair of sets in the family, $\mathcal{F}_{t/2}$ is a $(k + 1)$-intersecting family.

Let us now consider two separate cases: when $\mathcal{F}_{t/2}$ contains a set of size less than $2k$ and when it does not. In the first case, let $J \in \mathcal{F}_{t/2}$ be one of the sets of size $|J| < 2k$. With high probability, the set J is completely separated by the partition \mathcal{I}; i.e., each element of J occupies a distinct part of \mathcal{I}. When this event occurs, then for every other set $K \in \mathcal{F}_{t/2}$, the fact that $|J \cap K| \geq k + 1$ implies that K is not covered by any union of k parts in \mathcal{I}. Therefore, $\text{Inf}_f(J) \geq \frac{\epsilon}{4} > \frac{\epsilon}{4}$ for any union J of k parts from \mathcal{I}, as we wanted to show.
Consider now the case where \(\mathcal{F}_{1/4} \) contains only sets of size at least \(2k \). Then we claim that \(\mathcal{F}_{1/4} \) is a \(2k \)-intersecting family; otherwise, we could find sets \(J, K \in \mathcal{F}_{1/4} \) such that \(|J \cap K| < 2k \) and \(\text{Inf}_f(J \cap K) \leq \text{Inf}_f(J) + \text{Inf}_f(K) < \frac{\epsilon}{4} \), contradicting our assumption.

Let \(J \subseteq [n] \) be the union of \(k \) parts in \(\mathcal{I} \). Since \(\mathcal{I} \) is a random partition, \(J \) is a random subset obtained by including each element of \([n]\) in \(J \) independently with probability \(p = \frac{k}{n} < \frac{1}{2k + 1} \). By Theorem 2.2, \(\Pr_{\mathcal{I}}[\text{Inf}_f(J) < \frac{\epsilon}{4}] = \Pr[J \in \mathcal{F}_{1/4}] = \mu_{k/r}(\mathcal{F}_{1/4}) \leq (k/r)^{2k} \). By the union bound, the probability that there exists a set \(J \subseteq [n] \) that is the union of \(k \) parts in \(\mathcal{I} \) for which \(\text{Inf}_f(J) < \frac{\epsilon}{4} \) is bounded above by \(\left(\frac{k}{2k + 1} \right)^{2k} \leq \left(\frac{1}{2k + 1} \right)^{2k} = \left(\frac{1}{2k} \right)^{2k} < \frac{\epsilon}{2} \). \(\Box \)

3. Symmetric influence. The main focus of this paper is partially symmetric functions, that is, functions invariant under any reordering of the variables of some set \(J \subseteq [n] \). Let \(S_J \) denote the set of permutations of \([n]\) which only move elements from the set \(J \). A function \(f : \{0,1\}^n \to \{0,1\} \) is \(J \)-symmetric if \(f(x) = f(\pi x) \) for every input \(x \) and a permutation \(\pi \in S_J \), where \(\pi x \) is the vector whose \(\pi(i)\)th coordinate is \(x_i \).

To analyze partially symmetric functions, we introduce a new measure called symmetric influence. The symmetric influence of a set of coordinates measures the sensitivity of a function to random permutations of the labels of those coordinates.

Definition 3.1. The symmetric influence of a set \(J \subseteq [n] \) of variables in a Boolean function \(f : \{0,1\}^n \to \{0,1\} \) is defined as

\[
\text{SymInf}_f(J) = \Pr_{x \in \{0,1\}^n, \pi \in S_J} [f(x) \neq f(\pi x)].
\]

It is not hard to see that a function \(f \) is \(t \)-symmetric iff there exists a set \(J \) of size \(t \) such that \(\text{SymInf}_f(J) = 0 \). A much stronger connection between these two properties can be established by considering restricted layers of the hypercube.

Definition 3.2. Fix \(J \subseteq [n] \), \(0 \leq w \leq n \), and \(z \in \{0,1\}^{|J|} \). The restricted layer \(L^w_{J-w} := \{ x \in \{0,1\}^n \mid |x| = w \land x_J = z \} \) of the hypercube is the set of vectors of Hamming weight \(w \) which identify with \(z \) over the set \(J \).

Note that the size of a restricted layer is \(|L^w_{J-w}| = \binom{|J|}{|J|-|z|} \) when \(|z| \leq w \leq |J|+|z| \) and 0 otherwise.

Lemma 3.3. Fix \(f : \{0,1\}^n \to \{0,1\} \) and \(J \subseteq [n] \). Let \(f_J \) be the \(J \)-symmetric function closest to \(f \). The symmetric influence of \(J \) satisfies

\[
\text{dist}(f, f_J) \leq \text{SymInf}_f(J) \leq 2 \cdot \text{dist}(f, f_J).
\]

Proof. Let \(p^w_z \in [0, \frac{1}{2}] \) be the fraction of the vectors in \(L^w_{J-w} \) one has to modify in order to make the restriction of \(f \) over \(L^w_{J-w} \) constant. The definition of the symmetric influence of \(J \) can be restated as

\[
\text{SymInf}_f(J) = \frac{1}{2^n} \sum_z \sum_w \Pr_{x \in \{0,1\}^n} [x \in L^w_{J-w}] \cdot \Pr_{x \in \{0,1\}^n, \pi \in S_J} [f(x) \neq f(\pi x) \mid x \in L^w_{J-w}] = 2^{n-w} (1 - p^w_z).
\]

The last identity holds because in each layer, the probability that \(x \) and \(\pi x \) result in two different outcomes is the probability that \(x \) is chosen out of the smaller part and \(\pi x \) from the complement, or vice versa.
The function f_J can be obtained by modifying f at p_{x}^{w} fraction of the inputs in each layer $L_{\mathcal{J}_{x<z}}^{w}$, since each layer can be addressed separately and we want to modify as few inputs as possible. By this observation, we have that $\text{dist}(f,f_J) = \frac{1}{n} \sum_{z} \sum_{w} |L_{\mathcal{J}_{x<z}}^{w}| \cdot p_{x}^{w}$. Since $1 - p_{x}^{w} \in [\frac{1}{2},1]$, we have that $p_{x}^{w} \leq 2p_{x}^{w}(1 - p_{x}^{w}) \leq 2p_{x}^{w}$ and therefore $\text{dist}(f,f_J) \leq 2 \cdot \text{dist}(f,f_J)$.

Corollary 3.4. Let $f : \{0,1\}^{n} \to \{0,1\}$ be a function that is ϵ-far from being t-symmetric. Then every set $J \subseteq [n]$ of size $|J| \geq t$ has symmetric influence $\text{SymInf}_{f}(J) \geq \epsilon$.

Proof. Fix $J \subseteq [n]$ of size $|J| \geq t$ and let g be a J-symmetric function closest to f. Since g is symmetric on any subset of J, it is in particular t-symmetric and therefore $\text{dist}(f,g) \geq \epsilon$ as f is ϵ-far from being t-symmetric. Thus, by Lemma 3.3, $\text{SymInf}_{f}(J) \geq \text{dist}(f,g) \geq \epsilon$ holds.

Corollary 3.4 demonstrates the strong connection between symmetric influence and the distance from being partially symmetric, similar to the connection between influence and the distance from being junta (second part of Lemma 2.1). The additional properties of influence used in section 2 are monotonicity and subadditivity (also from Lemma 2.1). The following lemmas show that the same properties approximately hold for symmetric influence.

Lemma 3.5 (monotonicity). For any function $f : \{0,1\}^{n} \to \{0,1\}$ and any sets $J \subseteq K \subseteq [n]$,

$$\text{SymInf}_{f}(J) \leq \text{SymInf}_{f}(K).$$

Proof. Fix a function f and two sets $J,K \subseteq [n]$ so that $J \subseteq K$. We have seen before that the symmetric influence can be computed in layers, where each layer is determined by the Hamming weight and the elements outside the set we are considering. Using the fact that $\text{Var}(X) = \Pr[X = 0] \cdot \Pr[X = 1]$, the symmetric influence is twice the expected variance over all the layers (considering also the size of the layers). Using the same notation as before,

$$\text{SymInf}_{f}(J) = \frac{1}{2n} \sum_{z} \sum_{w} |L_{\mathcal{J}_{x<z}}^{w}| \cdot 2 \text{Var}_{x}[f(x) \mid x \in L_{\mathcal{J}_{x<z}}^{w}]$$

$$= 2 \cdot E_{y} \left[\text{Var}_{x}[f(x) \mid x \in L_{\mathcal{J}_{y<\gamma}}^{y}] \right].$$

A key observation is that since $\mathcal{K} \subseteq \mathcal{J}$, the layers determined when considering J are a refinement of the layers determined when considering K. Together with the fact that $\text{Var}(X) = \Pr[X = 0] \cdot \Pr[X = 1]$ is a concave function in the range $[0,1]$, we can apply Jensen’s inequality on each layer before and after the refinement to get the desired inequality. More precisely, for every $z \in \{0,1\}^{[|\mathcal{K}|]}$ and $0 \leq w \leq n$,

$$\text{Var}_{x}[f(x) \mid x \in L_{\mathcal{J}_{x<z}}^{w}] \geq E_{y} \left[\text{Var}_{x}[f(x) \mid x \in L_{\mathcal{J}_{y<\gamma}}^{y}] \mid y \in L_{\mathcal{K}_{x<z}}^{w} \right].$$

Averaging this over all layers, we get the desired result.

Lemma 3.6 (weak subadditivity). There is a universal constant c such that for any constant $0 < \gamma < 1$, any function $f : \{0,1\}^{n} \to \{0,1\}$, and any sets $J,K \subseteq [n]$ of size at least $(1 - \gamma)n$,

$$\text{SymInf}_{f}(J \cup K) \leq \text{SymInf}_{f}(J) + \text{SymInf}_{f}(K) + c\sqrt{\gamma}.$$

Note that symmetric influence does not satisfy the (strong) subadditivity property. For example, consider the function $f(x) = f_{1}(x_{J}) \oplus f_{2}(x_{K})$, where J and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Let K partition $[n]$ and where f_1, f_2 are symmetric functions. While $\text{SymInf}_f(J) = \text{SymInf}_f(K) = 0$, the function f may be far from symmetric, meaning $\text{SymInf}_f([n]) = \text{SymInf}_f(J \cup K) > 0$.

The additive factor of $c\sqrt{\gamma}$ in Lemma 3.6 is derived from the distance between the two distributions $\pi_{J\cup K}x$ and $\pi_J\pi_Kx$, for a random $x \in \{0,1\}^n$ and random permutations from $S_{J\cup K}, S_J, S_K$. When the sets J and K are large, the distance between these distributions is relatively small, which therefore results in this weak subadditivity property.

The analysis of the lemma is done using hypergeometric distributions and the distance between them. Let $\mathcal{H}_{n,m,k}$ be the hypergeometric distribution obtained when we pick k balls out of n, m of which are red, and count the number of red balls we obtained. Let $d_{TV}(\cdot, \cdot)$ denote the statistical distance between two distributions. The following two lemmas, whose proofs appear in Appendix A, capture the facts that we use in our proof of Lemma 3.6.

Lemma 3.7. Let $J, K \subseteq [n]$ be two sets and π, π_J, π_K be permutations chosen uniformly at random from $S_{J\cup K}, S_J, S_K$, respectively. For a fixed $x \in \{0,1\}^n$, we define $D_{\pi x}$ and $D_{\pi_J\pi_Kx}$ as the distribution of πx and $\pi_J\pi_Kx$, respectively. Then,

$$d_{TV}(D_{\pi x}, D_{\pi_J\pi_Kx}) = d_{TV}(\mathcal{H}_{|J\cup K|, |x_{J\cup K}|, |K\setminus J|}, \mathcal{H}_{|K|, |x_K|, |K\setminus J|})$$

holds.

Lemma 3.8. Let n, m, n', m', k be nonnegative integers with $k, n' \leq \gamma n$ for some $\gamma \leq \frac{1}{2}$. Suppose that $|m -\frac{n}{2}| \leq t\sqrt{n}$ and $|m' -\frac{n}{2}| \leq t\sqrt{n'}$ hold for some $t \leq \frac{1}{100\sqrt{\gamma}}$.

Then

$$d_{TV}(\mathcal{H}_{n,m,k}, \mathcal{H}_{n-n', m-m', k}) \leq c_{3.8}(1 + t)\gamma$$

holds for some universal constant $c_{3.8}$.

Proof of Lemma 3.6. Let π, π_J and π_K be as in Lemma 3.7 and fix $x \in \{0,1\}^n$ to be some input:

$$\Pr[\pi(f(x) \neq f(\pi x))] \leq \Pr[\pi_J f(x) \neq f(\pi_J\pi_K x)] + d_{TV}(D_{\pi x}, D_{\pi_J\pi_K x})$$

$$\leq \Pr[\pi f(x) \neq f(\pi_K x)] + \Pr[\pi_J f(x) \neq f(\pi_J\pi_K x)] + d_{TV}(D_{\pi x}, D_{\pi_J\pi_K x}).$$

By summing over all possible inputs x we have

$$\text{SymInf}_f(J \cup K) = \Pr[\pi(x) \neq f(\pi x)] = \frac{1}{2^n} \sum_x \Pr[\pi(x) \neq f(\pi x)]$$

$$\leq \Pr[\pi f(x) \neq f(\pi_K x)] + \Pr[\pi_J f(x) \neq f(\pi_J\pi_K x)] + \frac{1}{2^n} \sum_x d_{TV}(D_{\pi x}, D_{\pi_J\pi_K x}).$$

By applying Lemma 3.7 over each input x, it suffices to show that

$$\frac{1}{2^n} \sum_x d_{TV}(D_{\pi x}, D_{\pi_J\pi_K x}) = \frac{1}{2^n} \sum_x d_{TV}(\mathcal{H}_{|J\cup K|, |x_{J\cup K}|, |K\setminus J|}, \mathcal{H}_{|K|, |x_K|, |K\setminus J|})$$

$$\leq c\sqrt{\gamma}.$$
the lemma. Therefore, we perform a slightly more careful analysis. Let us choose $c \geq 2$ and assume $\gamma \leq \frac{1}{4}$ (as otherwise the claim trivially holds). Fix $\gamma' = \gamma/(1 - \gamma) \leq \frac{1}{2}$ and $t = \frac{1}{100 \sqrt{\gamma}}$. We first note that regardless of x, the required conditions on the size of the sets hold. To be exact, $|J \setminus K| \leq \gamma'|J \cup K|$ and $|K \setminus J| \leq \gamma'|J \cup K|$ since $|J \cup K| \geq (1 - \gamma)n$ and $|J \setminus K| \leq \gamma n$ (and similarly $|K \setminus J| \leq \gamma n$).

We say an input x is good if it satisfies the other conditions of Lemma 3.8. That is, both $|x_{J \cup K}| - |J_{J \cup K}| \leq t\sqrt{|J \cup K|}$ and $|x_{J \cap K}| - |J_{J \cap K}| \leq t\sqrt{|J \cap K|}$ hold. Otherwise we call such x bad. From the Chernoff bound and the union bound, the probability that x is bad is at most $4\exp(-2t^2) \leq 4\exp(-\frac{1}{5000\gamma}) \leq c'\gamma$ for some constant c'. (Notice that $\gamma' \leq 2\gamma$.)

By applying Lemma 3.8 over the good inputs we get

$$ (3.1) \leq \frac{1}{2n} \sum_{x: \text{bad}} 1 + \frac{1}{2n} \sum_{x: \text{good}} c_{3,8}(1 + t)\gamma \leq c'\gamma + c_{3,8}(1 + t)\gamma \leq c\sqrt{\gamma} $$

for some constant c, as required. \(\Box \)

Before showing how symmetric influence can be used in testing of partial symmetry, we show that it also has a simple representation using Fourier coefficients of the function. Although we do not use the representation in this paper, we feel it might be of independent interest.

3.1. Fourier representation of symmetric influence

For convenience, we consider functions whose ranges are $\{-1, 1\}$ instead of $\{0, 1\}$. Then, the symmetric influence of a function can be expressed as follows.

Proposition 3.9. Given a Boolean function $f : \{0, 1\}^n \to \{-1, 1\}$ and a set $J \subseteq [n]$, the symmetric influence of J with respect to f can also be computed as

$$ \text{SymInf}_f(J) = \frac{1}{2} \sum_{T \subseteq [n]} \text{Var}_{\pi \in S_J} [\hat{f}(\pi T)], $$

where $\hat{f}(T)$ is the Fourier coefficient of f for the set $T \subseteq [n]$, and $\pi T = \{ \pi(i) \mid i \in T \}$.

The proposition indicates that the symmetric influence of any set J can be computed as a function of the variance of the Fourier coefficients of the function in the different layers. Each layer here refers to all the Fourier coefficients of sets which share the intersection with $[n] \setminus J$ and the intersection size with J, resulting in $(|J| + 1)2^n - |J|$ different layers.

The key to proving this proposition is the following basic result on linear functions. Recall that for a set $T \subseteq [n]$, the function $\chi_T : \{0, 1\}^n \to \{-1, 1\}$ is defined by $\chi_T(x) = (-1)^{\sum_{i \in T} x_i}$.

Lemma 3.10. Fix $J, T, U \subseteq [n]$. Then

$$ E_{x \in \{0, 1\}^n, \pi \in S_J} [\chi_T(x) \cdot \chi_U(\pi x)] = \begin{cases} (\frac{|J|}{|T \cap J|})^{-1} & \text{if } \exists \pi \in S_J, \pi T = U, \\ 0 & \text{otherwise}. \end{cases} $$

Proof. For any vector $x \in \{0, 1\}^n$, any set $T \subseteq [n]$, and any permutation $\pi \in S_n$, we have the identity $\chi_T(\pi x) = \chi_{\pi^{-1}T}(x)$. Thus

$$ E_{x \in \{0, 1\}^n, \pi \in S_J} [\chi_T(x) \cdot \chi_U(\pi x)] = E_{x, \pi} [\chi_T(x) \chi_{\pi^{-1}U}(x)] = E_{\pi} \left[E_x [\chi_T(x) \chi_{\pi^{-1}U}(x)] \right]. $$
But \(E_x[\chi_T(x)\chi_{x^{-1}U}(x)] = 1[T = \pi^{-1}U] \), so we also have
\[
\begin{align*}
E_{x \in \{0,1\}^n, \pi \in S_J} [\chi_T(x) \cdot \chi_U(\pi x)] &= \Pr_{\pi \in S_J} [T = \pi^{-1}U] = \Pr_{\pi \in S_J} [\pi T = U].
\end{align*}
\]

The identity \(\pi T = U \) holds iff the permutation \(\pi \) satisfies \(\pi(i) \in U \) for every \(i \in T \). Since we permute only elements from \(J \), the sets \(T \) and \(U \) must agree on the elements of \([n] \setminus J\). If this is not the case or if the intersection of the sets with \(J \) is not of the same size, no such permutation exists. Otherwise, this event occurs if the elements of \(T \cap J \) are mapped to the exact locations of \(U \cap J \). This holds for one out of the \(\binom{|J|}{|T \cap J|} \) possible sets of locations, each with equal probability. \(\square \)

Proof of Proposition 3.9. By appealing to the fact that \(f \) is \([-1,1]\)-valued, we have that
\[
\Pr_{x,\pi}[f(x) \neq f(\pi x)] = \frac{1}{4} E_{x,\pi} [f(x)^2 + f(\pi x)^2 - 2f(x)f(\pi x)].
\]

Applying linearity of expectation and Parseval’s identity, we obtain
\[
E_{x,\pi} [f(x)^2 + f(\pi x)^2 - 2f(x)f(\pi x)] = 2 \sum_{T \subseteq [n]} \hat{f}(T)^2 - 2 \sum_{T \subseteq [n]} \hat{f}(T)\hat{f}(U) E_{x,\pi} [\chi_T(x)\chi_U(\pi x)].
\]

Fix any \(T \subseteq [n] \). By Lemma 3.10,
\[
\sum_{U \subseteq [n]} \hat{f}(U) E_{x,\pi} [\chi_T(x)\chi_U(\pi x)] = \sum_{\pi \in S_J} \frac{\hat{f}(\pi T)}{\binom{|J|}{|T \cap J|}} = E_{\pi \in S_J} \hat{f}(\pi T).
\]

Given this equality,
\[
\sum_{T \subseteq [n]} \hat{f}(T)\hat{f}(U) E_{x,\pi} [\chi_T(x)\chi_U(\pi x)] = \sum_{S} \hat{f}(T) E_{\pi \in S_J} \hat{f}(\pi T).
\]

By applying some elementary manipulation, we now get
\[
\Pr_{x,\pi}[f(x) \neq f(\pi x)] = \frac{1}{2} \sum_T \hat{f}(T)(\hat{f}(T) - E_{\pi}[\hat{f}(\pi T)])
\]
\[
= \frac{1}{2} \sum_T (E_{\pi}[\hat{f}(\pi T)^2] - E_{\pi}[\hat{f}(\pi T)]^2)
\]
\[
= \frac{1}{2} \sum_S \text{Var}_{\pi}[\hat{f}(\pi T)]. \quad \square
\]

4. Testing partial symmetry
Let us now return to the problem of testing partial symmetry. The goal of this section is to introduce an efficient tester for this property by combining the ideas from sections 2 and 3.

We first introduce the testing algorithm **Partially-Symmetric-Test**. This algorithm is conceptually similar to the junta tester in section 2. Again, the main idea is to partition the variables into \(O(k^2) \) parts and identify the parts that contain “asymmetric” variables. More precisely, given a function \(f : \{0,1\}^n \to \{0,1\} \), let \(J \subseteq [n] \) be the minimum set of variables such that \(f \) is \(J \)-symmetric, and the variables in \([n] \setminus J\) are called **asymmetric**. A function is \(k \)-cosymmetric iff it contains at most \(k \) asymmetric variables. The algorithm
exploits this characterization by trying to identify \(k+1 \) parts that contain asymmetric variables.

Notice that unlike the tester for juntas, the Hamming weight of our queries plays an important role. Therefore, we dedicate one of the parts in our random partition to be a *workspace*, which we hope will not contain any asymmetric variables. We use the workspace to maintain the Hamming weight constant while modifying our query gradually to identify an additional part with an asymmetric variable.

Algorithm Partially-Symmetric-Test\((f, k, \epsilon)\)

1. Create a random partition \(\mathcal{I} \) of \([n]\) into \(r = \Theta(k^2/\epsilon^2) \) parts, and initialize \(J := \emptyset \).

2. Pick a random workspace \(W \in \mathcal{I} \), and if \(|W| < \frac{n}{2\epsilon} \) then fail.

3. for each \(i = 1 \) to \(\Theta(k/\epsilon) \) do

4. Let \(I := \text{Find-Asymmetric-Set}(f, \mathcal{I}, J, W) \).

5. if \(I \neq \emptyset \) then

6. Set \(J := J \cup I \).

7. if \(J \) is the union of \(> k \) parts then reject.

8. Accept.

The idea behind the \text{Find-Asymmetric-Set} algorithm is as follows. Suppose that we have two inputs \(x, y \in \{0, 1\}^n \) with \(x_i = y_j, |x| = |y| \) such that \(f(x) \neq f(y) \). Given such inputs, we know there exists some asymmetric variable outside of \(J \). In order to efficiently find a set from a partition \(\mathcal{I} \) which contains such a variable, we use binary search over the sets. First, we construct a refinement \(\mathcal{J} \) of \(\mathcal{I} \). Every set of \(\mathcal{I} \setminus \{W\} \) is partitioned further into parts so that each part has size at most \(\lceil |W|/4 \rceil \). Let \(t = |\mathcal{J} \setminus \{W\}| \) be the number of parts in \(\mathcal{J} \) excluding the workspace. Notice that the number of parts is at most \(t \leq r + 4n/|W| = O(r) \). Then, we construct a sequence of inputs \(x^0 = x, x^1, \ldots, x^t = y \) by permuting at each step only elements from some set \(I \in \mathcal{J} \setminus \{W\} \) and the workspace \(W \) (that is, applying a permutation from \(S_{I \cup W} \)). In each such step, we guarantee that \(x^1 = y_1 \), for one more set \(I \in \mathcal{J} \setminus \{W\} \), and therefore after (at most) \(t \) steps we would reach \(y \). (Notice that we can choose the last step such that \(x^t_W = y_W \) as the Hamming weight of all the inputs in the sequence is identical.) We call this sequence a *constant-weight hybrid vector sequence* from \(x \) to \(y \), and we will later show that we can always construct such a sequence given that \(|W| \geq \frac{n}{2\epsilon}\).

Using this construction, we can now describe the algorithm \text{Find-Asymmetric-Set} as follows.

Algorithm Find-Asymmetric-Set\((f, \mathcal{I}, J, W)\)

1. Generate \(x \in \{0, 1\}^n \) and \(\pi \in S_\mathcal{J} \) uniformly at random.

2. if \(f(x) \neq f(\pi x) \) then

3. Define a constant-weight hybrid vector sequence \(x^0, \ldots, x^t \) from \(x \) to \(y \).

4. Perform binary search on \(x = x^0, \ldots, x^t = y \), and find \(i \) such that \(f(x^{i-1}) \neq f(x^i) \).

5. return the only part \(I \in \mathcal{I} \setminus \{W\} \) such that \(x_j^{i-1} \neq x_j^i \).

6. return \(\emptyset \).

The following analysis of the \text{Find-Asymmetric-Set} algorithm shows that it
satisfies the properties we need for testing partial symmetry.

Lemma 4.1. Let \(f \) be a function; let \(\mathcal{I} \) be a partition of \([n]\) into \(r \) parts; let \(W \in \mathcal{I}, |W| \geq \frac{n}{2r} \) be a workspace; and let \(J \) be a union of parts from \(\mathcal{I} \setminus \{W\} \). Then \(\text{Find-Asymmetric-Set}(f, \mathcal{I}, J, W) \) performs \(O(\log r) \) queries and

1. with probability \(\text{SymInf}_f(J) \), it returns a set \(I \in \mathcal{I} \setminus \{W\} \) disjoint to \(J \)—otherwise it returns \(\emptyset \);
2. if \(W \) has no asymmetric variable and \(I \in \mathcal{I} \) is returned, then \(I \) contains an asymmetric variable.

Proof. Since we perform binary search over the sequence \(x^0, \ldots, x^t \), the query complexity of the algorithm is indeed \(O(\log t) = O(\log r) \). Also, it is easy to verify that we output only an empty set or a part in \(\mathcal{I} \setminus \{W\} \) disjoint to \(J \) (since \(x_J = y_J \)).

Two random inputs \(x \) and \(y := \pi x \), for \(\pi \in \mathcal{S}_J \), satisfy \(f(x) \neq f(y) \) with probability \(\text{SymInf}_f(J) \). Thus, it suffices to show that we can always define a constant-weight hybrid vector sequence \(x^0, \ldots, x^t \) from \(x \) to \(y \), given that \(|W| \geq \frac{n}{2r} \). In order to see that this is always possible, we consider the sequence after already defining \(x^0, \ldots, x^t \), and we show that we can define \(x^{t+1} \).

Let \(J^+ = \{ I \in J \mid |x_I| > |y_I| \} \) and \(J^- = \{ I \in J \mid |x_I| < |y_I| \} \) denote the sets which require increasing or decreasing the Hamming weight of \(x_W \), respectively, when applying a permutation from \(\mathcal{S}_{J \cup W} \) to ensure \(x_{i+1} = y_I \). Notice that we ignore sets \(I \) for which \(|x_I| = |y_I| \), as they do not impact the Hamming weight of \(x_W \). If \(|J^+| > 0 \) and \(|J^-| > 0 \), then since \(\max(|x_W|, |W| - |x_W|) \geq |W|/2 \) and the size of every set \(I \in \mathcal{I} \setminus \{W\} \) is at most \([|W|/4] \), there must exists a set we can use to define \(x^{t+1} \). On the other hand, if \(|J^+| = 0 \) for example, then we can define \(x^{t+1} \) using any set from \(J^- \) as \(x_W = -\sum_{I \in J \setminus \{W\}} |x_I| - |y_I| \). (Recall that \(|x| = |x| = |y| \).)

It remains to show that when \(W \) contains no asymmetric variables and we output a part \(I \in \mathcal{I} \setminus \{W\} \), \(I \) contains an asymmetric variable. Suppose that the output \(I \) is the part which was modified between \(x^{t-1} \) and \(x^t \). Then, since \(f(x^{t-1}) \neq f(x^t) \), \(x^{t-1} = |x^t| \), and \(x^{t-1} \) and \(x^t \) differ only on \(I \cup W \), an asymmetric variable exists in \(I \cup W \) and we know it is not in \(W \). \(\square \)

Another important challenge in the analysis of Partially-Symmetric-Test is the use of symmetric influence (rather than influence). Similar to Lemma 2.3 for influence, we prove that if a function is far from being \(k \)-cosymmetric, then it is also far from being symmetric on any union of all but \(k \) parts of a random partition (assuming it has enough parts). The formal statement is given in Lemma 4.2.

Lemma 4.2. Let \(f : \{0,1\}^n \to \{0,1\} \) be a function that is \(\epsilon \)-far from \(k \)-cosymmetric and \(\mathcal{I} \) be a random partition of \([n]\) into \(r = c \cdot k^2/\epsilon^2 \) parts, for some large enough constant \(c \). Then with probability at least \(8/9 \), \(\text{SymInf}_f(J) \geq \frac{\epsilon}{9} \) holds for any union \(J \) of \(k \) parts.

The proof of this lemma is very similar to that of Lemma 2.3. The main difference between the two proofs is due to the weak-subadditivity of symmetric influence (compared to the subadditivity of influence). In light of this difference, our definition of families of sets whose complement has small symmetric influence includes only sets which are not too big. We use the observation that adding sets which contain elements of a family does not change its existing intersection. In addition, due to the additive factor of the subadditivity we prove a slightly weaker result where the symmetric influence is at least \(\epsilon/9 \) and not \(\epsilon/4 \).

Proof. We first note that when the number of parts \(r \) is bigger than \(n \), we simply partition into the \(n \) single-element sets, and the lemma trivially holds. For \(0 \leq t \leq 1 \), let \(\mathcal{F}_t = \{ J \subseteq [n] : \text{SymInf}_f(J) < t\epsilon, |J| \leq 5kn/r \} \) be the family of all sets which are
not too big and whose complement has symmetric influence of at most $t \epsilon$. (Notice that with high probability, the union of any k sets in the partition would have size smaller than $5kn/r$, and therefore we assume this is the case from this point on.) Our first observation is that for small enough values of t, \mathcal{F} is a $(k+1)$-intersecting family. Indeed, for any sets $J, K \in \mathcal{F}_{1/3}$,

$$\text{SymInf}_f(J \cap K) = \text{SymInf}_f(J \cup K) \leq \text{SymInf}_f(J) + \text{SymInf}_f(K) + c\sqrt{5k/r} < 2\epsilon/3 + \epsilon/9 < \epsilon.$$

Since f is ϵ-far from k-cosymmetric, every set $S \subseteq [n]$ of size $|S| \leq k$ satisfies $\text{SymInf}_f(S) \geq \epsilon$. So $|J \cap K| > k$.

We consider two cases separately: when $\mathcal{F}_{1/3}$ contains a set of size less than $2k$ and when it does not. The first case is identical to the proof of Lemma 2.3, and hence we do not elaborate on it.

In the second case, which also resembles the proof of Lemma 2.3, we claim that $\mathcal{F}_{1/3}$ is a $2k$-intersecting family. If this was not the case, we could find sets $J, K \in \mathcal{F}_{1/9}$ such that $|J \cap K| < 2k$ and $\text{SymInf}_f(J \cap K) \leq \text{SymInf}_f(J) + \text{SymInf}_f(K) + \epsilon/9 < \epsilon/3$, contradicting our assumption.

Let $J \subseteq [n]$ be the union of k parts in \mathcal{I}. Since \mathcal{I} is a random partition, J is a random subset obtained by including each element of $[n]$ in J independently with probability $p = k/r < \frac{1}{2k+1}$. To bound the probability that J contains some element from $\mathcal{F}_{1/9}$, we define $\mathcal{F}'_{1/9}$ to be all the sets that contain a member from $\mathcal{F}_{1/9}$. Since $\mathcal{F}'_{1/9}$ is also a $2k$-intersecting family, by Theorem 2.2, for every such J of size at most $5kn/r$, $\Pr[\text{SymInf}_f(J) < \epsilon] = \Pr[J \in \mathcal{F}'_{1/9}] \leq \mu_{k/r}(\mathcal{F}'_{1/9}) \leq (k/r)^{2k}$. Applying the union bound over all possible choices for k parts, f will not satisfy the condition of the lemma with probability at most $\binom{n}{k} \left(\frac{k}{n} \right)^{2k} = O(k^{-k})$, which completes the proof of the lemma.

We now complete the proof that partial symmetry is efficiently testable.

Proof of Theorem 1.4. Note that $|W| \geq \frac{\sqrt{r}}{r}$ indeed holds with probability at least $8/9$ from the Chernoff bound. By Lemma 4.1, FIND-ASYMMETRIC-SET performs $O(\log \frac{r}{t})$ queries according to our choice of r, and therefore the query complexity of PARTIALLY-SYMMETRIC-TEST is $O(\log \frac{r}{t})$.

Suppose f is a k-cosymmetric function. The probability that W contains an asymmetric variable is at most $k/r \leq 2/9$. Conditioned on this event not occurring, every set returned by FIND-ASYMMETRIC-SET contains an asymmetric variable. Since there are at most k such variables, J would be the union of at most k sets and we would accept.

Suppose f is a function that is ϵ-far from being k-cosymmetric. By Lemma 4.2, with probability at least $8/9$, $\text{SymInf}_f(J) \geq \epsilon/9$ holds while J consists of at most k parts. Conditioned on that, by executing FIND-ASYMMETRIC-SET $O(k/\epsilon)$ times we obtain more than k parts with probability at least $8/9$, according to Lemma 4.1. Thus, we reject with probability at least $2/3$. □

5. Isomorphism testing of partially symmetric functions. In this section we prove that isomorphism testing of partially symmetric functions can be done with a constant number of queries. The algorithm we describe consists of two main components and follows a similar approach to the one used in [17] to show that juntas
are isomorphism testable. The first component, which we already described in section 4, is an efficient tester for the property of being partially symmetric. Once we know the input function is indeed close to being partially symmetric, we can verify it is isomorphic (or at least very close to isomorphic) to the target function. The second component of the algorithm is therefore an efficient sampler from the core of a function which is (close to) partially symmetric. Comparing the cores of two partially symmetric functions suffices to identify whether two such functions are isomorphic or far from it.

Ideally, when sampling the core of a partially symmetric function f, we would like to sample it according to the marginal distribution of sampling f at a uniform input $x \in \{0,1\}^n$. We denote this marginal distribution over $\{0,1\}^k \times \{0,1,\ldots,n-k\}$ by $D^*_{k,n}$, which is in fact uniform over $\{0,1\}^k$ and binomial over $\{0,1,\ldots,n-k\}$, independently.

In our scenario, sampling the core of a function according to this distribution is not possible since we do not know the exact location of all the k asymmetric variables. Instead, we use the knowledge discovered by the partial symmetry tester, i.e., sets with asymmetric variables. Given these sets, we are able to define a sampling distribution over $\{0,1\}^n$ such that we know the input of the core for each query and whose marginal distribution over the core is close enough to $D^*_{k,n}$.

Definition 5.1. Let \mathcal{I} be some partition of $[n]$ into an odd number of parts and let $W \in \mathcal{I}$ be the workspace. Define the distribution $D^W_\mathcal{I}$ over $\{0,1\}^n$ to be as follows. Pick a random Hamming weight w according to the binomial distribution over $\{0,\ldots,n\}$ and output, if it exists, a random $x \in \{0,1\}^n$ of Hamming weight $|x| = w$ such that for every part $I \in \mathcal{I} \setminus \{W\}$, either $x_I \equiv 0$ or $x_I \equiv 1$. When no such x exists, return the all zeros vector.

The sampling distribution which we just defined, together with the random choice of the partition and workspace, satisfies two important properties: it is close to uniform over the inputs of the function, and its marginal distribution over the core of a partially symmetric function close to $D^*_{k,n}$. These properties are formally written here as Proposition 5.2.

Proposition 5.2. Let $I = \{j_1, \ldots, j_k\} \subseteq [n]$ be a set of size k, and $r = \Omega(k^2)$ be odd. If $x \sim D^W_\mathcal{I}$ for a random partition \mathcal{I} of $[n]$ into r parts and a random workspace $W \in \mathcal{I}$, then

- x is $o(1/n)$-close to being uniform over $\{0,1\}^n$, and
- $(x_J, |x_J|)$ is c/k-close to being distributed according to $D^*_{k,n}$, for our choice of $0 < c < 1$.

Proof. We start the proof with the following observation. When the number of parts r reaches n (or alternatively when $k = \Omega(\sqrt{n})$), we consider the partition of $[n]$ into the n single-element sets. Notice that when this is the partition, then in fact $D^W_\mathcal{I}$ is identical to $D^*_{k,n}$, making the following proposition trivial. Therefore, in the proof we assume that $r < n$ and $k = O(\sqrt{n})$.

We start with the first part of the proposition, showing x is almost uniform. Consider the following procedure to generate a random \mathcal{I}, W, and x. We draw a random Hamming weight $w \sim B_{n,1/2}$ and define x' to be the input consisting of w ones followed by $n-w$ zeros. We choose a random partition \mathcal{I}' of $[n]$ into r consecutive parts I_1, \ldots, I_r (i.e., $I_1 = \{1,2,\ldots,|I_1|\}$ and $I_r = \{n-|I_r|+1,\ldots,n\}$) according to the typical distribution of sizes in a random partition. Let the workspace W' be the only part which contains the coordinate w (or I_1 if $w = 0$). We now apply a random permutation over x', \mathcal{I}', and W' to get x, \mathcal{I}, and W.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
It is clear the above procedure outputs a uniform x as we applied a random permutation over x', which had a binomial Hamming weight. The choice of I was also done at random, considering the applied permutation over I'. The only difference is then in the choice of the workspace W, which can only be reflected in its size. However, when $r = o(\sqrt{n})$ we will choose the middle part as the workspace with probability $1 - o(1)$, regardless of its size. In the remaining cases, since there are $n/r = \Omega(\sqrt{n})$ parts, the possible parts to be chosen as workspace are a small fraction among all parts, and therefore W would be $o(1)$-close to being a random part.

Proving the second property of the proposition, we also consider two cases. When $r = o(\sqrt{n})$, with probability $1 - o(1)$, the workspace would have size $\omega(\sqrt{n})$ and also $w = n/2 + O(\sqrt{n})$. In such a case, the $r - 1$ parts (excluding the workspace) would be half zeros and half ones, and the marginal distribution over the number of ones in J would be $\mathcal{H}_{r-1,(r-1)/2,k}$ (assuming the elements of J are separated by I, which happens with probability $1 - o(1)$). By Lemma A.1, the distance between this distribution and $B_{k,1/2}$ is bounded by $k/r < c/k$ for our choice of $0 < c < 1$. Since there is no restriction on the ordering of the sets, this is also the distance from uniform over $\{0,1\}^k$ as required.

In the remaining case where $r = \Omega(\sqrt{n})$, we can use the same arguments and also apply Lemma A.2 with the distributions $B_{k,1/2}$ and $B_{k,1/2+\delta}$ for $\delta = O(1/\sqrt{n})$, implying the distance between these two distributions is at most $o(1)$. Combining this with the distance to $\mathcal{H}_{r-1,(r-1)(1/2+\delta),k}$ we get again a total distance of $k/r + o(1) < c/k$ for our choice of $0 < c < 1$.

We are now ready to describe the algorithm for isomorphism testing of k-cosymmetric functions. Given a k-cosymmetric function f, the algorithm tests whether the input function g is isomorphic to f or ϵ-far from being so.

Algorithm Partially-Symmetric-Iso-Test (f, k, g, ϵ)

1. Perform Partially-Symmetric-Test$(g, k, \epsilon/1000)$ and reject if failed.
2. Let I and $W \in I$ be the partition and workspace used by the algorithm.
3. Let J be the union of the k parts identified by the algorithm (adding arbitrary parts if needed).
4. for each $i = 1$ to $\Theta(k \log k/\epsilon^2)$ do
5. Query $g(x)$ at a random $x \sim B^W_I$.
6. Accept iff $(1 - \epsilon/2)$-fraction of the queries are consistent with some isomorphism f_π of f where π maps the asymmetric variables of f into all k parts of J.

The analysis of the algorithm is based on the fact that functions which pass the Partially-Symmetric-Test satisfy some conditions and particularly are close to being partially symmetric, as described in the following lemma.

Lemma 5.3. Let g be a function that is ϵ-close to being k-cosymmetric and that passed the Partially-Symmetric-Test(g, k, ϵ). In addition, let I, W, and J be the partition, workspace, and identified parts used by the algorithm. With probability at least $9/10$, there exists a function h which satisfies the following properties:

- h is 4ϵ-close to g,
- h is k-cosymmetric, and
- the asymmetric variables of h are contained in J and separated by I.

Proof. Let g^* be the k-cosymmetric function closest to g (which can be f itself, up to some isomorphism) and let R be the set of (at most) k asymmetric variables of f. Let I and W be the partition used by the algorithm. By Lemma A.1, the distance between $B_{k,1/2}$ and $B_{k,1/2+\delta}$ with $\delta = O(1/\sqrt{n})$ is bounded by $o(1)$. Then, the distance between g and g^* is also bounded by $o(1)$.

Since g^* is k-cosymmetric, it can be written as $g^* = h_I + h_W$, where h_I and h_W are the restrictions of g^* to I and W respectively. Since h_W is k-cosymmetric, it can be written as $h_W = h_R$, where h_R is a function that is 4ϵ-close to g_R. Therefore, h_I is 4ϵ-close to $g - h_R$, and h is k-cosymmetric.

Now, let π be a permutation that maps the asymmetric variables of h into J. Then, h_π is k-cosymmetric and has the asymmetric variables contained in J.

We have shown that there exists a function h that is 4ϵ-close to g, k-cosymmetric, and has the asymmetric variables contained in J and separated by I. This completes the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
By Lemma 3.3 and our assumption on \(g \),
\[
\text{SymInf}_g(R) \leq 2 \cdot \text{dist}(g, g^*) \leq 2\epsilon.
\]

Notice, however, that \(R \) is not necessarily contained in \(J \) and therefore \(g^* \) may not be a good enough candidate for \(h \). Let \(U = R \cap J \) be the intersection of the asymmetric variables of \(g^* \) and the sets identified by the algorithm. In order to show that \(g \) is also close to being \(\overline{U} \)-symmetric, we bound \(\text{SymInf}_g(U) \) using Lemma 3.6 with the sets \(R \) and \(J \). Notice that since \(|R| \leq k \) and \(|J| \leq 2kn/r \leq c^2n/c' \) for our choice of \(c' \), we can bound the error term (in the notation of Lemma 3.6) by \(c\sqrt{\epsilon} \leq c\sqrt{\epsilon^2/c'} \leq \epsilon \). We therefore have
\[
\text{SymInf}_g(U) \leq \text{SymInf}_g(R) + \text{SymInf}_g(J) + \epsilon \leq 4\epsilon,
\]
where we know \(\text{SymInf}_g(J) \leq \epsilon \) with probability at least 19/20, as the algorithm did not reject.

By applying Lemma 3.3 again, we know there exists a \(\overline{U} \)-symmetric function \(h \), whose distance to \(g \) is bounded by \(\text{dist}(g, h) \leq 4\epsilon \). Moreover, with probability at least 19/20, all its asymmetric variables are completely separated by the partition \(I \) (and they were all identified as part of \(J \)).

Given Lemma 5.3, we are now ready to analyze \text{PARTIALLY-SYMMETRIC-ISO-TEST}.

\textbf{Proof of Theorem 1.3.} Before analyzing the algorithm we just described, we consider the (simpler) case where \(k \geq n/10 \). Since Theorem 1.4 does not hold for such \(k \)'s, we apply the basic algorithm of \(O(n \log n/\epsilon) \) random queries, which is applicable for testing isomorphism of any given function (since there are \(n! \) possible isomorphisms, the random queries will rule out all of them with good probability, assuming we should reject). Since \(k = \Omega(n) \), the complexity of this algorithm fits the statement of our theorem.

We now turn to the case where \(k < n/10 \). We first analyze the query complexity of the algorithm. The step of \text{PARTIALLY-SYMMETRIC-TEST} performs \(O(\frac{k}{\epsilon} \log \frac{k}{\epsilon}) \) queries, and therefore the majority of the queries are performed at the sampling stage, resulting in \(O(k \log k/\epsilon^2) \) queries as required. In order to prove the correctness of the algorithm, we consider the following cases:

- \(g \) is \(\epsilon \)-far from being isomorphic to \(f \) and \(\epsilon/1000 \)-far from being \(k \)-cosymmetric.
- \(g \) is \(\epsilon \)-far from being isomorphic to \(f \) but \(\epsilon/1000 \)-close to being \(k \)-cosymmetric.
- \(g \) is isomorphic to \(f \).

In the first case, with probability at least 9/10, \text{PARTIALLY-SYMMETRIC-TEST} will reject and so will we, as required. We assume from this point on that \text{PARTIALLY-SYMMETRIC-TEST} did not reject, as it will reject a function \(g \) which is isomorphic to \(f \) with probability at most 1/10, and that we are not in the first case. Notice that these cases match the conditions of Lemma 5.3, and therefore from this point onward we assume there exists an \(h \) satisfying the lemma’s properties (remembering we applied the algorithm with \(\epsilon/1000 \)).

In order to bound the distance between \(h \) and \(g \) in our samples, we use Proposition 5.2, indicating
\[
\Pr_{I,W \in I \sim D_n^U} [g(x) \neq h(x)] = \text{dist}(g, h) + o(1/n).
\]

By Markov’s inequality, with probability at least 9/10, the partition \(I \) and the
workspace W satisfy
\[
\Pr_{x \sim \mathcal{D}_W^y} [g(x) \neq h(x)] \leq 10 \cdot \text{dist}(g, h) + o(1/n)
\]
\[
\leq 10 \cdot 4\epsilon/1000 + o(1/n) < \epsilon/20.
\]

By Proposition 5.2, if we were to sample h according to \mathcal{D}_W^y, it should be $\epsilon/20$-close to sampling its core (assuming the partition size is large enough). Combined with the distance between g and h in our samples, we expect our samples to be $\epsilon/20 + \epsilon/20 = \epsilon/10$ close to sampling h's core.

The last part of the proof consists of showing that the only way that there can be an almost consistent isomorphism of f is when g is isomorphic to f. Notice, however, that we care only for isomorphisms which map the asymmetric variables of f to the k sets of J. Therefore, the number of different isomorphisms we need to consider is $k!$.

Assume we are in the second case and g is ϵ-far from being isomorphic to f. Let f_π be some isomorphism of f. By our assumptions and Lemma 5.3, $\text{dist}(f_\pi, h) \geq \text{dist}(f_\pi, g) - \text{dist}(g, h) \geq \epsilon - \epsilon/250$.

Each sample we perform is inconsistent with f_π with probability at least $\epsilon - \epsilon/250 - \epsilon/10 > 8\epsilon/9$. By the Chernoff bounds and the union bound, if we perform $q = O(k \log k / \epsilon^2)$ queries, we rule out all $k!$ possible isomorphisms with probability at least $9/10$ and reject the function as required.

On the other hand, if g is isomorphic to f, then we know there exists with probability at least $9/10$ some isomorphism f_π which maps the asymmetric variables of f into the sets of J, such that
\[
\text{dist}(f_\pi, h) \leq \text{dist}(f_\pi, g) + \text{dist}(g, h) \leq \epsilon/500 + \epsilon/250.
\]
Notice that we cannot assume that $\text{dist}(f_\pi, g) = 0$ as the algorithm may not identify all the asymmetric sets, if some barely influence the output. Using arguments similar to the ones in the proof of Lemma 5.3, we can bound this distance by $\epsilon/500$.

For this isomorphism, with high probability much more than $(1 - \epsilon/2)$-fraction of the queries are consistent, and we therefore accept g, as we should. □

As we outlined above, we in fact build an efficient δ-sampler for the core of k-cosymmetric functions (or functions close to being so). Given the parts identified by Partially-Symmetric-Test, assuming it did not reject, we can sample the function’s core by querying it at a single location, where the distribution over the core’s inputs is close to $\mathcal{D}_{k, n}^x$.

Algorithm Partially-Symmetric-Sampler(f, k, δ, η)

1. Perform Partially-Symmetric-Test($f, k, \eta \delta$).
2. Let \mathcal{I} and $W \in \mathcal{I}$ be the partition and workspace used by the algorithm.
3. Let J be the union of k parts in $\mathcal{I} \setminus \{W\}$ that were identified by the algorithm.
4. Return the following sampler:
 5. Choose a random $y \sim \mathcal{D}_W^y$.
 6. Let $x \in \{0, 1\}^k$ be the value assigned to the parts in J.
 7. Yield the triplet $(x, |y| - |x|, f(y))$.

Proof of Theorem 1.6. The algorithm for generating the sampler is described by Partially-Symmetric-Sampler, which performs $O(\frac{k}{n^5} \log \frac{k}{n^5})$ preprocessing queries.
to the function. What remains to be proved is that indeed with good probability, the algorithm returns a valid sampler.

Let \(h \) be the function defined in the analysis of Theorem 1.3, which satisfies the conditions of Lemma 5.3. Recall that its asymmetric variables were separated by \(I \) and appear in \(J \). Following this analysis and that of \texttt{PARTIALLY-SYMMETRIC-TEST}, one can see that with probability at least \(1 - \eta \) we would not reject \(f \) when calling \texttt{PARTIALLY-SYMMETRIC-TEST}. Moreover, the samples would be \(\delta/2 \)-close to sampling the core of \(h \), which is by itself \(\delta/2 \)-close to \(f \). Therefore, overall our samples would be \(\delta \)-close to sampling the core of \(f \).

The last part in completing the proof of the theorem is showing that we sample the core with distribution \(\delta \)-close to \(D^*_{k,n} \). By Proposition 5.2, the total variation distance between sampling the core according to \(D^*_{k,n} \) and sampling it according to \(D^H_{k,n} \) is at most \(c/k \) for our choice of \(0 < c < 1 \), which we can choose to be at most \(\delta \).

Notice that if the function \(f \) is not \(k \)-cosymmetric but still very close (say \((k/\eta\delta)^2\)-close), applying the same algorithm will provide a good sampler for a \(k \)-cosymmetric function \(f' \) close to \(f \). The main reason is that most likely, we will not query any location of the function where it does not agree with \(f' \).

6. Discussion. Our result unifies the previous classes of functions that are efficiently isomorphism testable. More importantly, we believe that the query complexity for testing \(f \)-isomorphism is determined by the partial symmetry of \(f \). Specifically, let \(k_\epsilon(f) \) be the smallest \(k \) such that the function \(f \) is \(\epsilon \)-close to a \(k \)-cosymmetric function and \(q_\epsilon(f) \) be the minimum query complexity for testing \(f \)-isomorphism with an error parameter \(\epsilon \). We raise the following conjecture, which is analogous to the result by Fischer on the isomorphism testability of graphs [23].

Conjecture 1. There exist a constant \(c \) and functions \(L_\epsilon(k), U_\epsilon(k) \) both with \(\lim_{k \to \infty} L_\epsilon(k) = \infty \) such that, for every function \(f : \{0,1\}^n \to \{0,1\} \), we have \(L_\epsilon(k_{\epsilon}(f)) \leq q_\epsilon(f) \leq U_\epsilon(k_{\epsilon}(f)) \).

We believe that the upper bound of the conjecture can be proven using symmetric influence and the analysis tools developed in the current paper. The lower bound is consistent with all known hardness results on testing function isomorphism. In particular, by the result in [4], we know that testing \(f \)-isomorphism requires at least \(\Omega(k) \) queries for almost all functions \(f \) that are \(\epsilon \)-far from \(k \)-cosymmetric. A simple extension of the proof in [13] shows that for every \(k \)-cosymmetric function \(f \) that is \(\epsilon \)-far from \((k-1)\)-cosymmetric, testing \(f \)-isomorphism requires \(\Omega(\log \log k) \) queries (assuming \(k/n \) is bounded away from 1).

Appendix A. Hypergeometric distributions lemmas.

Proof of Lemma 3.7. Since both distributions \(D_{\pi x} \) and \(D_{\pi_j \pi_{K \setminus x}} \) only modify coordinates in \(J \cup K \), we can ignore all other coordinates. Moreover, it is in fact sufficient to look only at the number of ones in the coordinates of \(K \setminus J \) and \(J \cup K \), which completely determines the distributions. Let \(D_z \) denote the uniform distribution over all elements \(y \in \{0,1\}^n \) such that \(|y| = |x|, y_{J \cup K} = z \pi_{J \cup K} \) and \(|y_{K \setminus J}| = z \) (which also fixes the number of ones in \(y_J \)). Notice that this is well defined only for values of \(z \) such that \(\max\{0, |x_{J \cup K}| - |J|\} \leq z \leq \min\{|x_{J \cup K}|, |K \setminus J|\} \).

Given this notation, \(D_{\pi x} \) can be looked at as choosing \(z \sim \mathcal{H}_{|x_{J \cup K}|, |x_{J \cup K}|, |K \setminus J|} \) and returning \(y \sim D_z \). This is because we apply a random permutation over all elements of \(J \cup K \), and therefore the number of ones inside \(K \setminus J \) is indeed distributed like \(z \). Moreover, the order inside both sets \(K \setminus J \) and \(J \) is uniform.
The distribution $D_{\pi|\pi_K}$ can be looked at as choosing $z \sim \mathcal{H}_{|K|,|x_K|,|K\setminus J|}$ returning $y \sim D_z$. The number of ones in $K \setminus J$ is determined already after applying π_K. It is distributed like z as we care about the choice of $|K \setminus J|$ out of the $|K|$ elements, and $|x_K|$ of them are ones (and their order is uniform). Later, we apply a random permutation π_J over all other relevant coordinates, so the order of elements in J is also uniform.

Since the distributions D_z are disjoint for different values of z, this implies that the distance between the two distributions D_{π_x} and $D_{\pi|\pi_K}$ depends only on the number of ones chosen to be inside $K \setminus J$. Therefore we have

$$d_{TV}(D_{\pi_x}, D_{\pi_J|\pi_K}) = d_{TV}(\mathcal{H}_{|J\cup K|,|x_J\cup K|,|K\setminus J|}, \mathcal{H}_{|K|,|x_K|,|K\setminus J|})$$

as required.

Proof of Lemma 3.8. Our proof uses the connection between hypergeometric distribution and the binomial distribution, which we denote by $\mathcal{B}_{n,p}$ (for n experiments, each with success probability p). By the triangle inequality we know that

$$d_{TV}(\mathcal{H}_{n,m,k}, \mathcal{H}_{n-n',m-m',k}) \leq d_{TV}(\mathcal{H}_{n,m,k}, \mathcal{B}_{k,p}) + d_{TV}(\mathcal{B}_{k,p}, \mathcal{B}_{k,p'}) + d_{TV}(\mathcal{B}_{k,p'}, \mathcal{H}_{n-n',m-m',k}),$$

where $p = \frac{m}{n}$ and $p' = \frac{m-m'}{n-n'}$. In order to bound the distances we just introduced, we use the following two lemmas.

Lemma A.1 ([40]). $d_{TV}(\mathcal{H}_{n,m,k}, \mathcal{B}_{k,p}) \leq \frac{k}{n}$ holds for $p = \frac{m}{n}$.

Lemma A.2 ([1]). Let $0 < p < 1$ and $0 < \delta < 1 - p$. Then

$$d_{TV}(\mathcal{B}_{n,p}, \mathcal{B}_{n,p+\delta}) \leq \frac{\sqrt{\pi}}{\sqrt{2\pi+\sqrt{\pi}}} < 1,$$

provided $\tau_{n,p}(\delta) = \delta \sqrt{\frac{n+0.5}{2\pi(1-p)}} < 1$.

Before using the above lemmas, we analyze some of the parameters. First, when $k = 0$, the lemma trivially holds and we therefore assume $k \geq 1$. Notice that this implies that $n \gamma \geq k \geq 1$. The probability p is known to be relatively close to half. To be exact, $p - \frac{1}{2} \leq t\sqrt{\gamma/n} \leq \frac{1}{\gamma^{1/2}}$ and therefore $\frac{1}{\gamma} - p < \frac{1}{\gamma}$. Assume $p \leq p'$ and let $\delta = p' - p$. (The other case can be treated in the same manner.) We first bound δ as follows:

$$\delta = \frac{mn'-n'n'}{n(n-n')} \leq \frac{1}{n(n-n')} \left(\frac{n}{2} + t\sqrt{n} \right) \left(\frac{n'}{2} - t\sqrt{n'} \right)$$

$$= \frac{t(n\sqrt{n} + \sqrt{n'n'})}{n(n-n')} \leq \frac{2t\sqrt{\gamma n^{3/2}}}{(1-n^2)n} \leq 4t \sqrt{\frac{\gamma}{n}} \left(\text{from } \gamma \leq \frac{1}{2} \right).$$

Then $\tau_{k,p}(\delta)$ in Lemma A.2 can be bounded by

$$\tau_{k,p}(\delta) \leq 4t \sqrt{\frac{\gamma}{n}} \sqrt{\frac{k+2}{2p(1-p)}} \leq 4t \sqrt{\frac{3\gamma(k+2)}{n}} \left(\text{from } \frac{1}{p(1-p)} < 6 \right)$$

$$\leq 12t \sqrt{\gamma k/n} \leq 12t \gamma \left(\text{from } 1 \leq k \leq \gamma n \right).$$

Note that, from the assumption, we have $\tau_{k,p}(\delta) \leq \frac{1}{2}$. By Lemmas A.1 and A.2, we...
have
\[
\frac{1}{n} \leq \frac{k}{n} + \sqrt{\frac{e}{2 \cdot (1 - \tau_{k,p}(\delta))^2}} + \frac{k}{n - n'} \\
\leq 3\gamma + 2\sqrt{e \cdot 12\tau_{k,p}(\delta)} (from \tau_{k,p}(\delta) \leq \frac{1}{2}) \\
\leq c_{3.8}(1 + t)\gamma
\]
for some universal constant \(c_{3.8}\).

Acknowledgments. We thank Noga Alon, Per Austrin, Irit Dinur, Ehud Friedgut, and Ryan O’Donnell for useful discussions and valuable feedback. We also thank the anonymous referees for many valuable comments including, in particular the suggestion for the cosymmetry terminology.

REFERENCES

