
MIT Open Access Articles

Partially Symmetric Functions Are Efficiently Isomorphism Testable

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Blais, Eric, Amit Weinstein, and Yuichi Yoshida. “Partially Symmetric Functions Are
Efficiently Isomorphism Testable.” SIAM Journal on Computing 44, no. 2 (January 2015): 411–
432. © 2015 Society for Industrial and Applied Mathematics

As Published: http://dx.doi.org/10.1137/140971877

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: http://hdl.handle.net/1721.1/97228

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/97228

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. 411–432

PARTIALLY SYMMETRIC FUNCTIONS ARE EFFICIENTLY
ISOMORPHISM TESTABLE∗

ERIC BLAIS† , AMIT WEINSTEIN‡ , AND YUICHI YOSHIDA§

Abstract. Given a Boolean function f , the f -isomorphism testing problem requires a random-
ized algorithm to distinguish functions that are identical to f up to relabeling of the input variables
from functions that are far from being so. An important open question in property testing is to de-
termine for which functions f we can test f -isomorphism with a constant number of queries. Despite
much recent attention to this question, essentially only two classes of functions were known to be
efficiently isomorphism testable: symmetric functions and juntas. We unify and extend these results
by showing that all partially symmetric functions—functions invariant to the reordering of all but a
constant number of their variables—are efficiently isomorphism testable. This class of functions, first
introduced by Shannon, includes symmetric functions, juntas, and many other functions as well. We
conjecture that these functions are essentially the only functions efficiently isomorphism-testable. To
prove our main result, we also show that partial symmetry is efficiently testable. In turn, to prove
this result we had to revisit the junta testing problem. We provide a new proof of correctness of
the nearly optimal junta tester. Our new proof replaces the Fourier machinery of the original proof
with a purely combinatorial argument that exploits the connection between sets of variables with low
influence and intersecting families. Another important ingredient in our proofs is a new notion of
symmetric influence. We use this measure of influence to prove that partial symmetry is efficiently
testable and also to construct an efficient sample extractor for partially symmetric functions. We
then combine the sample extractor with the testing-by-implicit-learning approach to complete the
proof that partially symmetric functions are efficiently isomorphism testable.

Key words. Boolean functions, property testing, partial symmetry

AMS subject classifications. 05E05, 06E30, 05C60, 68W20

DOI. 10.1137/140971877

1. Introduction. Property testing considers the following general problem: given
a property P , identify the minimum number of queries required to determine with
high probability whether an input has the property P or whether it is “far” from P .
This question was first formalized by Rubinfeld and Sudan [36].

Definition 1.1 (property tester). Let P be a set of Boolean functions. An
ε-tester for P is a randomized algorithm which queries an unknown function f :
{0, 1}n → {0, 1} on a small number of inputs and

1. accepts with probability at least 2/3 when f ∈ P,
2. rejects with probability at least 2/3 when f is ε-far from P,

where f is ε-far from P if dist(f, g) := |{x ∈ {0, 1}n | f(x) �= g(x)}| ≥ ε2n holds for
every g ∈ P.

∗Received by the editors June 6, 2014; accepted for publication (in revised form) January 28,
2015; published electronically April 7, 2015. An earlier version of this paper appeared in FOCS 2012
[14].

http://www.siam.org/journals/sicomp/44-2/97187.html
†Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139 (eblais@

csail.mit.edu). Most of this work was completed while the author was at Carnegie Mellon University.
The research of this author was supported by a postdoctoral fellowship from the Simons Foundation.

‡Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (amitw@tau.
ac.il). The research of this author was supported in part by an ERC Advanced grant and by the
Israeli Centers of Research Excellence (I-CORE) program.

§National Institute of Informatics, Tokyo 101-8430, Japan, and Preferred Infrastructure, Inc.,
Tokyo 113-0033, Japan (yyoshida@nii.ac.jp). The research of this author was supported by JSPS
Grant-in-Aid for Research Activity Start-up (24800082), MEXT Grant-in-Aid for Scientific Research
on Innovative Areas (24106001), and JST, ERATO, Kawarabayashi Large Graph Project.

411

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/44-2/97187.html
mailto:eblais@csail.mit.edu
mailto:eblais@csail.mit.edu
mailto:amitw@tau.ac.il
mailto:amitw@tau.ac.il
mailto:yyoshida@nii.ac.jp

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

412 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

Goldreich, Goldwasser, and Ron [29] extended the scope of this definition to
graphs and other combinatorial objects. Since then, the field of property testing has
been very active. For an overview of recent developments, we refer the reader to the
surveys [34, 35] and the book [28].

A notable achievement in the field of property testing is the complete character-
ization of graph properties that are testable with a constant number of queries [5].
An ambitious open problem is obtaining a similar characterization for properties of
Boolean functions. Recently there has been a lot of progress on the restriction of this
question to properties that are closed under linear or affine transformations [9, 30].
More generally, one might hope to settle this open problem for all properties of
Boolean functions that are closed under relabeling of the input variables.

An important subproblem of this open question is function isomorphism test-
ing. Given a Boolean function f , the f -isomorphism testing problem is to determine
whether a function g is isomorphic to f—that is, whether it is the same up to rela-
beling of the input variables—or far from being so. A natural goal, and the focus of
this paper, is to characterize the set of functions for which isomorphism testing can
be done with a constant number of queries.

1.1. Previous work. The function isomorphism testing problem was first raised
by Fischer et al. [24]. They observed that fully symmetric functions are trivially iso-
morphism testable with a constant number of queries. They also showed that every
k-junta, that is, every function which depends on at most k of the input variables,
is isomorphism testable with poly(k) queries. This bound was recently improved by
Chakraborty, Garćıa-Soriano, and Matsliah [17], who showed that O(k log k) queries
suffice. These results imply that juntas on a constant number of variables are isomor-
phism testable with a constant number of queries.

The first lower bound for isomorphism testing was also provided by Fischer et
al. [24]. They showed that for small enough values of k, testing isomorphism to a k-
linear function (i.e., a function that returns the parity of k variables) requires Ω(log k)
queries.1 Following a series of recent works [27, 11, 12], the exact query complexity for
testing isomorphism to k-linear functions has been determined to be Θ̃(min(k, n−k)).

More general lower bounds for isomorphism testing were obtained by Blais and
O’Donnell [13]. In particular, they showed that testing isomorphism to any k-junta
that is far from being a (k − 1)-junta requires Ω(log log k) queries. This lower bound
gives a large family of functions for which testing isomorphism requires a super-
constant number of queries. Alon et al. proved even more general lower bounds
showing that for almost every function f , testing isomorphism to f requires Θ̃(n)
queries [4] (see also [3, 17]).

1.2. Partially symmetric functions. As seen above, the only functions which
we know are isomorphism testable with a constant number of queries are fully sym-
metric functions and juntas. Our motivation for the current work was to see if we
can unify and generalize the results to encompass a larger class of functions. While
symmetric functions and juntas may seem unrelated, there is in fact a strong connec-
tion. Symmetric functions, of course, are invariant under any relabeling of the input
variables. Juntas satisfy a similar but slightly weaker invariance property. For every
k-junta, there is a set of at least n − k variables such that the function is invariant

1More precisely, they showed that nonadaptive testers require Ω̃(
√
k) queries. Here and in the

rest of this section, tilde notation is used to hide logarithmic factors.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 413

to any relabeling of these variables. Functions that satisfy this condition are called
partially symmetric.

Definition 1.2 (partially symmetric functions). For a subset J ⊆ [n] :=
{1, . . . , n}, a function f : {0, 1}n → {0, 1} is J-symmetric if permuting the labels
of the variables of J does not change the function. Moreover, f is called t-symmetric
or (n − t)-cosymmetric if there exists J ⊆ [n] of size at least t such that f is J-
symmetric.

Shannon first introduced partially symmetric functions as part of his investigation
on the circuit complexity of Boolean functions [38]. He showed that while most func-
tions require an exponential number of gates to compute, every partially symmetric
function can be implemented much more efficiently. Research on the connection be-
tween partial symmetry and the complexity of Boolean functions has remained active
ever since [7, 8, 18, 19, 31, 32, 33, 37, 39, 42].2 Our results suggest that studying par-
tially symmetric functions may also yield greater understanding of property testing
on Boolean functions.

1.3. Our results. The set of partially symmetric functions includes both juntas
and symmetric functions, but the set also contains many other functions as well. A
natural question is whether this entire class of functions is isomorphism testable with
a constant number of queries. Our first main result gives an affirmative answer to
this question.

Theorem 1.3. For every k-cosymmetric function f : {0, 1}n → {0, 1} there
exists an ε-tester for f -isomorphism that performs O(k log k/ε2) queries.

A simple modification of an argument in Alon et al. [4] can be used to show that
the bound in the above theorem is tight up to logarithmic factors. Indeed, by this
argument, testing isomorphism to almost every k-cosymmetric function requires Ω(k)
queries.

We believe that the theorem might also be best possible in a different way. That
is, we conjecture that the set of partially symmetric functions is essentially the set
of functions for which testing isomorphism can be done with a constant number of
queries. We discuss this conjecture with some supporting evidence in section 6.

The proof of our first main theorem follows the general outline of the proof that
isomorphism testing to juntas can be done in a constant number of queries. The ob-
servation which allows us to make this connection is the fact that partially symmetric
functions can be viewed as junta-like functions. More precisely, a k-cosymmetric
function is a function that has k special variables where for each assignment for these
variables, the restricted function is fully symmetric on the remaining n− k variables.

The proof for testing isomorphism of juntas has two main components. The first
is an efficient junta testing algorithm. This enables us to reject functions that are far
from being juntas. The second is a query efficient sampler of the “core” of the input
function given that the function is close to a junta. The sampler can then be used in
order to verify if the two juntas are indeed isomorphic. We generalize both of these
components for partially symmetric functions.

Our second main result, and the first component of the isomorphism tester, is an
efficient algorithm for testing partial symmetry.

Theorem 1.4. The property of being k-cosymmetric for k < n/10 is testable
with O(kε log

k
ε) queries.

2Different definitions of partial symmetry have been introduced since the original work of Shan-
non [38]. All of these definitions are related and, in fact, many of them are equivalent [15].

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

414 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

The natural approach for proving this theorem is to try to generalize the result on
junta testing in [10]. That result heavily relied on the notion of influence of variables.
The influence of a set S of variables in a function f is the probability that f(x) �= f(y)
when x is chosen uniformly at random and y is obtained from x by re-randomizing
the values of xi for each i ∈ S. The notion of influence characterizes juntas: when f
is a k-junta, there is a set of size n− k whose influence is 0, whereas when f is ε-far
from being a k-junta, every set of size n− k has influence at least ε.

We introduce a different notion of influence which we call symmetric influence.
The symmetric influence of a set S of variables in f is the probability that f(x) �= f(y)
when x is chosen uniformly at random and y is obtained from x by permuting the
values of {xi}i∈S . This notion characterizes partially symmetric functions and satisfies
several other useful properties. We provide the details in section 3.

The proof of the junta testing result in [10] relies on nice properties of the Fourier
representation of the notion of influence. While symmetric influence also has a clean
Fourier representation, it unfortunately does not have the properties needed to carry
over the proof in [10] to the setting of partially symmetric functions. Instead, we must
come up with a new proof technique.

Our proof of Theorem 1.4 uses a new connection to intersecting families. A family
F of subsets of [n] is t-intersecting if for every pair of sets S, T ∈ F , their intersection
size is at least |S ∩ T | ≥ t. This notion was introduced by Erdős, Ko, and Rado,
and a sequence of works led to the complete characterization of the maximum size
of t-intersecting families that contain sets of fixed size [22, 25, 41, 2]. Dinur, Safra,
and Friedgut recently extended those results to give bounds on the biased measure
of intersecting families [21, 26]. We use these bounds to obtain a new and purely
combinatorial3 proof of the junta testing result in [10]. We describe this proof and
its connection to intersecting families in section 2. The same technique can also be
extended to complete the proof of Theorem 1.4. We present this proof in section 4.

The second and final component of the isomorphism test for partially symmetric
functions is an efficient way to sample the core of such functions. A k-cosymmetric
function f , which is symmetric over the complement of a set J ⊆ [n] of size |J | = k,
has a concise representation as a function fcore : {0, 1}k × {0, 1, . . . , n− k} → {0, 1},
which we call the core of f . The core is the restriction of f to the variables in J (in
the natural order), with the additional Hamming weight of the variables outside of J .
To determine whether two partially symmetric functions are isomorphic, it suffices to
determine whether their cores are isomorphic. We do so with the help of an efficient
sample extractor.

Definition 1.5. A (1 query) δ-sampler for k-cosymmetric function f : {0, 1}n →
{0, 1} is a randomized algorithm that queries f on a single input and returns a triplet
(x,w, z) ∈ {0, 1}k × {0, 1, . . . , n− k} × {0, 1} where

• the distribution of (x,w) is δ-close, in total variation distance, to x being uni-
form over {0, 1}k and w being binomial over {0, 1, . . . , n− k} independently,
and

• z = fcore(x,w) with probability at least 1− δ.

Our third main result is that for any k-cosymmetric function f , there is a query-

3While Friedgut [26] used tools from Fourier analysis to bound the biased measure of intersecting
families, he did so in order to obtain stability results that we do not use in this paper. The result
that we use, stated below in Theorem 2.2, is easily obtained by extending Dinur and Safra’s purely
combinatorial argument [21].

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 415

efficient algorithm for constructing a δ-sampler for f .

Theorem 1.6. Let f : {0, 1}n → {0, 1} be k-cosymmetric with k < n/10. There
is an algorithm that queries f on O(k

ηδ log
k
ηδ) inputs and with probability at least 1−η

outputs a δ-sampler for f .

This theorem is a generalization of a recent result of Chakraborty, Garćıa-Soriano,
and Matsliah [16], who gave a similar construction for sampling the core of juntas.
Their result has many applications related to testing by implicit learning [20]. Our
result may be of independent interest for similar such applications. We elaborate on
this topic and present the proof of Theorem 1.6 in section 5.

1.4. Parallel and subsequent work. Chakraborty et al. [15] independently
and simultaneously obtained a different proof that testing isomorphism to partially
symmetric functions can be done with a constant number of queries. Their proof is
significantly different than ours. The key to their argument is a clever reduction from
the problem of testing partial symmetry to testing juntas. Thus, instead of having to
generalize the junta testing algorithm (as we do in the current paper), they are able
to use it as a black box to obtain an efficient partial symmetry tester. Our approach
has a couple of advantages. Notably, we obtain a nearly optimal bound of O(k log k)
queries for testing k-cosymmetry, whereas the result in [15] gives a weaker O(k4 log k)
bound for the same task.

Another advantage of our approach is that the notion of symmetric influence,
introduced in section 3 and a key component of our analysis, appears to be a valuable
tool for the study of partially symmetric functions in other contexts. Indeed, since the
completion of the current work, Alon and Weinstein [6] have used symmetric influence
in the analysis of a new algorithm for the local correction of partially symmetric
functions.

2. Intersecting families and testing juntas. We begin by revisiting the prob-
lem of junta testing. In this section, we give a new proof of the correctness of the
k-junta tester first introduced in [10]. At a high level, the junta tester is quite sim-
ple: it partitions the set of indices into a large enough number of parts, then tries
to identify all the parts that contain a relevant variable. If at most k such parts are
found, the test accepts; otherwise it rejects. The algorithm is described in Junta-

Test.4 In the algorithm and the discussion that follows, given a set J ⊆ [n] and
inputs x, y ∈ {0, 1}n, we write xJyJ to represent the vector z ∈ {0, 1}n that satisfies
zi = xi for each i ∈ J and zi = yi for each i ∈ [n] \ J .

Algorithm Junta-Test(f, k, ε)

1: Create a random partition I of the set [n] into r = Θ(k2) parts, and initialize
J = ∅.

2: for each i = 1 to Θ(k/ε) do
3: Sample x, y ∈ {0, 1}n uniformly at random.
4: if f(x) �= f(xJyJ) then
5: Use binary search to find a set I ∈ I that contains a relevant variable.
6: Set J := J ∪ I.
7: if J is the union of > k parts then reject.
8: Accept.

4See also [10] for more details on this algorithm.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

416 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

It is clear that the Junta-Test always accepts k-juntas. The nontrivial part of
the analysis involves showing that functions that are far from k-juntas are rejected
by the tester with sufficiently high probability. To do so, we must argue that the
inequality in step 4 is satisfied with nonnegligible probability whenever f is far from
k-juntas and J is the union of at most k parts. This is accomplished by considering
the influence of variables in a function.

The influence of the set J ⊆ [n] in f : {0, 1}n → {0, 1} is Inff (J) := Prx,y[f(x) �=
f(xJyJ)]. By definition, the probability that the inequality in step 4 is satisfied is
exactly Inff (J). To complete the analysis of correctness of the algorithm, we want to
show that when f is ε-far from k-juntas, then with high probability over the choice
of the random partition I, for every set J obtained by taking the union of at most k
parts in I, Inff (J) ≥ ε

4 . We do so by exploiting only a couple of basic facts about
the notion of influence.

Lemma 2.1 (Fischer et al. [24]). For every f : {0, 1}n → {0, 1} and every
J,K ⊆ [n], Inff (J) ≤ Inff (J ∪ K) ≤ Inff (J) + Inff (K). Also, if f is ε-far from
k-juntas and |J | ≤ k, then Inff (J) ≥ ε.

We also use the fact that when f is far from k-juntas, the family of sets J ⊆ [n]
whose complements have small influence in f is an intersecting family. For a fixed
t ≥ 1, a family F of subsets of [n] is called t-intersecting if any two sets J and K in F
have intersection size |J ∩K| ≥ t. Much of the work in this area focused on bounding
the size of t-intersecting families that contain only sets of a fixed size. Dinur and
Safra [21] considered general families and asked what the maximum p-biased measure
of such families can be. For 0 < p < 1, this measure is defined as μp(F) := PrJ [J ∈ F],
where the probability over J is obtained by including each coordinate i ∈ [n] in J
independently with probability p. They showed that 2-intersecting families have small
p-biased measure [21], and Friedgut showed how the same result also extends to t-
intersecting families for t > 2 [26].

Theorem 2.2 (Dinur and Safra [21]; Friedgut [26]). Let F be a t-intersecting
family of subsets of [n] for some t ≥ 1. For any p < 1

t+1 , the p-biased measure of F
is bounded by μp(F) ≤ pt.

We are now ready to complete the analysis of Junta-Test.
Lemma 2.3. Let f : {0, 1}n → {0, 1} be a function that is ε-far from k-juntas

and I be a random partition of [n] into r = 20k2 parts. Then with probability at least
5/6, Inff (J) ≥ ε/4 for any union J of k parts from I.

Proof. For 0 ≤ t ≤ 1
2 , let Ft = {J ⊆ [n] : Inff (J) < tε} be the family of all

sets whose complements have influence at most tε. For any two sets J,K ∈ F1/2, the
subadditivity of influence implies that

Inff (J ∩K) = Inff (J ∪K) ≤ Inff (J) + Inff (K) < ε.

But f is ε-far from k-juntas, so every set S ⊆ [n] of size |S| ≤ k satisfies Inff (S) ≥ ε.
Therefore, |J ∩K| > k and, since this argument applies to every pair of sets in the
family, F1/2 is a (k + 1)-intersecting family.

Let us now consider two separate cases: when F1/2 contains a set of size less than
2k and when it does not. In the first case, let J ∈ F1/2 be one of the sets of size
|J | < 2k. With high probability, the set J is completely separated by the partition I;
i.e., each element of J occupies a distinct part of I. When this event occurs, then for
every other set K ∈ F1/2, the fact that |J ∩K| ≥ k+1 implies that K is not covered

by any union of k parts in I. Therefore, Inff (J) ≥ ε
2 > ε

4 for any union J of k parts
from I, as we wanted to show.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 417

Consider now the case where F1/2 contains only sets of size at least 2k. Then we
claim that F1/4 is a 2k-intersecting family; otherwise, we could find sets J,K ∈ F1/4

such that |J ∩K| < 2k and Inff (J ∩K) ≤ Inff (J) + Inff (K) < ε
2 , contradicting our

assumption.
Let J ⊆ [n] be the union of k parts in I. Since I is a random partition, J is

a random subset obtained by including each element of [n] in J independently with
probability p = k

r < 1
2k+1 . By Theorem 2.2, PrI [Inff (J) < ε

4] = Pr[J ∈ F1/4] =

μk/r(F1/4) ≤ (k/r)2k . By the union bound, the probability that there exists a set

J ⊆ [n] that is the union of k parts in I for which Inff (J) <
ε
4 is bounded above by(

r
k

) (
k
r

)2k ≤ (
er
k

)k (k
r

)2k ≤ (
ek
r

)k
=

(
e

20k

)k
< 1

6 .

3. Symmetric influence. The main focus of this paper is partially symmetric
functions, that is, functions invariant under any reordering of the variables of some set
J ⊆ [n]. Let SJ denote the set of permutations of [n] which only move elements from
the set J . A function f : {0, 1}n → {0, 1} is J-symmetric if f(x) = f(πx) for every
input x and a permutation π ∈ SJ , where πx is the vector whose π(i)th coordinate is
xi.

To analyze partially symmetric functions, we introduce a new measure called
symmetric influence. The symmetric influence of a set of coordinates measures the
sensitivity of a function to random permutations of the labels of those coordinates.

Definition 3.1. The symmetric influence of a set J ⊆ [n] of variables in a
Boolean function f : {0, 1}n → {0, 1} is defined as

SymInff (J) = Pr
x∈{0,1}n,π∈SJ

[f(x) �= f(πx)].

It is not hard to see that a function f is t-symmetric iff there exists a set J of
size t such that SymInff (J) = 0. A much stronger connection between these two
properties can be established by considering restricted layers of the hypercube.

Definition 3.2. Fix J ⊆ [n], 0 ≤ w ≤ n, and z ∈ {0, 1}|J|. The restricted layer
Lw
J←z

:= {x ∈ {0, 1}n | |x| = w ∧ xJ = z} of the hypercube is the set of vectors of

Hamming weight w which identify with z over the set J .
Note that the size of a restricted layer is |Lw

J←z
| = (|J|

w−|z|
)
when |z| ≤ w ≤ |J |+|z|

and 0 otherwise.
Lemma 3.3. Fix f : {0, 1}n → {0, 1} and J ⊆ [n]. Let fJ be the J-symmetric

function closest to f . The symmetric influence of J satisfies

dist(f, fJ) ≤ SymInff (J) ≤ 2 · dist(f, fJ).
Proof. Let pwz ∈ [0, 1

2] be the fraction of the vectors in Lw
J←z

one has to modify in
order to make the restriction of f over Lw

J←z
constant. The definition of the symmetric

influence of J can be restated as

SymInff (J) =
∑
z

∑
w

Pr
x∈{0,1}n

[x ∈ Lw
J←z

] · Pr
x∈{0,1}n,π∈SJ

[f(x) �= f(πx) | x ∈ Lw
J←z

]

=
1

2n

∑
z

∑
w

|Lw
J←z

| · 2pwz (1− pwz).

The last identity holds because in each layer, the probability that x and πx result in
two different outcomes is the probability that x is chosen out of the smaller part and
πx from the complement, or vice versa.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

418 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

The function fJ can be obtained by modifying f at pwz fraction of the inputs
in each layer Lw

J←z
, since each layer can be addressed separately and we want to

modify as few inputs as possible. By this observation, we have that dist(f, fJ) =
1
2n

∑
z

∑
w |Lw

J←z
| · pwz . Since 1− pwz ∈ [12 , 1], we have that pwz ≤ 2pwz (1− pwz) ≤ 2pwz

and therefore dist(f, fJ) ≤ SymInff (J) ≤ 2 · dist(f, fJ).
Corollary 3.4. Let f : {0, 1}n → {0, 1} be a function that is ε-far from be-

ing t-symmetric. Then every set J ⊆ [n] of size |J | ≥ t has symmetric influence
SymInff (J) ≥ ε.

Proof. Fix J ⊆ [n] of size |J | ≥ t and let g be a J-symmetric function closest
to f . Since g is symmetric on any subset of J , it is in particular t-symmetric and
therefore dist(f, g) ≥ ε as f is ε-far from being t-symmetric. Thus, by Lemma 3.3,
SymInff (J) ≥ dist(f, g) ≥ ε holds.

Corollary 3.4 demonstrates the strong connection between symmetric influence
and the distance from being partially symmetric, similar to the connection between
influence and the distance from being junta (second part of Lemma 2.1). The ad-
ditional properties of influence used in section 2 are monotonicity and subadditivity
(also from Lemma 2.1). The following lemmas show that the same properties approx-
imately hold for symmetric influence.

Lemma 3.5 (monotonicity). For any function f : {0, 1}n → {0, 1} and any sets
J ⊆ K ⊆ [n],

SymInff (J) ≤ SymInff (K).

Proof. Fix a function f and two sets J,K ⊆ [n] so that J ⊆ K. We have seen
before that the symmetric influence can be computed in layers, where each layer is
determined by the Hamming weight and the elements outside the set we are consider-
ing. Using the fact that Var(X) = Pr[X = 0] · Pr[X = 1], the symmetric influence is
twice the expected variance over all the layers (considering also the size of the layers).
Using the same notation as before,

SymInff (J) =
1

2n

∑
z

∑
w

|Lw
J←z

| · 2Var
x

[f(x) | x ∈ Lw
J←z

]

= 2 · E
y

[
Var
x

[f(x) | x ∈ L
|y|
J←yJ

]
]
.

A key observation is that since K ⊆ J , the layers determined when considering
J are a refinement of the layers determined when considering K. Together with the
fact that Var(X) = Pr[X = 0] · Pr[X = 1] is a concave function in the range [0, 1],
we can apply Jensen’s inequality on each layer before and after the refinement to get

the desired inequality. More precisely, for every z ∈ {0, 1}|K| and 0 ≤ w ≤ n,

Var
x

[f(x) | x ∈ Lw
K←z

] ≥ E
y

[
Var
x

[f(x) | x ∈ Lw
J←yJ

] | y ∈ Lw
K←z

]
.

Averaging this over all layers, we get the desired result.
Lemma 3.6 (weak subadditivity). There is a universal constant c such that for

any constant 0 < γ < 1, any function f : {0, 1}n → {0, 1}, and any sets J,K ⊆ [n] of
size at least (1− γ)n,

SymInff (J ∪K) ≤ SymInff (J) + SymInff (K) + c
√
γ.

Note that symmetric influence does not satisfy the (strong) subadditivity prop-
erty. For example, consider the function f(x) = f1(xJ) ⊕ f2(xK), where J and

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 419

K partition [n] and where f1, f2 are symmetric functions. While SymInff (J) =
SymInff (K) = 0, the function f may be far from symmetric, meaning SymInff ([n]) =
SymInff (J ∪K) > 0.

The additive factor of c
√
γ in Lemma 3.6 is derived from the distance between

the two distributions πJ∪Kx and πJπKx, for a random x ∈ {0, 1}n and random
permutations from SJ∪K ,SJ ,SK . When the sets J and K are large, the distance
between these distributions is relatively small, which therefore results in this weak
subadditivity property.

The analysis of the lemma is done using hypergeometric distributions and the
distance between them. LetHn,m,k be the hypergeometric distribution obtained when
we pick k balls out of n, m of which are red, and count the number of red balls we
obtained. Let dTV(·, ·) denote the statistical distance between two distributions. The
following two lemmas, whose proofs appear in Appendix A, capture the facts that we
use in our proof of Lemma 3.6.

Lemma 3.7. Let J,K ⊆ [n] be two sets and π, πJ , πK be permutations chosen
uniformly at random from SJ∪K ,SJ ,SK , respectively. For a fixed x ∈ {0, 1}n, we
define Dπx and DπJπKx as the distribution of πx and πJπKx, respectively. Then,

dTV(Dπx, DπJπKx) = dTV(H|J∪K|,|xJ∪K |,|K\J|,H|K|,|xK|,|K\J|)

holds.
Lemma 3.8. Let n,m, n′,m′, k be nonnegative integers with k, n′ ≤ γn for some

γ ≤ 1
2 . Suppose that |m − n

2 | ≤ t
√
n and |m′ − n′

2 | ≤ t
√
n′ hold for some t ≤ 1

100
√
γ .

Then

dTV(Hn,m,k,Hn−n′,m−m′,k) ≤ c3.8(1 + t)γ

holds for some universal constant c3.8.
Proof of Lemma 3.6. Let π, πJ and πK be as in Lemma 3.7 and fix x ∈ {0, 1}n to

be some input:

Pr
π
[f(x) �= f(πx)] ≤ Pr

πJ ,πK

[f(x) �= f(πJπKx)] + dTV(Dπx,DπJπKx)

≤ Pr
πK

[f(x) �= f(πKx)] + Pr
πJ ,πK

[f(πKx) �= f(πJπKx)]

+ dTV(Dπx,DπJπKx).

By summing over all possible inputs x we have

SymInff (J ∪K) = Pr
x,π

[f(x) �= f(πx)] =
1

2n

∑
x

Pr
π
[f(x) �= f(πx)]

≤ SymInff (J) + SymInff (K) +
1

2n

∑
x

dTV(Dπx,DπJπKx).

By applying Lemma 3.7 over each input x, it suffices to show that

(3.1)

1

2n

∑
x

dTV(Dπx,DπJπKx) =
1

2n

∑
x

dTV(H|J∪K|,|xJ∪K|,|K\J|,H|K|,|xK|,|K\J|)

≤ c
√
γ.

Ideally, we would like to apply Lemma 3.8 on every input x and get the desired
result; however, this is not possible, as some inputs do not satisfy the requirements of

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

420 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

the lemma. Therefore, we perform a slightly more careful analysis. Let us choose c ≥ 2
and assume γ ≤ 1

4 (as otherwise the claim trivially holds). Fix γ′ = γ/(1 − γ) ≤ 1
2

and t = 1
100
√
γ′ . We first note that regardless of x, the required conditions on the

size of the sets hold. To be exact, |J \K| ≤ γ′|J ∪K| and |K \ J | ≤ γ′|J ∪K| since
|J ∪K| ≥ (1− γ)n and |J \K| ≤ |K| ≤ γn (and similarly |K \ J | ≤ γn).

We say an input x is good if it satisfies the other conditions of Lemma 3.8. That is,

both ||xJ∪K |− |J∪K|2 | ≤ t
√|J ∪K| and ||xJ\K |− |J\K|2 | ≤ t

√|J \K| hold. Otherwise
we call such x bad. From the Chernoff bound and the union bound, the probability
that x is bad is at most 4 exp(−2t2) ≤ 4 exp(− 1

5000γ′) ≤ c′γ for some constant c′.
(Notice that γ′ ≤ 2γ.)

By applying Lemma 3.8 over the good inputs we get

(3.1) ≤ 1

2n

∑
x:bad

1 +
1

2n

∑
x:good

c3.8(1 + t)γ ≤ c′γ + c3.8(1 + t)γ ≤ c
√
γ

for some constant c, as required.
Before showing how symmetric influence can be used in testing of partial symme-

try, we show that it also has a simple representation using Fourier coefficients of the
function. Although we do not use the representation in this paper, we feel it might
be of independent interest.

3.1. Fourier representation of symmetric influence. For convenience, we
consider functions whose ranges are {−1, 1} instead of {0, 1}. Then, the symmetric
influence of a function can be expressed as follows.

Proposition 3.9. Given a Boolean function f : {0, 1}n → {−1, 1} and a set
J ⊆ [n], the symmetric influence of J with respect to f can also be computed as

SymInff (J) =
1
2

∑
T⊆[n]

Var
π∈SJ

[f̂(πT)],

where f̂(T) is the Fourier coefficient of f for the set T ⊆ [n], and πT = {π(i) | i ∈ T }.
The proposition indicates that the symmetric influence of any set J can be com-

puted as a function of the variance of the Fourier coefficients of the function in the
different layers. Each layer here refers to all the Fourier coefficients of sets which share
the intersection with [n]\J and the intersection size with J , resulting in (|J |+1)2n−|J|

different layers.

The key to proving this proposition is the following basic result on linear functions.
Recall that for a set T ⊆ [n], the function χT : {0, 1}n → {−1, 1} is defined by
χT (x) = (−1)

∑
i∈T xi .

Lemma 3.10. Fix J, T, U ⊆ [n]. Then

E
x∈{0,1}n,π∈SJ

[χT (x) · χU (πx)] =

{(|J|
|T∩J|

)−1
if ∃π ∈ SJ , πT = U,

0 otherwise.

Proof. For any vector x ∈ {0, 1}n, any set T ⊆ [n], and any permutation π ∈ Sn,
we have the identity χT (πx) = χπ−1T (x). Thus

E
x∈{0,1}n,π∈SJ

[χT (x) · χU (πx)] = E
x,π

[χT (x)χπ−1U (x)] = E
π

[
E
x
[χT (x)χπ−1U (x)]

]
.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 421

But Ex[χT (x)χπ−1U (x)] = 1[T = π−1U], so we also have

E
x∈{0,1}n,π∈SJ

[χT (x) · χU (πx)] = Pr
π∈SJ

[T = π−1U] = Pr
π∈SJ

[πT = U].

The identity πT = U holds iff the permutation π satisfies π(i) ∈ U for every i ∈ T .
Since we permute only elements from J , the sets T and U must agree on the elements
of [n] \ J . If this is not the case or if the intersection of the sets with J is not of the
same size, no such permutation exists. Otherwise, this event occurs if the elements
of T ∩ J are mapped to the exact locations of U ∩ J . This holds for one out of the(|J|
|T∩J|

)
possible sets of locations, each with equal probability.

Proof of Proposition 3.9. By appealing to the fact that f is {−1, 1}-valued, we
have that

Pr
x,π

[f(x) �= f(πx)] =
1

4
E
x,π

[f(x)2 + f(πx)2 − 2f(x)f(πx)].

Applying linearity of expectation and Parseval’s identity, we obtain

E
x,π

[f(x)2+f(πx)2−2f(x)f(πx)] = 2
∑
T⊆[n]

f̂(T)2−2
∑

T,U⊆[n]
f̂(T)f̂(U) E

x,π
[χT (x)χU (πx)].

Fix any T ⊆ [n]. By Lemma 3.10,

∑
U⊆[n]

f̂(U) E
x,π

[χT (x)χU (πx)] =
∑
π∈SJ

f̂(πT)(|J|
|T∩J|

) = E
π∈SJ

[f̂(πT)].

Given this equality,∑
T,U⊆[n]

f̂(T)f̂(U) E
x,π

[χT (x)χU (πx)] =
∑
S

f̂(T) E
π∈SJ

[f̂(πT)].

By applying some elementary manipulation, we now get

Pr
x,π

[f(x) �= f(πx)] =
1

2

∑
T

f̂(T)(f̂(T)−E
π
[f̂(πT)])

=
1

2

∑
T

(E
π
[f̂(πT)2]−E

π
[f̂(πT)]2)

=
1

2

∑
S

Var
π

[f̂(πT)].

4. Testing partial symmetry. Let us now return to the problem of testing
partial symmetry. The goal of this section is to introduce an efficient tester for this
property by combining the ideas from sections 2 and 3.

We first introduce the testing algorithm Partially-Symmetric-Test. This al-
gorithm is conceptually similar to the junta tester in section 2. Again, the main
idea is to partition the variables into O(k2) parts and identify the parts that contain
“asymmetric” variables. More precisely, given a function f : {0, 1}n → {0, 1}, let
J ⊆ [n] be the minimum set of variables such that f is J-symmetric. We call the
variables in J asymmetric, and the variables in [n] \ J are called symmetric. A func-
tion is k-cosymmetric iff it contains at most k asymmetric variables. The algorithm

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

422 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

exploits this characterization by trying to identify k+1 parts that contain asymmetric
variables.

Notice that unlike the tester for juntas, the Hamming weight of our queries plays
an important role. Therefore, we dedicate one of the parts in our random partition
to be a workspace, which we hope will not contain any asymmetric variables. We use
the workspace to maintain the Hamming weight constant while modifying our query
gradually to identify an additional part with an asymmetric variable.

Algorithm Partially-Symmetric-Test(f, k, ε)

1: Create a random partition I of [n] into r = Θ(k2/ε2) parts, and initialize J := ∅.

2: Pick a random workspace W ∈ I, and if |W | < n
2r then fail.

3: for each i = 1 to Θ(k/ε) do
4: Let I := Find-Asymmetric-Set(f, I, J,W).
5: if I �= ∅ then
6: Set J := J ∪ I.
7: if J is the union of > k parts then reject.
8: Accept.

The idea behind the Find-Asymmetric-Set algorithm is as follows. Suppose
that we have two inputs x, y ∈ {0, 1}n with xJ = yJ , |x| = |y| such that f(x) �= f(y).
Given such inputs, we know there exists some asymmetric variable outside of J . In
order to efficiently find a set from a partition I which contains such a variable, we
use binary search over the sets. First, we construct a refinement J of I. Every set of
I \ {W} is partitioned further into parts so that each part has size at most �|W |/4�.
Let t = |J \ {W}| be the number of parts in J excluding the workspace. Notice that
the number of parts is at most t ≤ r+4n/|W | = O(r). Then, we construct a sequence
of inputs x0 = x, x1, . . . , xt = y by permuting at each step only elements from some
set I ∈ J \ {W} and the workspace W (that is, applying a permutation from SI∪W).
In each such step, we guarantee that xi

I = yI for one more set I ∈ J \ {W}, and
therefore after (at most) t steps we would reach y. (Notice that we can choose the
last step such that xt

W = yW as the Hamming weight of all the inputs in the sequence
is identical.) We call this sequence a constant-weight hybrid vector sequence from x
to y, and we will later show that we can always construct such a sequence given that
|W | ≥ n

2r .

Using this construction, we can now describe the algorithm Find-Asymmetric-

Set as follows.

Algorithm Find-Asymmetric-Set(f, I, J,W)

1: Generate x ∈ {0, 1}n and π ∈ SJ uniformly at random.
2: if f(x) �= f(πx) then
3: Define a constant-weight hybrid vector sequence x0, . . . , xt from x to y.
4: Perform binary search on x = x0, . . . , xt = y, and find i such that f(xi−1) �=

f(xi).
5: return the only part I ∈ I \ {W} such that xi−1

I �= xi
I .

6: return ∅.

The following analysis of the Find-Asymmetric-Set algorithm shows that it

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 423

satisfies the properties we need for testing partial symmetry.

Lemma 4.1. Let f be a function; let I be a partition of [n] into r parts; let
W ∈ I, |W | ≥ n

2r be a workspace; and let J be a union of parts from I \ {W}. Then
Find-Asymmetric-Set(f, I, J,W) performs O(log r) queries and

1. with probability SymInff (J), it returns a set I ∈ I \ {W} disjoint to J—
otherwise it returns ∅;

2. if W has no asymmetric variable and I ∈ I is returned, then I contains an
asymmetric variable.

Proof. Since we perform binary search over the sequence x0, . . . , xt, the query
complexity of the algorithm is indeed O(log t) = O(log r). Also, it is easy to verify
that we output only an empty set or a part in I \ {W} disjoint to J (since xJ = yJ).

Two random inputs x and y := πx, for π ∈ SJ , satisfy f(x) �= f(y) with probabil-
ity SymInff (J). Thus, it suffices to show that we can always define a constant-weight
hybrid vector sequence x0, . . . , xt from x to y, given that |W | ≥ n

2r . In order to see
that this is always feasible, we consider the sequence after already defining x0, . . . , xi,
and we show that we can define xi+1.

Let J+ = {I ∈ J | |xi
I | > |yI |} and J− = {I ∈ J | |xi

I | < |yI |} denote the sets
which require increasing or decreasing the Hamming weight of xW , respectively, when
applying a permutation from SI∪W to ensure xi+1

I = yI . Notice that we ignore sets I
for which |xi

I | = |yI |, as they do not impact the Hamming weight of xi
W . If |J +| > 0

and |J−| > 0, then since max(|xi
W |, |W | − |xi

W |) ≥ �|W |/2� and the size of every set
I ∈ J \ {W} is at most �|W |/4�, there must exists a set we can use to define xi+1.
On the other hand, if |J +| = 0 for example, then we can define xi+1 using any set
from J − as |xi

W | − |yW | = −∑
I∈J\{W} |xi

I | − |yI |. (Recall that |x| = |xi| = |y|.)
It remains to show that whenW contains no asymmetric variables and we output a

part I ∈ I\{W}, I contains an asymmetric variable. Suppose that the output I is the
part which was modified between xi−1 and xi. Then, since f(xi−1) �= f(xi), |xi−1| =
|xi|, and xi−1 and xi differ only on I ∪ W , an asymmetric variable exists in I ∪ W
and we know it is not in W .

Another important challenge in the analysis of Partially-Symmetric-Test is
the use of symmetric influence (rather than influence). Similar to Lemma 2.3 for
influence, we prove that if a function is far from being k-cosymmetric, then it is
also far from being symmetric on any union of all but k parts of a random partition
(assuming it has enough parts). The formal statement is given in Lemma 4.2.

Lemma 4.2. Let f : {0, 1}n → {0, 1} be a function that is ε-far from k-
cosymmetric and I be a random partition of [n] into r = c · k2/ε2 parts, for some
large enough constant c. Then with probability at least 8/9, SymInff (J) ≥ ε

9 holds for
any union J of k parts.

The proof of this lemma is very similar to that of Lemma 2.3. The main differ-
ence between the two proofs is due to the weak-subadditivity of symmetric influence
(compared to the subadditivity of influence). In light of this difference, our defini-
tion of families of sets whose complement has small symmetric influence includes only
sets which are not too big. We use the observation that adding sets which contain
elements of a family does not change its existing intersection. In addition, due to
the additive factor of the subadditivity we prove a slightly weaker result where the
symmetric influence is at least ε/9 and not ε/4.

Proof. We first note that when the number of parts r is bigger than n, we simply
partition into the n single-element sets, and the lemma trivially holds. For 0 ≤ t ≤ 1,
let Ft = {J ⊆ [n] : SymInff (J) < tε, |J | ≤ 5kn/r} be the family of all sets which are

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

424 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

not too big and whose complement has symmetric influence of at most tε. (Notice
that with high probability, the union of any k sets in the partition would have size
smaller than 5kn/r, and therefore we assume this is the case from this point on.) Our
first observation is that for small enough values of t, Ft is a (k+1)-intersecting family.
Indeed, for any sets J,K ∈ F1/3,

SymInff (J ∩K) = SymInff (J ∪K)

≤ SymInff (J) + SymInff (K) + c
√
5k/r

< 2ε/3 + ε/9 < ε.

Since f is ε-far from k-cosymmetric, every set S ⊆ [n] of size |S| ≤ k satisfies
SymInff (S) ≥ ε. So |J ∩K| > k.

We consider two cases separately: when F1/3 contains a set of size less than 2k
and when it does not. The first case is identical to the proof of Lemma 2.3, and hence
we do not elaborate on it.

In the second case, which also resembles the proof of Lemma 2.3, we claim that
F1/9 is a 2k-intersecting family. If this was not the case, we could find sets J,K ∈ F1/9

such that |J∩K| < 2k and SymInff (J ∩K) ≤ SymInff (J)+SymInff (K)+ε/9 < ε/3,
contradicting our assumption.

Let J ⊆ [n] be the union of k parts in I. Since I is a random partition, J is
a random subset obtained by including each element of [n] in J independently with
probability p = k/r < 1

2k+1 . To bound the probability that J contains some element
from F1/9, we define F ′1/9 to be all the sets that contain a member from F1/9. Since

F ′1/9 is also a 2k-intersecting family, by Theorem 2.2, for every such J of size at most

5kn/r, Pr[SymInff (J) < ε
9] = Pr[J ∈ F1/9] ≤ μk/r(F ′1/9) ≤ (k/r)2k. Applying the

union bound over all possible choices for k parts, f will not satisfy the condition of

the lemma with probability at most
(
r
k

) (
k
r

)2k
= O(k−k), which completes the proof

of the lemma.

We now complete the proof that partial symmetry is efficiently testable.

Proof of Theorem 1.4. Note that |W | ≥ n
2r indeed holds with probability at least

8/9 from the Chernoff bound. By Lemma 4.1, Find-Asymmetric-Set performs
O(log k

ε) queries according to our choice of r, and therefore the query complexity of

Partially-Symmetric-Test is O(kε log
k
ε).

Suppose f is a k-cosymmetric function. The probability that W contains an
asymmetric variable is at most k/r ≤ 2/9. Conditioned on this event not occurring,
every set returned by Find-Asymmetric-Set contains an asymmetric variable. Since
there are at most k such variables, J would be the union of at most k sets and we
would accept.

Suppose f is a function that is ε-far from being k-cosymmetric. By Lemma 4.2,
with probability at least 8/9, SymInff (J) ≥ ε/9 holds while J consists of at most
k parts. Conditioned on that, by executing Find-Asymmetric-Set O(k/ε) times
we obtain more than k parts with probability at least 8/9, according to Lemma 4.1.
Thus, we reject with probability at least 2/3.

5. Isomorphism testing of partially symmetric functions. In this section
we prove that isomorphism testing of partially symmetric functions can be done with
a constant number of queries. The algorithm we describe consists of two main com-
ponents and follows a similar approach to the one used in [17] to show that juntas

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 425

are isomorphism testable. The first component, which we already described in sec-
tion 4, is an efficient tester for the property of being partially symmetric. Once we
know the input function is indeed close to being partially symmetric, we can verify
it is isomorphic (or at least very close to isomorphic) to the target function. The
second component of the algorithm is therefore an efficient sampler from the core of a
function which is (close to) partially symmetric. Comparing the cores of two partially
symmetric functions suffices to identify whether two such functions are isomorphic or
far from it.

Ideally, when sampling the core of a partially symmetric function f , we would like
to sample it according to the marginal distribution of sampling f at a uniform input
x ∈ {0, 1}n. We denote this marginal distribution over {0, 1}k × {0, 1, . . . , n − k}
by D∗k,n, which is in fact uniform over {0, 1}k and binomial over {0, 1, . . . , n − k},
independently.

In our scenario, sampling the core of a function according to this distribution
is not possible since we do not know the exact location of all the k asymmetric
variables. Instead, we use the knowledge discovered by the partial symmetry tester,
i.e., sets with asymmetric variables. Given these sets, we are able to define a sampling
distribution over {0, 1}n such that we know the input of the core for each query and
whose marginal distribution over the core is close enough to D∗k,n.

Definition 5.1. Let I be some partition of [n] into an odd number of parts
and let W ∈ I be the workspace. Define the distribution DW

I over {0, 1}n to be as
follows. Pick a random Hamming weight w according to the binomial distribution over
{0, . . . , n} and output, if it exists, a random x ∈ {0, 1}n of Hamming weight |x| = w
such that for every part I ∈ I \{W}, either xI ≡ 0 or xI ≡ 1. When no such x exists,
return the all zeros vector.

The sampling distribution which we just defined, together with the random choice
of the partition and workspace, satisfies two important properties: it is close to uni-
form over the inputs of the function, and its marginal distribution over the core of
a partially symmetric function close to D∗k,n. These properties are formally written
here as Proposition 5.2.

Proposition 5.2. Let J = {j1, . . . , jk} ⊆ [n] be a set of size k, and r = Ω(k2) be
odd. If x ∼ DW

I for a random partition I of [n] into r parts and a random workspace
W ∈ I, then

• x is o(1/n)-close to being uniform over {0, 1}n, and
• (xJ , |xJ |) is c/k-close to being distributed according to D∗k,n, for our choice
of 0 < c < 1.

Proof. We start the proof with the following observation. When the number of
parts r reaches n (or alternatively when k = Ω(

√
n)), we consider the partition of [n]

into the n single-element sets. Notice that when this is the partition, then in fact DW
I

is identical to D∗k,n, making the following proposition trivial. Therefore, in the proof

we assume that r < n and k = O(
√
n).

We start with the first part of the proposition, showing x is almost uniform.
Consider the following procedure to generate a random I, W , and x. We draw a
random Hamming weight w ∼ Bn,1/2 and define x′ to be the input consisting of w
ones followed by n−w zeros. We choose a random partition I ′ of [n] into r consecutive
parts I1, . . . , Ir (i.e., I1 = {1, 2, . . . , |I1|} and Ir = {n− |Ir|+ 1, . . . , n}) according to
the typical distribution of sizes in a random partition. Let the workspace W ′ be the
only part which contains the coordinate w (or I1 if w = 0). We now apply a random
permutation over x′, I ′, and W ′ to get x, I, and W .

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

426 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

It is clear the above procedure outputs a uniform x as we applied a random
permutation over x′, which had a binomial Hamming weight. The choice of I was
also done at random, considering the applied permutation over I ′. The only difference
is then in the choice of the workspace W , which can only be reflected in its size.
However, when r = o(

√
n) we will choose the middle part as the workspace with

probability 1 − o(1), regardless of its size. In the remaining cases, since there are
n/r = Ω(

√
n) parts, the possible parts to be chosen as workspace are a small fraction

among all parts, and therefore W would be o(1)-close to being a random part.

Proving the second property of the proposition, we also consider two cases. When
r = o(

√
n), with probability 1 − o(1), the workspace would have size ω(

√
n) and

also w = n/2 + O(
√
n). In such a case, the r − 1 parts (excluding the workspace)

would be half zeros and half ones, and the marginal distribution over the number
of ones in J would be Hr−1,(r−1)/2,k (assuming the elements of J are separated by
I, which happens with probability 1 − o(1)). By Lemma A.1, the distance between
this distribution and Bk,1/2 is bounded by k/r < c/k for our choice of 0 < c < 1.
Since there is no restriction on the ordering of the sets, this is also the distance from
uniform over {0, 1}k as required.

In the remaining case where r = Ω(
√
n), we can use the same arguments and

also apply Lemma A.2 with the distributions Bk,1/2 and Bk,1/2+δ for δ = O(1/
√
n),

implying the distance between these two distributions is at most o(1). Combining this
with the distance to Hr−1,(r−1)(1/2+δ),k we get again a total distance of k/r+ o(1) <
c/k for our choice of 0 < c < 1.

We are now ready to describe the algorithm for isomorphism testing of k-cosymmetric
functions. Given a k-cosymmetric function f , the algorithm tests whether the input
function g is isomorphic to f or ε-far from being so.

Algorithm Partially-Symmetric-Iso-Test(f, k, g, ε)

1: Perform Partially-Symmetric-Test(g, k, ε/1000) and reject if failed.
2: Let I and W ∈ I be the partition and workspace used by the algorithm.
3: Let J be the union of the k parts identified by the algorithm (adding arbitrary

parts if needed).
4: for each i = 1 to Θ(k log k/ε2) do
5: Query g(x) at a random x ∼ DW

I .
6: Accept iff (1 − ε/2)-fraction of the queries are consistent with some isomorphism

fπ of f where π maps the asymmetric variables of f into all k parts of J .

The analysis of the algorithm is based on the fact that functions which pass the
Partially-Symmetric-Test satisfy some conditions and particularly are close to
being partially symmetric, as described the following lemma.

Lemma 5.3. Let g be a function that is ε-close to being k-cosymmetric and that
passed the Partially-Symmetric-Test(g, k, ε). In addition, let I, W , and J be the
partition, workspace, and identified parts used by the algorithm. With probability at
least 9/10, there exists a function h which satisfies the following properties:

• h is 4ε-close to g,
• h is k-cosymmetric, and
• the asymmetric variables of h are contained in J and separated by I.

Proof. Let g∗ be the k-cosymmetric function closest to g (which can be f itself,
up to some isomorphism) and let R be the set of (at most) k asymmetric variables of

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 427

g∗. By Lemma 3.3 and our assumption on g,

SymInfg(R) ≤ 2 · dist(g, g∗) ≤ 2ε.

Notice, however, that R is not necessarily contained in J and therefore g∗ may not be
a good enough candidate for h. Let U = R ∩ J be the intersection of the asymmetric
variables of g∗ and the sets identified by the algorithm. In order to show that g is also
close to being U -symmetric, we bound SymInfg(U) using Lemma 3.6 with the sets R

and J . Notice that since |R| ≤ k and |J | ≤ 2kn/r ≤ ε2n/c′ for our choice of c′, we
can bound the error term (in the notation of Lemma 3.6) by c

√
γ ≤ c

√
ε2/c′ ≤ ε. We

therefore have

SymInfg(U) ≤ SymInfg(R) + SymInfg(J) + ε ≤ 4ε,

where we know SymInfg(J) ≤ ε with probability at least 19/20, as the algorithm did
not reject.

By applying Lemma 3.3 again, we know there exists a U -symmetric function h,
whose distance to g is bounded by dist(g, h) ≤ 4ε. Moreover, with probability at least
19/20, all its asymmetric variables are completely separated by the partition I (and
they were all identified as part of J).

Given Lemma 5.3, we are now ready to analyze Partially-Symmetric-Iso-

Test.
Proof of Theorem 1.3. Before analyzing the algorithm we just described, we con-

sider the (simpler) case where k ≥ n/10. Since Theorem 1.4 does not hold for such k’s,
we apply the basic algorithm of O(n log n/ε) random queries, which is applicable for
testing isomorphism of any given function (since there are n! possible isomorphisms,
the random queries will rule out all of them with good probability, assuming we should
reject). Since k = Ω(n), the complexity of this algorithm fits the statement of our
theorem.

We now turn to the case where k < n/10. We first analyze the query complexity
of the algorithm. The step of Partially-Symmetric-Test performs O(kε log

k
ε)

queries, and therefore the majority of the queries are performed at the sampling
stage, resulting in O(k log k/ε2) queries as required. In order to prove the correctness
of the algorithm, we consider the following cases:

• g is ε-far from being isomorphic to f and ε/1000-far from being k-cosymmetric.
• g is ε-far from being isomorphic to f but ε/1000-close to being k-cosymmetric.
• g is isomorphic to f .

In the first case, with probability at least 9/10, Partially-Symmetric-Test will
reject and so will we, as required. We assume from this point on that Partially-

Symmetric-Test did not reject, as it will reject a function g which is isomorphic
to f with probability at most 1/10, and that we are not in the first case. Notice
that these cases match the conditions of Lemma 5.3, and therefore from this point
onward we assume there exists an h satisfying the lemma’s properties (remembering
we applied the algorithm with ε/1000).

In order to bound the distance between h and g in our samples, we use Proposi-
tion 5.2, indicating

Pr
I,W∈I,x∼DW

I
[g(x) �= h(x)] = dist(g, h) + o(1/n).

By Markov’s inequality, with probability at least 9/10, the partition I and the

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

428 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

workspace W satisfy

Pr
x∼DW

I
[g(x) �= h(x)] ≤ 10 · dist(g, h) + o(1/n)

≤ 10 · 4ε/1000+ o(1/n) < ε/20.

By Proposition 5.2, if we were to sample h according to DW
I , it should be ε/20-

close to sampling its core (assuming the partition size is large enough). Combined
with the distance between g and h in our samples, we expect our samples to be
ε/20 + ε/20 = ε/10 close to sampling h’s core.

The last part of the proof consists of showing that the only way that there can be
an almost consistent isomorphism of f is when g is isomorphic to f . Notice, however,
that we care only for isomorphisms which map the asymmetric variables of f to the k
sets of J . Therefore, the number of different isomorphisms we need to consider is k!.

Assume we are in the second case and g is ε-far from being isomorphic to f . Let
fπ be some isomorphism of f . By our assumptions and Lemma 5.3,

dist(fπ, h) ≥ dist(fπ, g)− dist(g, h) ≥ ε− ε/250.

Each sample we perform is inconsistent with fπ with probability at least ε− ε/250−
ε/10 > 8ε/9. By the Chernoff bounds and the union bound, if we perform q =
O(k log k/ε2) queries, we rule out all k! possible isomorphisms with probability at
least 9/10 and reject the function as required.

On the other hand, if g is isomorphic to f , then we know there exists with
probability at least 9/10 some isomorphism fπ which maps the asymmetric variables
of f into the sets of J , such that

dist(fπ, h) ≤ dist(fπ, g) + dist(g, h) ≤ ε/500 + ε/250.

Notice that we cannot assume that dist(fπ, g) = 0 as the algorithm may not identify
all the asymmetric sets, if some barely influence the output. Using arguments similar
to the ones in the proof of Lemma 5.3, we can bound this distance by ε/500.

For this isomorphism, with high probability much more than (1− ε/2)-fraction of
the queries are consistent, and we therefore accept g, as we should.

As we outlined above, we in fact build an efficient δ-sampler for the core of k-
cosymmetric functions (or functions close to being so). Given the parts identified
by Partially-Symmetric-Test, assuming it did not reject, we can sample the
function’s core by querying it at a single location, where the distribution over the
core’s inputs is close to D∗k,n.

Algorithm Partially-Symmetric-Sampler(f, k, δ, η)

1: Perform Partially-Symmetric-Test(f, k, ηδ).
2: Let I and W ∈ I be the partition and workspace used by the algorithm.
3: Let J be the union of k parts in I \ {W} that were identified by the algorithm.
4: Return the following sampler:
5: Choose a random y ∼ DW

I
6: Let x ∈ {0, 1}k be the value assigned to the parts in J
7: Yield the triplet (x, |y| − |x|, f(y))

Proof of Theorem 1.6. The algorithm for generating the sampler is described by
Partially-Symmetric-Sampler, which performsO(k

ηδ log
k
ηδ) preprocessing queries

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 429

to the function. What remains to be proved is that indeed with good probability, the
algorithm returns a valid sampler.

Let h be the function defined in the analysis of Theorem 1.3, which satisfies the
conditions of Lemma 5.3. Recall that its asymmetric variables were separated by
I and appear in J . Following this analysis and that of Partially-Symmetric-

Test, one can see that with probability at least 1 − η we would not reject f when
calling Partially-Symmetric-Test. Moreover, the samples would be δ/2-close to
sampling the core of h, which is by itself δ/2-close to f . Therefore, overall our samples
would be δ-close to sampling the core of f .

The last part in completing the proof of the theorem is showing that we sample
the core with distribution δ-close to D∗k,n. By Proposition 5.2, the total variation
distance between sampling the core according to D∗k,n and sampling it according to

DW
I is at most c/k for our choice of 0 < c < 1, which we can choose to be at most

δ.

Notice that if the function f is not k-cosymmetric but still very close (say (k/ηδ)2-
close), applying the same algorithm will provide a good sampler for a k-cosymmetric
function f ′ close to f . The main reason is that most likely, we will not query any
location of the function where it does not agree with f ′.

6. Discussion. Our result unifies the previous classes of functions that are effi-
ciently isomorphism testable. More importantly, we believe that the query complexity
for testing f -isomorphism is determined by the partial symmetry of f . Specifically,
let kε(f) be the smallest k such that the function f is ε-close to a k-cosymmetric
function and qε(f) be the minimum query complexity for testing f -isomorphism with
an error parameter ε. We raise the following conjecture, which is analogous to the
result by Fischer on the isomorphism testability of graphs [23].

Conjecture 1. There exist a constant c and functions Lε(k), Uε(k) both with
limk→∞ Lε(k) = ∞ such that, for every function f : {0, 1}n → {0, 1}, we have
Lε(kcε(f)) ≤ qε(f) ≤ Uε(kε/c(f)).

We believe that the upper bound of the conjecture can be proven using symmetric
influence and the analysis tools developed in the current paper. The lower bound
is consistent with all known hardness results on testing function isomorphism. In
particular, by the result in [4], we know that testing f -isomorphism requires at least
Ω(k) queries for almost all functions f that are ε-far from k-cosymmetric. A simple
extension of the proof in [13] shows that for every k-cosymmetric function f that is
ε-far from (k − 1)-cosymmetric, testing f -isomorphism requires Ω(log log k) queries
(assuming k/n is bounded away from 1).

Appendix A. Hypergeometric distributions lemmas.

Proof of Lemma 3.7. Since both distributions Dπx and DπJπKx only modify coor-
dinates in J ∪K, we can ignore all other coordinates. Moreover, it is in fact sufficient
to look only at the number of ones in the coordinates of K \ J and J ∪ K, which
completely determines the distributions. Let Dz denote the uniform distribution over
all elements y ∈ {0, 1}n such that |y| = |x|, yJ∪K = xJ∪K and |yK\J | = z (which also
fixes the number of ones in yJ). Notice that this is well defined only for values of z
such that max{0, |xJ∪K | − |J |} ≤ z ≤ min{|xJ∪K |, |K \ J |}.

Given this notation, Dπx can be looked at as choosing z ∼ H|J∪K|,|xJ∪K|,|K\J| and
returning y ∼ Dz. This is because we apply a random permutation over all elements
of J ∪K, and therefore the number of ones inside K \ J is indeed distributed like z.
Moreover, the order inside both sets K \ J and J is uniform.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

430 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

The distribution DπJπKx can be looked at as choosing z ∼ H|K|,|xK|,|K\J| and
returning y ∼ Dz. The number of ones in K \ J is determined already after applying
πK . It is distributed like z as we care about the choice of |K \ J | out of the |K|
elements, and |xK | of them are ones (and their order is uniform). Later, we apply a
random permutation πJ over all other relevant coordinates, so the order of elements
in J is also uniform.

Since the distributions Dz are disjoint for different values of z, this implies that
the distance between the two distributions Dπx and DπJπKx depends only on the
number of ones chosen to be inside K \ J . Therefore we have

dTV(Dπx, DπJπKx) = dTV(H|J∪K|,|xJ∪K |,|K\J|,H|K|,|xK|,|K\J|)

as required.
Proof of Lemma 3.8. Our proof uses the connection between hypergeometric dis-

tribution and the binomial distribution, which we denote by Bn,p (for n experiments,
each with success probability p). By the triangle inequality we know that

(A.1)
dTV(Hn,m,k,Hn−n′,m−m′,k) ≤ dTV(Hn,m,k,Bk,p) + dTV(Bk,p,Bk,p′)

+ dTV(Bk,p′ ,Hn−n′,m−m′,k),

where p = m
n and p′ = m−m′

n−n′ . In order to bound the distances we just introduced, we
use the following two lemmas.

Lemma A.1 (Example 1 in [40]). dTV(Hn,m,k,Bk,p) ≤ k
n holds for p = m

n .

Lemma A.2 ([1]). Let 0 < p < 1 and 0 < δ < 1− p. Then

dTV(Bn,p,Bn,p+δ) ≤
√
e

2

τn,p(δ)

(1− τn,p(δ))2
,

provided τn,p(δ) = δ
√

n+2
2p(1−p) < 1.

Before using the above lemmas, we analyze some of the parameters. First, when
k = 0, the lemma trivially holds and we therefore assume k ≥ 1. Notice that this
implies that nγ ≥ k ≥ 1. The probability p is known to be relatively close to half. To
be exact, |p− 1

2 | ≤ t
√
n/n ≤ 1

100
√
nγ ≤ 1

100 and therefore 1
p(1−p) < 6. Assume p ≤ p′

and let δ = p′ − p. (The other case can be treated in the same manner.) We first
bound δ as follows:

δ =
mn′ − nm′

n(n− n′)
≤ 1

n(n− n′)

((n
2
+ t

√
n
)
n′ − n

(
n′

2
− t

√
n′
))

=
t(n

√
n′ +

√
nn′)

n(n− n′)
≤ 2t

√
γn3/2

(1− γ)n2
≤ 4t

√
γ

n

(
from γ ≤ 1

2

)
.

Then τk,p(δ) in Lemma A.2 can be bounded by

τk,p(δ) ≤ 4t

√
γ

n

√
k + 2

2p(1− p)
≤ 4t

√
3γ(k + 2)

n

(
from

1

p(1− p)
< 6

)
≤ 12t

√
γk/n ≤ 12tγ (from 1 ≤ k ≤ γn) .

Note that, from the assumption, we have τk,p(δ) ≤ 1
2 . By Lemmas A.1 and A.2, we

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PARTIALLY SYMMETRIC FUNCTIONS ARE TESTABLE 431

have

(A.1) ≤ k

n
+

√
e

2

τk,p(δ)

(1− τk,p(δ))2
+

k

n− n′

≤ 3γ + 2
√
e · 12tγ

(
from τk,p(δ) ≤ 1

2

)
≤ c3.8(1 + t)γ

for some universal constant c3.8.

Acknowledgments. We thank Noga Alon, Per Austrin, Irit Dinur, Ehud Friedgut,
and Ryan O’Donnell for useful discussions and valuable feedback. We also thank the
anonymous referees for many valuable comments including, in particular the sugges-
tion for the cosymmetry terminology.

REFERENCES

[1] J. A. Adell and P. Jodrá, Exact Kolmogorov and total variation distances between some
familiar discrete distributions, J. Inequal. Appl., (2006), 64307.

[2] R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of
finite sets, European J. Combin., 18 (1997), pp. 125–136.

[3] N. Alon and E. Blais, Testing boolean function isomorphism, in Proceedings of the 14th
International Workshop on Randomization and Approximation Techniques in Computer
Science, 2010, pp. 394–405.

[4] N. Alon, E. Blais, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Nearly Tight
Bounds for Testing Function Isomorphism, 2011, manuscript.

[5] N. Alon, E. Fischer, I. Newman, and A. Shapira, A combinatorial characterization of the
testable graph properties: It’s all about regularity, SIAM J. Comput., 39 (2009), pp. 143–
167.

[6] N. Alon and A. Weinstein, Local Correction with Constant Error Rate, 2012, manuscript.
[7] R. F. Arnold and M. A. Harrison, Algebraic properties of symmetric and partially symmetric

boolean functions, in Proceedings of the IEEE Transactions on Electronic Computers, EC-
12, 1963, pp. 244–251.

[8] L. Babai, R. Beals, and P. Takácsi-Nagy, Symmetry and complexity, in Proceedings of the
24th Annual ACM Symposium on Theory of Computing, 1992, pp. 438–449.

[9] A. Bhattacharyya, E. Grigorescu, and A. Shapira, A unified framework for testing linear-
invariant properties, in Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2010, pp. 478–487.

[10] E. Blais, Testing juntas nearly optimally, in Proceedings of the 41st Annual ACM Symposium
on Theory of Computing (STOC), 2009, pp. 151–158.

[11] E. Blais, J. Brody, and K. Matulef, Property testing lower bounds via communication com-
plexity, in Proceedings of the 26th Annual IEEE Conference on Computational Complexity
(CCC), 2011, pp. 210–220.

[12] E. Blais and D. Kane, Testing Linear Functions, 2011, manuscript.
[13] E. Blais and R. O’Donnell, Lower bounds for testing function isomorphism, in Proceedings

of the 25th Conference on Computational Complexity (CCC), 2010, pp. 235–246.
[14] E. Blais, A. Weinstein, and Y. Yoshida, Partially symmetric functions are efficiently

isomorphism-testable, in Proceedings of the 53rd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2012, pp. 551–560.

[15] S. Chakraborty, E. Fischer, D. Garćıa-Soriano, and A. Matsliah, Junto-symmetric func-
tions, hypergraph isomorphism, and crunching, in Proceedings of the 27th Annual IEEE
Conference on Computational Complexity (CCC), 2012.

[16] S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Efficient sample extractors for jun-
tas with applications, in Automata, Languages and Programming, L. Aceto, M. Henzinger,
and J. Sgall, eds., Springer, Berlin, 2011, pp. 545–556.

[17] S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Nearly tight bounds for testing
function isomorphism, in Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2011, pp. 1683–1702.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

432 ERIC BLAIS, AMIT WEINSTEIN, AND YUICHI YOSHIDA

[18] P. Clote and E. Kranakis, Boolean functions, invariance groups, and parallel complexity,
SIAM J. Comput., 20 (1991), pp. 553–590.

[19] S. R. Das and C. L. Sheng, On detecting total or partial symmetry of switching functions,
IEEE Trans. Comput., C-20 (1971), pp. 352–355.

[20] I. Diakonikolas, H. K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. A. Servedio, and

A. Wan, Testing for concise representations, in Proceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2007, pp. 549–558.

[21] I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Ann. of
Math. (2), 162 (2005), pp. 439–485.

[22] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, The Quarterly
Journal of Mathematics, 12 (1961), pp. 313–320.

[23] E. Fischer, The difficulty of testing for isomorphism against a graph that is given in advance,
in Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
ACM, 2004, pp. 391–397.

[24] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Testing juntas, J.
Comput. System Sci., 68 (2004), pp. 753–787.

[25] P. Frankl, The Erdős-Ko-Rado theorem is true for n = ckt, in Combinatorics (Proceedings
of the Fifth Hungarian Colloquium, Keszthely), vol. 1, North Holland, Amsterdam, 1976,
pp. 365–375.

[26] E. Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica,
28 (2008), pp. 503–528.

[27] O. Goldreich, On testing computability by small width OBDDs, in Proceedings of the 14th
International Workshop on Randomization and Approximation Techniques in Computer
Science, 2010, pp. 574–587.

[28] O. Goldreich, ed., Property Testing: Current Research and Surveys, Lecture Notes in Com-
puter Sci. 6390, Springer, Berlin, 2010.

[29] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning
and approximation, J. ACM, 45 (1998), pp. 653–750.

[30] T. Kaufman and M. Sudan, Algebraic property testing: The role of invariance, in Proceedings
of the 40th Annual ACM Symposium on Theory of Computing (STOC), 2008, pp. 403–412.

[31] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design, Springer,
Berlin, 1998.

[32] H. A. Nienhaus, Efficient multiplexer realizations of symmetric functions, in Southeastcon
’81, 1981, pp. 522–525.

[33] T. Pitassi and R. Santhanam, Effectively polynomial simulations, in Proceedings of the 1st
Symposium on Innovations in Computer Science (ICS), 2010, pp. 370–382.

[34] D. Ron, Algorithmic and analysis techniques in property testing, Found. Trends Theor. Com-
put. Sci., 5 (2010), pp. 73–205.

[35] R. Rubinfeld and A. Shapira, Sublinear time algorithms, Electronic Colloquium on Compu-
tational Complexity, 18 (2011), TR11-013.

[36] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[37] T. Sasao and P. Besslich, On the complexity of mod-2l sum PLA’s, IEEE Trans. Comput.,
39 (1990), pp. 262–266.

[38] C. E. Shannon, The synthesis of two-terminal switching circuits, Bell System Technical Jour-
nal, 28 (1949), pp. 59–98.

[39] D. Sieling, Variable orderings and the size of OBDDs for random partially symmetric boolean
functions, Random Structures Algorithms, 13 (1998), pp. 49–70.

[40] S. Y. T. Soon, Binomial approximation for dependent indicators, Statist. Sinica, 6 (1996),
pp. 703–714.

[41] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica, 4 (1984),
pp. 247–257.

[42] S. S. Yau and C. K. Tang, Universal logic modules and their applications, IEEE Trans.
Comput., C-19 (1970), pp. 141–149.

D
ow

nl
oa

de
d

06
/0

1/
15

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

