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Abstract
Satellite-derived retrievals of precipitation have increased in availability and improved in
quality over the last decade. There are now several satellites in orbit with instruments
capable of precipitation retrieval with various degrees of accuracy, spatial resolution and
temporal sampling. These retrievals have the advantage of almost full global coverage
when compared to surface gauges and ground-based radars. However, there are uncer-
tainties associated with each of these retrievals. This thesis focuses on developing a new
framework for characterizing uncertainties in remotely-sensed precipitation estimates. This
characterization is a prerequisite if these estimates are to be used in hydrological models.
Precipitation forcing is the primary source of uncertainty in surface hydrological models
used for forecasting and data assimilation.

In the first part of the thesis, a new metric of error is applied to evaluate precipita-
tion products from Special Sensor Microwave/Imager (SSM/I) instrument. The SSM/I
microwave measurements are used for quantitative precipitation rate retrievals and they are
key to the development of precipitation data products with high temporal sampling. Re-
sults show marked seasonality and precipitation intensity dependence as well as a lower
bias at higher intensities and in geographic locations where precipitation rates are gener-
ally higher. Next, a new stochastic method is developed to generate spatially intermittent
precipitation replicates. These replicates constitute a prior population that can be updated
in a Bayesian framework using observations. Bayesian approach allows us to both merge
different measurements and investigate the associated uncertainties.

Finally, a new ensemble-based approach to the characterization of uncertainties (in both
magnitude (intensity) and phase (location)) associated with precipitation retrieval from
space-born instruments is introduced. Unlike previous studies, this method derives the
error likelihood using an archive of historical measurements and provides an ensemble
characterization of measurement error. The ensemble replicates are generated using the
proposed stochastic method, and they are intermittent in space and time. The replicates
are first projected in a low-dimensional subspace using a problem-specific set of attributes.
The attributes are derived using a dimensionality-reduction approach that takes advantage
of singular value decomposition. A non-parametric importance sampling technique is for-
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mulated in terms of the attribute vectors to solve the Bayesian sampling problem. Results
indicate that this ensemble estimation approach provides a useful description of precipita-
tion uncertainties with posterior ensemble that is narrower in distribution than its prior.

Thesis Supervisor: Dara Entekhabi
Title: Bacardi and Stockholm Water Foundations Professor

Thesis Supervisor: Dennis B. McLaughlin
Title: H.M. King Bhumibol Professor
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Chapter 1

Introduction

Precipitation is a major component of the global water and energy cycle and the principal

source of uncertainty in modeling the terrestrial water cycle. Characterizing uncertainties

in the estimates of precipitation is necessary before these estimates can be used as input

into hydrological and meteorological models. Precipitation is inhomogeneous and evolves

quickly in time. Moreover, precipitation fields are non-stationary in space. Hence, it is

challenging to quantify precipitation and it’s associated uncertainties.

Different instruments are used to monitor precipitation. These include gauges, ground-

based radars and space-born instruments. Gauges are sparse point measurements and do

not describe the spatial variability of precipitation storms. However, they provide relatively

accurate data for validation purposes. Ground-based radars provide spatially continuous

measurements of precipitation. However, they are limited to land areas (no radar over

the oceans) and do not provide good measurements in mountainous regions due to beam

blockage by terrain. On the other hand, satellite-based instruments (both radiometer and

radars) have almost full global coverage compared to gauges and ground-based radars [127,

40].

Over the past decade, precipitation retrievals from earth-orbiting satellites have in-

creased in availability and improved in quality. Current satellite retrieval techniques are

capable of producing precipitation retrievals on high spatial resolutions; however, high

uncertainties are present in such high-resolution products. Satellite observations of pre-

cipitation are indirect, noisy, and sometimes limited in space and time [93]. Therefore, it
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is necessary to characterize the true precipitation using uncertain observations [135]. The

common approach toward this characterization is deterministic. Deterministic techniques

quantify errors in precipitation estimates by providing the single best estimate of the true

precipitation assuming an error model [81, 5, 3, 102, 120]. However, these approaches suf-

fer form assumptions such as parametric distributions for error and additive/multiplicative

error models. On the contrary stochastic and ensemble-based approaches provide an el-

egant way to express these uncertainties [25, 40, 69, 46]. An ensemble of precipitation

replicates that captures the true uncertainty can also be used as random forcing in Land

Surface Models (LSM) to derive probability distributions of major hydrological variables.

Markov Chain Monte Carlo (MCMC) and Data Assimilation are the two most popular

stochastic approaches for uncertainty quantification. MCMC techniques provide proba-

bilistic characterizations through simulation. There are different algorithms to implement

the MCMC technique including Gibbs sampling and Metropolis-Hastings [148]; however,

they mostly rely on parametric prior and measurement error models. Data assimilation

techniques characterize the state of a natural system using data from different uncertain

sources (e.g. models and observations). Each source will be given a relative weight based

on its uncertainty, and the estimate will balance information from different sources. This

characterization will provide an estimate of the true state of the system together with the

uncertainty of that estimate [129, 130]. A new approach toward data assimilation is to pro-

vide ensemble or interval estimates rather than point estimates. This characterization has

many applications in forecasting too (e.g extreme events).

Bayesian estimation theory provides a convenient framework for merging prior infor-

mation with measurements from a diverse set of data sources. It simultaneously accounts

for both model and parameter uncertainties. Moreover, Bayesian approach allows us to up-

date prior ensembles using measurements and investigate the associated uncertainties [30].

In the recent decade, Bayesian-based approaches have been widely used in estimating hy-

drologic variables especially for probabilistic hydrologic forecasting [91, 35, 147, 133, 47,

138, 183, 48]. However, all of these studies have been focused on quantifying scalar vari-

ables or low-dimensional parameter spaces.

Spatial environmental variables are high-dimensional and it’s impractical to implement
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Bayesian update in high-dimensional space. Therefore, it is necessary to reduce the prob-

lem size by mapping data to a reduced-dimension space. In this thesis, for the first time, I

propose a framework for applying Bayesian inference to high-dimensional estimates of pre-

cipitation and characterize the uncertainty associated with the true precipitation estimation.

In this framework, an ensemble of equally probable precipitation replicates is generated

using a stochastic prior replicate generator. Then, the prior replicates are assigned a like-

lihood weight from historical observations. The resulting replicates with updated weights

constitute the posterior distribution that characterizes the true precipitation.

In the rest of this chapter, a review of the instruments and global products of precip-

itation along with a review of error characterization studies are presented. Finally, the

structure of the thesis is explained.

1.1 Monitoring Precipitation using Space-born Instruments

This section provides a brief summary of the current state of precipitation estimation using

space-born instruments. A more detailed review of this can be found in [144, 92, 13, 161,

112, 96, 97, 176].

There are three groups of instruments on-board satellites that are capable of precipita-

tion retrieval. The first group are Infrared (IR) and Visible (VIS) bandwidth instruments

that are mostly on-board the Geostationary Orbit (GEO) satellites. These two types of in-

struments allow observation of emissions from cloud top or near cloud top and generally

cannot be used to directly estimate precipitation intensities. There are empirical relation-

ships developed to estimate precipitation rate from these observations. Auto-Estimator

(AE) and its newer version Hydro-Estimator (HE) algorithms use an empirical relation-

ship derived from 6000 collocated radar-satellite pixels to compute convective rain rates

from observations of IR instruments [179]. The HE method is now operational in the US

National Weather Service for extreme precipitation events analysis. However, the AE is

highly dependent on surface radar data to correctly identify non-rainy cold cloud pixels

which makes it impossible to use in regions with no radar coverage. Moreover, HE has

a tendency to overestimate the area and magnitude of heavy precipitation for cold-topped
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(below 281 K) systems and to underestimate the heavy rain that can fall from warm-topped

(above 281 K) systems.

The Geostationary Operational Environmental Satellite (GOES) Precipitation Index

(GPI) is another algorithm used for tropical rainfall estimation based on cloud top temper-

ature. This method uses the IR observations of cloud top temperature that is far removed

from the physics of the precipitation generation process [88].

There are also instruments in IR and VIS bandwidths that are mounted on Low Earth

Orbit (LEO) platforms. These include the Moderate-Resolution Imaging Spectroradiome-

ter (MODIS) [100] on-board Aqua and Terra satellites and the Visible and InfraRed Scanner

(VIRS) on-board Tropical Rainfall Measuring Mission (TRMM).

In general, precipitation retrieval methods that use only the IR data work well for the

tropics that most of the precipitation are originated from convective cloud systems. How-

ever, they are less accurate for mid-latitudes that most of the precipitation are originated

from advective or stratiform clouds.

The second group are Passive Microwave (PMW) or radiometers. Microwave frequen-

cies have been widely used for precipitation retrieval on-board LEO platforms. Two distinct

processes that are used to retrieve precipitation rate from PMW instruments are scattering

of the background emission (from the Earth’s surface) by the precipitation ice particles and

emission from precipitation droplets. The former decreases the background microwave ra-

diation and the later increases the background microwave radiation [176]. Several PMW

instruments are now in orbit including: Advanced Microwave Scanning Radiometer - Earth

Observing System (AMSR-E), Special Sensor Microwave Imager (SSM/I) and its new ver-

sion Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Sounding

Unit-B (AMSU-B), TRMM Microwave Imager (TMI), and Global Precipitation Measure-

ment (GPM) Microwave Imager (GMI). Each of these instruments have several channels

that are capable of detecting different types of precipitation. GMI is the most recent and

advanced PMW instrument that has 13 channels from 10 GHz to 183 GHz.

TRMM was the first space mission that was developed to mainly monitor tropical pre-

cipitation. It is a joint mission between National Aeronautics and Space Administration

(NASA) and Japan Aerospace Exploration Agency (JAXA). The satellite was launched in
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1997 and it has been active until recently. On July 25th, 2014 NASA announced that the

satellite ran out of fuel after 17 years of successful mission. As a result, TRMM has begun

it’s downward drift and it will be shutdown when it descends to an orbit of 335 km from its

current operating altitude of 402 km [108].

GPM is the latest joint effort of NASA and JAXA to provide a more accurate estimate

of global precipitation with improved temporal and spatial coverage. GPM has a core

satellite and a constellation of research and operational satellites. GPM core satellite that

was launched on February 27th, 2014 is the newest satellite devoted to monitor global

precipitation. Unlike TRMM that was limited to tropical regions, GPM has almost full

global coverage [82].

The third group of instruments are Active Microwave instruments or radars. There are

only two precipitation radars on-board satellites. TRMM and GPM are the two missions

that have precipitation radars. TRMM Precipitation Radar (PR) was the first one that has

only one frequency channel (13.8 GHz). GPM Dual-frequency Precipitation Radar (DPR)

is the newest one that has two channels (13.6 and 35.5 GHz). The dual channel allows

monitoring a wider range of precipitation rates. The radar-based retrievals of precipitation

are relatively accurate compared to PMW-based ones. However, radar instruments have a

narrow swath and a low temporal revisit. Therefore, their retrievals are usually used as cal-

ibration standard for precipitation estimation from the more frequent PMW observations.

Single platform estimates of precipitation have low temporal revisit and usually their

time of measurement is unevenly distributed across the diurnal cycle. Therefore, it is

necessary to combine different retrievals to obtain a reasonably high spatial and tempo-

ral sampling resolution. During the last decade several multi-sensor precipitation prod-

ucts are developed among which [192, 84, 104, 190, 83, 87] are now operational, and

[26, 175, 105, 173, 71, 94, 122, 27, 54, 9, 188] are products developed for research pur-

poses.
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1.2 Error Characterization of Remotely-Sensed Precipi-

tation Estimates

There are many studies that investigate the uncertainties associated with precipitation re-

trievals from space-born instruments. These studies can be categorized into two groups;

those who investigate and evaluate precipitation products [134, 170, 74, 153, 172, 171,

156, 14, 158, 75, 101, 37, 38, 10, 164] and those who model the errors associated with

these retrievals [81, 24, 4, 182, 3, 169, 102, 120]. These studies can be further categorized

to those who investigate global products that are based on merging retrievals from different

instruments, and those who investigate single instrument products.

Two common approaches among those that have modeled the retrieval errors are as-

suming a parametric distribution for the precipitation rate or the associated error and con-

sidering an additive or multiplicative error model. These two approaches provide great

tools to model the errors of precipitation products; however, we need to go beyond these

simple and deterministic descriptors.

Figure 1-1 shows examples of spatial error distribution of precipitation from several in-

struments and platforms. These figures reveal that the spatial error in precipitation products

from PMW instruments does not have a pattern or parametric distribution. These errors are

not structured and can not be modeled and removed easily from the estimates. Furthermore,

evaluation of precipitation rates from different instruments provides the same conclusion

[10]. Figure 1-2 also shows the Probability Density Function (PDF) of precipitation rate

from different instruments as well as the ground-based NEXRAD-IV radar product (ground

validation). This figure shows that none of the instruments have the same distribution as

NEXRAD-IV and none of them have a parametric and well-defined distribution that can be

modeled.

Stochastic methods of synthesizing precipitation fields from satellite data have been

also used to investigate uncertainties in satellite estimates; however, some have been fo-

cused on quantifying the effects of limited satellite overpasses [21, 22, 17, 159, 66], some

have not considered the spatial correlation of precipitation and errors [32, 49, 177, 18, 109,

8, 68], some are only precipitation simulation rather than conditional (on the measurement)
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Figure 1-1: Spatial Distribution of Error in Different Instruments/Platforms. Time of mea-
surement is based on UTC.

precipitation estimation [157, 184, 44, 56], and some other use parametric distribution for

characterizing the space-time variability of rainfall [73, 139, 40, 167, 141]. (See Section 3.1

for a more detailed explanation of stochastic-based methods.)

These observations reveal that we need to go beyond using simple descriptors for char-

acterizing uncertainties in precipitation estimates. It is necessary to develop a comprehen-

sive and stochastic-based framework to incorporate the uncertainties in the precipitation

products using the historical observed error likelihoods.
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Figure 1-2: Probability Density Function (PDF) of Precipitation Rate based on Measure-
ments from Different Instruments/Platforms. Numbers in the bracket show probability of
no precipitation. The data are from Jun. - Aug. 2004 over the Central Part of the Continen-
tal US.

1.3 Thesis Structure

The goal of this thesis is to provide an improved characterization of the precipitation rate

retrievals from microwave sensors on-board low earth orbit satellites without assuming

any parametric distribution. This characterization is based on Bayes’ theorem that merges

prior information with error statistics from historical observations. To this end, Chapter 2

provides an evaluation of the precipitation products SSM/I instrument. This evaluation

together with many others in the literature provide the basis and state of the knowledge

about the quality of remotely-sensed precipitation estimates.

Chapter 3 introduces a new stochastic-based method to generate ensemble of precipita-

tion replicates from a given precipitation measurement. This method provides the tool for

generating prior replicates to be updated in the Bayesian framework. Chapter 4 presents

28



the Bayesian framework for characterizing the uncertainties in precipitation estimates. It

also introduces the new dimensionality reduction scheme developed for this purpose.

Chapter 5 concludes the findings and provides future directions for research. In ad-

dition, the two appendices to this thesis explore some other aspects of the precipitation

estimation uncertainties. Appendix A provides a comparison between a newly introduced

similarity metric (Jaccard distance, details in section 2.3.2) and the traditional Probability

of Detection (POD) and False Alarm Ratio (FAR) metrics. Appendix B presents a new

methodology for merging static images of precipitation from two instruments in order to

reduce missing data and improve accuracy of precipitation estimates.
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Chapter 2

Evaluation of Long-Term SSM/I-based

Precipitation Records over Land

Abstract

The record of global precipitation mapping using the Special Sensor Microwave/Imager

(SSM/I) instrument measurements now extends over two decades. Similar measurements,

albeit with different retrieval algorithms, are to be used in the Global Precipitation Mea-

surement (GPM) mission as part of a constellation to map global precipitation with more

frequent data refresh rate. Remotely-sensed precipitation retrievals are prone to both mag-

nitude (precipitation intensity) and phase (position) errors. In this chapter I use the ground-

based radar precipitation product from Next Generation Weather Radar Stage-IV product

(NEXRAD-IV) to evaluate a new metric of error in the long-term SSM/I-based precipita-

tion records. The new metric quantifies the proximity of two multi-dimensional data sets.

Evaluation of the metric across the years shows marked seasonality and precipitation inten-

sity dependence. Drifts and changes in the instrument suite are also evident. Additionally,

an estimate of the precipitation retrieval errors conditional on an estimate of background

surface soil moisture is presented. The dynamic soil moisture can produce temporal vari-

ability in surface emissivity which is a source of error in retrievals. Proper filtering has

been applied in the analysis to differentiate between the detection error and retrieval error.

The identification of the different types of errors and their dependence on season, inten-
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sity, instrument and surface conditions provide guidance to the development of improved

retrieval algorithms for use in GPM constellation-based precipitation data products.

2.1 Introduction

From the first launch of the Special Sensor Microwave/Imager (SSM/I) on board the De-

fense Meteorological Satellite Program (DMSP) platforms in 1987, there has been 25 years

of continuous monitoring of the earth atmosphere using this microwave instrument. This

includes the launch of the new version of the instrument Special Sensor Microwave Imager

Sounder (SSMIS) as well. Figure 2-1 shows the time-line of these two instruments in orbit

[28]. This dataset provides a valuable climatological record that can be used for differ-

ent applications. However, it is necessary to evaluate the products of these instruments at

different spatial and temporal scales to have a better and deeper insight to the quality of

the records. Furthermore, the results of this evaluation can help guide improved retrieval

algorithms.

Figure 2-1: Time line of SSM/I and SSMIS instruments in orbit. (source: [28])

There is an increasing need for real-time and near real-time measurements from satel-

lites to be incorporated into meteorological and hydrological hazards decision support

systems. A better quantification of errors in space-borne instrument data and associated

retrievals is important to guide where efforts need to focus in improving data products

algorithms. Currently, there are several multi-platform satellite precipitation products that

merge different space-borne estimates of precipitation together and produce global maps of

precipitation over land and oceans [84, 87, 83, 190, 104]. All these methods use the bright-
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ness temperature measurements from infrared instruments in geostationary orbit as their

main input since they provide the space-time continuity of measurements within the in-

strument viewing disc. Mostly, these approaches calibrate their algorithms using the more

accurate but less frequently-refreshed estimates of precipitation from passive microwave

(PMW) instruments such as SSM/I in low Earth orbit as well as gauge measurements.

However, there has not been a comprehensive spatial and temporal analysis of the quality

of the PMW measurements, especially those from SSM/I and its follow-on instruments. It

is thus necessary and useful to quantify the uncertainty in the PMW-based retrievals for

these merged products.

There is a long history of studies to evaluate the errors associated with PMW-based

precipitation estimates. Many of the studies are associated with field campaigns or have

limited-duration and limited-coverage domains in their comparisons. Hence, the types of

errors such as their dependence on intensity, season, etc. cannot be fully characterized.

During the 1990s, Ferraro and Marks used the ground based radar measurements of

rainfall over United States, United Kingdom and Japan to develop a precipitation retrieval

algorithm for SSM/I sensor measurements [59]. They categorized the precipitation into

several magnitude bins and provided coefficients for nonlinear fits to the instrument data.

They found an error of about 10% for scattering algorithm and 20% for emission algorithm.

Although the algorithm has gone through revisions, the original version is still used in

practice. The SSM/I rain rate product that is used in the present study is also based on

this algorithm. Several operational products that produce global maps of precipitation by

merging measurements from different sensors take advantage of the SSM/I rain rate based

on the Ferraro and Marks algorithm as well (Table 2.1). There has been several studies that

use this algorithm [175, 103, 132, 95].

Bell et al., 2001 investigate the monthly-average precipitation estimates based on the

SSM/I sensor on-board the DMSP F10 and F11 [23]. They apply spatial averaging to form

coarse spatial resolution 2.5◦ × 2.5◦ products and evaluate the errors of these products

based on independent estimates from surface data and from atmospheric models over the

western tropical Pacific (ocean only). Their major finding is that the Root Mean Square

Error (RMSE) inferred from the SSM/I measurements is larger than the one based on
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Table 2.1: Merged Satellite Estimations of Rainfall that use SSM/I Precipitation Product
based on Ferraro and Marks Algorithm

Product Name Sources Dates Temporal Resolution Pixel Size
CMORPH PMW & IR 2002 - present 0.5 hr 0.25◦

[89, 87],
PERSIANN PMW & IR 2000 - present 3 hr 0.25◦

[80, 83],
CMAP PMW& IR 1979 - present monthly 2.5◦

[191]
GPCP PMW & IR 1979- Present monthly 2.5◦

[2]

surface data. They also find that the Tropical Rainfall Measurement Mission microwave

radiometer-based estimates perform better in the comparisons. Other multi-sensor stud-

ies like [51] remove the bias in the SSM/I-based precipitation estimates by calibrating the

SSM/I estimate using a more accurate measurement, in this case TRMM precipitation radar

(PR). They have also shown that the calibrated estimations have considerably less error.

Others like [193] include geographic location and topographic variables (such as surface

roughness, slopes facing toward or away from moisture pathways, etc.) to improve the

precipitation estimates from SSM/I measurements. [57] uses gauge measurements from

the Oklahoma Mesonet network to estimate the errors in instantaneous SSM/I precipitation

estimates over land. By incorporating an error model for the Mesonet (as the truth mea-

surement in their study) they estimate that the SSM/I-based precipitation rate over 0.5◦,

1.0◦ and 2.5◦ boxes have an error of 150%, 100% and 70% respectively. This shows the

high correlation between the resolution of data and the associated errors in the estimates.

Similar results are also evident in the earlier study by [115].

Of the previous studies on PMW-based precipitation retrieval errors, perhaps the most

relevant are those by McCollum et al., 2002 [127] and Wolff and Fisher, 2009 [189]. Mc-

Collum et al. make an evaluation of the bias in SSM/I-based precipitation retrievals over

the contiguous United States by creating a bias-adjusted ground-based radar estimate as the

truth. They consider 3-years of data from SSM/I on-board the DMSP F13, F14 and F15.

The results show a dependency of the satellite-based data products errors on geographic
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location and hence climate. They find that retrievals based on SSM/I on-board F14 and

F15 overestimate precipitation over the central part of US by about 45%. However, they

have used the NEXRAD Stage-III product which is not a gauges corrected product, and as

a result they had to implement a bias adjustment.

Wolff and Fisher, 2009 use four years of data from SSM/I on board DMSP F13, F14

and F15, as well as Advanced Microwave Sounding Unit (AMSU-B on board N15, N16,

N17), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E

on board Aqua satellite) and TRMM Microwave Imager (TMI), and evaluate them with

ground-based measurements from TRMM ground validation sites. Statistics such as prob-

ability density function, correlation coefficient, and performance skill score are reported.

In general, they conclude that the PMW-based precipitation estimates tend to overestimate

precipitation over land and ocean, and SSM/I and AMSU-B had lower performance skills

compared to AMSR-E and TMI.

In a recent study ([180]) , Villa et al. applied a new quality control (QC) scheme to the

antenna temperatures of SSM/I and SSMIS sensors and evaluated monthly hydrological

products such as rain rate, liquid water path and total precipitable water. They used the

Ferraro and Marks algorithm for rain rate retrieval and concluded that the quality controlled

antenna temperatures produce a more accurate product on the monthly scale compared to

the non-QC version. They also used a histogram matching technique to modify SSMIS

temperatures and match them with the SSM/I reference across all the seven channels. The

results showed good agreement between the two sensors’ products for all the analyzed

variables.

Here, I will use longer years of data products based on SSM/I instrument measurements

to assess the errors in estimation of precipitation intensity over land. I also explore a larger

spatial domain and introduce a new multi-scale metric for evaluating rainfall products. In

contrast to [127], I will use NEXRAD-IV radar product which is a gauge corrected rain rate

product, and I also use up to 6 years of data for this analysis. The statistics that are presented

show the seasonality, and intensity dependence of the errors in more detail. Moreover, I

take advantage of their results showing poor quality of radar products over mountainous

regions, and excluded those areas from this analysis.
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This study specifically aims to quantify the retrieval errors in the precipitation prod-

uct based on the suite of SSM/I instruments using the Ferraro and Marks algorithm. For

ground validation, I use ground-based radar precipitation estimates. Specifically, I use the

Next Generation Weather Radar (NEXRAD) Stage IV product that is a merged re-analysis

with gauge precipitation station observations. The NEXRAD-IV product provides real-

istic precipitation estimates that are less prone to error than radar-only estimates (Lin and

Mitchell, 2005). In order to have a more comprehensive evaluation, the error statistics of the

SSM/I-based precipitation products using instruments on-board DMSP F13, F14 and F15

(hereafter referred to as SSM/I-13, SSM/I-14 and SSM/I-15 respectively) are presented. In

order to distinguish between detection error and retrieval error, I have incorporated snow

and freeze/thaw state measurements into the comparisons. The samples have been moni-

tored for snow and freeze/thaw status, and those with high snow percentage on the ground

and/or frozen condition have been removed from the analysis. The details of this monitor-

ing is provided in Section 2.2.3.

Results show the significant and similar seasonal patterns in errors. The SSM/I-15

statistics reveal the effect of the interference from the radar calibration suite (RADCAL)

that was activated on DMSP F15 on August 14, 2006. The study area is over part of the

contiguous US where Stage IV data are available, and hence the focus is on land. Since

many of the meteorological and hydrological hazards applications of GPM data products

with frequent refresh-rate are over land, understanding the error structure and where the

algorithms need improvement is important.

Section 2.2 presents the data sets used and the study region along with the monitoring

approach for removing detection errors. Section 2.3 includes the statistical measures and

the results, while Section 2.4 presents discussions and conclusions.
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2.2 Datasets and Monitoring

2.2.1 Study Area

The study region is a large portion of the contiguous US (CONUS) contained within the re-

gion bounded by 31◦37′30′′N and 47◦37′30′′N latitudes and 104◦37′30′′W and 80◦37′30′′W

longitudes. The region is selected based on the results from [127] to exclude mountainous

regions in which radar measurements are prone to errors. The spatial scale of comparisons

is 0.25◦ (i.e. 0◦15′00′′) for both NEXRAD- and SSM/I-based precipitation products. The

NEXRAD data are coarse-grained to this resolution since their true resolution is consid-

erably higher. The SSM/I-based products are posted at 0.25◦ even though the instrument

measurements inputs are at similar or coarser resolutions. The match between the two

products is not complete because of the swath limitations of the satellite instrument mea-

surements. Missing pixel information also contribute to the mismatch. Therefore, I divide

the region into six sub-regions each of which cover 8◦×8◦. Figure 2-2 shows the study area

and the six sub-regions. I also exclude the pixels that fall over part of Great Lakes in the

North-Eastern part of the region and over the ocean in the South-Eastern part of the region

because the Ferraro and Marks algorithm is only for precipitation retrieval over land. Some

pixels close to these regions are also removed to mitigate water body contamination.

Figure 2-2: The study area shown by the bold rectangular over the contiguous US. The
dashed lines show the six sub-regions defined for sampling
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Table 2.2: Time domain and number of samples for each of the satellite platforms

Sensor Start Date End Date Number of Samples
SSM/I-13 Jul. 2003 Nov. 2009 1525
SSM/I-14 Jul. 2003 Aug. 2008 1358
SSM/I-15 Jul. 2003 Dec. 2010 2696

2.2.2 Data

The precipitation estimates based on SSM/I instrument measurements are available through

the Microwave Surface and Precipitation Products System (MSPPS) Orbital Data from

National Oceanic and Atmospheric Association (NOAA). These data products are available

on orbital grids and I map them into a 0.25◦×0.25◦ grid using a nearest neighbor sampling

that does not affect the marginal distribution of precipitation intensities. Nearest neighbor

sampling is a method that assigns the value of the nearest SSM/I orbital pixel to the center

of each grid box. The time domain for each of the satellites is different as listed in Table 2.2.

The retrieval algorithm of MSPSS product is based on [58]. This algorithm uses a

scattering approach for rain rate retrieval over land. The Scattering Index is defined based

on the earlier works by Grody, 1991 [70]. The SI over land is defined as:

SIL = (451.9− 0.44× TB19V − 1.775× TB22V + 0.00575× TB2
22V )− TB85V (2.1)

In which SIL is the scattering index over land, TB is the brightness temperature (K)

and the subscripts denote the frequency of the vertical polarization channel used. This

algorithm has been calibrated with ground based radar measurements of rainfall and the

following equation is used to retrieve rain rate:

RR = 0.00513SI1.9468L (2.2)

RR is the rain rate in mm/hr. A minimum threshold of 10 K is set for SI based on

earlier studies in the literature that results in a 0.45 mm/hr minimum for rain rate retrieval.

Moreover, as the RR increases exponentially with SI based on Equation 2.2, a maximum

rain rate of 35 mm/hr is also set for this algorithm, and values higher than that are set to
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35 mm/hr. This algorithm is also known as National Oceanic and Atmospheric Adminis-

tration National Environmental Satellite, Data, and Information Service (NOAA/NESDIS)

algorithm for SSM/I.

The ground validation measurements are from the Next Generation Weather Radar

(NEXRAD) data set obtained from the National Weather Service’s ground-based WSR-

88D radar network [64]. The merged radar and gauge estimates produced by the 12 River

Forecast Centers (RFCs) in CONUS is mosaicked on a 4 km grid at the National Centers

for Environmental Prediction (NCEP). The result is a national product (NEXRAD-IV), and

is available through National Center for Atmospheric Research (NCAR) Earth Observing

Laboratory (EOL) [116]. I coarse-grain these measurements spatially to a 0.25◦ × 0.25◦

grid to be consistent with the SSM/I-based products. The temporal resolution of data are

hourly. The NEXRAD-IV data are available from January 2002 to present and cover the

study period for each of the satellites considered here.

For generating samples, I match coincident measurements of NEXRAD-IV with each

of the satellite products separately over the six sub-regions defined earlier. This means

a sample is generated if the satellite overpass completely covers one of the sub-regions

without any missing pixels. This condition is necessary for the application of the metrics

defined in Section 2.3. The result is different number of samples for each satellite product

in Table 2.2. In Section 2.3.4, the comparisons are made over the whole study region using

climatological indices, but in the rest of the study the pairs of samples that are generated

for the sub-regions are compared.

The freeze/thaw (FT) measurements are obtained from National Snow & Ice Data Cen-

ter (NSIDC) as part of the MEaSUREs Global Record of Daily Landscape Freeze/Thaw

Status product version 2 [98, 99]. This product is a global daily record of FT status de-

rived using microwave observations from SSM/I and Scanning Multichannel Microwave

Radiometer (SMMR). The data are provided on a Climate Modeling Grid (CMG) at 25 km

grids. I retrieved the AM and PM FT status separately using this dataset, and excluded any

pixel that has a frozen status at the time of measurement.

Snow data are from Moderate Resolution Imaging Spectroradiometer (MODIS) instru-

ment on board Terra satellite. This dataset contains daily snow cover data in a 0.05◦ Climate
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Modeling Grid [76]. I coarse-grain these data to a 0.25◦× 0.25◦ spatial grid to match other

measurements in this study. These measurements are used as a monitoring tool to exclude

pixels that have a high percentage of snow cover from this analysis.

2.2.3 Monitoring Algorithm

In order to filter out the detection errors from the analysis, I used FT and snow measure-

ments. The logic behind this monitoring is that frozen ground or a ground covered with

snow have a high brightness temperature and the instrument might detect these pixels as

rainy [60]. Therefore, I filtered out all the pixels that have a frozen condition at the time

of measurement. As mentioned in the previous section, the FT data provides AM and PM

status separately. I used the AM status for any measurement taken before noon and PM

status for measurements taken after noon.

The snow cover data has been used in the sampling procedure that was described in

Section 2.2.1. If more than 80% of the pixels in a sample is covered by snow (either

partially or fully), the sample is rejected. On the other hand, the samples that are collected

have a snow tag for each of their pixels. This tag is used during the analysis, and any pixel

that is partially or fully covered by snow is not included in the calculations of metrics. For

example, when calculating the probability of detection, I assume that the pixel covered by

snow does not exist.

In Section 2.3.2, I present a comparison between two groups of samples, first one only

includes the samples with no snow cover and in thaw condition, and the second one contains

only the samples with snow cover or frozen condition. This comparison shows that there is

a considerable difference between the two groups, and it is necessary to remove the samples

that have detection errors to have a better understanding of the retrieval errors.

2.3 Statistical Comparisons

In this section I consider several statistics to compare the SSM/I-based retrievals of precip-

itation with those based on NEXRAD-IV. These include the Jaccard distance at different

rainfall thresholds, the Probability of Detection (POD) and the False Alarm Ratio (FAR),
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Probability Density Function (PDF) as well as climatological indices of rain rate. More-

over, in section 2.3 (2.3.5) I investigate the correspondence between precipitation rate

retrieval error and surface soil moisture. These are selected strategically in order to differ-

entiate different types of errors.

2.3.1 Probability Density Function

Marginal PDFs give basic insight into systematic errors in the magnitude. Figure 2-3 shows

the PDFs of precipitation estimates from different datasets (SSM/I-13, SSM/I-14, SSM/I-

15 and NEXRAD-IV) for both winter (Oct. - Mar.) and summer (Apr. - Sep.) months.

The first result from these two comparisons is that the PDF of precipitation estimates from

SSM/I-15 from all the years of data is very different than the other data products. However,

removing the data after Jul. 2006 the new PDF is more similar to the other two SSM/I-based

PDFs as well as the one from NEXRAD-IV. The reason for selecting this cut-off date is the

activation of the radar calibration suite on-board DMSP F15 during August 2006 that has

degraded the quality of measurements due to interference. This issue is investigated in

more details in the next section.

In general, the three SSM/I-based PDFs have the same shape and magnitude, but com-

pared to the NEXRAD-IV’s PDF they have a peak at a slightly higher precipitation rate,

and the probabilities are in general lower. The reason is that the probability of no precipita-

tion is higher for the SSM/I-based precipitation products (bracketed numbers in Figure 2-

3). This can be partially due to the resolution differences in the coarse-resolution satellite

data products and the high-resolution ground-based radar product. Smaller precipitation

events may be below the detection threshold of instruments with coarse resolution. Such

resolution differences complicate merging PMW measurements into either gap-filling or

calibrating other sensor measurements. Moreover, there is a slight difference between the

peak of the PDF for SSM/I-13 and 14 and the peak for SSM/I-15. Further analysis showed

that sampling SSM/I-13 and 14 for the same time period as SSM/I-15 does not change

the qualitative differences between the PDFs. Different probability of no rain (shown in

brackets in Figure 2-3) might be a contributing factor that itself might be caused by the
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Figure 2-3: Probability Density Function (PDF) of precipitation rate from different data
products during (a) summer, (b) winter months. The numbers in brackets show the proba-
bility of no precipitation

difference in the time of measurement between SSM/-13 and 14 compared to SSM/I-15

(see Figure 2-7).

There is not a major difference between the PDFs from summer months and winter

months other than the probability of no precipitation. The slightly larger differences during

the summer season are consistent but not necessarily a confirmation of the resolutions-

difference interpretation. Note that the NEXRAD-IV measurements used to derive the
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PDF in this figure are concurrent with SSM/I-14 measurements. Results not shown here

indicate that there are no noticeable differences between the PDF of precipitation from

NEXRAD-IV if it is matched with data based on SSM/I-13 or SSM/I-15.

The PDF-based comparisons provide insights into the general distribution of magnitude

errors. Because they are marginal distributions they cannot characterize phase (location)

errors. Nor can the metric provide concise insights into the dependence on intensity. Other

evaluation metrics that are capable of characterizing the latter attributes are Probability of

Detection (POD) and False Alarm Ratio (FAR). These two metrics are traditionally used

and each is sensitive to a different type of error (but not the other). In the next section, I

introduce a new metric that is related to both POD and FAR. This compact metric allows

parsimonious evaluation of the data products.

2.3.2 Jaccard Distance

A metric used in this section to quantify proximity between two data sets is called the Jac-

card Distance. Jaccard distance is used to evaluate dissimilarity of binary data [163]. Let x

and y be two objects that consists of n binary attributes. By comparing these two objects,

four quantities can be defined:

f00 = number of attributes that x is 0 and y is 0;

f10 = number of attributes that x is 1 and y is 0;

f01 = number of attributes that x is 0 and y is 1;

f11 = number of attributes that x is 1 and y is 1;

Based on the definitions of a 2×2 contingency table, f11 is the number of true positives

(hits), f10 and f01 are the number of misses and false alarms, and f00 is the number of true

negatives. Since Jaccard is a symmetric distance, there is no difference between f10 and

f01, and they can be used interchangeably. The Jaccard distance is defined as:

J = 1− f11
f01 + f10 + f11

(2.3)

Jaccard distance will have a value between zero and one; a smaller value of Jaccard
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Table 2.3: Results of comparing Jaccard Distance between non-snow covered and thaw
samples (group 1) with snow covered and frozen samples (group 2)

Sensor
No. of

Samples in
Group 1

No. of
Samples in

Group 2

Mean and
Standard Dev. of

Jaccard in
Group1

Mean and
Standard Dev. of
Jaccard in Group

2
SSM/I-13 277 19 0.8217±0.1713 0.9536±0.0733
SSM/I-14 255 16 0.8414±0.1555 0.9539±0.0781
SSM/I-15 163 16 0.8441±0.1639 0.9524±0.0851

distance shows that the two images are more similar.

Appendix A relates the Jaccard distance to FAR and POD. Both the FAR and POD

also depend on various combinations of f01 and f10 errors. But whereas neither POD and

FAR contain both f01 and f10 errors, neither is a complete measure of all error types in

itself. The Jaccard distance conveniently combines the two error types and the information

captured by POD and FAR into a single and parsimonious metric. The Appendix A contains

the relationship between the metrics and Figure A-1 shows that the Jaccard distance is an

equitable combination of both FAR and POD. The Appendix A also includes simple case

examples where an error type is missed by either FAR or POD but has impacts on the

magnitude of the Jaccard distance.

First, the result of comparison between two group of samples as mentioned in Sec-

tion 2.2.3 is presented. These samples are only taken from region 1 in Figure 2-2 and are

only from months of October and November. Group 1 has only samples that are free of

snow and have a thaw condition at all times; group 2 has only samples that have snow cover

on the ground or a frozen condition at the time of measurement. Table 2.3 presents the

results for each of the 3 platforms along with the number of samples. This shows that there

is a considerable difference between the mean of the two groups, and group 2 has a higher

mean. This proves the necessity for filtering out the snow covered and frozen samples to

provide a better analysis of the retrieval errors.

I apply the metric to compare coincident SSM/I and NEXRAD-IV precipitation inten-

sity data products. In order to gain more concise insights, I have evaluated the Jaccard
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Figure 2-4: Mean of Jaccard distance between pairs of NEXRAD-IV and SSM/I-15 precip-
itation data products in each month at 3 mm/hr threshold (white colors show months with
no data)

distance at different thresholds of precipitation intensity (0, 0.5, 1.0, 1.5, 3.0, 5.0, 7.0, 10.0

mm/hr) in different seasons. Figure 2-4 shows the mean of the Jaccard distance in each

month for threshold of 3 mm/hr from SSM/I-15 measurements. The general pattern in this

figure is also present for other thresholds, albeit at different magnitudes (see analysis and

figures discussed further below). Figure 2-4 shows that there is greater dissimilarity (larger

Jaccard distance and closer to unity) for the period between August 2006 and December

2007. This is more distinguished at lower magnitude thresholds. This shows the effect

of the radar calibration suite (RADCAL) that was activated on DMSP F15 during August

2006 that produced interference with the 85 GHz channel on the unit. This issue is de-

scribed in the technical report by Remote Sensing Systems (RSS) Group [79]. This pattern

disappears after 2007 and the only reason that can be found for that is the drift in the orbit

of the DMSP F15 in early 2008. It has been reported that the effect of the interference from

the RADCAL suit is dependent on the thermal environment that changes with the drift of

the satellite [78]. However, based on the observations of [78] the interferences exist with

an intermittent pattern after 2007. Therefore, in the remainder of this chapter, all the statis-

tics that are presented for SSM/I-15 dataset will exclude the measurements after August

2006 unless otherwise indicated. Comparing the results of Jaccard Distance for the pairs

45



Figure 2-5: Mean and one standard deviation of Jaccard distance between NEXRAD-IV
and different satellite platform precipitation data products in each month

of NEXRAD-IV and SSM/I-13 and SSM/I-14, no systematic anomalous patterns can be

detected.

More detailed examination of the Jaccard distance between the NEXRAD-IV and SSM/I

estimates reveal that in low thresholds during the summer the SSM/I-based precipitation

estimates have better performance (low Jaccard values). During winter the SSM/I land

precipitation retrieval algorithm appears to have larger errors. This pattern is reversed at

higher thresholds. Figure 2-5 shows the monthly mean of Jaccard Distance at two different

thresholds for all the three instruments. There are clearly large differences between pan-

els (a) and (b) of this figure. The seasonality error magnitudes are convex up and down

depending on the precipitation rate magnitude threshold.

Figure 2-6 also illustrates the mean and one standard deviation of Jaccard distance over

all the samples at different thresholds. There is a decreasing trend of the Jaccard distance

with respect to the threshold. The retrieval algorithms have greater challenges with low

precipitation rates than higher precipitation rates. As it was mentioned in Section 2.2.2,

the Ferraro and Marks algorithm also has a 0.45 mm/hr minimum limit that is also con-

tributing to this problem. Depending on the application, this difference in errors may be

compensated by the application itself (e.g. flood forecasts).

The last evaluation using Jaccard distance is presented to show the effect of diurnal

cycle on the quality of measurements. Figure 2-7 shows the box plot of Jaccard distance
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Figure 2-6: Mean and one standard deviation of Jaccard distance between NEXRAD-IV
and different satellite platforms precipitation data products at different thresholds

at threshold 0 mm/hr for each of the sensors as a function of time of the day (local time).

These plots are derived using samples that are only from regions 2 and 5 in Figure 2-2, as

they have a more similar longitude compared to the whole study region. This figure shows

that there is not a general pattern for quality of the measurements with respect to the time

of the measurement. It should be noted that the reason for the box plot of SSM/I-14 to be

spread over several hours compared to the SSM/I-13 is the drift of the satellite during the

year 2003-2008. This is evident to some extent in the SSM/I-15 plot as well. Evaluation of

the Jaccard distance at higher thresholds revealed similar trends for all the platforms.

2.3.3 Probability of Detection and False Alarm Ratio

The Jaccard distance is a metric of proximity in two binary fields. It is related to both

POD and FAR. POD and FAR each capture a separate and distinct type of error. Some

applications may be sensitive to one but not the other. For the sake of completeness, I also

report on the dependencies of errors captured by POD and FAR as a function of season.

The POD metric shows the quality of capturing precipitation in the estimates. The FAR

captures possible over-estimation of precipitating areas. Ebert, 2007 provides a compre-

hensive review of the statistics [53]. Here, I use POD and FAR to evaluate the SSM/I

precipitation product with respect to NEXRAD-IV product

Figure 2-8 show the mean and one standard deviation of POD and FAR for all the three
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Figure 2-7: Boxplot of Jaccard distance as a function of the time of the day (local time) for
(a) SSM/I-13 (b) SSM/I-14 and (c) SSM/I-15. The central red line indicates the median,
the edges of the box are 25th and 75th percentiles, the whiskers show the most extreme
values and outliers are plotted as red crosses. The mean is also plotted as green star.

platforms across different months. For SSM/I-15 I have only included data from July 2003

until July 2006. The general trend for all the platforms is that during summer months

POD increases and FAR decreases, i.e. better estimates are obtained during summer time.

This pattern is consistent with the Jaccard distance at lower thresholds; however, at higher

thresholds the Jaccard distance had a different pattern that provides another perspective.

The pattern revealed by Jaccard distance at different thresholds (Figure 2-5) indicates that

moderate to high precipitation rates are estimated more accurately in this algorithm. The

fact that this algorithm does not have a classification scheme to distinguish between differ-

ent precipitation regimes (e.g. stratiform vs. convective) can be a contributing factor to the

different performance patterns at different thresholds.
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Figure 2-8: Mean and one standard deviation of POD and FAR for SSM/I precipitation
data products over different months

2.3.4 Geographical Distribution of Errors

Whereas PDF, Jaccard distance, POD and FAR metrics allow stratification of errors by

season, intensity magnitude and instrument, they do not allow investigation of possible

systematic geographical errors that may be associated with topography, climate regime and

other site-specific contributions to errors in retrieval. In this section, the results of clima-

tological comparison of SSM/I and NEXRAD-IV is presented by mapping mean values.

For this comparison, concurrent precipitation estimates based on SSM/I and NEXRAD-IV

measurements over the study region are averaged, and the mean of the precipitation rates

are presented in Figure 2-9. I have only selected the concurrent measurements for each

platform; therefore, the two climatological averages are statistically comparable.
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Figure 2-9: Difference in mean of SSM/I and NEXRAD-IV precipitation data products.
Left column is for SSM/I-13, middle columns is for SSM/I-14 and right columns is for
SSM/I-15. First row shows Summer months (April to September - inclusive), second row
shows Winter months (October to March - inclusive), and third row shows the Whole-year

Rows in Figure 2-9 from top to bottom correspond to summer differences, winter differ-

ences and whole-year differences in the SSM/I instrument-based precipitation products and

NEXRAD-IV. Summer is defined as April to September (inclusive) and winter is defined

as October to March (inclusive). For SSM/I-15 only the period not affected by RADCAL

is used (July 2003 to July 2006).

A useful backdrop for interpreting the difference maps is the precipitation climatology

itself - sampled according to the availability of satellite-based estimates. Figure 2-10 shows

the precipitation climatology evident in the NEXRAD-IV data product. In deriving this

climatology, I have sampled NEXRAD-IV at the times when SSM/I-14 swath and overpass
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Figure 2-10: Mean of precipitation rate based on NEXRAD-IV sampled concurrent to
SSM/I measurements over the region

coverage is available. This conditional sampling has small and almost imperceptible effects

on the true climatology when all NEXRAD-IV data are used (not shown). Furthermore,

the choice of instrument other than SSM/I-14 does not change the conclusions. The issues

are more closely tied with the algorithms themselves.

Figure 2-10 shows a strong a gradient of mean precipitation over the region from north-

west to south-east. Superposed on the difference maps in Figure 2-9, a systematic error

with geographical structure becomes evident. There are three major differences between

the NEXRAD-IV estimates and the SSM/I precipitation data products:

- SSM/I-based precipitation products mostly overestimate the precipitation rate; there-

fore, the difference in their mean statistic is mostly positive. There are regions that

SSM/I underestimates the precipitation rate climatologically, but their area is limited

in extent when compared to those that are overestimated.

- All the three platforms and their instrument and data products have similar spatial

patterns for summer, winter and whole-year. For example during summer SSM/I-

13, SSM/I-14 and SSM/I-15 show similar differences in mean precipitation over the

study region. During winter all the three SSM/I products overestimate over the west-

ern and north-western parts of the study region. This is a dominant feature in all three

and it affects the whole-year difference plots. The dominant differences are localized

in the western and north-western part of the region.
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- In the southeastern part of the region, all the three platforms have small negative

difference values. This region has the highest precipitation rates climatologically.

The SSM/I-based precipitation estimates have better quality over the south-eastern

part of the study region that generally has higher precipitation rate magnitudes. This

is consistent with the findings from Jaccard distance at different thresholds (Figure 2-

5) that this algorithm has better performance on moderate to high precipitation rates.

These conclusions are consistent with those evident in the probability density functions

(Figure 2-3).

2.3.5 Error Dependence on Surface Soil Moisture

One of the factors affecting the quality of precipitation retrieval from microwave measure-

ments is variable land surface emissivity that is partially due to dynamic surface soil mois-

ture [61]. In-situ or satellite estimates of surface soil moisture are limited by their spatial

and/or temporal coverage. Therefore, I used the Antecedent Precipitation Index (API) as

an index of soil moisture content to investigate correspondence between the precipitation

estimation error and estimated soil moisture. API is defined as:

APIt = K × APIt−1 + Pt (2.4)

In which APIt is the API on day t, APIt−1 is the API on the preceding day t − 1, Pt

is the precipitation on day t, and K is a constant decay factor. K is dimensionless and the

other three parameters in this equation have units of length (in this case mm). The value

of K controls the decay or loss rate of surface soil moisture. Based on literature values

of the application of this filter to precipitation in order to produce estimates of surface soil

moisture, I use a typical value of 0.93 for K. Daily API are estimated using the 24hr

accumulations of NEXRAD measurements.

For each measurement pixel I calculate the error of the SSM/I estimation with respect

to NEXRAD. I segment the errors conditional on values of API over that pixel from the day

before. The API of day of observation is affected by the current storm; however, the API

from the day before only indicates the soil moisture content as a result of preceding storms
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Figure 2-11: Boxplot of SSM/I-based precipitation rate error as a function of API. The
central red line indicates the median, the edges of the box are 25th and 75th percentiles,
and the mean is plotted as a green star.

and at the time of measurement. Use of same-day API did not appreciably change the

conclusions. In order to enhance the sample size, the measurement errors from SSM/I-13,

14 and 15 are combined.

Figure 2-11 shows box plots of error in SSM/I precipitation estimation versus API

values. This figure includes six plots, one for each of the sub-regions. In each sub-region

the numbers of data for each boxes are equal. Number of data in each box of different

sub-regions are: sub-region 1: 23,635; sub-region 2: 27,355; sub-region 3: 16,653; sub-

region 4: 12,856; sub-region 5: 23,632; sub-region 6: 30,457. Similar to the other box

plot in Figure 2-7, the edges of the boxes are 25th and 75th percentiles, and the central red

line indicates the median. The mean is also plotted as green star. No consistent trend is
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detected in sub-regions 1 through 4; however, in sub-regions 5 and 6 the mean and median

of the error decreases with increase in API. The results of a statistical hypothesis test (t-

test) shows that in 86% of the cases the mean of each of the error box plots is different than

the others in the same sub-region at 5% significance level.

This analysis shows that the error in SSM/I precipitation estimations are dependent

on dynamical changes of the surface conditions. Land surface emissivity changes that

are partially driven by dynamics of surface soil moisture can affect the precipitation rate

retrieval performances. A possible future path is to use surface soil moisture retrievals from

the Soil Moisture Active Passive (SMAP) mission to estimate the soil moisture contribution

to changing surface emissivity [61].

2.4 Summary

In this chapter, I investigate and diagnose the errors in the precipitation products based on

the Special Sensor Microwave/Imager (SSM/I) instrument on-board the DMSP F13, F14

and F15 platforms. The gauge-corrected ground-based radar product NEXRAD-IV is used

to diagnose the dependencies of the errors on precipitation intensity, season, platform and

other factors. The stratification of the errors according to these attributes is made possible

by using extended duration and large domain comparisons data sets. Data products from

three DMSP platforms and the extensive NEXRAD record are used. The stratification iden-

tifies priorities for ways of improving the passive microwave-based precipitation retrieval

algorithms over land. These algorithms are currently used to calibrate global precipita-

tion products that use infrared brightness temperatures from instruments on geostationary

platforms as their major inputs.

I show that current SSM/I-based precipitation products are positively biased in mag-

nitude. The bias is less at higher intensities and in geographic locations where precipi-

tation rates are generally higher. Several marginal distribution and magnitude and phase

error statistics are also used in this study to evaluate SSM/I-based precipitation products.

The Jaccard distance is introduced as a compact and concise metric to evaluate precipita-

tion products. It is shown that the metric captures errors that have distinct seasonal and
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magnitude-dependent characteristics. Together with its constituent POD and FAR metrics,

I show that the SSM/I-based precipitation products generally overestimate precipitating ar-

eas during the winter months by estimating low magnitude precipitation rates outside of the

precipitation clusters. This contributes to the noticeable dependence of the Jaccard distance

metric on intensity magnitude. The SSM/I-based products provide better estimates during

summer time when compared to the winter season.

Month by month comparisons of the metric across platforms and instruments reveals a

major anomaly starting in August 2006 and ending in December 2007. During this period

the products based on SSM/I-15 are worse compared to the rest of the study period. This

is consistent with the timing of the activation of the radar calibration (RADCAL) suite on

board F15 that interferes with 85 GHz channel.

The effects of dynamic surface soil moisture on the quality of precipitation retrieval

shows strong connection between the estimation error and changing soil moisture. More

accurate land surface emissivity estimates can possibly improve precipitation rate retrievals

over land. The future SMAP mission provides accurate fine spatial scale measurements

of soil moisture that can be combined with precipitation retrieval algorithms to improve

accuracy of precipitation estimations.

There are inherent challenges associated with retrieval of precipitation over land based

on the measurements in the set of channels afforded by SSM/I and its heritage instruments.

The sources of emissions and scattering cannot all be characterized by the finite measure-

ments. Simple distributional corrections such as probability matching work well on the

training data sets, but may not generally extend to times and regions where both ground

validation and retrievals are not used in the matching. I suggest that the paradigm for gen-

erating and using data products needs to be revisited in the case of such a challenging and

important retrieval problem. The error patterns in SSM/I-based precipitation products are

not structured in simple ways, and they cannot be easily modeled and removed. Perhaps,

we should go beyond deterministic products generation and incorporate uncertainty in the

description of the products. There is an emerging trend towards stochastic and ensemble-

based approaches to merging and interpreting data products. If we generate a population

of equally probable prior replicates based on the SSM/I measurements and update the prior
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probabilities using the historical error likelihood; then, it is possible to generate a posterior

population of precipitation replicates that are ranked based on the probability of being a

characterization of the true situation. Each of these replicates will be consistent with the

original measurement while having some added noise. This study aimed at characterizing

the types and dependency attributes of retrieval errors that is a necessary first-step toward

this goal.
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Chapter 3

Generating Spatially Distributed

Precipitation Replicates

Abstract

Current satellite observations allow retrieval of precipitation fields but their estimates of

location, magnitude and phase of precipitation remains highly uncertain. Therefore, quan-

titative representation of precipitation retrieval uncertainties is required for widespread

adoption of remotely-sensed precipitation products. An elegant way to express these un-

certainties is to generate a realistic ensemble of precipitation replicates that differ while

sharing basic structural similarities. Available methods for simulating precipitation include

physically-based and stochastic models. Physical models can be very expensive to use in

an ensemble context and most stochastic models have difficulty reproducing realistic, i.e.

conditioned on observations, spatially discontinuous (or patchy) precipitation fields. In this

chapter, I present a new method for generating realistic spatially discontinuous precipita-

tion replicates. The method is based on an orientation and scale-dependent spatial filter

that describes precipitation images in terms of a small number of random coefficients. Dif-

ferent sets of coefficient values give different spatially distributed precipitation replicates.

The statistics of the random coefficients are derived from a training image that defines the

common spatial structure of the ensemble members. The implementation discussed here

generates static images (snapshots), although it can be extended to generate dynamic rain
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storms if the training image is time-dependent. This precipitation generation algorithm is

illustrated with an example using ground-based radar data and geostationary satellite cloud-

top temperature observations. Results from this example show that the proposed method is

able to generate realistic replicates that reflect the general structure of the training image

while also conveying sufficient variability to properly represent uncertainty.

3.1 Introduction

Satellite monitoring of precipitation has the advantage of almost global areal coverage

compared with surface-based measurements such as gauge and radar measurements. Dif-

ferent remote observations of precipitation (passive microwave, radar and infrared) have

distinctive advantages as well as shortcomings. Numerous studies have been carried out

to assess the uncertainties in the observations of satellites used to observe precipitation;

however, most of them have been focused on characterizing retrieval or rain rate magni-

tude errors ([165, 62, 140], among others). Some have tried to decompose these errors

(in single-satellite retrievals or multi-satellite products) by adopting assumptions such as

parametric distribution for error or a multiplicative/additive error model ([80, 81, 172, 181,

150, 3, 156, 169], among others). Development of improved quantitative representations of

retrieval uncertainty is a prerequisite to the widespread adoption of satellite precipitation

products [25]. Therefore, there is a need to investigate the uncertainties associated with

the satellite precipitation retrievals in a more comprehensive framework that includes the

spatial geometry of the rainy area as well as the statistical distribution of precipitation in-

tensity. An elegant way to express these uncertainties is to generate a realistic ensemble of

precipitation replicates that differ while sharing basic structural similarities.

Ensemble approaches approximate the full probability distribution of interest with a set

of equally likely realizations from the true distribution. They are useful for propagating

the uncertainty in hydrological and meteorological models, especially those used in data

assimilation [15, 128]. They are also helpful in probabilistic flood and drought forecasting

and risk analysis. Moreover, an ensemble of spatially distributed precipitation events that

captures the correct precipitation uncertainty can be used as a random forcing in a spa-
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tially distributed land surface model to derive probability distributions for all major surface

hydrological variables. Precipitation forcing is the principal source of ensemble spread

in now-popular ensemble data assimilation systems used in hydrology. Without adequate

characterization of precipitation uncertainty, the ensemble tends to collapse and new obser-

vations get rejected in the analysis due to an over-confident model forecast.

There are two main approaches for generating precipitation ensembles: physically-

based models and stochastic models. The first approach is to generate precipitation ensem-

bles using the physically-based numerical weather forecasting models by perturbing the ini-

tial or boundary conditions. Despite continual increases in numerical model resolution and

significant improvements in the forecasting of many meteorological parameters, the results

of these models still suffer from deficiencies in the Bulk Microphysical Parametrization

(BMP) schemes, insufficient knowledge of precipitation processes, and inadequate terrain

representation among other. These deficiencies have become more apparent as models’

resolution have increased [42, 155, 162, 19, 160, 117]. At the same time, running these

models for hundreds of different initial or boundary conditions to generate an ensemble of

precipitation events is computationally inefficient and impractical.

An alternate approach is to use stochastic models that simulate the observed spatio-

temporal patterns of precipitation. Examples include multifractal models and scaling laws [119,

121, 131, 142], multiplicative cascade models [73, 72], wavelet models [106] and geosta-

tistical models [143, 167, 187, 110, 154]. These models either have unrealistic mathe-

matical assumptions about stationarity and homogeneity of the spatial precipitation field

or dependence on first-order and second-order statistics (such as variogram) which makes

it hard to represent the intermittent characteristics of precipitation fields in the ensemble

replicates. Wojcik et al., 2009 present a method for generating spatially and temporally

intermittent precipitation replicates which are conditioned on geostationary satellite mea-

surements [187]. Their method is based on a multipoint geostatistical procedure that uses

the probabilities of precipitation patterns within a specified template to generate the rainy

areas for individual replicates. Then, the precipitation intensity distribution within each

rainy area is generated using a multiplicative cascade model. Although this method pro-

duces realistic replicates, the generated precipitation fields are stationary in space and the
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method is not able to condition (or constrain) the replicates on point measurements of pre-

cipitation (e.g. in-situ measurements).

In a recent study, Paschalis et al. develop a new stochastic spatio-temporal precipitation

simulation model [141]. This model, called Space-Time Realizations of Areal Precipitation

(STREAP), uses a three-stage hierarchical structure to reproduce features of precipitation

in space and time. The three stages are: estimating storm arrival time, evolving areal

mean precipitation intensity in time, and evolving the spatial structure of the storm in time.

However, the model has two main assumptions that makes it hard to be applicable to di-

verse climatic conditions. STREAP assumes that the spatial probability for precipitation

occurrence and accumulation is homogeneous over the study domain, and the simulated

precipitation fields are isotropic.

In this chapter, I propose an alternative stochastic method to produce an ensemble of

spatially distributed precipitation storms that can be constrained by satellite and/or point

measurements. The precipitation replicates are generated using a spatial filter developed

in [63]. This so-called Steerable Filter decomposes an image to a set of subband coeffi-

cients that can be used to control the spatial structure of the generated replicates. In this

method, the steerable filter coefficients are random variables that take on different values

for every replicate. The statistical properties of the filter coefficients are inferred from

a training image that defines the dominant spatial features (area, orientation, patchiness,

intensity distribution, etc.) shared by all members of the precipitation ensemble. The re-

sulting random precipitation snapshots are spatially discontinuous (intermittent in space)

and non-stationary. Here, the focus is on generation of static precipitation images (snap-

shots) since the primary emphasis is on methods for producing spatially discontinuous rain

storms with realistic intensity distributions. The basic concepts can be used to generate dy-

namic precipitation fields if the training image and steerable filter coefficients are allowed

to vary over time.

The rest of this chapter is organized as follows. Section 3.2 outlines the data sources.

Section 3.3 describes the steerable filter and the proposed replicate generation methodol-

ogy in detail. Section 3.4 presents the results followed by their evaluation in Section 3.5.

Section 3.6 presents summary and conclusions.
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3.2 Datasets

In this chapter, ground-based radar estimates of precipitation are used as inputs to the

replicate generation method. The study region is over central part of the Continental US

(CONUS), and the measurements are from Next Generation Weather Radar (NEXRAD)

data set obtained from the National Weather Service’s ground-based WSR-88D radar net-

work [64]. The hourly estimates produced by 12 River Forecast Centers (RFCs) in CONUS

are mosaiced onto a 4km grid by the National Centers for Environmental Prediction (NCEP)

into a national product (NEXRAD-IV) that is available through the National Center for At-

mospheric Research (NCAR) Earth Observing Laboratory (EOL).

All the training images used in this study for replicate generation are selected from

storms that occurred in Summer 2004 over CONUS. The set of training images captures

different storm shapes and orientations as well as various ranges of rain rates. More details

about the training images are presented in Section 3.4.

This method is capable of statistically constraining the precipitation replicates to cloudy

areas. These ares are identified using the Geostationary Operational Environmental Satel-

lites (GOES) data set produced by the U.S. National Oceanic and Atmospheric Adminis-

tration (NOAA). The GOES infrared imager measures the cloud-top temperature, which is

used to identify the clouds that are most likely to produce rain. Because rain-producing

deep convective systems and non-rain-producing cirrus high-altitude clouds both have cold

upwelling radiation, cloud-top temperature estimates from geostationary satellites visi-

ble/infrared instruments are not sufficient to quantify rain-rate magnitudes.There are dif-

ferent methods to classify the clouds to rainy and non-rainy [80, 168, 187, 20, 55]. In this

study, I take a similar approach to [187]. Their method is based on thresholding the cloud-

top temperatures and calculating the fraction of rainy areas that fall inside and outside of

the cloudy area. Using NEXRAD data over central part of US, they found that a threshold

of 258 K will result in a low probability of 0.01 for rain to occur outside the cloudy region.

Since in this study we are using the precipitation storms over the same spatial and temporal

domain, I use the same threshold to identify cloudy areas from GOES observations.
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3.3 Methodology

The precipitation replicate generation method has 2 steps:

1. Scan a selected Training Image (TI) and calculate relevant spatial and intensity statis-

tics;

2. Generate a randomized precipitation replicate that conforms to the TI statistics.

In each of the two steps, the corresponding TI or replicate is decomposed into several

subbands using steerable filters. Further details of the steerable filters and each one of the

generation steps are described in the following together with a description of the procedure

used to constrain precipitation to specified areas or to reproduce specified point values.

3.3.1 Steerable Filters

Steerable filter, equivalently, steerable pyramid, is an image decomposition technique that

is linear, multi-scale, multi-orientation, and self-inverting (meaning that the filters used to

build the pyramid representation are the same as those used for reconstruction) [63]. The

decomposition method uses spatial filters of arbitrary orientation that are synthesized from

a linear combination of a set of basis filters. Since the steerable filter’s basis functions are

derived by dilation, translation, and rotation of a single function it can be considered to be

a wavelet transform.

Steerable filter decomposes an image to a set of coefficients, or equivalently images,

at different orientations and scales. Each of the set of coefficients at a specific scale and

orientation is called a subband. Figure 3-1 illustrates an example of a one-scale image

decomposition with four orientations. First, the image is filtered using a high-pass filter

(called H0). Then, the image is filtered using a low-pass filter (called L0), and the output

of the low-pass filter is further filtered using oriented filters. Figure 3-1 shows the output

(equivalently subbands) of the high-pass and oriented filters at scale 1. Each of the four

oriented subbands reveal different features of the image.

The second level of the steerable pyramid decomposition is created by first applying a

low-pass filter (L1) to the output of the low-pass filter L0; then, down sampling the output
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Figure 3-1: Steerable Pyramid decomposition of a sample precipitation image. The top
panel is the high-pass band and lower panels show 4 sub-bands at level 1 of the pyramid,
and the low-pass band that is down-sampled by a factor of 2 for further decomposition at
level 2 of the pyramid. The subbands are shown in gray scale to highlight the orientational
structure of the coefficients in different subbands.

by a factor of two (this is shown at the bottom of Figure 3-1). This will go through the

oriented filters and generate the coefficients at the second level of the pyramid.

For the samples used in this study (images of 256 × 256 pixels), it was found that a

two level pyramid with four orientational decomposition adequately captures precipitation

spatial intermittency.
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Figure 3-2: Structure of the Steerable Filter in frequency domain (source: Liu et al. [118])

3.3.2 Scanning the Training Image

The first step of the method is to scan a given TI to calculate relevant statistics that capture

the texture of the precipitation in the TI. The statistics that are used here are based on

[145]. They have used these statistics to simulate a wide range of common texture patterns

in computer vision. The four statistics are briefly defined in the following. For further

details, the reader is encouraged to read [145].

1. Histogram of Intensities: The histogram expresses the relative amount of each in-

tensity in the image (at pixel or subband level). Here, three normalized sample

moments (variance, skewness and kurtosis), together with the range are used for

pixel-level intensities. The skewness and kurtosis are considered for subband-level

intensities.

2. Local Autocorrelation: The steerable pyramid decomposition is overcomplete; more-

over, covariances of subband coefficients can arise from spectral peaks or ridges in a

TI. Therefore, the coefficients of this decomposition are typically correlated. Local

autocorrelation of the low-pass subbands are measured at each level, and used as a

statistics in the generation step.

3. Coefficients’ Magnitude Correlation: “Features” in an image give rise to large

coefficients in local spatial neighborhoods of a subband, as well as at adjacent scales
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and orientational subbands. Therefore, the correlation of the magnitude of pairs of

coefficients at adjacent positions, orientations and scales is used as the third statistics.

4. Cross-scale Phase Statistics: This statistics is used to measure the relative phase of

coefficients of subbands at adjacent scales. This constraint will help in distinguishing

edges from lines in the TI

3.3.3 Generating Replicates

The generation step is a recursive algorithm that iteratively converges towards a final repli-

cate. First, a Gaussian noise image is generated. In order to be efficient, the variance

and mean of the Gaussian generator is set to be the same as the variance and mean of the

pixel-level intensities of the TI. Then, the noisy image is decomposed using the steerable

filters, and the four subband statistics are matched to the values derived from the TI. Next,

the pyramid is collapsed and the replicate is reconstructed. This is the first iteration of the

method.

In order to have a more realistic replicate, the output of the first iteration is consid-

ered as input to the algorithm (instead of the Gaussian noise), and the whole procedure

is implemented again. This is repeated until a realistic replicate is generated. Tests with

different precipitation TIs showed that after 25 iterations there is insignificant change in the

replicate, and the statistical characteristics of the replicate remain unchanged. Figure 3-3

shows a TI along with the results of different iterations for generating a replicate. After

each iteration the replicate becomes more and more similar to the TI (i.e., more realistic).

3.3.4 Constraints

A replicate generation method should be able to limit precipitation storms to specified

spatial supports, so that the replicates can be constrained by remote sensing or in-situ

measurement data. This method is capable of both areal support and point precipitation

constraining, which are described in the following.
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Figure 3-3: Outputs of different iterations in generating a replicate

Areal Support Constraint

GOES observations of cloud top temperature are used to identify potential precipitation

areas and constrain the replicates with them (details of the cloud area detection are in Sec-

tion 3.2). I multiply the initial Gaussian noise image by a binary support image. Figure 3-4

is an illustration of this masking process using geostationary cloud-top temperature obser-

vations. In Section 3.4, a comparison between the replicates that are generated constrained

on the cloudy areas and the ones that are not constrained is presented.

Point precipitation Constraints

Gauge measurements of precipitation can be fused into this replicate generation method by

limiting one of the pixels of the replicate to have the same value as the one measured by

the gauge. This feature is implemented by defining a mask for the pixel that includes the

gauge. The mask is designed to prevent discontinuity in the precipitation fields. Figure 3-5

shows the 3 × 3 pixel mask that is used in this method. In Section 3.4 the results of this

type of constraining is presented.
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Figure 3-4: Constraining a replicate on cloud support. (a) is a Gaussian noise generated
as an initial input for the method. (b) is the cloud support image in which dark areas are
considered cloudy with potential precipitation. (c) a constrained input for the replicate
generation method. Light green areas in this image have zero intensity.

3.4 Results

One hundred TIs are selected from the NEXRAD-IV database explained in Section 3.2.

Figure 3-6 shows 16 of these TIs. Each of them is a 256 × 256 pixel image of an isolated

precipitation storm. These TIs are selected in a way to capture different patterns of pre-

cipitation storms; they include both large and small clusters as well as storms orientated in

different directions.

Three groups of replicates have been generated for each TI to evaluate the proposed

replicate generation method. Each group tests one element of the overall algorithm:

1. Unconstrained replicates;

2. Replicates constrained by areal support, derived from GOES observations;

3. Replicates constrained by both areal support and point precipitation measurements.

Figure 3-5: Mask used for point precipitation constraint in the replicates
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Figure 3-6: Sixteen precipitation Training Images (TI) used in this study

The areal support is from GOES observations and for the point precipitation data I

have randomly selected 4% of the rainy pixels in the TI and used them to constrain

the replicates. This subset of pixels are meant to represent possible surface gauge

precipitation measurements. Alternatively, they can represent the finite swath and

overpass coverage of a microwave instrument measurement (and its associated pre-

cipitation rate retrieval) that is to be merged with a continuous-in-time geostationary

satellite visible/infrared could-top temperature measurement.
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For each group of replicates, 300 replicates are generated from each TI, and the results

are presented in the following.

3.4.1 Unconstrained replicates

Figure 3-7 shows a sample TI with its associated GOES support as well as 16 randomly

selected replicates. These replicates are generated without any constraint on areal support

or point precipitation measurement, and the GOES support is shown only for comparison.

The replicates show the capability of this method in generating a set of diverse replicates

while preserving the structural features of storms. Moreover, the method is generating high

intensity rain clusters in the replicates similar to the ones in the TI. Further investigations

revealed that these characteristics are preserved across all the replicates. The replicates are,

however, diverse and random. They cannot be considered to be constrained by observa-

tions.

Figure 3-7: A sample TI, its GOES support and 16 selected replicates (no constraint)
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3.4.2 Replicates constrained by areal support

Figure 3-8 shows the same TI with another set of replicates which are generated by con-

straining the replicates to the areal support derived from GOES observation. Comparison

between Figure 3-8 and the figure without constraints (Figure 3-7) shows that the position

of the rain storms are better captured in the replicates which are constrained by the areal

support while containing some randomness. Moreover, the overall diagonal/arc shape of

the storm is better preserved.

Figure 3-8: A sample TI, its GOES support and 16 selected replicates (areal constraint)

3.4.3 Replicates constrained by both areal support and point precipi-

tation measurements

Figure 3-9 illustrates a new set of replicates from the same TI that are generated by con-

straining the replicates on both areal support and 4% point precipitation measurements.
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The 4% point means that 4% of the rainy pixels have been selected randomly and have

been used to constrain the precipitation fields. Moreover, different percentages of points

(between 1% up to 5%) were tested for point precipitation measurements, and the resulting

replicates have comparable statistical properties.

Figure 3-9: A sample TI, its GOES support and 16 selected replicates (areal and point
constraints)

Figure 3-9 shows that the replicates are more spatially constrained compared to the

second group of replicates, and the structure of the storm is to a high degree the same as

the TI in all the replicates. This is reasonable as these replicates have a higher degree of

spatial constraining. Although these replicates are more similar to the TI, they still have

some variability in the spatial structure and precipitation rate distribution.

Here, I have used randomly selected points from the TI for point precipitation constrain-

ing to evaluate the capability of the method; however, in real applications, these points can

be pixels that have gauge measurements of precipitation and their value can be derived
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from the in-situ measurement.

In general, the results show that it is possible to generate a diverse set of replicates

that can capture uncertainties in the given TI. The degree of diversity that should be used

depends on the application. For example, in a Bayesian framework it might be necessary to

have a wide range of prior population, then a population of replicates with less constraints

should be generated. However, it might be useful to include both constrained and non-

constrained replicates in the prior population.

3.5 Evaluation

The quality of an ensemble cannot be adequately measured by a single metric, several

different attributes of prediction skill need to be used ([137]).

Common skill attributes for evaluating ensemble replicates include the Brier Score

(BSS), Ranked Probability Skill Score (RPSS) and Rank Histogram among others ( [33];

[136]; ). However, these skill measures are designed either for scalar values or categorical

variables and they can not be applied to evaluate ensemble of spatial replicates of precipita-

tion. Therefore, three alternative indices are considered to evaluate the replicates here: the

cluster size distribution, the cumulative distribution function of the precipitation intensity,

and the spatial similarity of replicates to the TI. These indices give insight into how well

the replicates represent the spatial structure as well as precipitation intensity of storms.

3.5.1 Cluster Size Distribution

Precipitation storms are generally distributed in different spatial clusters each with different

sizes. Therefore, it would be essential for a precipitation replicate generator to preserve the

distribution of cluster sizes. Three histogram groups are used to illustrate the distribution

of the logarithm of cluster size for the three groups of replicates that were presented in

Section 3.4. Figures 3-10 & 3-11 & 3-12 show the histogram of logarithm of cluster sizes

in the replicates generated with no constraint, generated by areal support constraint and

generated by both areal support and point rainfall constraint. The histogram from the TIs

generally matches with the histogram from replicates. The replicate generation method,
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with and without constraints, preserves the rainfall cluster sizes in the replicates to an ad-

equate degree. Although there is a low frequency of small clusters in Figure 3-12 (which

is for the replicates that have areal and point constraint), the replicates are more realistic

spatially. There is a trade-off in which the more the replicates are constrained by points, the

more they are similar spatially. However, the cluster size distribution might become biased

to some degree.

Figure 3-10: Histogram of cluster size distribution in the TIs and the replicates (No Con-
straining)

3.5.2 Distribution of Rain Rate

Realistic precipitation replicates should both have correct spatial distribution and correct

precipitation rate. As a test, we evaluate the cumulative distribution function (CDF) of

precipitation rate in the TIs and replicates. Figure 3-13 illustrates the CDF of rain rate for

TIs and replicates for group of replicates that are generated with areal support and point
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Figure 3-11: Histogram of cluster size distribution in the TIs and the replicates (Areal
Constrained)

precipitation constraints. Moreover, Figure 3-14 shows the CDFs for three individual TIs’

and their associated replicates.

As these figures show, the replicates appropriately capture the precipitation rate distri-

bution in the TIs. Further investigations showed that all three groups of replicates have the

same shape and coverage of rain rate distributions.

3.5.3 Spatial Similarity of Replicates

In this section the spatial similarity of replicates to the corresponding TIs are investigated

using Jaccard distance. Jaccard distance was introduced in Equation 2.3. For the com-

parisons presented here, the TIs and replicates are threshold at 0 mm/hr to create binary

images appropriate for use with Jaccard distance.

The Jaccard distances between the TIs and their corresponding replicates have been
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Figure 3-12: Histogram of cluster size distribution in the TIs and the replicates (Areal and
Point Constrained)

Figure 3-13: CDF of precipitation rate for the replicates and TIs (areal and point con-
straints). Red colors are CDF of TIs and gray colors are CDF of replicates.
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Figure 3-14: CDF of rain rate for three TIs and their associated replicates (areal and point
constraints). Red colors are CDF of TIs and gray colors are CDF of replicates.

calculated for each group of replicates. The first group contains unconstrained replicates,

the second group contains replicates with areal support constraint, and the third group con-

tains replicates with both areal support and point rainfall constraint. Figure 3-15 presents

the mean and one standard deviation of the Jaccard distance for each group in the 16 se-

lected TIs. With greater constraints on the replicates, the Jaccard distances are smaller and

replicate similarities are improved. On average the mean of Jaccard distances for group

two are smaller than group one, and similarly the mean of Jaccard distances for group three
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are smaller than group two for each TI. The variance of Jaccard distances within the three

groups are almost the same indicating that the replicates have the same diversity around

their mean in each group.

Figure 3-15: Mean and one standard deviation of the Jaccard distance between the repli-
cates and the corresponding TI.

Based on the three skill attributes used in this section, the proposed replicate generation

method may reasonably be considered capable of producing realistic precipitation repli-

cates that are intermittent in space. Moreover, the constraint capability provides a tool to

generate a diverse set of replicates that differ while containing similar structural features.

3.6 Conclusions and Future Work

A new method for generating realistic precipitation replicates is presented in this chapter.

The method that is based on joint statistics of subband coefficients of a training image,

uses steerable filters to derive four statistics from a training image that captures features of

spatial structure and precipitation rate distribution. These four statistics are used to generate

a diverse set of replicates.

This method is also capable of constraining the replicates on areal support (e.g. cold

cloud top temperature from geostationary satellite instruments) and point precipitation
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measurements or finite swath and orbiting microwave instrument precipitation rate re-

trievals that are necessary tools for generating precipitation replicates which are constrained

on satellite and/or in-situ measurements. The method generates results with adequate sim-

ilarity to observations and random diversity to capture uncertainty. The replicates can be

used as inputs to hydrological and meteorological data assimilation models, as well as flood

forecasting models and many other applications.

The method is tested on a population of training images measured by ground-based

radar (NEXRAD-IV product) from 2004 summer storms over CONUS. The results show

the performance of this method in generating realistic rainfall replicates that are designed

to be statistically similar to their corresponding TI. Moreover, the results indicate that the

constrained options improve the replicates’ spatial distribution and structure. The method

has parameters that can be altered to produce the desired or target level of diversity in the

replicates. Jaccard distance, a proximity measure for binary fields, is used to evaluate sim-

ilarity of replicates and corresponding TIs. The results of tests with this skill metric further

confirm the way in which replicates become less diverse by applying more constraints.

As further improvement, this method can be extended to generate 3D precipitation repli-

cates from 3D training images. These 3D images can be 3D precipitation patterns in space,

or a 3D image that is created by putting together 2D snapshots of precipitation over one

region; therefore, it has two dimensions of space and one dimension of time. The former,

can be used to investigate vertical patterns of precipitation and the latter can be used to

investigate temporal correlations of spatial precipitation fields. It can also be a reason-

able path forward for merging microwave-based precipitation retrievals based on multiple

low-Earth orbit satellites (with limited swath and temporal overpass time coverage) with

precipitating area (without magnitude information) temporally-complete mapping based on

visible/infrared measurements from instruments on board geostationary satellites.

78



Chapter 4

Ensemble-Based Characterization of

Precipitation Features

Abstract

This chapter introduces a new method to characterize uncertainties in spatial precipitation

retrievals from space-born instruments. Unlike previous studies, this method derives the

error likelihood using an archive of historical measurements and provides an ensemble

characterization of retrieval error. The characterization process is formulated as a Bayesian

sampling problem and solved with a non-parametric version of importance sampling. A

novel dimensionality reduction scheme using Singular Value Decomposition (SVD) is im-

plemented to describe images in a problem-specific low-dimensional attribute space, and

the importance sampling operations are formulated entirely in terms of the attribute vectors.

Examples are presented using retrievals from operational passive microwave instruments

and the performance of the method is assessed using ground validation measurements from

surface weather radar. Results indicate that this ensemble estimation approach is able to

provide an improved description of precipitation features by giving a posterior ensemble

that is narrower than the prior.
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4.1 Introduction

High-resolution precipitation retrievals from space-born instruments contain uncertainties

that necessitates a comprehensive assessment of them before they can be input to hydro-

logical and meteorological models. In this chapter, I address this assessment by developing

an ensemble-based method that incorporates historical retrieval errors with observations

using Bayes theorem. In this method, a set of equally probable replicates are generated

from the current uncertain estimate. Next, each replicate is assigned a probability based on

the historical error likelihood. These replicates and the associated probabilities constitute

the posterior distribution of the true precipitation. Depending on the application, different

characteristics of the posterior distribution (such as mode, mean, etc) can be evaluated.

As it was reviewed in Section 3.1, ensemble approaches have a wide range of appli-

cations. There are also different methods to generate ensembles, and several studies have

used them to explore uncertainties in precipitation products [25, 40, 69, 187, 46, 188, 11].

In the present study, I use the method developed in Chapter 3 to generate realistic and

spatially discontinuous precipitation fields.

The focus of this study is to characterize uncertainties in single satellite retrievals of

precipitation, and no merged product is considered here. The reason for taking this ap-

proach is that the algorithms that are used to merge different retrievals to produce spatially

and temporally continuous precipitation estimates over the globe introduce some errors and

uncertainties into the final product that are not of the input retrievals. Therefore, evalua-

tion of the merged product does not provide useful insight about the quality of the retrieval

algorithms. By focusing on quantifying errors in single satellite retrievals, I aim to pro-

vide information on how the future retrieval algorithms should be improved and how new

instruments should be designed.

Figure 4-1 shows four examples of the type of error that this method aims to charac-

terize. Each of these examples show a pair of satellite-based retrieval (from AMSU-B on

NOAA-16) and ground-validation (from NEXRAD-IV) for a precipitation storm. Each

pair have the same spatial resolution and time of measurement. These snapshots show

how complex the errors are in the satellite-based retrievals. An accurate uncertainty esti-
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Figure 4-1: Four pairs of precipitation measurement from space-born instruments and their
corresponding ground validation. Colors show the precipitation rate in mm/hr

mation of these retrievals needs to take into account both phase (location) and magnitude

(precipitation rate) errors.

In the rest of this chapter an introduction to Bayes’ Theorem is presented, then the

datasets are introduced. Next, the methodology including the dimensionality reduction

technique is explained in detail. Finally, examples of this uncertainty quantification along

with evaluation of the method are presented.

4.2 Bayes’ Theorem

Bayes’ theorem provides a tool to measure the degree of belief in the outcome of an event

using probability distributions. Based on Bayes’ theorem, the degree of belief changes as

new observations of the event become available. This theorem provides a great platform for
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merging prior knowledge with current observation(s) to infer the state of a system. Assume

X is the state of the system to be inferred and Z is an observation of X . Based on Bayes’

theorem, we can write:

pX|Z(x|z) =
pZ|X(z|x)× pX(x)

pZ(z)
(4.1)

in which pX(x) is the prior distribution, pZ|X(z|x) is the measurement model, pZ(z) is the

marginal distribution of pZ|X(z|x) and pX|Z(x|z) is the posterior distribution [185, 67]. In

this formula x, z are deterministic values of the random variables X,Z, respectively and

have m dimensions. This means that x, z represent a m× 1 vector.

In many application pZ(z) is not known and pX|Z(x|z) is usually estimated to a normal-

izing factor since pZ(z) is independent of x. This is the case in the present study as well;

therefore:

pX|Z(x|z) = C × pZ|X(z|x)× pX(x) (4.2)

in which C is a constant. The most common approach to use the Bayes’ theorem is to

assume Gaussian distribution for pX(x) and pZ|X(z|x) [30]. This results in an estimation

of pX|Z(x|z) similar to using Kalman Filter, which is the best linear estimator [90, 126,

135]. However, as it was mentioned earlier, the goal in this study is to go beyond simple

descriptors and parametric distributions. Therefore, I will derive measurement model and

prior distribution as empirical distributions using the data itself.

In this study, I use three types of information that are introduced in the following. The

first one is the current uncertain precipitation estimate (zc). This is the retrieval from a

PMW instrument to be characterized. The characterization aims to infer the true precipita-

tion and the uncertainties associated with the true estimates given zc. The second one are

prior replicates. These replicates are generated using a training image (TI) and the details

are described in Section 4.4. Prior replicates are denoted as xi, i = 1, . . . , Nprior. The prior

TI itself is denoted as xp. The third set of information are archival pairs of satellite and

ground-based radar measurement. These are collocated estimates of precipitation from

satellite and ground-based radar. The ground-based radar product is used as a benchmark

for the true precipitation, and these pairs are used to estimate the error likelihood of each

measurement. Details of likelihood estimation are presented in Section 4.6.1. There are a
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total number of Na pairs in this group. In general, NT data points are used in this study, in

which NT = Nprior + 2×Na + 1 (1 is for the current measurement zc).

4.3 Datasets

Datasets used in this study include ground-based radar measurements of precipitation from

NEXRAD-IV product, precipitation estimates from the Advanced Microwave Sounding

Unit (AMSU-B) on-board NOAA-16 satellite, hereafter referred to as NOAA-16, and the

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI)1, hereafter re-

ferred to as TMI.

The temporal coverage of this study is from Jul. 2003 until Dec. 2010. I only use

data from summer months (April - October, inclusive), since the storm patterns and the

errors have different characteristics in different seasons. The spatial coverage of the study

is part of the central continental US ranging 31◦37′30′′N and 47◦37′30′′N latitudes and

104◦37′30′′W and 80◦37′30′′W longitudes as shown in Figure 4-2. The domain is selected

in a way to avoid measurements in mountainous regions of western US in which ground-

based radars are prone to beam blockage and considerable errors in estimation [127]. I

have also excluded areas over Great Lakes since the retrieval algorithm over water bodies

is different than the one over land areas. To avoid the swath limitations and missing pixels

and at the same time maximize the number of samples, the study domain is divided into

23 sub-regions each of which covering a 4◦ × 4◦ region. Samples are generated over each

sub-region using the collocated datasets. All of the three products are posted on a 0.25◦

lat-lon grid; therefore, the size of each sample is 16 pixel by 16 pixel.

The NEXRAD-IV product used here is the same as the one used in Chapter 2. The

processing is the same as the one reported in Section 2.2. I have only matched the time of

sampling to the overpass of NOAA-16 or TRMM as needed.

The uncertain PMW-based estimates of precipitation are obtained from NOAA-16. The

precipitation rates from this sensor are available through Microwave Surface and Precipi-

1Since this study uses data from 2002 until 2010, the mission changes explained in Section 1.1 do not
have any impact here.
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Figure 4-2: Spatial coverage of the study domain. Grids show the 23 sampling sub-regions.

tation Products System (MSPPS) Orbital Data at NOAA. These estimates are available on

orbital grids, and I mapped them into a 0.25◦latitude× 0.25◦longitude grid using nearest

neighbor sampling that does not affect the marginal distribution of precipitation intensities.

The precipitation rate parameter from TRMM 2A12 product (version 6) is used in this

study to generate prior replicates as it’s described in Section 4.4 . The TRMM 2A12 product

is produced on an orbital grid, and I mapped it to the into a 0.25◦latitude×0.25◦longitude

grid using nearest neighbor sampling.

In total, 4,640 pairs of precipitation estimates from NOAA-16 and NEXRAD-IV are

generated. These pairs will be used to derive the likelihood function in the Bayesian update

framework.

4.4 Prior Generation

In order to generate an informative prior replicate population, the method developed in

Chapter 3 is used. This method needs a training image (TI) as an input together with the

values of some parameters such as number of orientations and scales for image decompo-
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sition.

The TI for the Bayesian update problem should be a precipitation image with the same

size and spatial resolution as the uncertain measurement. TI should be selected in a way to

reflect the prior knowledge of the user about the state of precipitation at time t before the

uncertain measurement is made. Prior TI selection is problem-specific and it is based on

the expert’s judgment to provide an informative and diverse prior population.

In this study, I use TMI-based precipitation estimates from the times preceding the time

of uncertain measurement over the same geographical region. TMI measurements are one

of the most accurate estimations of precipitation from microwave instruments. This choice

is made here for the sake of presenting the application of the method. In general, the user

can choose any appropriate prior information to generate a set of reliable and informative

replicates as prior samples. Another source of information is to use the output of a forecast

model (physical or stochastic) for time t based on observations from preceding times that

was not available for the temporal domain of this study.

As it was mentioned in Chapter 3, the proposed replicate generation method has pa-

rameters that can be tuned to generate population of replicates with different diversities.

The level of diversity in the prior population is really important as too much diversity will

make the prior uninformative, and a very narrow prior probability density will bias the

estimation.

The goal of this section is to evaluate how informative and diverse are the replicates

generated from the TMI-based TI and how they capture the uncertainty in the true precip-

itation of the succeeding hour. To this end, I use a set of TIs from TMI observations and

generate replicates using a set of parameters for the replicate generation method. Then, the

replicates are evaluated against the true precipitation of the succeeding hour based on the

NEXRAD-IV data (assumed to be the benchmark product representing true precipitation).

The priors generated from set of 166 TIs are used to evaluate the prior generation proce-

dure. The parameters that are needed to be set in the prior replicate generation are number

of orientations (Nor) and scales (Nsc) in the decomposition as well as number of replicates

(Nprior). Conducting several evaluations, the following numbers are used for these param-

eters: Nor = 4, Nsc = 2, Nprior = 1000. From the 1000 replicates, half are not constrained
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by any pixel values but the other half are constrained to preserve 5% of the pixel values in

the TI . Moreover, all of the replicates are constrained by cloud observations from GOES

satellites. Details of this constraining are described in Section 3.3.4.

The first analysis is to evaluate how the distribution of precipitation intensity in the

replicates capture the precipitation intensity distribution of the benchmark product. Fig-

ures 4-4 and 4-3 show two sets of Cumulative Distribution Functions (CDF) of precipitation

intensity from two examples. These CDF plots include CDF of precipitation from the TI,

NEXRAD-IV and the 1000 replicates. As it can be seen the diversity of replicates’ CDFs

creates an envelope around the CDF of the benchmark estimate (NEXRAD-IV) and pro-

vides a diverse and informative set of prior replicates (meaning that the benchmark product

can be a member of the ensemble prior replicates). Similar observation was made for other

TIs used in this study.

Figure 4-3: Cumulative Distribution Functions (CDF) for the TI, NEXRAD-IV benchmark
estimate and the priors generated from the TI (this is for example #18 that is used in Sec-
tion 4.8)

Another evaluation is carried out on the distribution of the size of clusters of precipita-

tion. Precipitation usually occurs in different patches or clusters. It’s necessary for the prior
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Figure 4-4: Cumulative Distribution Functions (CDF) for the TI, NEXRAD-IV benchmark
estimate and the priors generated from the TI (this is for example #56 that is used in Sec-
tion 4.8)

population replicates to have similar cluster sizes to those of the benchmark product. Fig-

ure 4-5 shows the histogram of logarithm of cluster sizes in both the TIs and the replicates.

This figure shows that the histograms are very similar, indicating that the prior replicates

have similar cluster sizes of precipitation to those of the benchmark product. Moreover, A

Kolmogorov-Smirnov test revealed that the null hypothesis that these two histograms are

from the same distribution is accepted at 5% significance level.

The analysis provided in this section shows that the prior generation procedure used for

this problem produces a set of reliable and informative prior samples that can be used in

the Bayesian update scheme to characterize the true distribution of precipitation (posterior

distribution). Next section presents the scheme developed for mapping data points to the

low-dimensional space.
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Figure 4-5: Histogram of logarithm of precipitation cluster sizes in prior population and
benchmark precipitation product

4.5 Mapping Precipitation Data to a Reduced Attribute

Space

It is impractical and computationally inefficient to implement the Bayesian theorem in

high-dimensional space. Estimating probability density distributions needs millions of

samples in a very high-dimensional space. In this study, the precipitation images are 16×16

pixel, which is a 256 dimensional space. Therefore, it is necessary to map all of the data

(uncertain measurement, prior replicates, and archival pairs) to a low-dimensional space,

hereafter called attribute space.

The goal is to identify dimensions that can best represent the data in low-dimensional

space. After identifying the dimensions, data are mapped to the attribute space, and each

data point in the original pixel space (or image space) will have a set of attributes that
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corresponds to dimensions in the attribute space. Inevitably, there is some information

loss in this mapping. However, the goal is to minimize this information loss and develop

the most appropriate dimensionality reduction procedure. This dimensionality reduction

is problem specific and many approaches are proposed in previous research studies [178,

146].

One common approach is to use Multi-Dimensional Scaling (MDS) techniques to map

data into the attribute space [174, 45]. MDS techniques are a family of techniques that

aim to map data from an original high-dimensional space to low-dimensional space by

preserving the pairwise distances between data as much as possible [31]. There are a

range of algorithms for this purpose, including but not limited to: Sammon Mapping [152],

Curvilinear Component Analysis (CCA) [50], Generative Topographic Mapping (GTM)

[29], Isomap [166], Locally Linear Embedding (LLE) [151], Diffusion Maps [41], Data

Driven-High Dimensional Scaling (DD-HDS) [114], and RankVisu [113].

Applying MDS techniques to map precipitation images to a low dimensional space has

three challenges. First, there is a need for a distance metric in pixel space. MDS techniques

preserve the pairwise distance between samples; therefore, we should be able to measure

the distance between two textured images. To the best of knowledge of the author, there is

no such distance metric that can measure distances between textured images. The common

Euclidean distance is not applicable here as the Euclidean metric does not consider the

spatial correlation of pixels in the input image. Second, the quality of mapping from these

techniques reduces as the number of samples increases. Beside the mathematical proof for

the mapping error (presented in [188, 125]), it makes common sense that the more samples

we have, the more pairwise distances are that should be preserved in the low dimensional

space, and this would be harder. This limits the number of samples that can be mapped

to the attribute space. Consequently, the probability distributions estimated from these

limited data will have a lower accuracy. Third, the mappings from these techniques are

data dependent. This means that when the data are mapped to the low dimensional space,

any new sample that arrives can not be mapped individually and all of the samples should

be mapped again together. Considering these three challenges, the MDS techniques are not

appropriate for use in this problem.
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Other techniques such as Discrete Cosine Transform (DCT) are also available for di-

mensionality reduction. Using this technique data are mapped to a set of coefficients in the

frequency domain; then, the non-significant set of coefficients are truncated and the high-

dimensional image is represented using a set of low-dimensional coefficients [6, 86, 85].

This is the technique that is used for compressing JPEG and MP3 files too. However, fur-

ther investigations show that this is not appropriate for the precipitation application. The

basis functions that are used in this method are set of different cosine functions (with dif-

ferent amplitudes and wavelengths). In order to be able to properly describe the highly

non-homogenous precipitation images using this technique it is necessary to keep large

number of coefficients in the low-dimensional space. However, this is contradictory with

the fact that we cannot have a large number of dimensions in the attribute space.

It is expected that the dimensionality reduction scheme provides an attribute space that

can distinguish between pairs of ground validation and satellite-based estimated of precip-

itation. These pairs are very similar and a set of generic basis functions (such as cosine)

cannot distinguish between them using few number of attributes (equivalently coefficients).

The dimensionality reduction problem in this study is defined as following. Given a

set of data points in pixel space (denote yi, i = 1, . . . , NT ), find the set of attributes ŷi by

solving the following optimization problem

ŷi = arg min
ŷi

∑
(yi −Ψŷi)

2, i = 1, . . . , NT (4.3)

in which Ψ is the matrix of basis vectors defined as following:

Ψ =


ψ11 ψ12 . . . ψ1k

ψ21 ψ22 . . . ψ2k

... . . . ...

ψm1 ψm2 . . . ψmk


in which each column is one basis vector denoted as Ψi, i = 1, . . . , k, m is the dimen-

sion of data in the pixel space, and k is the number of dimensions in the attribute space.

The objective function of this problem (Equation 4.3) minimizes the square difference
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between the original image in pixel space and the reconstructed image from the attributes.

The goal is to find the set of ŷi given Ψ so that there is minimum information loss as a result

of mapping. This information loss is formulated as the difference between input samples

and reconstructed samples from attributes.

The choice of basis vectors is problem specific. The most common approach here is to

use Singular Value Decomposition (SVD) over all of the samples and derive the eigenvec-

tors of the samples. These eigenvectors can be used as the basis vectors in this formulation.

However, more evaluations show that if I use all of the samples to derive the basis vectors

using SVD, this will result in a set of smooth basis vectors that can not properly distinguish

the pairs of archival satellite and ground-based radar measurement. These pairs have dif-

ferences, and there is an error in the satellite measurement that I want to quantify; however,

their differences is small and it is needed to find a set of problem-specific basis vectors that

can distinguish between them. In the following, I present the approach for defining the set

of basis vector.

4.5.1 Basis Vector Selection

Basis vectors represent dimensions in the attribute space. The goal is to identify dimensions

along which data exhibit the most variability. This enables us to keep more information in

the attribute space. Here, I derive three sets of vectors from three population of samples;

then, use them together as basis vectors to map all of the data points to the attribute space.

The first population is a censored set of all the archival pairs. I apply censoring here

to find a set of archival pairs that are more similar to the current precipitation storm (based

on the satellite measurement). The population of precipitation storms from all the years

over this region is diverse, and using all of them as samples to derive basis vectors results

in smooth basis functions. Figure 4-6 shows a comparison between eignevectors derived

from all of the archival samples and the ones derived from a censored population. Smooth

basis vectors cannot distinguish between the pairs of the ground validation and satellite

estimates; therefore, they give rise to zero error in the attribute space. However, there are

differences between the paired measurements, and a measurement-specific set of basis vec-
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tors are needed to be able to capture these differences (errors). I implemented the censoring

algorithm to derive these basis vectors.

Figure 4-6: Comparison between the eignevectors derived from censored and uncensored
population of archival pairs.

Four geometric features are used to censor the archival pairs: Orientation, Solidity

and Center of Mass in two directions. These four features are selected based on an ex-

tensive evaluation of several features (texture-based, geometric, and morphological ones

[111, 107]). Orientation is the angle between x-axis and the major axis of the ellipse that

has the same second moments as the precipitation area in the image. Figure 4-7 shows a

sample precipitation storm and the orientation angle. Solidity is the ratio of the area of the

storm to the area of the convex hull which is the smallest convex polygon that can contain

the storm area. Center of Mass are coordinates of the center of the precipitation storm in x

and y direction.

For each uncertain satellite measurement, these four features are calculated. Then, the
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Figure 4-7: A sample precipitation storm and the orientation of the storm (α) defined as the
angle between the x-axis and the major axis of the ellipse

archival pairs are monitored and each pair that has a value within ±10% of the values

calculated for the features in the uncertain measurement is accepted. The rest of pairs

are censored out. Next, the SVD algorithm is applied to the censored population and the

leading eigenvectors are derived. I will use between 1 to 3 leading eigenvectors from this

population as is described later.

The second population, is the set of prior samples generated for each uncertain mea-

surement. Section 4.4 provides detail explanations of the prior generation procedure. The

SVD algorithm is applied to this population and the leading eigenvectors are calculated.

Similar to the censored archival data, between 1 to 3 eigenvectors from this population are

used as basis vectors.

The third set is the uncertain measurement itself. In order to use the uncertain measure-

ment as a basis vector, first the mean of whole measurement is removed from each pixel,

then the uncertain measurement is normalized with respect to it’s length:

z̄c =
zc −mean(zc)

|zc|
(4.4)

The eigenvectors from censored archival population and priors together with the nor-

malized measurement (z̄c) form the basis vectors (Ψ) of this method. In order to show the

sensitivity of the results to the number of basis vectors (equivalently the number of dimen-
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sions in the attribute space), three combinations are used for Ψ. The first one has three

dimensions and uses one eigenvector from censored archival population, one eigenvector

from priors and the normalized measurement itself. The second one has five dimensions

and uses two eigenvectors from censored archival population, two eigenvector from pri-

ors and the normalized measurement itself. The last one has seven dimensions and uses

three eigenvectors from censored archival population, three eigenvector from priors and

the normalized measurement itself. The sensitivity analysis is presented in Section 4.8.2.

4.6 Importance Sampling

One of the novel contributions of this study is that it does not assume any parametric dis-

tribution or additive/multiplicative form for the error. Indeed, the error likelihood function

in the Bayes’ theorem is estimated using pairs of satellite and benchmark ground-based

radar measurement that are mapped to the attribute space. This section presents the non-

parametric importance sampling algorithm that is implemented to characterize the posterior

distribution in Equation 4.1. Figure 4-8 also shows the overall structure of this methodol-

ogy.

Importance sampling is a method to generate samples from a target distribution (π) by

weighting samples that are generated from a second distribution (q, called importance dis-

tribution). This approach is necessary when there are complexities in directly simulating

samples from π. In Bayesian update problem, it is not possible to directly sample from the

posterior distribution pX|Z(x|z); therefore, samples are generated from the prior distribu-

tion (pX(x)) and are weighted using the likelihood function (pZ|X(z|x)) [148, 43]. These

weighted prior samples constitute the posterior distribution that can be characterized for

different applications.

4.6.1 Likelihood Function and Posterior Weights

This section presents details of calculating the posterior weights using the likelihood func-

tion. As it was mentioned earlier in this chapter, no parametric distribution is assumed for

the likelihood function. Instead, all of the pairs of archival data that are mapped into the
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Figure 4-8: Flow Chart of the Ensemble-Based Characterization proposed in this chapter

attribute space are used to estimate the likelihood distribution. I fit a Mixture of Gaus-

sian distributions to the pairs of archival satellite and ground-based radar measurement to

find the likelihood distribution. The number of mixtures that is used is adaptive and it is

determined using the Akaike Information Criterion (AIC) [7]. This distribution provides

the joint probability of pẐ,X̂(ẑ, x̂) between the uncertain measurement and truth (all of the
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calculations of importance sampling are implemented in attribute space; therefore, the data

are denoted byˆ). The joint distribution will be used in the following to derive the posterior

weights.

Using the conditional probability definition, the likelihood value for each of the prior

samples x̂i is defined as:

pẐ|X̂(ẑc|x̂i) =
pẐ,X̂(ẑc, x̂i)

pX̂(x̂i)
; i = 1, . . . , Nprior (4.5)

The numerator of this equation is evaluated using the probability density function that

was estimated by fitting a kernel density to the pairs of archival data in the attribute space.

However, the denominator is the marginal distribution of the joint density pẑ,x̂(ẑc, x̂i) that is

impractical to calculate numerically by discretizing the grid (there is no analytical solution

for it). Therefore, px̂(x̂i) is calculated by applying Monte Carlo integration technique using

importance sampling algorithm [148]. To this end, a qi distribution is selected for each prior

sample x̂i and the integration is calculated using the following relationship:

px̂(x̂i) =

∫
pẑ,x̂(ζ, x̂i)dζ =

∫
pẑ,x̂(ζ, x̂i)

qi(ζ)
qi(ζ)dζ = Eqi

[
pẑ,x̂(ζ, xi)

qi(ζ)

]
(4.6)

in which Eqi is the expectation over qi. Therefore, pX̂(x̂i) is evaluated by generating

samples ζ from qi and calculating the expectation on the right side of Equation 4.6. For

this problem qi is chosen to be Gaussian distribution with mean µqi and variance σ2
qi

. The

values of µqi and σ2
qi

are estimated based on a population of ẑj samples from archival pairs

that have their corresponding x̂j close to the prior sample x̂i. Further evaluations reveal

that the choice of qi is appropriate and the value of the integral converges by increasing the

number of ζ samples.

This likelihood estimation is also applied to the current uncertain measurement ẑc. Un-

certain measurement is itself a potential replicate for the true precipitation; therefore, it is

used as a prior replicate in this problem. Among the examples presented in Section 4.7,

there is also an example that the uncertain measurement will get the highest probability in

the posterior distribution.
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4.6.2 Characterizing the Posterior Distribution

The goal of this study is to generate samples from the posterior distribution pX̂|Ẑ(x̂|ẑc) that

have the highest probability and can represent the range of uncertainty in estimating the

true precipitation. Therefore, I use the weights assigned to each of the prior samples, to

estimate the mode of the posterior distribution using the following steps:

- Resample the prior replicates using the importance weights calculated in Equation 4.5.

This resampled population would represent samples from the posterior distribution;

- Estimate pX̂|Ẑ(x̂|ẑc) using a kernel density fit (mixture of Gaussian distributions) to

the resampled population;

- Identify mode of the posterior distribution;

- Find replicates that are closest to the mode of the posterior distribution.

The last step is conducted because the mode of the distribution is not necessarily a point

in the pixel space (i.e. an image). All of these calculations are carried out in the attribute

space and not all of the points in the low dimensional attribute space can be mapped back

to the pixel space. Only points that correspond to a prior replicate have a representation in

the pixel space. Therefore, it is necessary to find replicates that are closest to the mode of

the distribution.

In the next section, I use this approach to characterize and present posterior samples for

different precipitation estimates from AMSU-B instrument on NOAA-16.

4.7 Examples

This section presents examples of applying the ensemble-based characterization method

(proposed in this chapter) to real retrievals of precipitation from PMW sensor introduced

in Section 4.3. Here, I present results based on mapping data points to a 3D attribute space.

The effect of the number of dimensions in the attribute space on the quality of the posterior

is evaluated in the next section.
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For each example, the precipitation estimate from NOAA-16 is used as the uncertain

measurement; prior replicates are generated using TMI estimates from preceding times

as prior TI; and archival pairs of NOAA-16 and NEXRAD-IV are used to estimate the

likelihood. Moreover, the NEXRAD-IV estimate at the time of NOAA-16 measurement is

used for evaluation. This estimate is also mapped to the attribute space (denoted x̂T ) for

evaluation purpose explained in Section 4.8.

Figure 4-9 shows the uncertain measurement (from NOAA-16) and the ground valida-

tion (from NEXRAD-IV) precipitation estimates for example 1.

Figure 4-9: Precipitation estimates for example 1 from NOAA-16 (uncertain measurement)
and NEXRAD-IV (ground validation).

Figure 4-10 shows the TI (from TMI) and 16 of the prior replicates generated from

this TI for example 1. The TMI estimate is from one hour before the time of NOAA-16

measurement. The 16 prior replicates are randomly selected among 1000 replicates.

Figure 4-11 shows 16 of the most probable replicates from the posterior distribution

for example 1. These replicates have the closest distance to the mode of the posterior

distribution. This figure also presents the Jaccard distance between each posterior replicate

and the ground validation (NEXRAD-IV). Jaccard distance is used here to evaluate how

close are the posterior replicates to the ground validation compared to the measurement.

As it can be seen in this example all of the posterior samples have a Jaccard distance less

than the one between the measurement and the ground validation.
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Figure 4-10: Prior TI and 16 of the prior replicates for example 1

Figures 4-12 through 4-14 and 4-15 through 4-17 show two other examples and the

results. In example 2, the most probable sample from the posterior (closest sample to the

mode) is the uncertain measurement itself. This means the uncertain measurement has a

better quality relative to the prior; therefore, the measurement gets the highest probability.

In other words, the prior has not been informative enough to improve our knowledge of

the true precipitation above the uncertain measurement itself. This shows how important

it is to have a good prior. This is absolutely relative. If the uncertain measurement is very

good, then providing an informative prior that can improve the uncertain measurement is

hard. However, the prior should be chosen in a way that in most of the cases provides an

informative knowledge of the true state of the system. In the next section, I will evaluate
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Figure 4-11: The most probable replicates from the posterior distribution for example 1.
In the left column the uncertain satellite measurement and the ground validation is also
shown. On top of each of the replicates as well as the uncertain measurement the Jaccard
distance (J) between the replicate and the ground validation is also reported.

this over many examples and investigate how good are the priors.

4.8 Evaluation

Evaluating an ensemble of replicates is a challenging task. This becomes more challenging

when the replicates are images and not scalar values. There are several studies that define

indices and skill scores to evaluate quality of an ensemble forecast, but they are focused on

scalar variables [33, 123, 16, 186, 136, 149]. Here, the goal is to evaluate an ensemble of
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Figure 4-12: Precipitation estimates for example 2 from NOAA-16 (uncertain measure-
ment) and NEXRAD-IV (ground validation).

posterior samples that represent the true precipitation. This is indeed an evaluation of the

posterior distribution without knowing the true posterior distribution. In the examples that

were presented in Section 4.7 the benchmark estimate (true) is known; therefore, we can

use that to evaluate the posterior distribution. However, the benchmark itself is only one

sample of the true distribution.

Based on the evaluation provided in Section 4.4 the prior distribution (or the ensemble

of prior replicates) is informative and the true precipitation can be a sample form that.

Therefore, in this section I want to evaluate the posterior distribution to see if it is narrower

than the prior, and if it provides a better estimate of the true distribution.

In the following, three evaluations are presented. First, a relative distance measure is

calculated (in pixel space and attribute space) to evaluate the closeness of Maximum a Pos-

teriori (MAP) estimation to the benchmark estimate. Then, Rank Histogram is calculated

for scalar variables of total mass and percentage of rainy area in the posterior replicates.

Finally, The Jaccard distance at different thresholds (based on quantiles) is evaluated.

4.8.1 Relative Distance Index

In this section, I define two relative indices to evaluate the posterior distribution. These

indices measure how good is the mode of posterior in comparison to the measurement and

101



Figure 4-13: Prior TI and16 of the prior replicates for example 2

to the prior TI, respectively. They are defined as:

R1 =
J(xT ,mode(pX|Z(x|zc)))

J(xT , zc)
(4.7)

R2 =
J(xT ,mode(pX|Z(x|zc)))

J(xT , xp)
(4.8)

in which J is the Jaccard distance function. A similar notation is used to define two

other relative distance indices in attribute space:

R̂1 =
D(x̂T ,mode(pX̂|Ẑ(x̂|ẑc)))

D(x̂T , ẑc)
(4.9)
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Figure 4-14: The most probable replicates from the posterior distribution for example 2.
In the left column the uncertain satellite measurement and the ground validation is also
shown. On top of each of the replicates as well as the uncertain measurement the Jaccard
distance (J) between the replicate and the ground validation is also reported.

R̂2 =
D(x̂T ,mode(pX̂|Ẑ(x̂|ẑc)))

D(x̂T , x̂p)
(4.10)

In this case D is the Euclidean distance in the pixel space. If R1 (or R̂1) is less than

one, it means the mode of the posterior is a better estimate for the truth compared to the

uncertain measurement. If R2 (or R̂2) is less than one, it means the mode of the posterior is

a better estimate for the truth compared to the prior TI. It is preferred that all four indices

are less than one. However, this is not the case always, as in some situations the choice of
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Figure 4-15: Precipitation estimates for example 3 from NOAA-16 (uncertain measure-
ment) and NEXRAD-IV (ground validation).

prior might not be informative enough or maybe the likelihood function is not good.

I used 166 examples and evaluated all four indices. The results are summarized in

Figures 4-18 and 4-19. These figures show that in 82% of the examples (in 3D attribute

space) R1 is less than or equal to one. Therefore, in 23% of the examples the posterior

samples generated by this method are not better than the measurement itself. This can

be caused by a misleading prior or likelihood distribution. The prior can be misleading

because the storm might have evolved quickly between the TMI measurement (used as

prior TI) and the time of uncertain measurement. The likelihood might be wrong if the

precipitation storm is a rare event and no storm similar to that has occurred before. In this

case the likelihood function has limited information about the error and it might bias the

estimation.

In case of R2, in 65% of the examples the index is less than one. Again in 35% of

the cases the posterior samples are not better than the prior TI, and we can use the prior

TI as an estimate for the truth. However, the goal of this study is not to provide a single

deterministic estimate of the true precipitation. This method aims to provide replicates that

represent the uncertainty in our knowledge of the true precipitation. This uncertainty nei-

ther can be summarized in a single scalar value nor can be evaluated using a single true

value. Even though the prior TI is in some cases better than the mode of the posterior dis-

104



Figure 4-16: Prior TI and16 of the prior replicates for example 3

tribution, the ensemble of posterior replicates are representative of a range of uncertainty

in the true precipitation. This ensemble can be used as a random forcing in many hydro-

logical and meteorological models to derive uncertainty estimates for other variables of the

hydrological cycle.

Similar results are obtained for R̂1 and R̂2. For these two indices the percentage of the

cases that have values less than or equal to one is slightly lower; however, similar trends is

observed. This also shows that the dimensionality reduction method applied here, properly

projects data into a low dimensional space and the attributes are representative of images

in the poxel space.

Another analysis is carried out to evaluate effectiveness of the proposed approach in
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Figure 4-17: The most probable replicates from the posterior distribution for example 1.
In the left column the uncertain satellite measurement and the ground validation is also
shown. On top of each of the replicates as well as the uncertain measurement the Jaccard
distance (J) between the replicate and the ground validation is also reported.

this chapter in comparison to the common approaches in error characterization of remotely-

sensed precipitation estimates. Histogram matching is a common technique to reduce errors

in an estimate using a reference estimate. For example, in generating global precipitation

datasets usually the less accurate precipitation estimates from instruments like SSM/I are

histogram matched with the more accurate TRMM combined radiometer and radar esti-

mate.

Here, I will compare how good would be the uncertain current measurement if it is just

histogram matched with the prior TI (denoted as źc). I use a revised definition of R1 and
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Figure 4-18: Percentage of R1 and R2 that are ≤ 1 over 166 examples

Figure 4-19: Percentage of R̂1 and R̂2 that are ≤ 1 over 166 examples

R2:

Ŕ1 =
J(xT , źc)

J(xT , zc)
(4.11)

Ŕ2 =
J(xT , źc)

J(xT , xp)
(4.12)

Evaluating this index across all the 166 examples shows that the percentage of the
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examples that Ŕ1 and Ŕ2 are less than or equal to one less than the similar percentage in

R1 and R2 as well as R̂1 and R̂2 (Figure 4-20). This indicates that a simple histogram

matching is not effective in reducing the uncertainty in precipitation estimates from space-

born instruments. The proposed approach in this chapter takes advantage of historical

observed error patterns and merges that with prior information to provide a comprehensive

characterization of these uncertainties. This comparison shows that the proposed approach

has a better performance compared to the histogram matching approach if one wants to

only use the top posterior replicate as a deterministic characterization of error.

Figure 4-20: Percentage of Ŕ1 and Ŕ2 that are ≤ 1 over 166 examples

4.8.2 Sensitivity Analysis

Figures 4-18 and 4-19 show the results of evaluating the method if the attribute space is 5D

and 7D. This evaluation is carried out to do a sensitivity analysis on the choice of the num-

ber of dimensions in the attribute space. In Section 4.5.1 the combination of eigenvectors

from three different populations that form the basis vectors for dimensionality reduction

was introduced. For 5D, I have used two eigenvectors from the censored archival popula-

tion, two eigenvectors from the prior replicates and the normalized uncertain measurement

as the fifth basis vector. In 7D, three eigenvectors from the censored archival population,
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and three eigenvectors from the prior replicates are used together with the normalized un-

certain measurement to form the 7 basis vectors.

Results forR1 and R̂1 show that by increasing the number of dimensions in the attribute

space, the results get worse and in fewer number of examples the posterior mode is better

than the uncertain measurement. The changes are small, but noticeable. At first this might

seem contradictory because the more dimensions we keep in the attribute space, the less

is the information loss in the mapping. Therefore, the method should be able to provide a

better estimate. However, when the number of dimensions increases more data points are

needed to be able to estimate the probability distributions in the attribute space. This is

a limitation in this case. The number of paired archival samples is small (4640 samples)

compared to the number of dimensions (5 and 7). Therefore, by increasing the number of

dimensions the error in estimating the probability distributions diminishes the information

gained from keeping more dimensions.

Results for R2 and R̂2 do not show a meaningful change in the quality of the posterior

compared to prior TI as the number of dimensions increase.

4.8.3 Rank Histogram

Rank histogram is a measure to evaluate the spread of an ensemble. This measure is only

applicable to scalar values and has been used in many hydrological and meteorological

applications [77, 36, 12, 34, 39, 65, 52]. In this technique a set of bins is defined by

distributing the ensemble replicates on the real axis. Then the probability of occurrence

of the observation within each bin is evaluated. The result is expected to be a uniform

distribution, meaning that the observation has equal probability of occurrence in each of

the bins. Details of this technique can be found in [16, 77].

The ensemble replicates in this problem are high dimensional, so it is not possible to

apply rank histogram to the ensembles themselves. However, two scalar quantities are con-

sidered for this analysis: The total mass of precipitation in each replicate and the rainy area.

These two quantities gives us a comprehensive analysis of the spread of the ensembles both

with respect to rain detection and rain intensity. Figures 4-21 and 4-22 show the resulting
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rank histograms by considering the top 20 posterior replicates. The rank histogram for the

rainy area shows that the more probable posterior replicates (low rank ones) are more sim-

ilar to the benchmark estimate (since they have a higher frequency in the histogram). The

rank histogram for the total mass of precipitation shows that the benchmark estimate has

equal probability to have a total mass in any of the 20 bins (between top 20 posterior repli-

cates). These two histograms show that the posterior ensemble replicates have a reasonable

spread with respect to rain detection and rain intensity.

Figure 4-21: Rank Histogram for rainy area. The red line shows the uniform distribution.

4.8.4 Multi-Level Jaccard Distance

In the examples shown in Section 4.7 the Jaccard distance between each posterior replicate

and the benchmark estimate was reported. It was shown that in most of the cases these

distances are lower than the Jaccard distance between the uncertain measurement and the

benchmark estimate. However, Jaccard distance was applied only by thresholding the repli-

cates at 0 mm/hr. Here, I will present the result of comparing the posterior replicates and

the benchmark estimates using Jaccard distance but with thresholds higher than 0 mm/hr.

This evaluation is carried out over all the 166 examples and the results are shown in Fig-

ure 4-23. The plots show mean and one standard deviation of Jaccard distance at different

thresholds. These thresholds are based on the quantiles of the precipitation rate in all the
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Figure 4-22: Rank Histogram for total amount of precipitation. The red line shows the
uniform distribution.

examples that were sued. They are respectively the 5%, 10%, 50%, 90% and 95% quan-

tiles. This figure shows that at higher precipitation rates both the uncertain measurements

and the posterior replicates (the top 20 replicates) have a higher Jaccard distance; how-

ever, for all the thresholds the posterior replicates have a better performance. Moreover, at

higher thresholds and unlike the measurements, the posterior replicates have a lower stan-

dard deviation (i.e. lower variability). This indicates that on average the posterior replicates

provide a better representation of the true precipitation.

Figure 4-23 also shows the Jaccard distance between all the prior replicates and the

benchmark estimate. The results indicate that there is a large variability in the prior repli-

cates (high standard deviation); however, the mean is similar to the top posterior replicates

at higher thresholds. At lower thresholds the priors have a higher mean of Jaccard dis-

tance. This comparison shows that the ensemble characterization developed in this chapter

is properly characterizing the posterior distribution by assigning correct posterior weights

to the prior replicates.
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Figure 4-23: Jaccard Distance between uncertain measurement and their associated bench-
mark estimates (in blue) and between top 20 posterior replicates and their benchmark esti-
mates (in red). The error bars show one standard deviation data.

4.9 Summary

This chapter presents a Bayesian framework to update an uncertain satellite-based estimate

of precipitation using historical error likelihoods. This framework provides a population of

replicates from the posterior distribution that represent the uncertainty in the true precipi-

tation.

The error likelihood is derived by comparing historical observations of the satellite and

ground-based radar. The likelihood does not assume any parametric distribution for the

error, and it is based on an empirical distribution. This approach provides a more realistic

characterization of error and it takes advantage of a rich dataset of collocated satellite and

ground-based radar measurements.

The Bayesian update technique is impractical in high dimensional space. Since the

precipitation images in this problem were 256D, I implemented a dimensionality reduction

algorithm to map all of the data to a low-dimensional attribute space. The dimensional-

ity reduction is measurement specific and it properly describes the images in the attribute

space.

The main goal of this chapter was to show the capability of using the Bayesian theorem
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in a low-dimensional space to characterize errors in precipitation estimates. The choice

of prior replicate generation (including prior TI) and the dimensionality reduction is user

dependent. These two elements can be improved or replaced with other algorithm.

Applying this method to a population of storms observed by AMSU-B instrument on-

board NOAA-16 satellite and comparing the results with the estimates from ground-based

NEXRAD-IV radar product reveal that the proposed method is capable of characterizing

the uncertainty in true precipitation by providing a posterior distribution that is narrower

than its prior.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

Monitoring precipitation using space-born instruments has great advantages including near-

real time and continuous spatial measurements. Space-born instruments have evolved over

time and new sensors with new algorithms that are capable of precipitation retrieval at high

spatial resolutions are built. However, these high resolution measurements have high un-

certainties that need to be characterized before they can be fully incorporated into decision

making and data assimilation tools.

The new Global Precipitation Measurement (GPM) mission focuses on merging precip-

itation estimates from each of the constellation of GPM satellites to provide global precip-

itation estimates with high temporal and spatial resolution. However, error quantification

of precipitation estimates from each of the satellites is a vital step towards merging the

estimates.

In the first part of the thesis, I introduce a new metric for evaluating errors in precip-

itation estimates. Applying the metric to precipitation products from Special Sensor Mi-

crowave/Imager (SSM/I) shows marked seasonality and precipitation intensity dependence.

Results show that SSM/I-based precipitation products are positively biased in magnitude,

and the bias is less at higher intensities and in geographic locations where precipitation

rates are generally higher.

In the rest of the thesis, I develop a new method for characterizing uncertainties in
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remotely-sensed precipitation estimates using historical observations and the Bayes’ theo-

rem. This method provides a framework for optimally merging prior knowledge of the true

precipitation with error likelihoods conditioned on the current uncertain estimates. This

data merging provides a characterization of the posterior distribution of precipitation.

A new stochastic-based method was also presented for generating non-stationary prior

precipitation replicates. This method is capable of generating realistic precipitation repli-

cates that capture the true uncertainty in the measurement. Moreover, the replicates can

be constrained on the cloud measurements from the more frequent geostationary satellites.

The prior replicates generated by this method are realistic and yield better results than

priors generated from parametric distributions.

This ensemble-based characterization uses a non-parametric version of importance sam-

pling to derive samples from the posterior distribution. Importance sampling is relatively

easy to implement; however, it needs adequate ensemble sizes, accurate measurement er-

ror models, and realistic priors to be useful in practical applications. For precipitation

retrievals that are high-dimensional a very large prior ensemble is needed to provide a rep-

resentative characterization of the posterior distribution. Generating such a large ensemble

is impractical; therefore, a novel dimensionality reduction scheme is introduced to map

all the data to a low-dimensional attribute space. The dimensionality reduction scheme is

problem-specific and is able to properly describe the data in the attribute space. Then, the

importance sampling is implemented in terms of the attribute space.

In order to properly represent measurement errors, and unlike previous studies, this

approach relies on non-parametric probability densities estimated from an archival dataset

rather than hypothesized parametric distributions. This increases the applicability of the

method and insures that the posterior probabilities properly reflect the effects of measure-

ment uncertainty. Moreover, it enables the characterization procedure to make best use of

information from different instruments with different strengths and weaknesses.

The primary limitation of implementing importance sampling in a low-dimensional

attribute space is the inevitable information loss. Mapping data from a high dimensional

space to a much lower dimension attribute space is accompanied by some information

loss. This is a function of the number of dimensions in the attribute space, the lower the
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dimensions the more the information loss. However, increasing number of dimensions

in the attribute space increases the needs for more samples to properly characterize the

probability densities. The compromise is to select the number of dimensions in the attribute

space in a way that can accurately represent the data and probability distributions.

Results indicate that the proposed attribute-based ensemble estimation approach using

importance sampling is a promising option for characterizing complex precipitation im-

ages. the method provides an improved description of precipitation storms by giving a

posterior ensemble that is narrower than the prior. The ultimate goal of this ensemble-

based approach is to provide a range of possible precipitation replicates that represent the

retrieval uncertainty.

5.2 Suggestions for Future Research

The proposed error characterization in this thesis has two elements that can be improved

in future studies: the dimensionality reduction scheme and the prior generation approach.

Indeed, these two elements are application specific and should be changed if this method is

going to be used for another application.

The dimensionality reduction scheme that is developed in this study is measurement-

specific, and for each measurement it derives a different set of basis vectors. This is advan-

tages because the attribute space is tuned to be able to optimally represent the errors in the

current uncertain measurement. However, if this approach is going to be used in real-time

application it would be useful to examine alternative options that perform faster. The cur-

rent scheme runs at a reasonable time on a regular PC for sample sizes that were presented

in Chapter 4 but for larger populations and sample sizes this needs to be improved.

The prior replicate generation that is developed in this thesis uses a training image (TI).

The choice of the TI is application specific and the more informative is the TI the more

informative is the prior population. A better prior population results in a more accurate

characterization of the uncertainties in the measurement. It would be useful to use other

TIs with this approach, especially those that are derived from physical model forecasts.

Physical models now produce hourly forecasts up to 18 hours with high spatial resolution
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(over continental US) that are appropriate for this application. These forecasts can be a

better choice for prior TI compared to TRMM measurements that are not available every

hour.

Another topic worth further effort is the archival sample size. The archival pairs are

used to derive the likelihood function in the Bayesian framework. A more diverse and rich

archival data will provide a better estimate of the error likelihood. Here, I used around

7 years of archival data; however, with ever increasing measurements from space-born

instruments this population can be enriched.

Finally, applying this error characterization to the estimates from a wide range of in-

struments provides a great tool to compare relative performance of different instruments.

This comparison is useful for future instrument and retrieval algorithm developments as

well as calibration studies.
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Appendix A

Comparing Jaccard Distance with POD

and FAR

Definitions

Assume two measurements - one is the true measurement (called T hereafter) and the other

is a second measurement to be validated versus the true one (called V hereafter). Based on

the definition provided in Section 2.3.2 the Jaccard distance (J), POD and FAR are:

J = 1− f11
f10 + f01 + f11

=
f10 + f01

f10 + f01 + f11
(A.1)

POD =
f11

f11 + f10
(A.2)

FAR =
f01

f11 + f01
(A.3)

The main difference between J and POD is that J considers both the hits and misses in

the measurements while POD only captures hits. On the other hand FAR only deals with

misses. Therefore, the combined outcome of the POD and FAR can be inferred from J

itself. However, depending on application it might be advantageous to distinguish between

POD and FAR.

It is possible to relate the Jaccard distance uniquely to POD and FAR. Based on A.2:
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f10 =
(1− POD)× f11

POD
(A.4)

Using A.3:

f01 =
FAR× f11
1− FAR

(A.5)

Substituting A.4 and A.5 into A.1 results in:

J =

(1−POD)×f11
POD

+ FAR×f11
1−FAR

(1−POD)×f11
POD

+ FAR×f11
1−FAR

+ f11
(A.6)

The f11 terms can be eliminated to write J only in terms of POD and FAR:

J =
FAR× POD + (1− POD)(1− FAR)

FAR× POD + (1− POD)(1− FAR) + POD(1− FAR)
(A.7)

Figure A-1 shows the Jaccard distance as a function of POD and FAR. The Jaccard dis-

tance changes with different combinations of POD and FAR. The Jaccard distance captures

both types of errors measured by POD and FAR.

Figure A-1: Jaccard Distance for different combinations of POD and FAR
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Examples

In this section, I provide a series of synthetic examples to compare J, POD and FAR. In all

the cases the true measurements is the same. Figure A-2 shows 3 examples. In this figure,

the first column shows the true measurement (T), the second column shows the second

measurement (V) to be compared and the last column shows the overlapped measurements.

In the first row, T and V are the same, so J = FAR = 0 and POD = 1. For the second row,

V is shifted as not to overlap with T. This is case with the most difference between T and

V, so J = FAR = 1 and POD = 0. Row 3 shows a situation in between. Both T and V

are overlapping in some pixels, and not all of them. As a result, POD, FAR and J are all

intermediate between 0 and 1.

Figure A-3 shows another set of examples with the same T. Here, the first row has a V

that has a smaller true area with respect to T, so there is no false detection, i.e. FAR = 0.

However, POD and J are not equal to 1 as the two images are different. If we add some

false area to V (as in the second row) the POD does not change, but J and FAR change.

This shows that POD is not sensitive to false detected areas. So, if there is a V that is

just overestimating the true area, it will have a POD=1, although the V and T will not be

the same. At the same time, J changes between rows 1 and 2. Thus J is sensitive to both

hits and false detections. Row 3 shows how POD, FAR and J change when there is spatial

overestimation.

It should be noted that in special cases FAR will have the exact value as J. For example,

if f10 = 0, then J = FAR. This happens when there is no misses in the detection.
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Figure A-2: Example 1 comparing J and POD and FAR (Black color: Feature in T or V,
and overlapping feature in the overlapped measurement. White color: Non-overlapping
feature in the overlapped measurement. Gray color: No feature)
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Figure A-3: Example 2 comparing J and POD and FAR (Black color: Feature in T or V,
and overlapping feature in the overlapped measurement. White color: Non-overlapping
feature in the overlapped measurement. Gray color: No feature)
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Appendix B

Merging Satellite Measurements of

Rainfall Using Multi-scale Imagery

Technique

Abstract

Several passive microwave satellites orbit the Earth and measure rainfall. These measure-

ments have the advantage of almost full global coverage when compared to surface rain

gauges. However, these satellites have low temporal revisit and missing data over some

regions. Image fusion is a useful technique to fill in the gaps of one image (one satellite

measurement) using another one. The proposed algorithm uses an iterative fusion scheme

to integrate information from two satellite measurements. The algorithm is implemented

on two datasets for 7 years of half-hourly data. The results show significant improvements

in rain detection and rain intensity in the merged measurements.

B.1 Introduction

Satellite rainfall retrievals have enormous potential benefits as input to hydrological and

agricultural models because of their real time availability, low cost, and full spatial cov-

erage [69]. PMW measurements of rainfall have their own unique advantages as well as
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shortcomings. These sensors have a low temporal revisit (usually two times a day) because

of their orbital characteristics. Moreover, in some cases they have missing data over some

regions where retrieval is confounded by other influences. Therefore, in order to obtain

reasonably accurate rainfall estimation and with a good spatial and temporal sampling res-

olution, useful for studies of climate change and large-scale hydrological processes, it is

necessary to merge different types of measurements.

It is not possible to fill in the gaps of one measurement (hereafter, called image) using

another one because none of these images are perfect measurements, and this will cause

discontinuities in the final image. Moreover, the comparison of results from the proposed

fusion algorithm (presented later here) with the results of an interpolation algorithm (which

produces a merged image by interpolating between two input images) shows that a simple

interpolation is not enough to merge the two images, and the results are not accurate.

In order to produce a better estimation of the rainfall, researchers have tried to combine

different types of rainfall measurement. Several models have been developed that combines

satellite measurements with ground-base measurements, and provide estimation of rainfall

for both missing pixels and for the times that there has not been a satellite measurement.

Some of these models include: Global Precipitation Climatology Project (GPCP) [112],

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-

works (PERSIANN) [83], Climate prediction center MORPHing method (CMORPH) [87],

and Climate prediction center Merged Analysis of Precipitation (CMAP) [190]. Shen et al.

(2010) investigated the errors and biases of these merged measurements [156] and showed

that they are not reliable in some regions. Here, I will only focus on improving the re-

trievals when there are at least two satellite retrievals available over one region. However,

this method can be applied to any two sets of rainfall measurement to fill in the missing

regions or provide a better estimate.

One of the methods that can be used for image fusing is multi-resolution pyramids

method [1]. This method is based on fusing the images in a transformed domain, created

by decomposing images into sub-images. Here, I propose an algorithm for merging two

rainfall images using the multi-resolution pyramid method and an interpolation scheme.

The proposed algorithm has two section: Texture Production and Shape Production. In
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order to produce the texture, it uses the multi-resolution pyramid method, and for producing

the shape, it uses an interpolation scheme. The results show that the distinction between

shape and texture in the algorithm improves the results both in detecting the rainfall and in

producing the accurate rain intensity.

In the rest of this chapter, first, the datasets that are used are described. Then, the

algorithm is presented in detail. Next, results are provided with comparisons with other

methods. Finally, conclusions along with a discussion on the results is presented.

B.1.1 Datasets

The satellite measurements of rainfall for this study are obtained from AMSU-B sensor

on-board NOAA-15 and NOAA-16 as well as TMI. The former is produced by Microwave

Surface and Precipitation Products System (MSPPS) in NOAA and the latter is produced by

Goddard Earth Sciences Data and Information Services Center in National Aeronautics and

Space Administration (NASA). An independent set of surface-based radar measurements

from NEXRAD-IV product is assumed as the true measurement and used to evaluate the

results of the model. This assumption can be further investigated by incorporating the

errors of the radar measurements.

For this study, all the data are mapped to a common spatial gird of 0.25◦latitude ×

0.25◦longitude covering the central part of the continental U.S. ranging 26.10◦− 42.10◦N

and 107.85◦ − 91.85◦W . The period of study is from Jan. 2004 until Dec. 2010. All the

data are half-hourly measurements.

In order to obtain good samples, I selected images that had a reasonable number (at

least 40) of non-missing pixels. Imposing this criteria, a set of 219 coincident images for

each of the NOAA-16 and TRMM, and a set of 221 coincident images for each of the

NOAA-15 and TRMM was created. Each sample is a 64× 64 pixel image.

B.2 Methodology

The procedure for producing the merged images consists of two steps: texture simulation

and shape simulation. Here, texture is the rain rate (or intensity) and shape is the rain
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Figure B-1: Procedure of the fusion algorithm. Rain Shape is an image of [-1, 0, 1].
Other images show rain intensity (from blue to red the intensity increases from zero to its
maximum; dark blue are the missing regions)

support (i.e. rain / no rain areas.) The complete procedure is illustrated in Figure B-1.

Using the two input images, a texture and a shape is produced using the methods described

in the following. Then, the fused image is created by multiplying the texture and the shape.

B.2.1 Texture Production

Image fusion using pyramids transformation is a useful method to fill in the gaps of one im-

age using another one(s). This method that was first proposed by Adelson et al., 1984 uses

an iterative fusion scheme to integrate information from multiple images [1]. Figure B-2

shows the algorithm for this method. First, a filter is applied to the two input images to

decompose them into sub-images (or equivalently to coefficients). Then, a fusion algo-

rithm is applied to merge the subimages and produce a fused subimage. Finally, an inverse

transformation will produce the merged image.
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Figure B-2: The pyramids algorithm for producing texture (the Fusion Algorithm is de-
scribed in Figure B-3)

Rainfall is an intermittent event in space, so the choice of the filter is one of the impor-

tant aspects in this work. It is necessary to have a decomposition that can obtain the most

information possible from the images. Preliminary experiments using Gaussian, Laplacian,

and Steerable pyramids showed that Steerable pyramids works better in Rainfall is an in-

termittent event in space, so the choice of the filter is one of the important aspects in this

work. It is necessary to have a decomposition that can obtain the most information pos-

sible from the images. Preliminary experiments using Gaussian, Laplacian, and Steerable

pyramids showed that Steerable pyramids works better in decomposing the images, and the

resulting fused images are more accurate. Thus, I will only use the Steerable pyramids in

the following.

Steerable pyramid was introduced in detail in Section 3.3.1. Steerable pyramid has

been widely used in vision problems and image analysis. Here, I use it to transform the

initial images to a sub-image domain and inverse-transform the fused sub-images to the

merged final image. Investigating different number of levels and orientational decomposi-
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tions, it was found that a 4 level decomposition (which is the maximum possible) and 16

orientational decompositions are good enough to describe the images in sub-image sapce.

Figure B-2 shows that a fusion algorithm is needed to combine the two sub-images (or

coefficient sets) in the transformed domain. A simple criteria for this integration is abso-

lute value maximum selection (AVMS). This criteria selects the larger absolute values in

the sub-images as the corresponding value for the fused sub-image. Although this criteria

works well in many applications, it is so simple and it might miss some of the details in

the integration process. Liu et al. (2001) proposed a fusion algorithm using the Lapla-

cian pyramids [118]. In this algorithm each pair of subimages from the two input images

are decomposed by using the Laplacian filters. Then, an integration scheme is applied to

merge the two pyramids of the subimages. This integration scheme can be AVMS or any

other defined criteria. Next, the fused subimage is produced by inverse transformation of

the integrated pyramids of the input subimages. This fusion algorithm allows for more

information to be fused into the merged subimages, and for the rainfall images that are

so intermittent is really necessary. Therefore, I use this fusion algorithm for merging the

subimages. Figure B-3 shows the structure of the fusion algorithm.

B.2.2 Shape Production

This part of the algorithm will produce shapes for the rainfall fields (i.e. support). Early

investigations on using the pyramids method to merge the two rainfall images revealed that

the method will produce a kind of continuous texture in the resulting image, which is not

the case in reality. Moreover, the pyramids method produces high values of false alarm in

the fused images. Therefore, I implemented this part to constrain the rainy areas in specific

regions of the final fused image. Nevertheless, these regions are still defined by the two

input images, but using an interpolation scheme.

The procedure is that a linear interpolation is applied to create a merged image of the

two input ones. Then, the pixels that were missing in both of the input images are set to be

missing in the final image too. This is because of the high intermittency of rainfall patterns

that makes it hard to interpolate the value of the missing pixels from the non-missing ones.
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Figure B-3: Fusion scheme for sub-images

This part produces an image of values of [-1, 0, 1] in which -1 means missing pixel, 0

means no rain can occur, and 1 means rain can occur. Conditioning the texture to be only

inside the possible rain areas, the fused measurement is produced.

B.2.3 Fused Image Production

This step is a multiplication of the produced texture and the produced shape. Therefore, the

regions that have a shape value equal to 1 will have their values from the texture product,

the regions that have a shape value equal to zero will be zero in the fused image, and the

regions that their shape value is -1 (missing data) will remain missing in the fused image.

B.3 Results

In this section the results of the proposed algorithm are presented and evaluated for both

rain detection and rain intensity. Ebert (2007) provides a comprehensive review on the

statistics useful for validating the results of a rainfall estimation methods [53]. Here, I
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Figure B-4: CDF plot of detection statistics for NOAA-16 and TRMM dataset
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selected three statistics to evaluate the capability of the algorithm in detecting rainfall. The

statistics are: Probability of Detection (POD), False Alarm Ratio (FAR), and Threat Score

(TS). They are defined as following:

POD =
hits

hits+misses
(B.1)

FAR =
false alarms

hits+ false alarms
(B.2)

TS =
hits

hits+misses+ false alarms
(B.3)

in which hits is defined as the number of instances that both of the true measurement

and the proposed measurement detect rain; misses is the number of instances that the true

detects rain, but the proposed one does not; and false alarms is defined as the number of

instances that the true does not detect rain, but the proposed one does. Note that I have only

considered the detection of rain.

The preferred values for each of these statistics are POD = 1, FAR = 0, and TS = 1. Fig-

ure B-4 shows the Cumulative Distribution Function (CDF) of the above mentioned statis-

tics for NOAA-16 and TRMM dataset (with the characteristics described in section B.1.1)

using the developed algorithm in this paper, the single interpolation method, and the pyra-

mids method. As this figure shows, the pyramids method works well in improving the POD

and TS, but at the same time it worsens the FAR to a high degree. Therefore, it is detecting

the rainy areas by overestimating the rainy regions and giving too much false alarm that

is not acceptable. The interpolation method seems to have a well matched result with the

fused algorithm. They both improve the POD and TS with respect to the two input mea-

surements (NOAA-16 and TRMM). Moreover, they provide a reasonable FAR which is

somehow similar to the two input images. However, the difference between the interpola-

tion method and the fused method becomes clear by comparing the Probability Distribution

Function (PDF) and CDF of the rain intensity of different methods. This is an important

comparison because a method that is only capable of detecting rainfall and does not pro-

vide reasonable intensities will not be useful. Figure B-5 shows the PDF and CDF of rain
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Figure B-5: PDF and CDF of rain intensity for NOAA-16 and TRMM dataset
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Figure B-6: CDF plot of detection statistics for NOAA-15 and TRMM dataset
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intensity for NOAA-16 and TRMM dataset. Note, these plots are for the pixels that were

non-missing in all the measurements (i.e. True, NOAA-16, TRMM, Fused, Interpolation,

Pyramids.)

As can be seen in Figure B-5, the PDF and CDF of the fused measurement match

well with the ones for true measurement, which is the surface-based radar measurement

as discussed in section B.1.1. In addition, to test which of these CDFs are from the same

distribution as the true one, I run the Kolmogorov-Smirnov test [124]. This test evaluates

the hypothesis that two given datasets are from the same continuous distribution. The

result with 5% significance level showed that only the fused measurement can be from the

same distribution as the true one. This shows that use of the fused algorithm, proposed in

this chapter, improves each of the pyramids and interpolation methods and provides better

estimation with respect to both rain detection and rain intensity.

In order to further test the method, I run the method on another dataset which was the

NOAA-15 and TRMM dataset (with the characteristics described in section B.1.1.) The

results are illustrated in Figures B-6 and B-7. These two figures reveal that the proposed

fusion algorithm produces promising results in this case too. The Kolmogorov-Smirnov

test again showed that only the fused measurement CDF can be from the same distribution

as the true one, at 5% significance level.

Figures B-8 and B-9 show four samples of the sources, fused, and true images of rainfall

intensity in NOAA-16 and NOAA-15 dataset. The purple color in these images represents

the missing regions in the images.

B.4 Discussion

This chapter explored the possibility of using a multi-scale imagery technique in accor-

dance with an interpolation scheme to merge two satellite measurements of rainfall and

produce a better estimation of rain intensity with less missing points in the fused image.

The proposed algorithm improves both rain intensity and rain detection of the two input

images. Moreover, it was shown that only the results of the rain intensity from the fused

image can be considered to be from the same distribution as the true measurement.
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Figure B-7: PDF and CDF of rain intensity for NOAA-15 and TRMM dataset

In addition, as can be seen in Figure B-9, there are regions that there is no true mea-

surement, and this algorithm can improve the satellite measurements and provide accurate

estimates over them. A few percentage of the Earth surface is covered by ground-based

radars to measure rain rate. Therefore, this method can be used across the globe to fuse

different satellite measurements and produce better estimations of rainfall.
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Figure B-8: Sample source, fused, and true measurements of NOAA-16 and TRMM dataset
(the scale shows rain intensity in mm/hr)

Figure B-9: Sample source, fused, and true measurements of NOAA-15 and TRMM dataset
(the scale shows rain intensity in mm/hr)
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Furthermore, daily estimates of satellite rainfall can be improved by using this algo-

rithm. There are places on the world that are not covered in the daily passes of one satel-

lite, but they are covered by another satellites which misses some regions in the first one.

The proposed algorithm can be applied to these daily measurements to provide full daily

rainfall estimates that are useful for water balance studies and rainfall forecasting.
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