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Abstract

Space-based persistent surveillance provides decision makers with information necessary to
effectively respond to both natural and man-made crises. This thesis investigates a recon-
figurable constellation strategy that utilizes on-demand, maneuverable satellites to provide
focused regional coverage with short revisit times at greatly decreased cost when compared
to traditional static satellite constellations.

The thesis develops and demonstrates a general framework to guide the design and op-
timization of reconfigurable satellite constellations specifically tailored to stakeholder objec-
tives while considering requirement uncertainty. The framework is novel in that it avoids
many of the assumptions and simplifications of past research by: 1. explicitly considering
uncertainty in future operating conditions; 2. concurrently optimizing constellation pattern
design, satellite design, and operations design; and, 3. investigating layered and asymmetric
patterns. The framework consists of three elements: a detailed simulation model to compute
constellation performance and cost for a variety of architectures and patterns, Monte Carlo
simulation to determine how well each design performs under uncertain future conditions,
and a parallel multi-objective evolutionary algorithm developed from the ε-NSGA-II genetic
algorithm to find designs that maximize performance while simultaneously minimizing cost.
Additionally, a new performance metric is developed to measure directly how well a design
meets desired temporal and spatial sampling requirements and a decision model and optimal
assignment process is developed to determine how to employ the option of reconfigurability
to respond to specific regional events.

The framework was used to perform 85 optimization runs selected to compare the cost-
effectiveness of several constellation architectures over varied operating conditions and cover-
age requirements. All optimization runs were performed in less than three months, demon-
strating that parallel computing coupled with sophisticated optimization routines enable
rapid spiral development of satellite constellations. Results show that reconfigurable con-
stellations cost 20 to 70% less than similarly performing static constellations for the scenarios
studied. The cost savings grows with increasingly demanding coverage requirements. Results
from optimizing a fully asymmetric constellation pattern led to two the development of new
‘quasi’-asymmetric patterns that were found to significantly outperform symmetric patterns
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for providing discontinuous coverage. Additionally, results show that the sun-synchronous
and rapid launch architectures are the least cost-effective approaches.
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Nomenclature

Constants

µ Earth gravitational constant 398600.43560 km3 s−2

ω⊕ Earth spin rate 7.29211585530× 10−5 rad s−1

g Mean acceleration due to Earth’s gravity at the surface 9.80665ms−2

J2 Earth oblateness constant 0.0010826269

R⊕ Earth equatorial radius 6378.137 km

Ts Sidereal year duration 365.25636 days

Variables

α Decision model weight variable −
α0 Initial decision model weight variable −
P̄ Mean performance −
∆alt Altitude difference between ROM and GOM orbits km

∆D Decimal days from vernal equinox days

∆hD Difference between drift orbit altitude and GOM altitude km

∆M Parameter controlling M spacing of satellites in adjacent orbit planes deg

∆Mmax Maximum M spacing in SSO orbit plane without coverage gaps deg

∆MSSO Parameter controlling M spacing of satellites in same SSO orbit plane deg

∆V Change in velocity ms−1

∆VR Total reconfiguration ∆V ms−1

∆Vdeorbit De-orbit ∆V ms−1

∆Vdep Deployment ∆V ms−1

∆Vdrag ∆V required for aerodynamic drag makeup ms−1

∆VLV ∆V required to correct for launch vehicle injection errors ms−1

∆Vrecon Reconfiguration ∆V ms−1

∆Vsat Remaining satellite propulsive capability ms−1

∆VSK ∆V required for other stationkeeping maneuvers ms−1

∆VT Total satellite ∆V ms−1

δ NIIRS scaling factor −
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ε Non-dominated front resolution parameter varied

η Boresight angle deg

ηT Thruster efficiency −
ηmax Boresight angle at zero ground elevation angle deg

ηpack Launch vehicle volumetric packing efficiency −
Λ RGT ground track angle deg

λ Earth central angle deg

λ Longitude deg

λmax Earth central angle at zero ground elevation angle deg

λs Optical sensing wavelength m

ν True anomaly deg

Ω Right ascension of the ascending node deg

ω Argument of perigee deg

Φ Constellation orbital state −
ρa Atmospheric density kg m−3

ρsc Stowed spacecraft density kg m−3

τ Time since last observation hr

θ Mean time deg

P̃ Median performance −
ε Satellite ground elevation angle deg

εmin Minimum satellite ground elevation angle constraint deg

ϕ Latitude deg

� Vernal equinox −
ξΩ Parameter controlling Ω extent of ‘quasi’-asymmetric constellation −
ξp Propulsion system dry mass fraction −
ξR Fraction of satellites available for reconfiguration −
ξpay Payload RE cost as a fraction of payload NRE cost −
ξsc Satellite RE cost as a fraction of satellite NRE cost −
a Semi-major axis km

b Learning curve factor kg

BC Ballistic coefficient kg m−2

CFPA Focal plane array cost $M FY2010

CL Total launch cost $M FY2010

CNRE Total constellation non-recurring cost $M FY2010

COTA Optical telescope assembly cost $M FY2010

Cpay Payload cost $M FY2010
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CRE Total constellation recurring cost $M FY2010

Csc,NRE Spacecraft non-recurring cost $M FY2010

Csc,TFU Spacecraft theoretical first unit cost $M FY2010

D Aperture diameter m

e Eccentricity −
F Constellation phasing parameter −
F Thrust N

GDM Decision model gain −
h Altitude km

i Inclination deg

ISP Specific impulse s

L Satellite to ground slant range km

Lmax Satellite to ground slant range at zero ground elevation angle km

M Mean anomaly deg

Md,sc Spacecraft dry mass without propulsion system kg

Md Spacecraft wet mass kg

MLV Launch vehicle payload capacity by mass kg

Mprop Propellant mass kg

MP Propulsion system wet mass kg

Mw Spacecraft wet mass kg

n Mean motion rad s−1

Nd Number of days #

No Number of orbits #

Np Number of orbit planes #

NT Total number of satellites #

Ncalls Number of calls that the master makes to slave processors #

Ncluster Number of slave processors in computational cluster #

Npop Evolutionary algorithm population size −
Nsp Number of satellites per orbit plane #

P Orbital period s

P Power W

p Perifocal distance km

p Temporal utility curve shape parameter −
PE Performance for a single event response −
Pmax Ideal performance −
PU Pattern Unit deg
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T Desired temporal resolution hr

t Time s

tR Total reconfiguration time s

tfp Time to first pass s

Tlife System lifetime years

U Utility −
V Velocity ms−1

VLV Launch vehicle payload capacity by volume m3

X Desired spatial resolution m

X Satellite orbital state −
x Ground sample distance m

Acronyms

DARPA Defense Advanced Research Projects Agency

ECEF Earth centered Earth fixed

FPA Focal plane array

GEO Geosynchronous Earth orbit

GIQE General Image Quality Equation

GMST Greenwich mean sidereal time

GMT Greenwich mean time

GOM Global operational mode

GPS Global Positioning System

GSD Ground sample distance

LEO Low Earth orbit

LMT Local mean time

LV Launch vehicle

MEO Medium Earth orbit

MOEA Multi-objective evolutionary algorithms

NICM NASA Instrument Cost Model

NIIRS National Imagery Interpretability Rating Scale

NRE Non-Recurring engineering

ORS Operationally Responsive Space

OTA Optical Telescope Assembly

RCO Repeat coverage orbit

RE Recurring engineering

RGT Repeating ground track

ROM Regional operational mode
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SAR Synthetic aperture radar

SSCM Small Satellite Cost Model

SSO Sun-synchronous orbit

STK Systems Tool Kit

UAV Unmanned aerial vehicle

USCM Unmanned Spacecraft Cost Model

V oR Value of reconfigurability
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Chapter 1

Introduction

New thinking is needed to design, develop and implement cost-effective persistent surveil-

lance satellite constellations. Rather than finding the ‘best’ static design that meets fixed

requirements based on projected future needs, a flexible approach gives operators the abil-

ity to actively adapt the system to actual future needs. This thesis develops a flexible,

reconfigurable constellation strategy that utilizes maneuverable satellites to give operators

the option to actively change the constellation pattern to focus system resources in times

of need. The ability to change the constellation pattern increases satellite utilization and

results in dramatically improved system cost-effectiveness, even after accounting for the cost

of increased satellite propulsive capability. In this thesis, these new reconfigurable constel-

lations are compared to traditional static constellations using a comprehensive constellation

design and optimization framework that avoids many of the assumptions and simplifications

made in past research. The framework utilizes detailed simulation models, Monte Carlo

sampling, advanced multi-objective optimization techniques, and parallel computing to find

the set of efficient designs that simultaneously maximizes performance while minimizing cost

and incorporating uncertainty in the future operating context. Results obtained using this

framework show that for the same level of performance, reconfigurable designs cost 20 to

70% less than similarly performing traditional static designs, and asymmetric constellation

patterns significantly outperform traditional symmetric patterns for the scenarios studied.

The reconfigurable constellation approach is enabled by several factors. First, recent ad-

vances in small satellite propulsive technology significantly lowers the cost of implementing
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maneuverable satellites. Second, increasing satellite autonomy and automated satellite oper-

ations enables frequent satellite reconfiguration maneuvers with minimal added operational

overhead. Third, advanced computational capability allows for improved design and opti-

mization of satellite constellations that prevents arbitrary restriction of the design space and

allows for the discovery of more cost-effective designs. And, finally, a new constellation cov-

erage metric is developed in this thesis that directly measures persistence and is not skewed

by statistical outliers, avoiding the situation where outliers drive the overall optimization

process.

The remainder of this chapter is organized into six sections. Section 1.1 motivates the

need for space-based persistent surveillance. Section 1.2 then presents an overview of past

literature focused on satellite constellation design and optimization, as well as satellite con-

stellation reconfiguration. Section 1.3 introduces how flexibility is engineered into a system

and how to quantify the economic benefit of incorporating flexibility. Section 1.4 lists specific

gaps in current literature that are addressed in this thesis. Section 1.5 formally outlines the

research objectives and expected contributions of this thesis. Section 1.6 gives an overview

of the specific optical imaging scenario investigated in this thesis and the chapter concludes

by providing an outline for the rest of the thesis in Section 1.7.

1.1 The Need for Space-Based Persistent Surveillance

Access to timely persistent surveillance data products enables decision makers to effectively

respond to crises, either natural or man-made, and the increasing risk posed by natural

disasters increases the need for this data. World-wide population growth has increased

population exposure and, as a result, 2013 was the sixth costliest year since 2000 (USD192

Billion) and the seventh costliest year since 1950 in terms of total global economic losses [9].

Persistent surveillance data is used to improve situational awareness, provide initial damage

assessment, improve resource allocation and logistics, and allow for response planning [164].

Ground-based systems provide local high resolution imagery, but damage to local in-

frastructure can significantly reduce the mobility and effectiveness of these systems dur-

ing disaster response. Air-based systems, including aircraft and unmanned aerial vehicles

24



(UAVs), provide local and regional high resolution imagery, but cannot cover extended areas

without frequent refueling and are also unable to operate in denied environments. Addition-

ally, airborne systems may suffer from poor responsiveness unless they happen to be based

close to the disaster event. They also need local airfields and air traffic control capability,

which may be unavailable due to damage to local infrastructure caused by the disaster event.

The Defense Advanced Research Projects Agency (DARPA) Vulture Program is focused on

developing a solution to the air-basing problem: ultra-long duration airborne surveillance

platforms that could remain on-station for years and provide re-taskable pseudo-satellite

coverage [146]. While this concept relieves the refueling and airport needs, airborne systems

are still are unable to provide coverage in areas without air traffic control and significant

reliability problems arise when trying to operate ultra-long endurance vehicles [7].

Space-based systems provide persistent surveillance capability without many of the lim-

itations encountered with the other approaches. These systems can be broken down into

three broad architectures: rapid launch, ad-hoc, and dedicated. In the rapid launch archi-

tecture, fully functional, ready for launch satellites are stored on the ground, to facilitate

quick response to an urgent space capability need [178]. The Air Force’s Operationally Re-

sponsive Space (ORS) program is developing technologies and systems to support emerging

military needs in relevant time frames. Part of the program is attempting to enable the rapid

deployment of disposable space assets with response times on the order of a two week testing

and launch time line [178] or, more aggressively, a 24hr launch vehicle integration and 24hr

on-orbit deployment time [110]. In another effort, the DARPA SEEME program is focusing

on developing low-cost, disposable satellites that could be rapidly deployed to provide 60 to

90 days of enhanced regional coverage to directly support ground operations when needed

[18]. The rapid launch architecture suffers from two flaws: 1. responsiveness is limited to a

few weeks given current and near-term satellite integration and launch vehicle technology,

and limited launch facility availability; 2. and once satellites are launched to an orbit that

provides good coverage to the current disaster event, the satellites will likely provide poor

coverage for another disaster event located in another region, essentially making these satel-

lites one-time-use-only. Despite these flaws, the rapid launch architecture is analyzed in more

detail in Section 6.6. In the ad-hoc constellation architecture, satellites, owned and operated
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by individual external stakeholders, volunteer persistent surveillance data products to sup-

port disaster response. One example of this approach is the International Charter for Space

and Major Disasters1 which is an organization that coordinates voluntary contributions of

remote sensing products from government and commercial entities for disaster response. The

downside to this approach is that cooperation is not guaranteed, and coverage will likely be

bunched together at either mid-morning or mid-afternoon local time, since existing Earth

observation satellites typically use sun-synchronous orbits.

Dedicated in-space constellations, comprised of a deployed constellation of satellites tai-

lored to provide responsive persistent surveillance, exhibit increased responsiveness when

compared to rapidly launched assets and increased persistence when compared with ad-hoc

constellations. However, traditional earth observation satellite constellations, capable of

providing persistent surveillance with short revisit times, have proven to be too costly to

implement – a trend that will only worsen as budgetary constraints force increased scrutiny

on future expenditures. Inefficient satellite utilization is the fundamental cost driver of these

systems and is caused by a variety of contributing factors including: static constellation

patterns that are unable to effectively respond to uncertain future needs; overly conserva-

tive designs due to performance metrics (maximum revisit time, average revisit time) that

are skewed by worst case statistical outliers; and uncertainty in future regional surveillance

needs that lead to broad partial global coverage requirements. As proposed in this the-

sis, reconfigurable satellite constellations are an alternative strategy to significantly improve

cost-effectiveness, making effective space-based surveillance affordable in the future.

1.2 History of Constellation Design and Optimization

The fundamental tradeoff for space-based remote sensing systems is the balance between

orbital altitude and payload/bus capability. Higher altitudes enable larger satellite ground

footprints and lead to smaller constellation sizes for fixed coverage requirements. However, in

order to achieve the same ground sensing performance as the altitude increases, the payload

capability must also increase. For optical payloads, aperture diameter must increase with

1http://www.disasterscharter.org/web/charter/home, Accessed 5/13/2014
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increasing altitude to produce the same spatial resolution on the ground, which leads to

higher satellite cost. For example, a satellite at 860km has twice the ground footprint

diameter as a satellite at 400km; however, to maintain the same ground sensing performance,

the aperture would need to increase by a factor of 2.15. This basic tension between many

small, cheap satellites at lower altitudes and fewer larger, and more expensive satellites at

higher altitudes is central to the satellite constellation optimization problem.

Further complicating analysis, satellite coverage patterns are constrained by orbital dy-

namics. Besides altitude and assuming circular orbits, the designer also has control over the

right ascension of the ascending node and the inclination; two factors that together spec-

ify the satellite’s orbital plane. If the target location is at the poles or on the equator, an

orbit can be selected so that the satellite provides a period of coverage on each orbit. For

any other case, and, if the target location is known a priori, an orbit can be selected to

synchronize orbital precession with the Earth’s rotation rate. This ensures the satellite will

follow the same ground track with, at best, a daily revisit period. However, these repeating

ground track (RGT) orbits typically do not provide coverage for ground locations far from

the ground track, and cannot be used if the target location is either unknown or uncertain.

In these cases, the satellite orbit is limited to be non-synchronous to provide wide-area zonal

coverage. This limitation reduces the coverage provided by a single satellite for any given

ground location, and therefore the satellite is used inefficiently. Later in this thesis I will

show that reconfigurable constellations combine the benefits of repeating ground track or-

bits with the ability to respond to uncertain target locations by allowing system operators

to move this focused coverage area.

Inclination determines the range of latitudes covered by a constellation. Generally, cov-

erage is best around the ground latitude corresponding to the inclination of the constellation

and diminishes to a minimum at the equator. No coverage is provided to ground loca-

tions with latitudes greater than the inclination and outside of the ground footprint swath.

Therefore, the smaller the defined target region, the more likely that the constellation can

be designed to focus coverage and maximize individual satellite coverage efficiency. The

Repeat Coverage Orbit (RCO) concept introduced by Wertz [218] is an example of a method

where satellite coverage is tailored for a small geographical region known prior to launch.
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In an RCO, the satellite is launched into an orbit with the inclination a little higher than

the latitude of the region to be covered, allowing a single satellite to have several periods of

coverage per day. RCO orbits are considered as part of a rapid launch architecture later in

this thesis (Section 6.6).

In a constellation containing many satellites, designers can also tailor the relative phasing

between satellites to produce beneficial ground coverage patterns. The ensemble phasing and

relative placement between satellites in a constellation is called the constellation pattern.

Each satellite’s position is described fully by six orbital parameters creating combinatorial

design variable growth and a rapidly intractable design space. Even when both the altitudes

and inclinations are common throughout the constellation, there are still 2NT variables

specifying the right ascension and mean anomaly, where NT is the number of satellites.

To overcome this computational problem, traditional constellation design methods (e.g.the

Walker and streets-of-coverage patterns described in more detail in the next section) have

utilized symmetry to reduce the number of design variables. Past research has shown that

these symmetric and near-symmetric constellation patterns provide near optimal continuous

global or zonal coverage [207, 126, 201, 212, 213, 139, 140]; but, asymmetric constellations

provide better discontinuous coverage [82, 120]. Continuous coverage refers to providing

uninterrupted coverage to the ground point of interest, while discontinuous coverage refers

to providing intermittent coverage.

Discontinuous coverage performance is traditionally measured by either percent cover-

age or revisit time (maximum or average). Percent coverage is the percentage of time that

the constellation provides coverage of the target. Maximum and average revisit time corre-

spond to the maximum and average time between coverage periods, respectively. Williams

et al. [224, 225] has shown these two figures of merit to be in tension, and improving average

revisit time usually degrades maximum revisit time. These traditional metrics tend to mask

the underlying coverage statistics [219] and do not provide a good way of assessing persis-

tence. A better metric would measure how close coverage matches the desired temporal

resolution, and would not be skewed by outliers. A new persistence metric, developed in

this thesis, assigns coverage utility based on time since the last observation within a spec-

ified daily time window. This metric is easily adapted to various mission objectives and
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allows inclusion of spatial resolution effects, illumination constraints for optical imagery, and

observation discounting as the time after the event increases.

The remainder of this section provides a comprehensive history of constellation design

and optimization literature relevant to this thesis work. Literature dedicated to constellation

design and optimization has a long history. The earliest research on the subject was focused

on determining the minimum amount of satellites needed to provide either continuous global

or continuous zonal coverage. Later research explored constellation designs that provide

global, zonal, and regional discontinuous coverage. Only within the last decade have re-

searchers looked at satellite constellation reconfiguration or the coupled satellite design and

constellation pattern optimization problem. This thesis work investigates the concurrent

optimization of satellite design and constellation pattern design for discontinuous regional

coverage with both symmetric and asymmetric patterns, and, therefore, builds on much of

this previous work. Sections 1.2.1, 1.2.2, and 1.2.3 provide an overview of previous work

focused on continuous coverage, discontinuous coverage, and regional coverage, respectively.

Section 1.2.5 touches on the limited prior work on the coupled satellite design and constella-

tion pattern optimization and Section 1.2.6 details previous work on satellite reconfiguration.

1.2.1 Continuous Global or Zonal Coverage

Early work [207, 126, 201] developed several symmetric constellation patterns, which reduced

the number of design variables in the problem and made constellation design and analysis

computationally tractable. Vargo [207] found the minimum number of satellites necessary to

provide continuous global coverage for two types of patterns: a constellation with multiple

planes at the same inclination spread out in right ascension (L− type); and a constellation

with multiple planes with the same right ascension and spread out in inclination (λ− type).
Vargo also found that both offered similar numbers of satellites for a given orbital altitude,

but mentioned that launch considerations favored L− type constellations. Vargo also found

that L − type constellations provided excess coverage at higher latitudes while λ − type

provided excess coverage at lower latitudes. Luders [126] found the minimum number of

satellites to provide single continuous global and zonal coverage using symmetric equatorial,

polar, and inclined constellations. The polar constellations that he developed were the genesis
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of the streets-of-coverage method. Later research by Ullock et al. [201], built on Luders’

polar constellations work, and further reduced the minimum number of satellites needed for

continuous zonal coverage above a certain latitude. He achieved this by introducing a slightly

asymmetric polar constellation that featured smaller spacing between the counter-rotating

adjacent planes than the spacing between planes moving in the same direction.

Pursuing the development of symmetric inclined constellations, Walker [212, 213, 214]

developed the ‘star pattern’ and ‘delta pattern’ representations. Both patterns feature satel-

lites in circular orbits with common inclination and semi-major axis. The star pattern

features satellites in orbits with all ascending nodes in one hemisphere, while the delta pat-

tern features satellites spread with equal spacing in Ω and M . Following convention, for

the remainder of this thesis, the delta pattern is referred to as the Walker pattern. Walker

constellations rely on symmetric geometry and circular orbits to describe a constellation

in only three variables corresponding to the number of planes, the number of satellites in

each plane, and an inter-plane phasing parameter. The constellation geometry is similar to

the L − type constellations developed earlier by Vargo [207]. Walker constellations provide

partial global coverage by covering a range of latitudes roughly equal to plus and minus its

inclination, and the pattern is an efficient configuration for wide area continuous coverage. A

contemporary of Walker, Mozhaev [139, 140, 141] proposed similar symmetric constellations,

also described by three variables (not the same as with Walker patterns), that he developed

using a mathematical derivation based on symmetry groups. Ballard [17] extended and gen-

eralized Walker constellations into what he termed Rosette constellations and confirmed the

results provided by both Walker and Mozhaev.

The literature presented thus far has introduced two constellation patterns used for pro-

viding continuous global coverage: the Walker Delta Pattern based on symmetric inclined

orbits and the streets-of-coverage pattern based on polar (or near polar) orbits. Subsequent

literature focused on generating efficient designs using these patterns, determining condi-

tions when each pattern performed best, and also compared their performance with several

asymmetric and eccentric orbit design approaches.

Several authors have investigated efficient Walker designs. Lang [117, 118] used sin-

gle objective full-factorial optimization to optimize Walker-type constellations of up to 100
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satellites for single through four-fold continuous global coverage. The term n-fold coverage

means that all locations within the area of interest are in view of n satellites simultaneously.

Lang found the Walker pattern parameters, including number of planes, number of satellites

per plane and phasing parameter, that gave the smallest satellite footprint for different con-

stellation sizes (number of satellites). Smaller satellite ground footprints translate to lower

altitudes and smaller, less costly optics for fixed ground spatial resolution. Other litera-

ture developed analytical techniques to guide design and reduce the computational burden

caused by full-factorial optimization. Hanson [96] developed analytic methods to find effi-

cient Walker patterns for zonal coverage, and, later, Turner [199] developed axiomatic rules

to guide the selection of Walker phasing parameters for both zonal and regional coverage.

Other authors investigated efficient streets-of-coverage designs, and much research has

focused on the phasing between adjacent orbit planes. Beste [20] found that streets-of-

coverage constellations with non-uniform plane phasing required 10-20% fewer satellites than

the uniform spacing designs found earlier by Luders [126]. Rider [167] built on this work

and developed analytical tools to determine the optimal inter-plane phasing for streets-of-

coverage constellations for both global coverage and zonal coverage above a certain latitude.

He found that designs with optimized phasing were more efficient than designs with arbitrary

phasing, however, the improvement rapidly diminished with increasingly redundant coverage.

Adams [4] compared streets-of-coverage patterns with both optimal and arbitrary phasing

using higher precision analytical methods than earlier research. The optimization procedure

used an iterative approach to minimize the ground footprint for different constellation sizes.

The results showed that previous techniques by Beste [20] and Rider [167] overestimated

the number of satellites required for n-fold coverage. Ulybyshev [202] showed that near

polar constellations outperform strictly polar constellations for double continuous global

coverage and that these orbits allow for a range of inclinations to be used without significantly

changing orbital altitude.

Other literature focused on determining when Walker or streets-of-coverage patterns yield

more efficient designs. Luders [126] found that polar constellations are preferred over inclined

constellations for complete global coverage. However, he found that inclined constellations

performed better than polar constellations when the problem was restricted to specific zones
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bounded by latitude. This is caused by better coverage provided for latitudes close to the

inclination. Later research indicated that Walker patterns are more efficient for small constel-

lation sizes while streets-of-coverage patterns are more efficient for large constellation sizes.

Ballard [17] showed that Walker constellations outperform (provide a smaller constellation

size for continuous coverage) the best streets-of-coverage constellations reported earlier by

Walker [212] and Beste [20] for configurations up to 15 satellites with the benefit diminish-

ing with increasing constellation size. Lang [118] later showed that for single and multi-fold

global coverage with less than 20 satellites, symmetric inclined Walker type constellations

outperform the asymmetric streets-of-coverage based polar constellations.

Both the Walker and streets-of-coverage patterns mandate that all the satellites are

in circular orbits with common altitude and inclination. These simplifications arbitrarily

restrict the design space and potentially lead to sub-optimal solutions. This observation

led some researchers to investigate more general approaches. Palmerini found that eccentric

streets-of-coverage constellations could provide longer coverage periods for certain ground

locations [153, 154]. Ely [64, 65] also investigated eccentric streets-of-coverage constellations

for zonal coverage through the use of a single objective genetic algorithm. The approach

was to maintaining continuous zonal coverage and minimize both the constellation altitude

and total number of satellites. The authors found that for either low or high numbers

of satellites, the circular approach was best, and, for moderate numbers of satellites the

elliptical approach was more efficient. A different approach is to allow satellites in the

constellation to have different inclinations and/or different orbital altitudes. In this thesis,

these types of constellations are referred to as layered constellations. Beste [20] compared

polar constellation patterns to a layered approach using three orthogonal planes: two polar

and one equatorial. He found the polar constellation pattern to be superior for the cases

studied. Yuan [60] proposed using a layered constellation approach comprised of a streets-

of-coverage constellation and a Walker constellation in order to provide global coverage with

a better balance of coverage between polar and mid-latitude regions. The authors showed

that the approach was less efficient (larger constellation sizes) than a strictly streets-of-

coverage constellation and more efficient (smaller constellation sizes) than a strictly inclined

constellation. Asvial et al. [11, 12, 13, 14] found that layered communication constellations
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with satellites in LEO, MEO and GEO provided better global coverage than single layer

constellations.

Recently, the Flower Constellation framework was introduced as a new way to system-

atically describe and generate constellations patterns, and the framework is more general

than traditional Walker and streets-of-coverage methods [135, 222]. Flower constellations

contain satellites that have identical semi-major axis, inclination and eccentricity and the

semi-major axis can be set so that they are compatible with a rotating axis (e.g.Earth’s

rotation to set up repeating ground track orbits). For constellations that are compatible

with the Earth-centered Earth-fixed coordinate frame (ECEF), these orbits are then repeat-

ing ground tracks; however, the constellations could also be made compatible with other

rotating frames [132]. Initial comparisons showed that flower constellation designs can out-

perform Walker constellation designs [22]. Further work on flower constellations extended

the analytic techniques available [134, 223, 30] and simplified the theory by creating the 2D

lattice theory for the special case of uniform symmetric constellation designs [16]. These

uniform and symmetric constellations were termed harmonic flower constellations and could

be represented by three integer variables plus altitude, eccentricity, and inclination for any

number of satellites. The theory was also generalized to be independent of any rotating

frame. Harmonic flower constellations provide a more general framework for optimization

and can also fully describe Walker constellations. Further research extended the 2D theory to

form 3D lattice theory, which allows for elliptical and J2 compatible orbits [42]. Applications

investigated with flower constellations include: navigation systems [197, 31], interferometry

[197], Earth observation [1, 22, 2, 3], telecommunications [133], space surveillance [131], and

planetary exploration [132].

1.2.2 Discontinuous Global or Zonal Coverage

Later literature examined the design and optimization of constellations that provide dis-

continuous or intermittent coverage. Historically, researchers have optimized discontinuous

coverage constellations by finding pattern designs that maximize the percentage of time that

ground locations are covered, or minimize either the average or maximum gap time between

coverage periods. Most early literature on discontinuous coverage constellations was focused
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on finding constellation designs that minimized the maximum revisit time. Lang [121] cre-

ated a computer-based tool to minimize the maximum revisit time for a set of targets spread

in latitude using symmetric constellations. The approach used a full factorial search of all

combinations of planes and number of satellites per plane to minimize a cost function based

on the deviation of desired and computed maximum revisit time. Hayes [99] investigated

extending the analysis to include asymmetric constellation designs. She found that con-

stellations designed to minimize the maximum revisit time were generally symmetric in the

rotating Earth frame, but not in an inertial frame. She also found that constellations with

good maximum revisit time performance for ground targets at one latitude could perform

poorly for targets in another latitude. Other authors studied using repeating ground track or-

bits to provide efficient discontinuous coverage. Hopkins [100] studied small constellations of

satellites in repeat ground-track orbits to determine the best inclination and spacing between

ground-tracks to produce desired maximum revisit times. Hanson [94, 95] developed proce-

dures aimed at finding constellations that would meet coverage requirements with minimum

inclination (aimed at reducing launch cost), minimum number of satellites, and a minimum

maximum revisit time. The results showed that repeat-ground-track orbits performed bet-

ter than non-repeating orbits and asymmetric constellation designs generally outperformed

Walker constellations. Similarly, Ma [127] used computer-based optimization to find efficient

designs that met revisit time requirements, while minimizing the total number of satellites

and using the lowest inclination. These authors recognized that constellation design is inher-

ently multi-objective in nature and not just a matter of minimizing the number of satellites

in a constellation. However, the emphasis on minimizing inclination to reduce launch cost

is misdirected since the real objective is to reduce overall cost, and higher inclinations may

lead to fewer satellites.

Other research focused on finding when asymmetric constellations outperform Walker

constellations for discontinuous coverage. George [82] used single objective genetic algo-

rithms to show that Walker type constellations provide the best solutions when the max-

imum revisit time requirement is less than around 0.8 times the orbital period; however,

for longer desired revisit times, the asymmetric designs can significantly outperform Walker

constellations. Similarly, Lang [120] used a brute force enumeration approach on the problem
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and concluded that asymmetric constellations provide more efficient solutions than Walker

constellations when the desired revisit times approach the orbital period. Pegher [157] also

used a single objective generic algorithm to compare the performance of Walker constella-

tions to asymmetric constellations in terms of average revisit time, maximum revisit time,

and percent coverage. The authors found that the asymmetric constellations either outper-

formed or matched the performance of Walker constellations in all cases tested. They also

found that the performance difference between symmetric and asymmetric constellations in-

creased as the number of satellites in the constellation decreased. Crossley et al. [38] used

both simulated annealing and genetic algorithms to minimize the maximum revisit time for

three and five satellite constellations.

While most early literature focused on minimizing the maximum revisit time, later litera-

ture looked at minimizing both maximum and average revisit time. Williams et al. [224, 225]

used a multi-objective genetic algorithm, based on two-branch tournament selection [37],

to investigate the design tradeoff between minimizing the maximum revisit time and mini-

mizing the average revisit time. Surprisingly, they found that the two objectives are often

competing. Their major findings were: as the number of satellites increased, the average and

maximum revisit time tradeoff diminished; retrograde constellations generally outperformed

prograde constellations; and asymmetric constellations generally outperformed symmetric

constellations. Lang [119] also studied the maximum and average revisit time tradeoff with

genetic algorithms. He found that asymmetric constellations performed better for three

and four satellite constellations and Walker constellations performed better with five and

six satellite constellations. Lang also found that retrograde orbits provided lower average

revisit times, while prograde orbits provided the smallest maximum revisit time. Other

research looked at the performance of layered constellations for providing discontinuous cov-

erage. Jackson [102] showed that meshed-comb constellations, comprised of both prograde

and retrograde satellites, generally exhibit smaller maximum revisit times and smaller, more

consistent average revisit times. These references show that constellation coverage is inher-

ently multi-objective with many possible objectives (GSD, average, maximum revisit time),

and that unconventional patterns such as retrograde and layered patterns can perform better

when considering multiple objectives.

35



1.2.3 Regional Coverage

Limited research has addressed the problem of optimizing local coverage, and existing lit-

erature has focused on providing coverage for a specific region or a specific set of target

locations. Abdelkhalik [1] used a genetic algorithm and a gradient based method to find

efficient natural orbits to best cover a set of multiple ground locations, known a priori. The

author used two objective functions: one that attempted to maximize the resolution for all

targets; and, one that maximized the overall percent coverage for all targets. Later research

by Vtipil et al. [210] built on this work by considering eccentric orbits and adding altitude to

the design vector. The authors found that eccentric orbits provided the most efficient solu-

tions. Others have looked at finding efficient orbital patterns to provide coverage for a specific

region. Frayssinhes [80] used genetic algorithms to find asymmetric constellations that out-

performed Walker constellations for sparse, regional coverage over the continental United

States. The analysis used a pattern that was symmetric in right ascension of the ascending

node, but varied the mean anomaly during optimization. Ferringer et al. [71] furthered this

work by investigating the tradeoff between minimizing both average and maximum revisit

time for a three satellite constellation providing coverage in the continental United States,

using an asymmetric pattern. Investigating a different tradeoff, Pontani [160] used repeating

ground track orbits to maximize the percent coverage and minimize the maximum gap time

for a coverage to a single target latitude. The authors developed an analytical approach

to determine efficient designs that reduced computational complexity compared to heuristic

optimization algorithms. In a similar effort, Ulybyshev [203, 204] presented a new geomet-

ric method based on visibility regions to design symmetric constellations for continuous or

partial coverage.

1.2.4 Current and Historic Satellite Constellations

This section provides an overview of the pattern design for current and past satellite con-

stellations. Most constellations launched to date provide wide area communications and

navigation services. These systems are fundamentally different that the optical Earth ob-

servations systems investigated in this thesis because they can use high altitude orbits to
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increase each satellite’s footprint without large increases in payload capability.

Communications and navigation constellations generally provide continuous multi-fold

zonal coverage. Several systems utilize symmetric constellations. The IRIDIUM communi-

cation constellation, fully deployed in 1998, consists of 66 active satellites in 6 orbital planes

(h = 780km, i = 86◦) and use a circular polar pattern, proposed by Adams et al. , where

the orbital planes have their points of intersection near the poles and their greatest distance

above the equator [4, 105]. The European Union’s Galileo global navigation satellite system

will use a Walker 27/3/1 pattern (h = 23222km, i = 56◦) [172, 27]. Russia’s GLONASS

global navigation satellite system uses a Walker 24/8/1 pattern (h = 19100km, i = 64.8◦),

and has 31 total operational satellites including spares as of May 2012 [27]. The Globalstar

communications constellation utilizes a Walker 48/8/1 pattern (h = 1400km, i = 52◦) [59].

Several other constellations use mixed patterns consisting of satellites at different inclina-

tion and altitude. China’s Compass Satellite Navigation Experimental System (BeiDou-1)

started out providing regional coverage with 4 GEO, 5 inclined GEO at i = 55◦, and 2

MEO satellites launched as of 2012 [231]. The BeiDou-2 constellation (named the Compass

Navigation Satellite System), currently in deployment, will consist of 5 inclined GEO and 30

MEO satellites at a = 21500km and i = 55◦ to provide global coverage [27]. This approach

allowed the system to initially provide regional coverage of Asia and then transition to fully

global coverage. The Orbcomm communications constellation consists of two satellites at

i = 70◦ and h = 741km, three planes of eight satellites, spread out in Ω by 135◦, at i = 45◦

and h = 815km, and a fourth plane of two satellites at i = 108◦ and h = 830km [128, 228].

The U.S. Global Positioning System (GPS) has a unique history when it comes to pattern

design. The system was initially designed using a Walker 24/3/4 pattern at h ≈ 20200km

and i = 55◦, and featured repeating ground tracks. Due to budget concerns, the system

was later transitioned during testing of Block I satellites to an 18 satellite Walker 18/6/2

pattern. Further research conducted at The Aerospace Corporation found that the symmetry

of the constellation caused a loss of precision in the case of failed satellites. When increased

funding allowed for an increase in satellites to 21, Aerospace proposed a 21 satellite, six plane

asymmetric constellation, also at i = 55◦. This asymmetric pattern significantly improved

performance in the case of a lost satellite. Through 2002, Aerospace continued optimization
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of the GPS pattern and found a further optimal 24 satellite asymmetric pattern and a 27

satellite asymmetric pattern [130]. This example shows one instance in which optimized

asymmetric patterns can provide better coverage for no additional space segment cost.

There are few examples of high resolution Earth observation constellations. The Disaster

Monitoring Constellation consists of 4-8 satellites in a loose constellation pattern. Each

satellites resides in a sun-synchronous orbit with a 10am equatorial crossing time [39], and

the system as a whole provides global daily revisit. The RapidEye constellation provides

daily revisit time and consists of five satellites in a single sun-synchronous orbital plane

with an 11am equatorial crossing time and h = 620km [200]. The Pléiades constellation

consists of two satellites (Pléiades-1 & 2) in a single 695km sun-synchronous orbit plane

with a 10:30am descending equatorial crossing time providing daily revisit with a minimum

ground elevation angle of 45◦ and 0.7m nadir GSD [85].

1.2.5 Coupled Constellation Geometry and Satellite Optimization

While there is plentiful literature dedicated to separate constellation coverage optimization

and satellite design optimization [136, 137, 138, 166], little prior work has touched on the

coupled optimization of constellation design and satellite design. Budianto et al. [25, 23, 24]

used collaborative optimization to find the minimum cost Walker constellation design that

would provide single-fold global coverage with a constraint on minimum resolution. The col-

laborative optimization model incorporated three subsystem optimizations: pattern design,

satellite design, and launch. This research showed that sophisticated multidisciplinary opti-

mization techniques can be used to find globally efficient solutions to complex constellation

design problems; however, the constellation geometry was limited to Walker patterns. Jilla

[103] also investigated the multidisciplinary, multi-objective optimization of satellite constel-

lations. He used multi-objective simulated annealing optimization to find efficient designs for

three distributed satellite systems: a distributed interferometry mission, a space-based radar

constellation, and a commercial broadband communications satellite constellation. While the

analysis successfully coupled the satellite and constellation optimization, the constellation

design space was also limited to symmetric streets-of-coverage and Walker patterns. Re-

cently, Krueger et al. [114] utilized multidisciplinary system design optimization techniques
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to find efficient designs for a LEO-based small satellite constellation. The coupled satellite

and orbit model simulated the interactions between the satellites’s subsystems, and Sys-

tems Tool Kit (STK) was used to propagate orbits and generate coverage statistics. The

authors demonstrated coupled analysis, but the orbital tradespace was limited to symmetric

patterns.

1.2.6 Constellation Reconfiguration

Recently, the topic of constellation reconfiguration has gained significant attention. Ferguson

[70] defines a “reconfigurable system” as “one in which the configurations can be changed

repeatedly and reversibly.” Siddiqi [175] added that reconfigurable systems “achieve a de-

sired outcome within acceptable reconfiguration time and cost.” For satellite constellations,

reconfiguration time is usually dictated by astrodynamics and phasing, while the cost is a

combination of lost revenue during reconfiguration maneuvers and expended consumables

(e.g. propellant). Both time and cost form a reconfiguration efficiency tradeoff [75]. Histor-

ically, constellation reconfiguration literature has focused on three topics: recovering from

satellite failures; allowing for staged deployment of constellations over time; and, changing

coverage characteristics.

Early literature studied the problem of optimizing reconfiguration between two pre-

defined orbital patterns. Ahn [8] studied how to optimally reconfigure satellites from a

six satellite formation to a five satellite formation after a satellite failure. The authors de-

veloped tools to determine the optimal assignment of satellites to open slots in order to

minimize total propellant use and to distribute propellant use evenly across all satellites.

Scialom [174] studied the reconfiguration of a constellation to enable staged deployment.

The goal was to develop a framework to minimize both constellation cost and transfer time,

when a small initial constellation transformed into a larger one, with both patterns known

a priori. He identified two main steps in the framework: 1. assign all of the current assets

to new orbital slots; and then 2. plan the launches and transfers of the new satellites to the

unfilled slots. The reconfiguration framework was then expanded in later research [49, 32]

to investigate the value of the staged deployment scenario. The authors found that, from an

economic perspective, the flexible option of staged deployment allows the system to perform
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much better over a range of unexpected future operating conditions. Siddiqi et al. [176, 177]

separately studied the reconfiguration of constellation geometry and the reconfiguration of

satellite hardware to support staged deployment of a communications constellation. The

objective of the constellation reconfiguration was to minimize the cost (a combination of

additional satellites needed and additional propellant required for reconfiguration), while

meeting a performance constraint. De Weck et al. used part of the framework developed by

Scialom [174] to study the staged deployment of a communications constellation [51]. The

authors used the auction algorithm to optimally assign satellites to maneuver to open slots

in the new constellation, so that the overall propellant usage is minimized. The authors men-

tioned that settling for a suboptimal constellation design, either initial or final, might greatly

reduce the cost and complexity of reconfiguration. Therefore, in order to find best global

designs, the reconfiguration strategy should be co-optimized with the constellation pattern

design. De Weck et al. also stated that possible extensions of their work were to minimize

the variance of ∆V capacity left for the satellites at the end of reconfiguration, and to look

at using space tugs or fuel depots to allow the constellation to repeatedly reconfigure.

More recent literature focuses on reconfiguring a constellation to provide better cover-

age. In this case, the reconfiguration maneuver and the final orbits are optimized together.

Lamassoure [116] investigated adding the flexible options of maneuverable satellites and pro-

pellant replenishment to LEO radar constellations. This would allow the constellation to

actively focus coverage on specific, but uncertain, ground locations. Kim et al. [107, 106]

used genetic algorithms to study the problem of maneuvering existing, on-orbit satellites to

minimize the average revisit time for a specific ground location for 30 days, while satisfying

stringent ∆V constraints. The authors found that the average revisit time over the ground

location could be cut in half for ∆V values of around 100m/s for a constellation of four

satellites. Similarly, Co et al. [35] investigated the feasibility of using chemical and electric

propulsion to change the ground track of a single satellite in order to provide enhanced

coverage of different regions of the Earth. Others have studied using Lorentz forces [159],

aero-assisted orbital transfer [161], and electric propulsion [87] to enable satellites to adjust

their coverage patterns responsively. Eves et al. [67, 69] also suggest that a small satellite

could maneuver to lower its altitude in times of crises to provide better resolution. Ferringer
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[75, 76, 72] developed a framework and an a posteriori decision support methodology to

allow for an idealized 24 satellite GPS constellation to increase performance after the loss of

a single satellite or a single plane. The approach reconfigured the constellation into a new,

but previously unknown, optimized pattern and utilized multi-objective genetic algorithms

to evaluate the reconfiguration problem in terms of six competing objectives. The competing

objectives included maximizing two performance metrics: average daily visibility time and

worst case daily visibility time for the global grid of ground points. The four cost objectives

to be minimized were: the total time of flight; the largest ∆V required by any satellite;

the variance of propellant usage among the satellites that maneuver; and, the number of

satellites to be maneuvered.

A small amount of literature has touched on optimizing both constellation pattern design

and reconfiguration strategy. Nann [142] investigated the use of reconfiguration to allow a

4 to 8 micro-satellite constellation orbiting Mars to take radio occultation measurements

of the Martian atmosphere and to serve as a navigation aid for future Mars spacecraft.

The author used Monte Carlo based tradespace exploration to highlight good candidate

orbital patterns that would allow the system to reconfigure with constraints on propellant

use. Davis [43] independently studied both the problem of optimizing constellation design

and optimizing the reconfiguration of a constellation from one static design to another. He

mentioned that future work should address the combined optimization of constellation design

and reconfiguration and the optimization of constellation designs with uncertain mission

requirements. Initial work on the ReCon concept laid the foundations for some of the research

in this thesis. Paek investigated the combined optimization of satellite constellation patterns,

reconfiguration strategy, and satellite design to enable a reconfigurable satellite constellation

to provide on-demand, responsive coverage [152].
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1.3 Flexible Design: An Active Approach to Manage

Uncertainty

Over the past decade, much work focused on defining the nomenclature relating to systems

that change over time. Changeability embodies a system’s ability to be changed easily and

is broken down into four categories: robustness, agility, adaptability, and flexibility [81].

Ryan et al. defines flexibility as “the measure of how easily a system’s capabilities can be

modified in response to external change” and adaptability as “the measure of how effectively

a system can modify its own capabilities in response to change after it has been fielded” [170].

Flexibility differs from adaptability in that - in adaptable systems - the change must happen

automatically without external intervention [170], and - for flexible systems - the change

is initiated external to the system [169]. In contrast, robustness is defined as “the ability

to remain ‘constant’ in parameters in spite of system internal and external changes” [169]

and the “ability to be insensitive towards changing environments” [81]. Agility is related

to flexibility and is “the measure of how quickly a system’s capabilities can be modified

in response to external change” [170]. Therefore, robust systems do not change, adaptable

systems automatically change without external intervention, and flexible systems actively

change with external intervention to respond to uncertainties in operating context.

Traditional engineering design often ignores uncertainty by fixing requirements early in

the design process based on an expected operating context [50]. This practice simplifies the

design process, but “these restrictions channel designers toward a fixed, static view of the

problem” and can severely limit the system’s future value while operating under different op-

erating contexts [47]. The Iridium satellite constellation is a clear example of this limitation.

This constellation was a technological success that revolutionized satellite mass production,

but it was designed to a fixed expected market size. The system was unable to adapt when

a much smaller actual market materialized, leading the company to bankruptcy [49, 50].

Had the designers considered market uncertainty, the system could have been designed to

mitigate the impact of a much smaller market (e.g.potentially through staged deployment

[49]). Much recent literature has focused on classifying typical uncertainties faced in com-

plex system development. Earl et al. [34] divides uncertainty into two groups, ‘unknown’
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and ‘known’ uncertainty, which are present in two forms, descriptions and data. Known

uncertainty is quantifiable from past experience and may be bounded and represented by

distribution functions. Unknown uncertainty is comprised of unpredicted events that can

either be in the system or outside of the system. In some literature known uncertainty

is referred to as aleatory uncertainty and unknown uncertainty is referred to as epistemic

uncertainty [227]. De Weck et al. [50] and Lin [124] further classify unknown uncertainty

into three main groups: endogenous, exogenous, and hybrid. Endogenous uncertainty orig-

inates from within a system and includes performance uncertainty and system component

reliability. Exogenous uncertainty originates from the external environment, is outside of

the direct control or influence of the system designers, and, therefore, cannot be reduced at

the source. Examples of exogenous uncertainty are government regulations, market fluctua-

tions, and operational context uncertainty. Hybrid uncertainty results from a combination

of endogenous and exogenous factors. Examples of hybrid uncertainty include schedule and

contractual uncertainty. The three approaches to manage uncertainty are to: 1. control it

by investing in uncertainty reduction through better forecasting or technology development

and testing to increase reliability; 2. take a reactive approach by designing for robustness;

3. take a proactive approach by embedding real options or flexibility into the system design

[124].

Lin cites two ways to achieve flexibility in a system, coincidental flexibility and design

flexibility [124]. Coincidental flexibility refers to flexibility that is not intentionally designed

for, and design flexibility is intentionally embedded into the system by the designers. This

thesis is focused on design flexibility by intentionally embedding flexibility (or real options)

in systems to limit downside risk and take advantage of upside opportunity. The major

challenge is to decide where to embed flexibility within the system [45].

Lin [124] also developed a taxonomy of flexible options for large, capital intensive systems

and classifies flexibility into three types as shown in Table 1.1: strategic level flexibility, tac-

tical level flexibility, and operational level flexibility. Flexibility at the strategic level refers

to flexibility in the systems’ technology concept and high level configurations. Strategic level

flexibility is comprised of technology concept flexibility (where there is flexibility in choosing

technology and development concepts), and architectural flexibility (where there is flexibility
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to modify system architectures or configurations over time). Flexibility at the tactical level

refers to the flexibility to modify the behavior or performance of individual nodes or con-

nections. Tactical level flexibility is comprised of facility flexibility, (where the facility can

be easily modified to produce different products as inputs or the environment change), and

capacity flexibility (where the facility can easily expand or contract production capacity).

Flexibility at the operational level refers to flexibility to modify ways to operate a system

without changing the systems’ configuration or design. Reconfiguration provides tactical

flexibility by allowing constellation operators to continually adjust the constellation pattern

to optimize performance and recover from satellites failures to maximize expected future

cost-effectiveness. Reconfiguration also provides operational flexibility by giving operators

the ability to change the constellation pattern to focus coverage on regions of interest.

Table 1.1: Classification of Flexibility

Type of Flexibility Application to Satellite Constellations

Strategic

Technology Concept

Architectural
ãStaged Deployment (expandable)

ãModular Payload (upgradable)

Tactical
Facility

ãSoftware Upgrades (upgradable)

ãReconfiguration (reconfigurable)

Capacity ãRefueling (replenishable)

Operational ãReconfiguration (reconfigurable)

Design for flexibility attempts to intelligently embed flexibility into systems to give de-

cision makers the option to adapt to circumstances that develop to “cut losses by avoiding

undesirable outcomes, and increase gains by taking advantage of new opportunities” [45].

First developed in the field of finance, an option is the right, but not the obligation, to take

some course of action in the future. When an option is a physical entity it is called a real

option [44]. The ability to expand a building as capacity demand increases is an example

of a real option. This option must be enabled by initially spending more money to over-

design and over-construct the building foundation so that it can support later expansion.
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Flexibility derives its value from uncertainty and is most valuable when uncertainty is high

[45]. Literature distinguishes between two types of options: options on systems that treat

the system design as a black box and options in systems in which the system is specifically

designed to be flexible [215]. For flexibility in systems, “flexibility is achieved intention-

ally by design, which not only mitigates downside risk but also allows systems to capture

upside opportunities” [124]. A wide range of complex systems have been shown to benefit

significantly from flexible design including: oil extraction [124, 97], satellite constellation

reconfiguration [49, 32], satellite constellation design [98], aircraft families [155], and even

highway transportation systems [46]. Cardin et al. proposed a nine step method to guide

flexible design [29, 28]. The methodology starts out by identifying major uncertainties fac-

ing the system, then computes the deterministic performance of an initial inflexible design.

Next, additional flexible options are introduced and the system’s expected performance is

compared with the performance of the inflexible system over the expected distribution of

uncertain parameters. The comparison uses expected net present value and value at risk and

gain curves as comparison metrics.

1.3.1 Valuation of Flexibility

Embedding flexibility in systems typically increases total life cycle costs and can cause com-

promises in system performance. Therefore, it is important to correctly determine the value

of the flexible options to see if the investment makes sense and increases overall system value.

Some literature has even found that flexible options can reduce the initial investment capital

expenditure in a project by deferring costs over time [47]. Often, the flexible designs gen-

erate value in non-traditional areas of the design space. This has led to significant research

in finding the correct value proposition for flexible designs that includes the value of flexi-

bility [125, 171]. Several methods have been developed to investigate the value of flexibility.

Viscito et al. used multi-attribute tradespace exploration with epoch era analysis to quantify

system’s ability to adapt to different ‘epochs’ that represent changes in operating context

[208, 209]. Instead of quantifying the value of flexibility, this analysis quantified the amount

of flexibility given by specific designs. Monte Carlo analysis with simulation models has also

been used in the past to quantify the value of flexibility [45, 215, 216]. Monte Carlo analysis,
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used to sample the distributions of uncertain parameters and then uses simulation models

to compute the resulting system performance, is the approach taken in this thesis.

1.3.2 Flexible Constellation Architectures

Roos et al. [168] states that the success of complex engineering systems is often significantly

affected by uncertainties and “an emphasis on strategies to deal with uncertainty - such as

flexibility or robustness - may lead designers to different solutions than those that focus on

optimization to meet specific criteria or specifications.” There are several types of uncertainty

encountered when operating satellite constellations. Satellite failure rate is an example

of endogenous uncertainty. In the case of an Earth observation constellation, exogenous

uncertainty encompasses uncertainty in: the event ground locations; the rate at which event

response is needed; and the utility of collected data. An example of hybrid uncertainty is the

cost to design, produce, deploy and operate the system. Lin [124] states that there are three

main ways to manage uncertainty. The first is to try to control uncertainty by investing

in better forecasting of the exogenous and endogenous uncertainties. An example of this

method is to improve reliability through better control of satellite design and production

processes. However, this approach is limited, since it is often impossible to produce better

forecasts and it has proven to be very costly to improve satellite reliability. The second

approach to manage uncertainty is to design the system to be robust to changing contexts.

While this reactive approach often mitigates the downsides of uncertainty, it is not able to

take advantage of the potential upsides [45]. The third approach to manage uncertainty

is to be proactive and design the system to be flexible. Embedding flexible options in a

system design typically costs more upfront; therefore, designers must ensure that the value

generated by flexibility exceeds the additional cost. Earlier studies have shown a 20% increase

in the total system value for a communications constellation deployed flexibly, in two stages.

This increase in value occured despite an increase in satellite propulsion system complexity

to allow for on-orbit reconfiguration [49]. It is expected that flexibility will yield similar

improvements for reconfigurable earth observation satellite constellations.

Several flexible options have been identified to mitigate uncertainty in future operating

context for satellite constellations. These include satellite constellation designs that are:
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� Reconfigurable: The use of maneuverable satellites makes the constellation reconfig-

urable and allows satellites to alter their placement in the constellation. This facilitates

on-demand, focused coverage for specific regions, which mitigates target location uncer-

tainty. This flexible option also allows the constellation to actively respond to satellite

failures by adjusting the constellation pattern to re-optimize coverage in the degraded

state.

� Retaskable: A satellite with the ability to perform a number of different functions

allows it to be retasked when needed providing another form of reconfigurability. Re-

taskable systems could satisfy multiple mission requirements or could mitigate market

uncertainty by giving system operators several ways of generating revenue.

� Replenishable: The ability to replenish satellites allows satellite consumables, such as

propellant, to be restocked. Besides linearizing the rocket equation and allowing for

deferred launch costs for additional propellant, it gives operators the option to increase

maneuver capability to mitigate event response rate uncertainty.

� Expandable: The ability to expand the system allows the constellation size to grow

over time through staged-deployment, which lessens the impact of uncertainty in the

remote sensing market. If the market utility of remote sensing data provided by the

constellation meets or exceeds expectations, more capital can be invested to increase

constellation size. If the market is lower than expectations, the option to not expand

the constellation limits downside risk.

� Upgradable: The ability to upgrade the satellites allows for new technology to be

inserted into the constellation to improve or alter surveillance capability and respond

to uncertainties in remote sensing market demand. Upgrades could be changes to

satellite software or hardware through on-orbit servicing or by introducing upgraded

satellites during staged deployment.

This thesis focuses on the flexible option of reconfigurability and will leave analysis of

the other options for future work. Retasking and replenishment are direct extensions of this

work, and should be investigated in future work.
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The Reconfigurable Constellation (ReCon) concept consists of a constellation with two

operational modes: global observation mode (GOM) and regional observation mode (ROM).

GOM features a constellation pattern allowing the satellites to provide coverage within a lat-

itude band equal to the orbit inclination, and is similar to traditional static constellations.

ROM features repeating ground track (RGT) orbits where the Earth nodal day and the

satellite period are synchronized so that the ground paths repeat and the satellites provide

enhanced regional coverage. The ReCon constellation normally resides in GOM providing

partial global coverage. When a disaster event requiring additional coverage occurs, a subset

of the constellation would maneuver, via an altitude change and proper phasing, into ROM

to meet a desired level of persistence. Figure 1-1 shows the unfocused zonal coverage pro-

vided in GOM mode (left) and the focused regional coverage provided in ROM mode (right)

for an eight satellite constellation. The ReCon concept employs the flexible option of recon-

figurability to allow the constellation to provide both partial global coverage and on-demand

focused regional coverage. This allows for increased satellite utilization which reduces the

total number of satellites needed in the constellation. ReCon is also easily expanded and

exhibits graceful degradation.

Global Observation Mode (GOM)

Reconfiguration 

via altitude change

Regional Observation Mode (ROM)

Better revisit 

time

Figure 1-1: The ReCon concept features two operational modes: GOM provides wide-area
partial global coverage and ROM features focused regional coverage

1.4 Open Issues in Constellation Design and Optimiza-

tion

The design and optimization of satellite constellations is challenging due to immense compu-

tation demands associated with computing coverage statistics, and the combinatorial nature
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of the design space. These difficulties have led previous researchers to simplify the problem

in various ways including: decoupling pattern design from satellite design; only considering

symmetric patterns; ignoring uncertainty; not considering satellite reconfiguration as a way

to improve system cost effectiveness; and, not concurrently optimizing reconfiguration strat-

egy and pattern/satellite design. These five gaps in current literature, summarized below,

are directly addressed in this thesis.

1. Satellite design and pattern design must be treated as a coupled problem

Despite significant coupling between satellite design and pattern design, these two ele-

ments are often optimized separately. Several exceptions to this statement include Bu-

dianto et al. [24], Jilla [103], and Krueger et al. [114]; however, these references only

considered simple symmetric constellation patterns. Many researchers studying pattern

design have chosen to summarize satellite design considerations by a combination of one

or more of the following objectives: minimizing altitude (easier launch and smaller op-

tics); minimizing inclination (easier launch); and minimizing the total number of satellites

in the constellation. While these objectives do capture several effects of satellite design

and deployment, they do not capture the intricacies of the problem. For instance, the

quantization associated with fitting several spacecraft into a launch vehicle, often makes

launch cost independent of inclination. As we will see later in this thesis, launch cost is

actually driven by the number and type of launch vehicles needed, which is a function

of launch vehicle capacity, the number of satellites, the size of the satellites, and the

number and spacing of orbit planes in the constellation pattern. Additionally, the objec-

tive of minimizing the total number of satellites in the constellation is also misguided.

In many cases in this thesis, the lowest cost designs are often comprised of many small

satellites in lower orbits rather than fewer satellites in higher orbits. These examples

illustrate why the design and optimization of satellite constellations must be treated as a

multi-disciplinary multi-objective problem that accounts for the coupling between pattern

design and satellite design.

2. The design space must be expanded to consider asymmetric and layered pat-

terns

While previous research has shown that asymmetric constellation patterns outperform

49



symmetric patterns for providing discontinuous coverage [94, 95, 82, 120, 157], most litera-

ture still only considers traditional symmetric patterns. In 1996, Frayssinhes summarized

his results, which showed that asymmetric patterns outperform symmetric patterns for

discontinuous regional coverage, should help eliminate the “systematic use of symmetri-

cal Walker constellations outside their appropriate context [continuous global coverage]”.

However, the continued use of symmetric patterns is likely due to a combination of sev-

eral factors. First, many recent researchers have been more focused on optimizing the

satellite design rather than the pattern design; and, therefore, elect to use well-known

symmetric patterns. Second, optimization of asymmetric patterns requires significantly

more computational effort, and only recently has computing technology advanced enough

to accomplish the task in a rigorous way. In 2006, Ferringer [71] investigated a regional

coverage asymmetric constellation using parallel multi-objective genetic algorithms, but

the constellation size was limited to three satellites due to computational constraints.

However, as will be seen in this thesis, modern optimization techniques and comput-

ing capability coupled with asymmetric and layered patterns can significantly improve

constellation cost-effectiveness.

3. Uncertainty in requirements must be addressed to find truly resilient designs

Previous satellite constellation literature does not explicitly consider uncertainty in future

requirements or operating conditions. Most pattern research assumes the need for wide-

area coverage, which implicitly incorporates uncertainty in the locations where coverage

is needed. Some of the reconfiguration literature focuses on recovering from uncertain

satellite failures, and staged deployment to allow for the constellation to expand if uncer-

tain market demand materializes; instead, constellations should be optimized for actual

uncertain parameter distributions. This accomplishes two goals: 1. the constellation can

be tailored to actual estimated distributions instead of taking an overly conservative

approach, and 2. the constellation can be designed to be resilient to the uncertainty.

4. Reconfigurable satellites must be investigated to improve cost-effectiveness

As presented in the introduction, reconfigurable constellations can focus coverage on spe-

cific regions, which improves satellite utilization and leads to improved cost effectiveness.

While previous research has investigated using reconfigurable satellites to recover from
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failures and to enable staged deployment, there has not been significant research ad-

dressing the repeated use of satellite reconfiguration to improve overall cost-effectiveness

and to mitigate uncertainty. This thesis presents an alternative reconfiguration strategy

that does not consume large amounts of propellant and can, therefore, operate without

complex and costly on-orbit refueling.

5. Reconfiguration strategy must be concurrently optimized with satellite design

and pattern design

In order to maximize efficiency, the reconfiguration strategy, for a reconfigurable archi-

tecture, should be concurrently optimized with the pattern design and satellite design.

Concurrent optimization can lead to more efficient results by settling for a compromise

between maximizing coverage in the two patterns, while minimizing reconfiguration cost.

The sole reference that looked in concurrent optimization of reconfiguration and pattern

designs was Nann et al. , who concurrently optimized a single reconfiguration maneuver

between two orbital states for a small constellation, but the research was limited to a

single reconfiguration.

1.5 Research Objectives

The preceding sections alluded to the great difficulties in designing and optimizing constel-

lations. Recognizing the inherent uncertainties in the future operating environment of a

system designed to last decades only makes this task harder. The core problems are: how

do we find good designs without arbitrarily restricting the design space; and, how do we find

designs that that perform well over an uncertain operating context? My hypothesis for the

proposed research is that a general methodology incorporating flexible design strategies with

multidisciplinary system design optimization can find cost-effective reconfigurable satellite

constellations and calculate the value of reconfigurability. When compared with traditional

static designs, I believe these systems are more cost-effective and resilient to future operating

conditions.

Therefore, the primary thesis objective is to develop and demonstrate a methodology to

guide the design of cost-effective reconfigurable satellite constellations through the use of
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integrated life cycle models while accounting for uncertainty in the future operating context.

This objective is broken down into the following four sub-objectives:

1. Develop and demonstrate a comprehensive framework for optimizing reconfigurable

satellite constellations that perform well under uncertain future operating conditions

2. Develop and validate an integrated, multidisciplinary model to compute the perfor-

mance and cost of satellite constellations providing persistent regional coverage

3. Identify and characterize efficient reconfigurable constellation architectures and quan-

tify the value of reconfigurability

4. Compare the cost-effectiveness of reconfigurable satellite constellations to other con-

cepts including sun-synchronous constellations and rapid launched satellites

1.6 Specific Optical Imaging Scenario Investigated

This thesis considers an optical imaging constellation that must 1. provide enhanced coverage

for a series of events during the system lifetime, and 2. must provide partial global coverage

between -60 and 60◦ latitude with a 24hr maximum revisit time when not responding to an

event. The desired event coverage is specified by the spatial resolution, temporal resolution,

location, time of event, and the duration for the desired event coverage. As we will see

in Section 4.2.3, all the events that occur during the system lifetime comprise the ‘target

deck’, and each event in the target deck can have a different location, time, and desired

coverage characteristics. Table 1.2 shows the values used in this thesis. The framework and

tools presented in this thesis are easily modified to investigate other mission scenarios and,

therefore, can serve as a basis for future work on other specific missions. The performance

metric introduced in Section 3.6 measures how well a constellation meets the desired spatial

and temporal resolutions, and the location and timing of events are modeled as uncertain

parameters as explained in Section 4.2.
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Table 1.2: Event properties for the scenario investigated in this thesis

Event Parameter Values Investigated

Desired temporal resolution 0.5, 1hr from 6am to 6pm local time

Desired spatial resolution 0.5, 1m

Location sampled from PDF (see Chapter 4)

Time of event sampled from PDF (see Chapter 4)

Event duration 14 days

1.7 Thesis Roadmap

The thesis is organized as follows. First, Chapter 2 introduces the constellation design

and optimization framework. Chapter 3 provides an extensive overview of the detailed

multi-disciplinary simulation model, which computes the performance and cost of static and

reconfigurable satellite constellations. Chapter 4 introduces the Monte Carlo sampling im-

plementation and Chapter 5 introduces a novel multi-objective evolutionary optimization

algorithm implemented on a large computer cluster. Chapter 6 discusses results obtained

for symmetric, layered and asymmetric constellations; and compares the static and reconfig-

urable architectures to traditional sun-synchronous orbit constellations, and rapidly launched

architectures. Conclusions and recommendations for future research are given in Chapter 7.
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Chapter 2

Constellation Design and

Optimization Framework

The first thesis objective is to develop and demonstrate a comprehensive constellation design

and optimization framework capable of optimizing reconfigurable satellite constellations. In

order to find globally efficient constellation designs and avoid the limitations of previous

research, the framework must: 1. use detailed multidisciplinary models that capture impor-

tant linkages between subsystems; 2. explicitly consider uncertainty in the future operating

context; and 3. eliminate artificial constraints that only serve to arbitrarily limit the design

space. This thesis explicitly incorporates all three of these ideas into a unified framework

capable of rapidly generating results using currently available computing resources. This

chapter lays out the objectives of the framework, describes the framework in detail, and

concludes by discussing how to use the framework output.

Architectures

Fixed Parameters

Cost

P
e
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Non-dominated designs

Constraints

Framework

Figure 2-1: Desired inputs and outputs for the constellation design and optimization frame-
work
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Figure 2-1 shows the desired inputs and outputs for the constellation design and opti-

mization framework. Prior to optimization, the user selects the architecture, a set of fixed

parameters, and constraints. Several architectures are considered in this thesis including:

static, reconfigurable, sun-synchronous, and rapid launched; however, the framework could

handle almost any constellation architecture with only small modifications. Additional de-

tails on the four architectures studied in this thesis are provided in Chapter 6. Fixed param-

eters specify system properties and are not varied during optimization (e.g. satellite ballistic

coefficient or propulsion system specific impulse), and constraints bound the optimization

process by either specifying limits on constellation properties or placing bounds on design

variables (e.g. minimum altitude, maximum optical aperture size). Additional details on the

parameters, constraints, and bounds are provided in Chapter 5. Based on these user inputs,

the framework finds the set of designs that form the optimal tradeoff between maximizing

performance and minimizing cost. The designs that form the optimal tradeoff are termed

non-dominated designs and, for these designs, increasing performance mean increasing cost.

The remainder of this chapter provides an overview of the constellation design and

optimization framework and is organized into two major sections. Section 2.1 introduces

three analysis layers that comprise the framework including the simulation layer, the Monte

Carlo layer, and the multi-objective optimization layer. Section 2.2 explains how the non-

dominated fronts output by the framework are used to: compare the cost-effectiveness of

different constellation architectures, determine the value of incorporating reconfiguration

into satellite constellations, and quantify the sensitivity of changing parameters.

2.1 The Three Framework Layers

The constellation design and optimization framework, shown in Figure 2-2, consists of three

analysis layers: the simulation layer, the Monte Carlo layer, and the multi-objective op-

timization layer. The simulation layer is comprised of a multidisciplinary campaign-based

simulation model that computes the life-cycle performance and cost of constellation designs.

The performance is rated by the extent the constellation meets desired coverage of a spe-

cific set of ground events that are distributed in space and in time. The cost is the sum of
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Figure 2-2: Constellation design and optimization framework

the non-recurring and recurring development, production, and launch cost. Operations and

retirement cost is not modeled. Wrapped around the simulation layer is the Monte Carlo

layer. By running the simulation model for different parameters sampled from the uncertain

parameter distributions, this layer determines the performance distribution for a specific

constellation design. The performance will vary given different sets of event locations and

timing for a given future operating context. System cost is modeled in this thesis as deter-

ministic. Given that the simulation model is non-linear and to avoid the ‘flaw of averages’

[173], Monte Carlo analysis is needed to perform the mapping from uncertain parameter dis-

tributions to a distribution of system performance. Wrapped around the Monte Carlo layer

is a multi-objective optimization layer. This layer uses a multi-objective genetic algorithm to

find non-dominated designs that form the optimal tradeoff between maximizing performance

and minimizing cost. The Monte Carlo layer outputs a distribution of performance for each

design, and the median is used as the performance for the optimization routine. The user

also specifies bounds on the design variables and system property constraints to control the

feasible design space for optimization. The non-dominated fronts are compared to determine
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the cost-effectiveness of different architectures. Chapters 3, 4, and 5 of this thesis describe

the simulation, the Monte Carlo, and the multi-objective optimization layers in more detail.

2.2 How is the Framework Useful?

The non-dominated fronts output by the framework can be used to: compare the cost-

effectiveness of different constellation architectures, calculate the value of incorporating re-

configuration into satellite constellations, and quantify the sensitivity of the value of recon-

figurability to changing parameters.

2.2.1 Finding Efficient Designs

The direct output from the constellation design and optimization framework are the actual

non-dominated designs themselves. These designs represent the optimal tradeoff of the

two competing objectives of maximizing performance and minimizing cost. Typically, in

traditional single objective optimization, these two objectives would be combined into a

single objective with a weighting function applied a priori, masking the actual tradeoff

between objectives. Instead, the output from this framework gives designers constellation

designs that represent the direct tradeoff of multiple competing objectives and enables more

informed decisions. An example strategy of how a decision maker could select a design from

the non-dominated front using a variety of data generated by the framework is given in

Section 6.5.1.

2.2.2 Architecture Comparison and Computing the Value of Re-

configurability

The non-dominated fronts output from the framework can be easily compared to assess the

cost-effectiveness of different constellation architectures. Additionally, the non-dominated

fronts for the reconfigurable and static architectures can be directly compared to quantify the

benefit of a reconfigurable system. While it may seem counter-intuitive at first, reconfigurable

satellite constellations cost less than similarly performing traditional static constellations.
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The combined effects of increased satellite utilization and the ability to perform well over

uncertain future operating conditions create this cost benefit. As presented in Chapter 6,

reconfigurable constellations require fewer satellites than static constellations to generate

the same performance. The reconfigurable architecture is more cost-effective because the

reduction in constellation size outweighs the increase in cost caused by additional propulsive

capability. The value of flexibility, introduced previously in Section 1.3.1, is used to quantify

the generated value of embedding flexibility into a system. The value of reconfigurability is

defined as the reduction in total system cost for the same performance level by incorporating

reconfigurability into the system. This metric provides a quantitative way to measure the

benefit of incorporating reconfigurability and is found by comparing the non-dominated sets

of designs for reconfigurable and static architectures.

2.2.3 Sensitivity Analysis

The framework can also be used to perform two types of sensitivity analysis: determin-

ing the sensitivity of the value of reconfigurability to changing parameters (or constraints)

and determining the sensitivity of individual design performance and cost to changing pa-

rameters. In the former case, the framework finds non-dominated fronts for both static

and reconfigurable designs using each combination of parameters. The difference between

iso-performance designs is the new value of reconfigurability. In the second case, only the

simulation and Monte Carlo layers are used to determine how the performance and cost of

a specific system changes with changing parameters. Sections 6.1.3 and 6.1.4 quantifies the

value of reconfigurability sensitivity to a few parameters and Section 6.5.3 quantifies the

performance and cost sensitivity for a specific design to a few parameters.
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Chapter 3

Simulation Model

To enable tradespace exploration and optimization, simulation models must accurately pre-

dict system response for a wide variety of designs and architectures . Modeling detail must

be sufficient to capture all relevant system interactions. However, given the many func-

tional evaluations needed by multi-objective optimization techniques it must also be limited

to ensure computational efficiency. The purpose of the simulation model in this thesis is

to evaluate the life-cycle performance and life-cycle cost of both static and reconfigurable

constellation architectures. Inputs to the simulation model include design variables, param-

eters, and the choice of architecture to be studied (static or reconfigurable, and constellation

pattern type) as shown in Figure 3-1. The design variables specify details of the pattern, the

spacecraft and operations for reconfigurable systems. These values are varied by the opti-

mization process in order to find efficient designs that simultaneously maximize performance

and minimize cost. Semi-fixed quantities, called parameters, are also inputs to the simula-

tion model and represent aspects of the system that are not varied during the optimization

process. Some parameters are classified as uncertain. The uncertain parameters considered

in this thesis include the timing and locations of ground events. Monte Carlo sampling then

samples these parameters from input probability distributions and uses the simulation model

to generate the corresponding system performance distribution. The model outputs consist

of the two optimization objectives of performance and cost and a set of constraint violations

that determine when optimization constraints are violated. The constraints ensure that the

optimization process focuses in on the feasible region within the design space. More details
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are given about the Monte Carlo sampling (Chapter 4) and optimization process (Chapter

5) later in this thesis.

Design Vector

Parameters

Constellation 

Architectures

Constraint Violations

Objectives
• Performance

• Cost

Simulation Model

Figure 3-1: The simulation model computes the performance and cost of a constellation
design given a context specified by parameters

The simulation model consists of five primary modules, shown in Figure 3-2, including

simulation setup, spacecraft, cost, astrodynamics and performance. The simulation setup

module generates the initial constellation pattern and initializes the uncertain operating pa-

rameters. The spacecraft module sizes the payload, spacecraft bus, and propulsion system

based on the design vector. The spacecraft dry mass and launch volume are modeled as a

function of aperture diameter based on historical optical Earth observation satellites. The

propulsion system propellant mass and dry mass are a function of the spacecraft dry mass

and ∆V requirements. The cost module computes the system life-cycle cost by aggregating

the cost of the optical payload, the spacecraft, and the launch as well as applying quanti-

ties of scale effects. The astrodynamics module tracks the orbital state of the constellation

throughout its lifetime and computes coverage in GOM and ROM. For reconfigurable sys-

tems, the simulation model employs a decision model that mimics the behavior of a decision

maker in order to determine how to use the reconfigurable option for each event (how many

satellites should be reconfigured and how fast should they be reconfigured). The simulation

model then tracks both the performance as well as depletion of individual satellite ∆V over

time. The final module is the performance module which computes the overall life-cycle

performance of the system (the mean performance generated during all regional events).

This performance model is tailored to rate how well the system provided the desired level of

temporal and spatial resolution coverage for each regional event.

The remainder of this chapter provides an in-depth overview of the simulation model
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Figure 3-2: The simulation model is comprised of five modules arranged to minimize feedback
and maximize computational efficiency

and is organized as follows. First, Section 3.1 gives an introduction to some fundamental

astrodynamics relationships that are critical to understanding model construction. This

is followed by detailed explanations of the five simulation modules described previously:

simulation setup (Section 3.2), spacecraft properties (Section 3.3), cost modeling (Section

3.4), astrodynamics (Section 3.5), and performance (Section 3.6). This discussion is then

followed by model validation (Section 3.7) and a summary of simulation model efficiency and

computational run time (Section 3.8).

3.1 Astrodynamics Introduction

This section provides an overview of three fundamental astrodynamics relationships that

are critical to understanding details of simulation model construction starting with a brief

overview of orbital elements. Next, an introduction to repeating ground track (RGT) orbits

and a discussion on how pass times are calculated for any given RGT orbit. The section

concludes by introducing the fundamental satellite based observation geometry that governs

ground coverage and spatial resolution.
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Figure 3-3: Diagram showing how the four angular elements are defined

A satellite’s position is classically described by six orbital elements. The semi-major axis

(a) and the eccentricity (e) describe the orbit’s shape and size while the right ascension

of the ascending node (Ω) and inclination (i) specify the orbital plane orientation. The

last two orbital parameters, the argument of perigee (ω) and true anomaly (ν), specify the

location of the satellite in the orbit plane. The four angular elements are shown in Figure

3-3. i is the angle between the orbit plane and equatorial plane and Ω is the angle from the

vernal equinox to the location where the orbit crosses the equatorial plane on the ascending

pass. ω is the angle from the ascending node to perigee which is the closest approach of

the satellite to the central body, and ν is the angle from perigee to the satellite’s current

position. A Keplerian orbit is an orbit in which gravity is the only force and the central

body is represented as a point mass. The first five orbital parameters (a,e,i,Ω,ω) are time

invariant in a Keplerian orbit while only the true anomaly changes, accounting for satellite

motion. In this thesis, the mean anomaly (M) is used in the place of the true anomaly.

The mean anomaly is defined as an angle measured from perigee with constant angular rate

corresponding to the satellite’s mean motion (n) defined below in Equation 3.2. For circular

orbits, M = θ. Under these assumptions, the satellite state is then given as:

X(t) = (a0, e0, i0,Ω0, ω0,M0 + nt) (3.1)
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where the mean motion (n) is a function of Earth’s gravitational constant (µ) and a:

n =
√
µ/a3 (3.2)

Satellites encounter deviations from Keplerian motion by two types of perturbations, secular

and cyclic. Secular perturbations build up over time, while cyclic perturbations have zero

net effect over the course of a complete orbit. The analysis in this thesis accounts for secular

perturbations only. The primary cause of secular perturbations for low earth orbit satellites

(LEO) is the J2 zonal effect caused by Earth’s gravitational bulge at the equator. The J2

perturbation causes orbital precession which leads to a time rate of change for Ω, ω and M

given as [221]:

Ω̇ =
3nR2

⊕J2

2p2
cos i (3.3)

ω̇ =
−3nR2

⊕J2

4p2

(
5 cos2 i− 1

)
(3.4)

Ṁ =
−3nR2

⊕J2

4p2

(
3 cos2 i− 1

)√
1− e2 (3.5)

Where the parameter (p) is given as: p = a (1− e). The inclusion of J2 effects modifies

Equation 3.1 to give the state of the satellite as a function of time (t) as:

X(t) = (a0, e0, i0,Ω0 + Ω̇t, ω0 + ω̇t,M0 + Ṁt+ nt) (3.6)

The rate of orbital precession is primarily a function of inclination and altitude (see Figure 3-

4). Ω̇ is equal to zero at an inclination of 90◦ and is negative for prograde orbits and positive

for retrograde orbits. ω̇ is equal to zero at the critical inclinations of 63.435◦ and 116.565◦ and

is positive for inclinations higher between those critical inclinations, and negative otherwise.

Later in this thesis, we will see that these precession rates greatly affect initial constellation

deployment (Section 3.3.2) and coverage (Section 3.1.2).
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Figure 3-4: Orbital precession, causing Ω̇ and ω̇, is primarily affected by inclination and
altitude

3.1.1 Repeating Ground Track Orbits

Repeating ground track (RGT) orbits are specialized orbits where the satellite ground track

repeats every No integer orbits in Nd integer sidereal days. This is accomplished by synchro-

nizing orbital motion (including perturbations) with the Earth’s rotation rate (ω⊕). Setting

up a RGT orbit involves two main steps. First, we must solve for the semi-major axis that

satisfies the compatibility criterion, and, second, we must phase the spacecraft properly to

place the ground track over a specific ground position. The second order anomalistic period

that satisfies the RGT compatibility criterion is given by Mortari et al. [134] as:

T =
2πNd

ω⊕No

(
1 + 2ξ

n

ω⊕
cos i

)−1

χ (3.7)

Where:

χ = 1 + ξ
[
4 + 2

√
1− e2 −

(
5 + 3

√
1− e2

)
sin2 i

]

ξ =
3R2
⊕J2

4a2 (1− e2)

T =
2π

n

The semi-major axis is then found by solving Equation 3.7 and the RGT altitude increases

as the inclination increases (see Figure 3-5). This second order relation is sufficient for the
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work in this thesis since the simulation model only propagates the RGT orbit over a few

weeks, however more detailed analysis that includes the J2
2 and J4 terms is given by Vtipil

et al. [211].
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Figure 3-5: RGT altitude increases with increasing inclination and with decreasing No/Nd

ratio

Once the semi-major axis is found that synchronizes the orbital period with Earth’s

inertial rotation period, we must then find the specific RGT orbit that passes over a specific

ground position. One way to accomplish this is to use Flower Constellation theory by

introducing an angle that specifies the shift in longitude of the ground track (Λ)[16]:

Λ = NoΩ +NdM (3.8)

Figure 3-6 shows two repeating ground tracks corresponding to Λ = 0◦ (solid) and Λ = 90◦

(dashed). Here we see that the angle shifts the repeating ground track to the east on the

interval (0 − 360◦) and the ground track for Λ = 0◦ is the same as Λ = 360◦. It should

be noted that, given the static nature of a RGT ground trace, the only way to change

the specific RGT that a satellite is in is to either modify Ω or M . The typical way to

accomplish this is to change orbital altitude which causes a difference in mean motion and

allows M to change relative to the intended RGT slot. Ω can also be changed by differential

orbital precession after an altitude change, or using propulsion at great propellant expense.

Additionally, by changing Λ, it is possible to pass over a specific ground location with two
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different RGT orbits. One pass occurs when the satellite is ascending in latitude coverage

(termed ascending pass coverage in this thesis) and one occurs when the satellite is descending

in latitude coverage (termed descending pass coverage in this thesis).

Figure 3-6: The RGT ground track is adjusted in longitude by the phasing angle Λ. RGT
orbits are plotted with Λ = 0◦ (solid) and Λ = 90◦ (dashed)

3.1.2 Determining RGT Pass Time

Solar illumination conditions often affect the quality of space based optical imagery. Images

taken early in the morning or late in the evening will be dim and will include shadows that

reduce overall information content. This means that in a reconfigurable constellation, only

those assets that can provide coverage within desired illumination constraints should be

reconfigured. This section explains how to predict the local solar time of a pass for a given

RGT orbit. This pass time is a function of the ground location (ϕ, λ), the satellite’s orbital

plane (i,Ω), and time of year. Figure 3-7 shows the geometry for computing pass time for

the ascending pass coverage case. We must find the Greenwich mean sidereal time (θGMST )

that ensures a nadir pass over the target location on the RGT denoted by ‘P ’. Figure 3-7

shows that the ground location’s λ and θGMST are equal to the satellite’s Ω and the ∆λ
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quantity since these two sets of angles are referenced to the vernal equinox (�). Taking the

ascending pass case first, the balance equation is as follows:

θGMST + λ = Ω + ∆λ (3.9)

Here we see that the Greenwich mean sidereal time θGMST is added to the target longitude

(λ) and must equal the satellite’s right ascension of the ascending node Ω added to the

longitude shift from the ascending node to the target (∆λ).

Υ

𝑋𝐸𝐶𝐸𝐹

𝑌𝐸𝐶𝐸𝐹

𝑍𝐸𝐶𝐸𝐹

𝑃

𝜆

𝜃𝐺𝑀𝑆𝑇

Ω Δ𝜆

𝜑

Figure 3-7: The local time of an ascending pass is calculated by solving an angle balance in
longitude. The mean sidereal time plus the target longitude must equal the satellite Ω plus
the drift in longitude during the ascending portion of the orbital arc.

This equation, solved for θGMST , yields the solution for the pass time for an ascending

pass case (Equation 3.10a), and similarly for the pass time for an descending pass case

(Equation 3.10b).

θGMST (ascending) = Ω + ∆λ− λ (3.10a)

θGMST (descending) = Ω−∆λ− λ− π (3.10b)

The ∆λ term can be approximated by assuming that the triangle formed by ∆λ, ϕ and the
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ground track is a right spherical triangle:

∆λ = arcsin (tanϕ/ tan i)

Once θGMST is determined, then the sidereal time needs to be converted to solar time and

then converted to the local time at the target longitude. Sidereal time is referenced inertially

(to the stars) whereas solar time is referenced to the sun. Since both the Earth’s orbit around

the sun and the Earth’s rotation are counter-clockwise, there is one extra sidereal day for

every solar year. Greenwich mean solar time θGMT is solar time referenced to the prime

meridian. The conversion between θGMST and θGMT is given as:

θGMT = θGMST −
2π

Ts
∆D + π (3.11)

Where, ∆D is the decimal days of the year referenced to the vernal equinox, and Ts is

the sidereal year duration in days. The added factor of π is caused by Greenwich mean time

being referenced to local noon. The solar time is then converted to local mean time θLMT

according to the target longitude λ as:

θLMT = θGMT + λ (3.12)

θLMT is then converted from degrees to hours and combining these relations together yields

final relations that predict local time of coverage based on orbital parameters and ground

location:

θLMT,a = Ω + arcsin

(
tanϕ

tan i

)
− 2π

Ts
∆D + π (3.13a)

θLMT,d = Ω− arcsin

(
tanϕ

tan i

)
− 2π

Ts
∆D (3.13b)

Here we can see how the various parameters affect the pass time. The most noticeable

feature is that the ground longitude (λ) canceled out, so that ground coverage time is only

a function of the target latitude (ϕ). Additionally as ∆D increases, the pass time moves

backward and as Ω increases the pass time moves ahead. Therefore, since Ω changes in time
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due to orbital precession and ∆D changes with time, the pass time is likely to change as

a function of time. Figure 3-8 shows the pass time drift in hours per day as a function of

inclination for three different No/Nd ratios. We see that pass time drift is largest for low

inclination prograde orbits and high inclination retrograde orbits, and is zero around polar

orbits. Also, the pass time drift rate increases with decreasing RGT altitude. For sun-

synchronous orbits, the ∆D induced shift cancels the Ω induced shift yielding time-invariant

pass time. The inclinations for sun-synchronous, RGT orbits are 96.560◦ for No/Nd = 16/1,

97.635◦ for No/Nd = 15/1 and 98.982◦ for No/Nd = 14/1.
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Figure 3-8: The pass time drift rate is strongly affected by inclination and increases with
larger No/Nd ratios

As was discussed earlier, each satellite can provide either ascending or descending pass

coverage in RGT, each of which will likely have different pass times. The difference in pass

times give system operators options in providing the best coverage. The difference between

ascending and descending pass coverage times is given as:

θLMT,a − θLMT,d = 2 arcsin
(

tanϕ
tan i

)
+ π (3.14)

This relation shows that the ascending and descending pass times differ in a π phase shift

along with the arcsin term which is a function of the inclination and target latitude. If the

orbit inclination is equal to the target latitude, then the arcsin term is equal to π and the

term cancels out on the interval 2π. This means that difference in θLMT for ascending and
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descending pass coverage is π which is equivalent to 12 hours. If the target latitude is greater

than the inclination (ignoring any satellite footprint extent), then there is no coverage. If

the target latitude is less than the inclination, then the pass time difference decreases as

the arcsin term gets smaller. Figure 3-9 shows the minimum pass time separation between

ascending and descending passes as a function of inclination and target latitude.
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Figure 3-9: The time difference between ascending and descending passes is small when
i ≈ ϕ, approaches 12 hours when i >> ϕ, and no coverage is provided when i < ϕ and the
target is outside of the satellite ground footprint

Figure 3-10 shows a snapshot of the latitudinal coverage as a function of Ω for passes

between 6am and 6pm local time (left) and 8am and 4pm local time, with ascending pass

coverage (shaded light), descending pass coverage (shaded medium) and both (shaded dark).

The plots were produced with i = 60◦ and ∆D = 0. Here we see that the latitude band for

coverage in the desired time period varies with Ω. For 0◦ ≤ Ω ≤ 60◦ and 300◦ ≤ Ω ≤ 360◦,

the satellite has wide coverage with an ascending pass RGT while for 120◦ ≤ Ω ≤ 240◦,

the satellite has wide coverage with an descending pass RGT. For 60◦ ≤ Ω ≤ 120◦ and

240◦ ≤ Ω ≤ 300◦, there is coverage provided from ascending and descending RGT orbits for

some latitudes and no coverage for other latitudes. Additionally, the width of each band is

proportional to the fraction of the day of the desired coverage time period. In this case, the

desired time period is 12 hours, which is half of a day so the width of the coverage band is
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180◦. As the desired time period decreases, the coverage bands also decrease in size, leading

to a smaller range of orbit planes that can provide coverage.

Figure 3-10: The range of latitudes serviced by a satellite in a RGT orbit within a fixed
daily time window is only a function of Ω

The coverage plot displayed in Figure 3-10 varies with time due to both orbital precession

(causing Ω̇) and the ∆D term in Equation 3.13. As was described earlier in this section and

shown in Figure 3-4, Ω can vary between −10 to 10 degrees per day depending on inclination

and orbital altitude. This will shift the satellite Ω to the right or left in the plot. The ∆D

term causes a shift of coverage to the right with a one year repetition period. Figure 3-

11 shows the change in coverage for a 12 hour desired time period (subplots a,c,e) and an

8 hour desired time period (subplots b,d,f). The times displayed are 0 months (subplots

a,b), 2 months (subplots c,d) and 4 months (subplots e,f). The constant changing of the

ground coverage coupled with the distribution and randomness of target location in longitude

generally removes any preference for absolute Ω positioning of satellites in the constellation.

However, the relative positioning, controlled by the pattern design, has a large effect on

overall performance and is a focus of this thesis.

3.1.3 Earth Observation Geometry

The ‘satellite ground footprint’ refers to the instantaneous area on the Earth’s surface covered

by an orbiting satellite. Two footprints exist: the maximum footprint representing coverage

from horizon to horizon; and the smaller effective footprint which includes minimum ground

elevation angle constraints. This section introduces viewing relations for both cases, and

then discusses how ground sampling distance (GSD) is calculated.
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Figure 3-11: The latitudinal coverage band shifts in Ω over time due to orbital precession
and changing ∆D

The satellite, located at point P in Figure 3-12, provides a maximum ground coverage

footprint with an Earth central angle of λmax. The maximum boresight angle ηmax is defined

as the angle off nadir to the horizon and the maximum slant range (at λmax) is Lmax.

Relations for ηmax, Lmax, and λmax are given as follows [221, 206]:

ηmax = arcsin

(
R⊕

R⊕ + h

)
(3.15)

λmax = π
2
− ηmax (3.16)

Lmax = R⊕ (sinλmax/ sin ηmax) (3.17)
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Figure 3-12: Satellite to Earth observation geometry

In general, there will be some minimum satellite elevation angle εmin necessary for useful

observation. ε is the angle measured from ground between the local horizontal and the vector

to the satellite’s position. For optical imagery, large ε is desired to avoid obscuration from

tall objects and improve both GSD and radiometric accuracy. However, as εmin increases,

the satellite’s effective ground footprint shrinks, reducing overall coverage.

Ground location G, located at the edge of the effective ground footprint, will have an

elevation angle of εmin. In this case, the earth central angle λ, boresight angle η, and slant

range L are given as [221, 206]:

η = arcsin (cos εmin sin ηmax) (3.18)

λ = π
2
− εmin − η (3.19)

L = R⊕ (sinλ/ sin η) (3.20)

As εmin increases the satellite footprint shrinks considerably, shown in Figure 3-13, and

therefore overall coverage will be reduced. For ground points contained nearer to the center

of the effective ground footprint will have larger ε, leading to smaller η, smaller λ and
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therefore smaller L.
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Figure 3-13: Both decreasing altitude and increasing εmin requirements lead to smaller ef-
fective ground footprints and therefore significantly reduced coverage

The GSD (spatial resolution) of an optical sensor is fundamentally limited by diffrac-

tion to the Ralyleigh limit. For nadir viewing, this limit is a function of the observation

wavelength λs, orbital altitude h and aperture diameter D as follows:

xnadir =
1.22λsh

D
(3.21)

For off-nadir viewing, the resolution along-boresight (xa) and cross-boresight (xc) will be

different and are given by:

xa =
1.22λsL

D sin ε
(3.22)

xc =
1.22λsL

D
(3.23)

For this thesis (and consistent with current practice) [123], I take the geometric mean of the

along and cross track resolutions to determine the overall ground sample distance (x):

x =
√
xaxc =

1.22λsL

D
√

sin ε
(3.24)

x is minimized (for fixed h and D) when the ground points of interest are close to the

satellite’s ground track. In the case where the ground point lies on the satellite’s ground

track, then x = xnadir. As the ground point moves further away from the ground track, ε
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decreases and x increases dramatically, as shown in figure 3-14.
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Figure 3-14: The 1/
√

sin ε term in Equation 3.24 causes GSD to be relatively independent
of ε when ε > 45◦ (values calculated with D = 0.3m)

Therefore, there are three way to decrease x. Lowering h reduces the slant range L and

decreases x but also reduces the effective satellite ground footprint. Increasing D reduces

x, but will increase payload cost. Ensuring nadir, or close to nadir, passes increases ε and

therefore reduces x, but often requires orbital maneuvers to change the satellite’s ground

track.

3.2 Simulation Setup Module

Pattern type 

Pattern design variables

Simulation Setup

Pattern Design

Initial constellation state

Figure 3-15: The simulation setup module computes the initial constellation state given a
constellation pattern type and a set of pattern design variables

The simulation setup module initializes the constellation pattern by computing the initial

satellite orbital positions. Various pattern designs are considered in this thesis including: a

single symmetric pattern identical to the Walker Delta pattern; a two-layer pattern that com-

bines two symmetric patterns shifted in i, Ω, and M ; an asymmetric pattern with common

i and h, but with free range of Ω and M for each satellite; two ‘quasi’-asymmetric patterns
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(the restricted asymmetric and asymmetric Walker pattern) that combine the benefits of a

fully asymmetric pattern with some regular spacing rules to reduce design variables; and

an asymmetric layered pattern, which is similar to the layered pattern but consists of two

asymmetric Walker patterns. In addition to these patterns, the thesis also considers sun-

synchronous and rapid launched architectures. Section 6 describes the individual patterns

in more detail before presenting results.

3.3 Spacecraft Module

Optics aperture

Reconfiguration Δ𝑉

Initial constellation state

Spacecraft mass (wet & dry)

Stowed spacecraft density

Propellant mass

Spacecraft

Dry Mass

Stowed Density

Propulsion Sys. Mass

Figure 3-16: The spacecraft properties module computes the size and weight of the satellites
given several input design variables

The spacecraft module computes payload, spacecraft bus and propulsion system prop-

erties. These properties are used by the cost model to determine payload, spacecraft, and

launch cost. This section details how the payload and spacecraft bus mass and stowed volume

are estimated and summarizes sizing of the propulsion system.

3.3.1 Payload and Bus Design

Spacecraft mass and volume are estimated in the simulation model by fitting curves to the

properties of existing optical Earth observation satellites. This ensures that the estimates

are consistent with currently fielded technology and eliminates the need for a complicated

satellite model that would be difficult to validate. Table 3.1 lists the aperture size, wet

mass, satellite dry mass, stowed dimensions, stowed volume, and stowed density of ten high

resolution optical Earth observation satellites with apertures from 14.5 cm to 110 cm.
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Figure 3-17 plots the satellite dry mass (top) and stowed satellite density (bottom) as a

function of aperture diameter. There appears to be one outlier (the WorldView-1 spacecraft)

in the satellite dry mass data which clearly does not fit the visual trend and has been omitted

from the curve fitting process. One explanation for why WorldView-1 is an outlier is that it

represents a intermediate capability between the QuickBird satellites and WorldView-2. All

four of these satellites were produced by Ball Aerospace of Boulder, Colorado. QuickBird

1 and 2 and Worldview-1 share a similar instrument while WorldView-1 and WorldView-

2 share a similar bus with increased capability [66]. Therefore, the WorldView-1 weighs

considerably more than the QuickBird satellites and has similar aperture size. A second

order polynomial curve fit for satellite dry mass as a function of aperture diameter accounts

for over 93% of the data variation. The simulation model uses this curve fit to calculate

the satellite dry mass as a function of aperture diameter to size the propulsion system and

determine overall satellite cost. We see that with increasing aperture size, the satellite dry

mass increases at a faster than linear rate. A linear curve fit for stowed satellite density as a

function of aperture diameter accounts for around 42% of the data variation and captures the

basic trend where the satellite density decreases with increasing aperture. This relationship

makes sense since larger apertures will require larger optical telescope assemblies that contain

a lot of empty volume. The fit only accounts for 42% of the variation and, therefore, extra

margin is added when this estimated density is used to estimate stowed spacecraft volume

in the launch vehicle cost model (see Section 3.4.3).

3.3.2 Propulsion System Design

The propulsion system is sized to provide the necessary satellite maneuvering capability for

initial deployment and phasing, station-keeping, aerodynamic drag makeup, constellation

reconfiguration (for reconfigurable designs) and end-of-life disposal. The following section

details how each ∆V requirement is determined and then describes how propellant mass and

total propulsion system mass are calculated.
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Table 3.1: Properties of Selected Optical Earth Observation Satellites

Spacecraft D Mw Md,sc Stowed Size Stowed Volume ρsc References

cm kg kg m,m,m m3 kg/m3

RapidEye 14.5 166.4 154.4 1.17, 0.78, 0.94 0.858 193.9 [66, 151]

EROS-A 30 260 230 2.23, 1.2, 1.2 3.21 81.0 [66]

NigeriaSat-2 38.5 286 274 0.79, 1.2, 1.2 1.456 188.2 [66, 185, 41]

FormoSat-2 60 746 665 2.4, 1.6, 1.6 6.14 121.4 [66, 33]

WorldView-1 60 2500 2090 3.6, 2.5, 2.5 22.5 111.1 [66, 193]

Quickbird 1,2 61 951 911 3.0, 1.6, 1.6 7.68 123.8 [113, 193, 62]

Pléiades 1B 65 1015 940 3.0, 2.5, 2.5 12 84.6 [66, 85]

Ikonos 1,2 70 728 658� 1.83, 1.57, 1.57 4.51 161.4 [66]

GeoEye-1 110 1955 1811 4.35, 2.7, 2.7 31.7 61.7 [66]

WorldView-2 110 2800 2390 5.7, 2.5, 2.5 35.6 78.6 [66, 193]

� Estimated using ∆V = 300m/s and ISP = 300s

∆V Requirements

Propulsive capability is required for initial deployment, to correct for launch vehicle injec-

tion errors, to properly phase the satellites to achieve proper placement in the constellation

pattern, and for disposal through de-orbiting at end-of-life. Table 3.2 shows typical 3σ injec-

tion errors for four contemporary launch vehicles including the Pegasus [148], Minotaur IV

[150], Falcon 9 [181], and Delta IV Heavy [149], which represent a variety of available launch

vehicle sizes and technologies. A Monte Carlo simulation then sampled from a Gaussian

distribution of injection errors, calibrated to the data in Table 3.2 assuming that the errors

are uncorrelated, to estimate the launch vehicle correction ∆V (∆VLV ). Figure 3-18 shows

a cumulative distribution plot of ∆VLV for the four launch vehicles. Here we see that ∆VLV

is less than 22 m/s with 80% confidence for the worst launch vehicle and, therefore, ∆VLV

is set to a constant value of 22 m/s in the simulation model.

Phasing relates to the situation where several satellites are launched together that will

ultimately reside in different orbital slots in the constellation pattern. These satellites will

either need to spread out in M if they ultimately will reside in the same orbit plane, or

Ω if they will reside in different orbit planes. Changing M separation is trivial, since a

small change in altitude between two satellites will cause a difference in mean motion, and,

therefore, M separation. Changing Ω is much harder and can be accomplished via costly
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Figure 3-17: The satellite dry mass and stowed density both show correlation with aperture
diameter

propulsive maneuvers or orbital precession. Differential orbital precession, caused primarily

by the Earth J2 gravity variation, can then be harnessed to slowly change the relative Ω of

satellites over time.

In this model, the satellites are launched to an altitude lower than the intended GOM

altitude to allow for phasing. A lower altitude harnesses the effect of staging, effectively

using the satellite’s on-board propulsion system as the final launch stage. The relative drift

rate (Ω̇rel) is a function of the altitude difference between the launch orbit semi-major axis

(alaunch), the final GOM altitude (aGOM), and inclination:

Ω̇rel = Ω̇deploy − Ω̇GOM (3.25)
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Table 3.2: Launch Vehicle LEO Insertion Accuracies

Launch Vehicle Apse 1 Apse 2 Inclination

km km deg

Pegasus XL 10 80 0.15

Minotaur IV 18.5 92.6 0.2

Falcon 9 10 10 0.1

Delta IV Heavy 11 12 0.03
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Figure 3-18: ∆VLV is approximately 5m/s for liquid propellant launch vehicles (Delta IV-
H, Falcon-9) and approximately 20m/s for solid propellant launch vehicles (Pegasus XL,
Minotaur IV)

Using the relation for Ω̇ including only J2 effects (Equation 3.3), Equation 3.25 becomes:

Ω̇rel = −3

2
J2R

2
⊕
√
µ cos i

(
1

(aGOM + ∆adeploy)
7/2
− 1

a
7/2
GOM

)
(3.26)

Here we clearly see that the phasing rate (assuming circular orbits) is a function of inclination

and the deployment altitude difference from GOM altitude (∆adeploy), where ∆adeploy =

alaunch − aGOM . This altitude difference is, in turn, a function of how much ∆V is allocated

to deployment, and, therefore, how much the spacecraft is able to change its orbital altitude.

If the transfer from the launch orbit to GOM orbit is modeled as a Hohmann transfer, then

the relationship between ∆Vdeploy and the phasing rate is shown in Figure 3-19. This figure

shows the tradeoff between propellant use and the ability to phase satellites after sharing
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a launch. The more ∆V available for deployment, the greater the altitude offset between

launch altitude and GOM altitude, and the greater Ω̇rel. Inclination also plays a significant

role. Near polar inclinations feature little Ω precession, so that satellites traveling to different

orbital planes will need separate launches, which ultimately increases launch cost. In the

simulation model, ∆adeploy is a free internal variable selected to minimize overall constellation

cost. This process is explained in more detail during discussion of the launch cost model in

Section 3.4.3.
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Figure 3-19: The Ω phasing rate (Ω̇rel) is affected by the inclination and amount of deploy-
ment ∆V (∆Vdeploy) used (values calculated for a 500km GOM orbit altitude)

LEO satellite constellation station-keeping consists of correcting several perturbations

including: gravitational variation caused by the non-spherical Earth, third body interactions,

aerodynamic drag, and solar radiation pressure. Previous research has shown that absolute

station-keeping, where each satellite stays in its own station-keeping box, is more efficient

than relative station-keeping, where the relative positions referenced to a key satellite are

maintained [220]. In this thesis, I partition station-keeping requirements into aerodynamic

drag (∆Vdrag) and other station-keeping (∆VSK), which corrects for perturbations caused

by the non-spherical Earth, third body interactions and solar radiation pressure. ∆VSK is

independent of altitude and inclination and is modeled as a constant 10 m/s per year to

control cross-track position to within 10km [220]. ∆Vdrag is a strong function of altitude and
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is determined by the following relation:

∆Vdrag =
1

2
V 2
( ρa
BC

)
Tlife (3.27)

Where ρa is the atmospheric density, V =
√
µ/a is the orbital velocity, BC is the ballistic

coefficient and Tlife is the satellite lifetime. Both the atmospheric density and orbital velocity

increase with decreasing altitude and lead to higher ∆Vdrag. The atmospheric density is

implemented as a function of altitude for solar mean using interpolated data from Wertz

et al. [221], and a constant ballistic coefficient (BC) of 75 kg/m3 is used [221]. While

in ROM, the satellites will encounter different aerodynamic drag forces, and an increase

or decrease in ∆Vdrag is accounted for by adjusting the ∆V available for reconfiguration

(∆Vrecon) accordingly. At the end of the constellation’s lifetime, the satellites will need to

be responsibly decommissioned quickly by de-orbiting. The required ∆Vdeorbit is calculated

to lower the perigee altitude to 50 km ensuring quick disposal. While this model assumes

propulsive de-orbit, it should be noted that other techniques such as tethers or aerodynamic

drag devices could be employed in the future to reduce overall propulsive requirements. Also,

an alternative disposal strategy could boost the altitude to a graveyard orbit in the radiation

belts. Figure 3-20 shows ∆Vdrag and ∆Vdeorbit as a function of orbital altitude for a 5 year

lifetime. Here we see that these two factors are oppositely affected by altitude, and that

there is an altitude for minimum ∆Vdrag + ∆Vdeorbit.
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Figure 3-20: There is tension between minimizing ∆Vdrag and minimizing ∆Vdeorbit. As Tlife
increases, ∆Vdrag increases and the minimum ∆V altitude increases. (values calculated with
Tlife = 5yr)
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The total amount of ∆V required by each satellite is then the sum of all individual ∆V

requirements:

∆VT = ∆VLV + ∆Vdep + ∆Vdrag + ∆VSK + ∆Vdeorbit + ∆Vrecon (3.28)

In summary, the total ∆V budget is derived from many requirements. Table 3.3 lists a

summary of how each ∆V component is modeled. ∆VLV and ∆VSK are modeled as fixed

parameters, ∆Vdrag and ∆Vdeorbit are determined as a function of orbital altitude and satellite

properties, ∆Vdep is solved for to minimize overall constellation cost and ∆Vrecon is a design

variable for reconfigurable designs.

Table 3.3: ∆V Requirements Summary

∆V Component Value

∆VLV 22 m/s

∆Vdep internal variable

∆Vdrag function of altitude

∆VSK 10 m/s/yr

∆Vdeorbit function of altitude

∆Vrecon design variable

Propulsion System Model

Once ∆VT is known, then the propellant mass (Mprop) and propulsion system total mass

(MP ) can be calculated. Using the rocket equation, the propellant mass is:

Mprop = −Md,sc

(
ζ − 1

ξp (ζ − 1)− 1

)
(3.29)

Md,sc is the spacecraft bus dry mass not including dry mass associated with the propulsion

system, ξp is the propulsion system dry mass fraction (propulsion system dry mass as a

fraction of the total propulsion system wet mass), ISP is the specific impulse and ζ =

exp (∆VT/gISP ). In this thesis ξp is set to 0.2 based on previous research [229] that indicated

that the dry mass of hydrazine monopropellant systems is roughly 20% of the total propulsion
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system wet mass. The total propulsion system mass is then:

MP =
Mprop

(1− ξp)
(3.30)

And the total spacecraft wet mass is:

Mw = Md,sc +MP (3.31)

Both ∆VT and ISP affect the size, and ultimately the cost attributed to the propulsion system.

Figure 3-21 shows the propulsion system mass fraction (MP/Mw) as a function of ∆VT for

several values of ISP . ISP is a measure of the propellant efficiency of a propulsion system.

Higher ISP systems require less propellant mass for fixed ∆VT than lower ISP systems. I have

chosen to limit analysis to chemical monopropellant systems due to their heritage, long-term

storability, and the ability to generate high thrust for fast and efficient maneuvers. These

systems have typical ISP values of 220s for traditional hydrazine propellant [221] and up

to 260s for newer ‘green’ monopropellants [61, 182]. For this analysis, I chose to set ISP

to 240s as a representative value for monopropellant systems. Additionally, in order to

eliminate infeasible designs, I implemented a constraint that limits the propulsion system

mass fraction to less than 0.42.

1100m/s930m/s

M
P
/M

w

∆VT (m/s)

ISP = 220s

ISP = 260s

0 200 400 600 800 1000 1200 1400 1600

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3-21: Higher ISP propulsion systems allow for greater ∆VT while satisfying the maxi-
mum propulsion system mass fraction constraint of MP/Mw ≤ 0.42. (values calculated with
ξp = 0.2)
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Why not use electric propulsion?

Electric propulsion provides increased propellant efficiency at the cost of increased power

consumption and reduced thrust. Greater propellant efficiency means that less propellant

is needed to complete maneuvers and potentially leads to reduced cost or increased ∆V

capability. However, the reduced thrust can affect the responsiveness of the reconfigurable

constellation concept. The thrust provided by an electric propulsion thruster is a function

of the ISP , the input electrical power (P ) and the thruster efficiency (ηT ) as follows:

F =
2PηT
gISP

(3.32)

For example, consider a 1000kg satellite equipped with a hall thruster (ηT ≈ 0.5, ISP ≈ 1600s

[129]), with 1000W of available power for the thruster. This yields a maximum thrust of

only 0.064N and conducting a 20m/s ∆V maneuver would take almost 87 days. Adding to

the problem, the low thrust altitude increase maneuver takes more ∆V to accomplish than

the near impulsive chemical maneuvers. The maneuver time would be reduced for smaller

spacecraft due to their lower overall mass, but smaller spacecraft would likely require addi-

tional solar panel area and power processing equipment to generate the additional 1000W of

power, which could negate the mass savings of electric propulsion. Electo-thermal propulsion

such as resisto-jets and arc-jets might be considered since they provide higher thrust at the

expense of lower ISP . An alternative strategy could use an electric propulsion system to

perform the maneuvers that are not time sensitive like deployment, station-keeping, drag

makeup, deorbit, and returning to GOM after an event response while a chemical system

would be used for the reconfiguration maneuver. One promising concept that should be

looked into in the future is to simply augment the monopropellant chemical system with

either a resistojet or arcjet that uses the same propellant. This would increase the ISP for

the non-time sensitive maneuvers leading to reduced propellant mass.
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Figure 3-22: The cost module computes the total constellation cost given several spacecraft
properties and the initial constellation state

3.4 Cost Model

The cost model computes the total lifecycle cost of the satellite constellation. This total

cost is comprised of four primary elements: payload cost, spacecraft cost, launch cost, and

quantities of scale effects. Operations cost is not modeled in this thesis. This section provides

an overview of how cost is modeled for each of these elements, starting with payload cost.

3.4.1 Payload Cost

The payload for an Earth optical remote sensing satellite includes the optical telescope as-

sembly (OTA) and the imaging sensor. Two approaches are commonly used to parametrically

model OTA cost. The first uses the aperture diameter as the independent variable, while the

second uses OTA mass as the independent variable. Early work on developing parametric

cost models for terrestrial telescopes found that the cost of such systems scaled primarily with

aperture diameter raised to the powers of 2 - 3 [186]. Recent research, however, has shown

that these models do not accurately extend to space telescopes [186, 190, 189, 188, 187]. In-

stead, recently developed models indicate that space OTA cost scales with aperture diameter

raised to the power of 1.4 to 2.0 power [187].

The NASA Instrument Cost Model (NICM) [88] is a commonly used mass based paramet-

ric model. NICM uses the optical subsystem mass to estimate OTA cost and uses detector

mass to estimate CCD sensor cost. Habib et al. [89] recently modified NICM to create the

NASA Explorer Class Instrument Cost Model (NICM-E), which takes into account the lower
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costs incurred by NASA class D missions. This modified model is likely more representative

of commercial space costs than the original NICM model. I have decided to use a combina-

tion of the Stahl OTA cost model [186, 190, 189, 188, 187] and the NICM sensor cost model

after comparing several options. The four approaches that I compared are:

1. NICM Earth-Orbiting Optical Instrument Sensor Cost Model

2. NICM-E Earth-Orbiting Optical Instrument Sensor Cost Model

3. Stahl OTA Cost Model with estimated sensor cost

4. Stahl OTA Cost Model with NICM CCD Cost Model

A full comparison of all four approaches showed that all candidate models exhibited similar

trends in estimating cost as a function of aperture size; however, I decided to implement

model 4 due to the voluminous recent work by Stahl et al. . Additionally, aperture diameter

is a design variable in this thesis work while OTA mass is not. A mass based parametric

model would require an estimated OTA mass, which would introduce further error. It was

also important to include the sensor cost as it typically constitutes around 25% of total Earth

observation optical spacecraft cost [187].

The modeled OTA cost as a function of aperture diameter in thousands of FY2010 dollars

is [187]:

COTA = 38000D1.6 (3.33)

The modeled focal plane array (FPA) cost is a function of FPA mass (MFPA) in kg [88] and

is:

CFPA = 1983M0.89
FPA (3.34)

Absent available FPA mass data for existing Earth observation satellites, MFPA is estimated

by scaling the mass of the Kodak Model 1000 Camera System by aperture diameter [221].

This instrument was used on the IKONOS spacecraft and had an aperture size of 0.7m and

a FPA mass of 16kg [113]. I estimate that MFPA will scale with the cube of the scaling ratio,
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which is a ratio of the aperture diameter to 0.7m as follows:

R =
D

0.7m
(3.35)

MFPA = 16kg ×R3 (3.36)

Section 6.1.4 looks at the sensitivity of the value of reconfigurability to the FPA mass scaling

ratio exponent. This FPA mass estimate should be refined in future work. The total payload

cost is then the sum of the OTA and FPA cost:

Cpay = COTA + CFPA (3.37)

Additionally, since CFPA is based on MFPA, which is in turn based on aperture diameter,

CFPA can then be expressed directly in terms of aperture diameter, and the total payload

cost is then:

Cpay = 38000D1.6 + 60615D2.67 (3.38)

Figure 3-23 shows how COTA and CFPA scales with aperture size. Here we see that the OTA

cost dominates for small aperture sizes and the FPA cost dominates for large aperture sizes.
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Figure 3-23: FPA cost is lower than OTA cost for apertures less than around 0.6m
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3.4.2 Spacecraft Cost

The cost of the complete satellite is also estimated through parametric relations. I have

chosen to model the bus cost by blending the estimates from the Small Satellite Cost Model

(SSCM) [221] for Md ≤ 400kg and the Unmanned Spacecraft Cost Model (USCM8) [221]

for Md ≥ 200kg. In the range where the models overlap, I implemented a linear blending

scheme with a linear blending parameter y = (Md − 200)/(400− 200):

Csc,NRE = yCSCCM
sc,NRE + (1− y)CUSCM

sc,NRE (3.39)

Csc,TFU = yCSCCM
sc,RE + (1− y)CUSCM

sc,RE (3.40)

I use the satellite dry mass Md, which includes the propulsion system dry mass, as the mass

for cost model calculations, since the cost models are not calibrated for highly maneuverable

satellites.

Unmanned Spacecraft Cost Model 8

The USCM8 spacecraft bus system cost estimating relationship (CER) estimates the cost

of the spacecraft bus and is optimized for larger spacecraft. This bus cost is then added to

the payload cost Cpay estimated earlier, and then wrap factors are included for: integration,

assembly and test, program level, and aerospace ground equipment. The USCM8 model

partitions the bus cost into a non-recurring engineering cost (NRE) and recurring engineering

cost (RE). The NRE cost includes the cost of development and build of one qualification

unit, and RE is an estimate of the manufacturing cost of the first flight unit. Since the

payload cost is not partitioned into NRE and RE, an estimate of this breakdown is made

using the following relations:

Cpay,NRE =

(
1

ξpay + 1

)
Cpay (3.41)

Cpay,RE =

(
ξpay

ξpay + 1

)
Cpay (3.42)
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Where ξpay is a parameter representing the cost of RE compared to NRE. For this work, I

have set ξpay = 0.4 assuming that the RE is 40% of the total NRE cost.

Small Satellite Cost Model

The SSCM spacecraft bus system CER estimates the total NRE cost of the spacecraft bus

and is focused on small satellites with masses less than 400kg. Similar to the USCM8 model,

this bus cost is then added to the payload cost Cpay, and then wrap factors are included for:

integration, assembly and test, program level, and ground support equipment. Since the

SSCM only estimates the NRE cost, a second parameter is introduced (ξsc) which represents

the RE cost fraction of NRE cost, similar to ξpay. For this work, I have also set ξsc = 0.4

assuming that the spacecraft RE is 40% of the total spacecraft NRE cost.

Blended Total Spacecraft Cost

Figure 3-24 illustrates the blending process. The top plot shows the SSCM (solid) and

USCM (dotted) estimated NRE and RE cost as a function of aperture diameter while holding

all other spacecraft variables constant. The NRE cost curves are located above while the

RE cost curves are located below. We see that the SSCM generally predicts lower costs

than USCM8 for small spacecraft while the USCM8 model predicts lower costs than SSCM

for large spacecraft. Also shown in the plot is the region where the models are blended,

corresponding to spacecraft dry mass between 200 and 400kg. The plot shows that this is

the region where both models show the most agreement and therefore the blended curves

(Figure 3-24 bottom) are fairly smooth.

3.4.3 Launch Cost

Launch cost is often a significant fraction of total space system costs and must be modeled

in a detailed manner. Simple launch cost models use a fixed cost per unit mass (e.g. $5000

per kg to LEO) to estimate launch cost. These simplistic approaches do not capture the

effect of orbital altitude, inclination and the number of orbit planes on launch cost. They

also generally do not account for both mass payload and volumetric constraints for specific
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Figure 3-24: The spacecraft cost model for both NRE and RE is a blended combination of
two cost models. The SSCM and USCM8 cost models cross over within the blending region
yielding a smooth blended model

launch vehicles. In this thesis I am optimizing over altitude, inclination and the number

of orbit planes, so it is important to model all of these factors that can significantly effect

launch cost. Additionally, optical satellites with large OTA assemblies tend to have large

volumetric footprints causing launch vehicle performance to be limited by volume rather

than mass. This thesis uses an approach that assigns individual satellites to specific launch

vehicles selected from a database of existing U.S. launch vehicles to minimize total launch

cost subject to mass and volume constraints. Multiple satellites can share a launch vehicle,

however, if the satellites must achieve a different orbit plane in the final constellation pattern,

then the satellites must be able to utilize differential orbital precession to achieve their final

orbit slot within a fixed deployment time constraint.

In this section, I describe the launch and deployment strategy and introduce the compiled

database of existing U.S. launch vehicles. Next, I describe the minimum cost assignment

process employed to assign satellites to specific launch vehicles subject to deployment time
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constraints. Lastly, I discuss the overall launch cost optimization process which analyzes the

trade between increasing spacecraft propulsive capability that increase space segment costs

but can reduce launch cost. For example, increasing satellite deployment ∆V could allow

more satellites with diverse final orbit planes to be launched on the same launch vehicle.

Launch Strategy and Modeled Launch Vehicles

The launch and deployment model assumes that the spacecraft will be launched to an orbital

altitude lower than the intended GOM altitude (aGOM). The satellites will then remain in

this orbit until they achieve the correct phasing with their intended GOM orbital slot. This

phasing is achieved through differential mean motion and orbital precession. The initial

launch semi-major axis (alaunch) is lower than aGOM to harness the effect of staging. A higher

launch altitude requires the launch vehicle to lift the spacecraft’s deployment propellant mass

to a higher orbit, and leads to lower overall launch vehicle capability with no additional

benefit. A larger altitude difference between alaunch and aGOM , allows more change of the

satellite’s relative Ω during the constrained deployment period; therefore, more satellites

might share launch vehicles which could reduce launch cost. However, this reduction in

launch cost must be traded with the increase in satellite costs caused by increased propulsive

capability. The amount of differential Ω that a satellite can achieve during deployment is a

function of the differential precession rates and the maximum time allowed for deployment

(Tdep):

∆Ωdep =
(

Ω̇dep − Ω̇GOM

)
Tdep (3.43)

Using relations for Ω̇ from Section 3.1, Equation 3.43 is expanded to:

∆Ωdep = −3

2
J2R

2
⊕
√
µ cos i

(
1

(aGOM + ∆adep)
7/2
− 1

a
7/2
GOM

)
Tdep (3.44)

Where ∆adep = alaunch − aGOM . Here we see that ∆Ωdep is a function of GOM altitude and

inclination as well as the deployment time and the altitude difference between the launch

orbit and GOM orbit. The relation between ∆Vdep and ∆adep, assuming a single Hohmann
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transfer is utilized to change the satellite’s semi-major axis from alaunch to aGOM is:

∆Vdep =

(√
2µ

alaunch
− µ

alaunch + 1
2
∆adep

−
√

µ

alaunch

)

+

(√
µ

aGOM
−
√

2µ

aGOM
− µ

alaunch + 1
2
∆adep

)
(3.45)
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Figure 3-25: The relative Ω drift rate during deployment increases with increasing ∆Vdeploy
and with inclinations closer to equatorial, either prograde or retrograde. Near polar orbits
feature little precession. Values calculated for a 500km GOM orbit altitude.

Given ∆Vdep, Equation 3.45 can then be solved to find ∆adep for use in Equation 3.44.

Figure 3-25 shows ∆Ωdep, in degrees per month, as a function of orbital inclination and ∆Vdep

for aGOM = 500km. Increasing ∆Vdep leads to a larger altitude difference ∆adep and increased

deployment drift range ∆Ωdep. Additionally, ∆Ωdep is higher for low inclinations, diminishes

to zero for polar inclinations, and then increases as retrograde inclinations increase. This

means that for fixed ∆Vdep, low inclination prograde and high inclination retrograde orbits

allow satellites launched in the same launch vehicle to achieve more diverse orbit planes.

Conversely, satellites with near-polar inclinations cannot change their orbit planes as effec-

tively, which may lead to more launches and higher launch cost. Therefore, inclination can

play a major role in determining launch cost.

Table 3.4 shows the performance and cost of current and near-future U.S. launch vehicles.

The performance data has been taken from the respective launch vehicle user guides while
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the cost data has been derived from various sources as indicated. It should be noted here that

these costs can vary widely given current economic conditions, the number of launches in a

particular year and negotiated block purchases experienced when launching a constellation.

These costs can and should be adjusted with any additional cost data when the framework

is used in future work. Notice the quantities of scale savings where the cost per kg decreases

with increasing launch vehicle payload capacity. Five of the launch vehicles (starred in

Table 3.4) were chosen to be included in the simulation model since they form the set of

non-dominated options for maximizing payload mass capacity and minimizing cost.

Table 3.4: Properties of Selected U.S. Launch Vehicles

Launch Vehicle LEO Performance� Cost Cost per kg Payload Volume References

kg $M (FY10) $k (FY10) m3

Pegasus XL* 443 30 67.7 1.87 [148, 143]

Athena Ic* 700 41 58.6 14.5 [15]

Taurus XL 1380 54 39.1 13.0 [147]

Minotaur IV* 1650 50 30.3 11.4 [150]

Athena IIc 1730 65 31.5 11.4 [15, 217]

Falcon 9* v1.1 10450 56.7 5.43 146 [181, 180]

Atlas 5 18814 161.8 11.1 121 [205, 221]

Delta IV Heavy 22560 214.3 19.3 233 [149, 221]

Falcon Heavy* 53000 100 1.89 146 [180]

� Payload mass to 28.5◦ inclination, 200km

* Included in launch vehicle assignment

The payload mass performance given in Table 3.4 is for insertion into a 200km altitude

circular orbit at 28.5◦ inclination. Launching to higher altitudes and higher inclinations

results in lower payload mass performance. The launch cost model utilizes recently published

response surfaces [77, 115] that compute the payload mass performance as a function of

launch altitude and inclination. The orbital cost function (OCF) is then defined as the launch

vehicle performance to a reference orbit at 28.5◦ inclination and 200km altitude divided by

the performance given by the response surfaces as shown in Equation 3.46. The orbital

cost function measures the relative difficulty in launching to various orbits with difficulty

increasing with increasing OCF.
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OCF =
MLV (200, 28.5◦)

MLV (h, i)
(3.46)

I made several assumptions to enable the use of the published response surfaces over

the full range of inclinations and launch vehicles included in the simulation model. First,

orbital inclination is limited to the range of 30◦ to 150◦. Since all the launch vehicles can

be launched from a latitude less than 30◦, the launch vehicles do not need to execute plane

changes during ascent. Additionally I assume that there are no launch azimuth restrictions

that would further reduce launch vehicle performance by introducing dog-leg maneuvers,

and I extrapolate the performance response surfaces since the published response surfaces

only cover prograde and sun-synchronous inclinations. Figure 3-26 shows the orbital cost

function for the Minotaur IV launch vehicle generated by the response surfaces. The shaded

part of the surface (i ≤ 103.9◦) is directly given by the response curves [77], while the non-

shaded part of the surface is extrapolated. We see that the effect of increasing inclination

reduces payload performance much more than the effect of increasing launch altitude. Earth’s

rotation decreases launch ∆V requirements for prograde orbits, and increases launch ∆V

requirements for retrograde orbits.

Published performance response surfaces were not available for the Athena Ic and Falcon

Heavy launch vehicles. I decided to use the OCF for the Athena I launch vehicle to model

the Athena Ic since the vehicles are nearly identical. I also used the Delta IV Heavy OCF to

model the Falcon Heavy launch vehicle OCF. This model may overestimate the performance

impact for Falcon Heavy given that the payload performance of the Falcon Heavy is nearly

twice that of the Delta IV Heavy. I use the published 200km and 28.5◦ published performance

for both the Athena Ic [15] and Falcon Heavy launch vehicles [180]. Figure 3-27 shows the

orbital cost function for the remaining four modeled launch vehicles. The data shows that as

the capacity of the launch vehicle increases, the effect of increased inclination and altitude

is less pronounced on payload performance. The OCF curves have been capped at 8 in the

plot for the Pegasus XL and Athena Ic launch vehicles. The OCF for these vehicles increases

sharply at high altitude and high inclination because these situations come close to the zero

97



Minotaur IV

O
C
F

i (deg) h (km)
200 400 600 800 1000 1200

0
30

60
90

120
150

1

1.5

2

2.5

3

3.5

Figure 3-26: Orbital cost function for the Minotaur IV launch vehicle with the published
response surface (shaded dark) [77, 115] and extrapolated data (shaded light)

payload performance of the vehicles.

Launch Vehicle Assignment

Now that we have a list of available launch vehicles (in the database), and we know how

much Ω drift each satellite can achieve during deployment, we must now determine set of

launch vehicles that will minimize cost. This assignment process is detailed in this section

and consists of three steps: 1) calculate how many inertial launch bins are necessary given

∆Ωdep; 2) determine the minimum launch cost assignment of launch vehicles to service these

inertial launches; and 3) find the minimum total constellation cost by varying ∆Vdep. The

launch assignment process is allowed to choose a combination of different launch vehicles

(e.g.three Minotaur IV and one Falcon 9 launch vehicles) that can launch all satellites in the

constellations for the lowest total cost. While designing satellites to accommodate multiple

launch vehicles might increase design, test and integration effort, it is not clear whether

cost would increase substantially. For example, the 93 satellite IRIDIUM constellation,

which featured a per-satellite cost of approximately $13M FY2005, was launched on 22

total launch vehicles including: twelve Delta-2, six Long March, three Proton, and one

EUROCKOT [101, 191]. Additionally, using multiple types of launch vehicles to deploy a
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Figure 3-27: Orbital cost functions for the remaining four modeled launch vehicles

constellation can shorten the launch campaign and reduce the risk that a launch failure for

one launch vehicle type would cause significant delays in deploying the remaining satellites

in the constellation.

The first step in the launch vehicle assignment process calculates how many inertial

launch bins are necessary given the satellite’s deployment range ∆Ωdep. An inertial launch

bin is defined as the range in Ω that satellites can move to during the deployment period.

For example, if ∆Ωdep = 15◦, then a launch vehicle could potentially launch any number

of satellites that are intended to achieve final orbit planes within 15◦ of each other in Ω,

subject to launch vehicle capability constraints. The problem is simply stated as: what is

the minimum number of bins (with bin width of ∆Ωdep) required to populate all Ω slots in

the GOM constellation pattern? The procedure is illustrated in Figure 3-28 for a 10 satellite
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Figure 3-28: Illustration of process to determine minimum number of launch bins including:
the defined Ω positions (a), reference satellite selection (b), angular shift and bin placement
(c), and repetition of the process with each satellite assigned as the reference satellite (d).

constellation. The satellites in the constellation will each be placed in orbit planes specified

by Ω. Subplot a shows the Ω for each satellite in the constellation pattern and, in this case,

each satellite has a unique orbit plane. The next step in the process selects a single satellite as

reference, and converts the remaining satellite Ω values to an angular difference with respect

to the reference Ω on the interval 0 → 360◦. Subplot b shows the initial reference satellite

as the white filled dot, and subplot c shows the Ω values converted to angular differences

with the reference satellite set to 0◦. Next, starting with the reference satellite, launch bins

with width ∆Ωdep are placed sequentially until all satellites have been assigned to a bin. The

binning process is repeated using each satellite as the reference (subplot d shows the second

satellite as the reference) to find the configuration that provides the minimum total number

of bins. This minimum number of bins corresponds to the minimum number of individual

launches required to launch the constellation. The binning process is given in pseudo-code

in Algorithm 1.

Once the minimum number of bins have been determined, then the problem shifts to

finding the minimum cost assignment of specific launch vehicles for each unique bin size.

The number of satellites contained in each bin is referred to as the bin size, NB. Figure 3-

28c shows that a total of five bins are required, with two containing three satellites (NB = 3),

one containing two satellites (NB = 2), and two containing a single satellite (NB = 1). We

can determine the minimum cost launch assignment for each bin size and then multiply
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Algorithm 1 Determine minimum number of launch bins

1: Compute list of unique Ω values (~Ω)

2: for all i ← all ~Ω do
3: Nbin,i = 0

4: Set Ω0 ← ~Ωi

5: Compute ascending distance from reference, ~∆Ω =
(
~Ω− Ω0

)
mod 2π

6: Set j ← 1
7: while j ≤ length ~Ω do
8: Find number of values (N) that are contained in a bin starting at ~Ωj

9: Nbin,i = Nbin,j + 1
10: j = j +N
11: end while
12: end for
13: Compute minimum number of bins, Nbin = miniNbin,i

this cost by the number of bins that correspond to that size. For each unique NB, we then

calculate the minimum number of launches required to populate each bin using each launch

vehicle exclusively.

Ns,LV = min

[
min

(⌊
MLV

Mw

⌋
,

⌊
VLV ηpack
Mw/ρsc

⌋)
, NB

]
(3.47)

VLV is the payload volume of the launch vehicle, ηpack is the volumetric packing efficiency,

and ρSC is the spacecraft density (from Section 3.3.1). Here the bMLV /Mwc term rep-

resents the capacity by mass of the launch vehicle in terms of number of satellites, and

b(VLV ηpack) / (Mw/ρsc)c represents the capacity by volume of the launch vehicle in terms of

number of satellites. Ns,LV is also capped at a max of NB to speed the optimization process.

This procedure is performed for each of the five modeled launch vehicles to yield a set of the

number of each type of launch vehicle that can be assigned for each bin size:

Si = {0, 1, · · · , Ns,LVi} (3.48)

Next, we take the Cartesian product of these sets to generate the set S of possible launch

vehicle assignments. For example, one such assignment is s = [1, 0, 1, 0, 0] where s ∈ S.
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This specific assignment is comprised of one Pegasus XL, zero Athena Ic, one Minotaur IV,

and zero Falcon 9 and Falcon Heavy launch vehicles. The size of set S is
∏

i (Ns,LVi + 1).

Next, all of the combinations not able to accommodate NB satellites are filtered out as

infeasible solutions, and the remaining assignment options are assigned a cost by summing

the individual launch vehicle costs. The assignment with the lowest cost is then selected

and the process is repeated for the next bin size. After each bin size has a specific launch

vehicle assignment, then the total launch cost is the cost of each launch vehicle type times

the total number times that LV type was assigned over all bin sizes. Algorithm 2 provides

pseudo-code for this process.

Algorithm 2 Determine minimum cost launch vehicle assignment

1: for k ← all unique NB do
2: for i ← all launch vehicle types do
3: compute number of launches to populate bin, Ns,LVi

4: Si ← {0, 1, · · · , Ns,LVi}
5: end for
6: S ← Cartesian product of Si over i
7: for all s ∈ S do
8: if

∑
Ns,LVi < NB then

9: s ← ∅
10: end if
11: compute cost of s
12: end for
13: determine minimum cost assignment in set S
14: end for
15: total launch cost is sum of minimum assignments over all unique NB

I will now present an example to clarify the process. Let’s assume that we are interested

in launching a 24 satellite constellation and want to know the effect of the number of orbit

planes (Np) on launch cost. All of the satellites have a common inclination so each orbit

plane is characterized fully by Ω. Further, assuming that the constellation is symmetric,

then the spacing between adjacent plans is uniform and is equal to 360◦/Np. For small Np,

many satellites could be launched on a single launch vehicle reducing launch cost, given

enough launch vehicle capability. As the number of planes increases, the plane spacing in

Ω decreases; however, this is not initially helpful because the plane spacing is larger than

the maximum bin width ∆Ωdep. Therefore more launch vehicles will be needed to service all
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orbit planes. As the number of orbit planes grows larger, the plane spacing will eventually

fall to less than the maximum bin width, the number of launch vehicles required will stop

increasing, and may even be reduced.
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Figure 3-29: Contrary to what simplistic launch cost models would predict, launch cost does
not always increase with increasing number of orbit planes due to launch vehicle quantization
effects. Using a constant $30k FY2010 per kg, the launch costs would be independent of Np

and would be $112M and $571M FY2010 for the D = 0.15 and D = 0.6m constellations,
respectively

Figure 3-29 shows the launch cost for two 24 satellite constellations with different size

spacecraft as a function of increasing Np. The general trend is that launch cost increases

with increasing number of orbit planes and that larger satellites will cost more to launch

(both intuitive trends). However, there are some interesting dynamics as evidenced by the

non-smooth nature of the curves. Table 3.5 shows more detail, including the orbit plane

spacing and the launch vehicle assignment for the scenario shown in Figure 3-29. Here

we see that for the constellation with smaller spacecraft (D = 0.15m,Mw = 155kg), with

Np = 1 the entire constellation could be launched with one Falcon 9 launch vehicle. As

Np increases to 2 and 3, the constellation would need two and three total Falcon 9 launch

vehicles since smaller launch vehicles cannot accommodate 12 and 8 spacecraft, respectively.

This increases launch costs tremendously. As Np increases further, smaller launch vehicles

are utilized and the growth in total launch cost slows. For the constellation with larger

spacecraft (D = 0.6m,Mw = 793kg), the same general trend holds. However there is an
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interesting dynamic between Np = 1, 2, 3. For Np = 1 three Falcon 9 launch vehicles are

required to lift all 24 satellites into the common orbital plane at a cost of $170M. For

Np = 2, there are two orbital planes spread 180◦ apart. A single Falcon 9 cannot launch all

12 satellites, so a second, smaller, Minotaur IV launch vehicle is needed as well. This means

that a total of two Minotaur IV and two Falcon 9 launch vehicles are required for a cost of

$214M. For Np = 3, there are three orbit planes spread 120◦ apart. Since a single Falcon 9

can lift 8 satellites, we are back to using 3 Falcon 9 launch vehicles and the total launch cost

has dropped back down to $170M. These launch cost quantization effects are important to

model in order to find cost-effective constellation designs, and cannot be captured by more

simplistic launch cost models. Additionally, the launch vehicle assignment process can be

easily updated with the latest launch vehicle cost data to provide up-to-date estimates.

Table 3.5: Launch cost and assignment for a 24 satellite constellation as a function of
spacecraft aperture and number of orbit planes

D = 0.15m D = 0.6m

Np Plane Spacing Assignment CL Assignment CL
# deg $M FY2010 $M FY2010

1 – [0,0,0,1,0] 57 [0,0,0,3,0] 170
2 180 [0,0,0,2,0] 114 [0,0,2,2,0] 214
3 120 [0,0,0,3,0] 170 [0,0,0,3,0] 170
4 90 [0,0,4,0,0] 200 [0,0,0,4,0] 227
6 60 [0,0,6,0,0] 300 [0,0,0,6,0] 341
8 45 [0,8,0,0,0] 328 [0,0,0,8,0] 454
12 30 [0,0,6,0,0] 300 [0,0,0,6,0] 341
24 15 [0,8,0,0,0] 328 [0,0,0,8,0] 454

Launch Cost vs. Spacecraft Cost Optimization

This launch assignment process is then repeated for different ∆Vdep values to find the global

minimum constellation cost. Figure 3-30 shows the launch cost, space segment cost and

total constellation cost as a function of ∆Vdep for an example case. Here we see that as

∆Vdep increases, the launch cost is dramatically reduced with very little increase in the space

segment cost. This situation typically arises for small satellites, where the increase in total

space segment cost is small compared to the reduction in launch cost. Again, the reduction
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in launch cost is caused by an increase in the ability for satellites to change their orbit planes

during deployment, which results in fewer total launch vehicles. In the simulation model,

the maximum ∆Vdep is capped at 200m/s and the launch altitude is subject to minimum

altitude constraints. Additionally, the overall propellant mass fraction constraint may also

play a role in limiting ∆Vdep as it may yield a more cost-effective constellation to lower ∆Vdep

to allow for higher ∆Vrecon.

C

CNRE + CRE

CL

C
os
t
($
M

F
Y
20
10
)

∆Vdep (m/s)

0 25 50 75 100 125 150 175 200

0

300

600

900

1200

1500

1800

Figure 3-30: For small satellite constellations, it is often better to increase ∆Vdeploy in order
to reduce launch cost substantially. In this case, the increase in space segment cost is small
compared to the reduction in launch cost. Values calculated for a 24 satellite constellation.

3.4.4 Economies of Scale and Total Constellation Cost

The cost model also includes two cost improvement effects: amortization of NRE, and the

learning curve effect. As the number of satellites in the constellation increases NRE remains

a fixed quantity, and the NRE cost per satellite decreases. This is referred to as amortiza-

tion. The learning curve effect attempts to model the efficiency gain of producing multiple

copies of a complex product. Efficiency gains are caused by many factors including: volume

purchasing, improved and streamlined processes, reuse of manufacturing and test equipment,

and reduced testing on later spacecraft. The learning curve equation to calculate the nth
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satellite production cost, using the unit curve formulation [144], is:

Csc,RE,n = Csc,TFUX
log b/ log 2 (3.49)

Where b is the learning curve factor which represents the fractional reduction in unit cost for

every doubling of unit production. While there are limited examples of large scale production

of space systems, a good rule of thumb for complex aerospace systems is to assume a learning

curve of 85 to 90%, so 0.85 ≤ b ≤ 0.9 [144]. This means that the second unit will cost 85

to 90% of the cost of the first unit, and the fourth unit will cost 85 to 90% the cost of the

second unit and so on. I implement a learning curve of 90% for the work presented in this

thesis. The total constellation RE cost is then given as:

CRE =

NT∑

n=1

Csc,RE,n (3.50)

And the total constellation NRE cost is given as:

CNRE = Csc,NRE (3.51)

The total system cost (excluding operations and retirement cost) is the sum of the total

constellation RE cost, the total constellation NRE cost and the total launch cost:

C = CNRE + CRE + CL (3.52)

3.5 Astrodynamics

The astrodynamics module first computes partial global GOM coverage and then proceeds

to model the constellation’s sequential response to a series of regional events distributed

geographically and distributed in time. For reconfigurable architectures, the system has

the option to maneuver satellites into ROM to provide enhanced coverage; while for static

architectures, the system provides regional event coverage from GOM. The campaign-based

simulation propagates the satellites’ orbital state and accounts for propellant depletion.
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Figure 3-31: The astrodynamics module computes coverage statistics in GOM and ROM
based on a variety of inputs

3.5.1 GOM Simulation

While the primary objective of this constellation is to support regional disaster response,

it must also provide utility in between events. This capability is imposed as a constraint

on the maximum revisit time for partial global coverage within a latitude band. The GOM

simulation propagates the initial satellite constellation for 48 hours with a timestep of 30

seconds and computes access times from the constellation to a set of ground points to assess

partial global coverage. Since we are only interested in ensuring that the 24 hour maximum

revisit time constraint is satisfied, propagation for 48 hours is sufficient. The 30 second

timestep was chosen as a compromise between computational efficiency and accuracy, and

during validation, produced errors generally less than 1% (see details on model validation

in Section 3.7). To reduce the computational time, the ground points are restricted to one-

eighth of the partial global surface area. This simplification is possible due to symmetry

in the problem. The target points are constructed by selecting latitude values with a fixed

step on the interval 0◦ ≤ ϕ ≤ ϕmax, and then assigning longitude randomly on the interval

0◦ ≤ λ ≤ 90◦. This method ensures sampling of the entire latitude range and gives diversity

to the sampled longitudes, which is essential to prevent the optimization process from finding

solutions that ‘game’ the system and to provide good coverage for evaluated ground points.

Figure 3-32 shows the ground target points with a latitude granularity of 0.25◦. A comparison

with detailed STK coverage analysis which showed that this granularity provided maximum
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revisit time estimates with 0.144% median error (also see Section 3.7 for more validation

information).

Figure 3-32: 241 ground target locations distributed in the range 0◦ ≤ ϕ ≤ ϕmax and
0◦ ≤ λ ≤ 90◦ are used to evaluate the maximum GOM revisit time constraint.

Once the accesses to each ground point is found, then the average and maximum revisit

times for each point is calculated over the 48 hour analysis period. The maximum GOM

revisit time is then computed as the largest of all ground point maximum revisit times.

3.5.2 Campaign-Based Regional Event Response Simulation

After GOM coverage is computed, the next step in the modeling process quantifies the cov-

erage provided by the constellation for a series of regional events distributed both geograph-

ically and in time. This is accomplished through the use of a campaign-based simulation

model which tracks the constellation through a sequence of event responses over its life cycle.

The campaign-based simulation process flow is depicted in Figure 3-33. The constellation

is initially deployed into GOM through the launch and deployment process previously ex-

plained in Section 3.4.3. While in GOM, the simulation model propagates the constellation,

including orbital precession effects, and accounts for station-keeping and drag makeup ∆V .

When the first regional event occurs, the simulation model goes through an optimal assign-

ment process to determine which satellites should be reconfigured into ROM. This process

determines how many satellites need to reconfigure, which specific satellites should be recon-

figured, and how fast each satellite should be reconfigured. The final part of the assignment
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Figure 3-33: A campaign-based lifecycle simulation tracks how the system responds to an
uncertain number of regional events. For each event response the simulation: uses an assign-
ment process to determine how many and which specific satellites are reconfigured, models
the reconfiguration maneuver and computes the resulting coverage for the event.

process employs a decision model to mimic decision-maker preferences and select how many

satellites should be reconfigured for the specific event. Following this decision, the assigned

satellites are reconfigured and access times are computed for the duration of the event. After

the event is over, the satellites in ROM return to GOM to await the next event. The re-

configuration maneuver (Section 3.5.3), optimal assignment (Section 3.5.4), decision model

(Section 3.5.5), and ROM simulation (Section 3.5.6) processes are described in more detail

in the following sections.

3.5.3 Reconfiguration Maneuver Model

The goal of reconfiguration is to move satellites from GOM to a specific orbital slot in ROM

that provides coverage to a specific ground location. The maneuver consists of an altitude

change in addition to proper phasing to achieve the correct ROM orbit. The maneuver

is modeled as either a single Hohmann transfer or double Hohmann transfer. The double

Hohmann transfer places the satellite in a drift orbit, with a greater altitude difference from

ROM, to speed phasing with the desired ROM orbital slot. All maneuvers are modeled as in-

plane and impulsive. Propulsive plane changes are restricted due to their immense ∆V cost,

and, contrary to intuition, they have not been seen to significantly improve performance.
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Modeling the maneuvers as impulsive implies chemical propulsion. Low thrust, high ISP

electric propulsion could be used for the reconfiguration maneuver, however this thesis is

focused on quick response to short duration events and therefore chemical propulsion systems

are more appropriate. However, the return to GOM after event response could potentially

utilize electric propulsion for higher propulsive efficiency.
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Figure 3-34: The satellite reconfiguration strategy involves two in-plane Hohmann-transfers:
one to move the satellites into a drift orbit for faster phasing with the desired ROM orbital
slot (labeled B), and one to move the satellites into ROM (labeled D).

Figure 3-34 shows the reconfiguration strategy in more detail. The satellite starts off

(label A) with an initial orbital position described by Ω0, M0, and aGOM . The satellite then

performs a Hohmann transfer (label B) with initial propulsive maneuver ∆VT1a and final

propulsive maneuver ∆VT1b to achieve a new semi-major axis of aD = aGOM + ∆hD. The

transfer has a duration of tT1 during which time the orbital state changes by ∆ΩT1 and ∆MT1

by J2 induced orbital precession and mean motion, respectively. The satellite then waits in

the drift orbit (label C) for duration tD during which time the orbital state changes by

∆ΩD and ∆MD. When proper orbital phasing occurs, the satellite then performs a second

Hohmann transfer (label D) with initial propulsive maneuver ∆VT2a and final propulsive

maneuver ∆VT2b to achieve the RGT orbit (label E) with semi-major axis aROM . The

second transfer has a duration of tT2 during which time the orbital state changes by ∆ΩT2
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and ∆MT2. The total reconfiguration time is tR = tT1 + tD + tT2. The rest of this section

explains how the drift time tD is computed to ensure proper phasing to place the satellite

into a ROM orbit that provides RGT coverage for a specific ground location.

Section 3.1.1 introduced how each RGT orbit can be described by the unique angle Λ,

which is a function of the satellite’s orbital state and the RGT type (an integer number of

orbits repeating in an integer number of days):

Λ = NoΩ +NdM (3.53)

For any satellite in GOM, with given Ω, this equation specifies the mean anomaly needed

to achieve the correct RGT as specified by Λ. Additionally, Λ changes with time due to the

effects of mean motion and orbital precession as follows:

Λf = Λ0 +
[
NoΩ̇ROM +Nd

(
nROM + ṀROM + ω̇ROM

)]
tR (3.54)

Where Λ0 is the initial RGT angle, and Λf is the RGT angle at the end of the reconfiguration

maneuver. Using Λf in Equation 3.53, and rearranging for M yields:

Mf =
(Λf −NoΩf )

Nd

(3.55)

Where Λf is the RGT angle at t = tf and Ωf is the satellite’s Ω at time t = tf . This relation

gives the necessary M to achieve the correct ROM orbit including J2 orbital precession

effects. The satellite’s final orbital state (Ωf and Mf ) is dictated by the reconfiguration

maneuver strategy and is determined by the following relations:

Ωf = Ω0 + ∆ΩT1 + ∆ΩD + ∆ΩT2 (3.56)

Mf = M0 + ∆MT1 + ∆MD + ∆MT2 (3.57)

Where Ω0 and M0 is the satellite’s original state, ∆ΩT1 and ∆MT1 is the change in orbital

parameters during the first Hohmann transfer, ∆ΩD and ∆MD change in orbital parameters

during time spent in the drift orbit, and ∆ΩT2 and ∆MT2 is the change in orbital parameters
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during the second Hohmann transfer. Equations 3.56 and 3.57 can then be expanded to:

Ωf = Ω0 + Ω̇T1tT1 + Ω̇DtD + Ω̇T2tT2 (3.58)

Mf = M0 +
(
nT1 + ω̇T1 + ṀT1

)
tT1 +

(
nD + ω̇D + ṀD

)
tD

+
(
nT2 + ω̇T2 + ṀT2

)
tT2 (3.59)

Where tT1 and tT2 are the transfer times for Hohmann transfer 1 and 2 respectively which

are equal to 1
2

the orbital period of the eccentric transfer orbits. Relations for n, Ω̇, ω̇, and

Ṁ were previously given in Equations 3.2, 3.3, 3.4, and 3.5. Given known i, aGOM and

aROM , and ∆hD, then the only remaining variable in the problem is the drift orbit duration

tD. The problem is then reduced to finding the minimum tD that satisfies Equation 3.55.

Selecting different drift orbit altitudes (through the internal variable ∆hD) will change tD,

and will also change the total round-trip reconfiguration ∆V cost given by:

∆VR = ∆VT1a + ∆VT1b + ∆VT2a + ∆VT2b + ∆VT3a + ∆VT3b (3.60)

Where ∆VT3 is the return to GOM ∆V . These ∆V costs are given by:

∆VT1a =

∣∣∣∣
√

2µ

aGOM
− µ

aT1

−
√

µ

aGOM

∣∣∣∣

∆VT2a =

∣∣∣∣
√

2µ

aD
− µ

aT2

−
√

µ

aD

∣∣∣∣

∆VT3a =

∣∣∣∣
√

2µ

aROM
− µ

aR
−
√

µ

aROM

∣∣∣∣

∆VT1b =
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√

2µ

aD
− µ

aT1

−
√

µ

aD

∣∣∣∣

∆VT2b =

∣∣∣∣
√

2µ

aROM
− µ

aT2

−
√

µ

aROM

∣∣∣∣

∆VT3b =
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√

2µ

aGOM
− µ

aR
−
√

µ

aGOM

∣∣∣∣

and where:

aT1 = (2aGOM + ∆alt) /2

aT2 = (aROM + aGOM + ∆alt) /2

aR = (aROM + aGOM) /2

Additionally, the time to first pass tfp in ROM can be calculated as total reconfiguration
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time tR plus the amount of time it takes for the satellite to pass over the event location

after achieving ROM. Therefore, at the expense of higher propellant expenditure operators

can choose a larger ∆alt for faster phasing. These tradeoffs are shown in more detail in the

following section.

Why not consider eccentric orbits?

Eccentric RGT orbits can provide improved GSD imagery for the same aperture size due to a

lower altitude near perigee. Additionally, reconfiguring the satellites into an eccentric RGT

does not need to circularize the orbit and therefore might require less maneuvers. However,

there are several drawbacks to eccentric RGT orbits. First, phasing is much harder since,

not only do the satellites need to be placed into the correct RGT to provide coverage for

the event, but perigee also needs to be placed close to the event location. The difficulty

associated with phasing is a function of the type of GOM orbit used. This phasing is simple

if the GOM orbit is circular, but it is very difficult if the GOM orbit is eccentric. The second

drawback is that the perigee location along the RGT will drift due to orbital precession

unless the inclination is set to one of two critical inclinations (i = 63.435◦,i = 116.565◦)

where ω̇ = 0 in Equation 3.4. For other inclinations, the perigee will drift away from the

event location, and the benefits of using an eccentric orbit will be lost.

Figure 3-35 illustrates some of the tradeoffs associated with eccentric RGT orbits. The

example scenario considered starts with a satellite in a circular GOM orbit with semi-major

axis aGOM = aROM + ∆alt. This satellite then is placed directly into an eccentric RGT orbit

with semi-major axis aROM to satisfy the RGT compatibility criterion in Equation 3.7. The

plot shows contours of the percent improvement of GSD between a circular RGT orbit and

the eccentric RGT orbit as a function of inclination and ∆alt. The figure also shows the

round trip ∆VR for reconfiguration and shows the two inclination regions where the perigee

location drifts less than 1◦ per day. Here it takes a considerable amount of ∆V to achieve

significant GSD improvement, and the inclination range to reduce perigee drift is small. For

comparison, most efficient circular RGT designs have ∆alt values between 1 and 10km.

An eccentric RGT orbit can also provide longer dwell time by imaging at apogee. Here,

the increased dwell time potentially allows for more imaging during a single pass but requires
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Figure 3-35: Contour plot showing the GSD percent improvement (contours) as a function
of inclination and ∆alt. Large round-trip ∆V is needed for significant GSD improvement,
and the inclination range is severely restricted to keep perigee over the event location.

larger optics to provide imagery with the same spatial resolution. Again, assuming that the

GOM orbit is circular (to allow for quick phasing for reconfiguration), Figure 3-36 shows the

dwell time, aperture size, and round-trip reconfiguration ∆V for increasingly eccentric ROM

orbits with εmin = 60◦ and No/Nd = 15/1. As the eccentricity increases, the dwell time

increases, but the round-trip reconfiguration ∆V and aperture size also increase. In this

case, an eccentric orbit with e = 0.0131 increases the dwell time by 16% (65.9s → 76.5s),

but must also increase aperture diameter by 18% (0.308m→ 0.363m) to maintain 1m GSD

and requires 99m/s to complete each round-trip reconfiguration maneuver.

Therefore, while eccentric RGT orbits have the potential to improve the GSD provided

for a given aperture size during perigee viewing or improve the dwell time during apogee

viewing, they require significant increases in ∆V , severely limit possible inclinations, increase

aperture size for apogee viewing, and pose additional phasing constraints. For these reasons,

only circular orbits are considered in this thesis. Future work could further consider the

mission flexibility allowed by eccentric orbits by considering the following scenario. The

reconfigurable constellation could normally utilize circular ROM orbits, but when specific

event responses need either lower GSD or higher dwell time (at the expense of GSD), then

the system could use eccentric ROM orbits.
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Figure 3-36: Apogee viewing in an eccentric ROM orbit increases dwell time as the cost of
increased aperture size and increased round-trip reconfiguration ∆V

3.5.4 Satellite Assignment

The satellite assignment problem must determine for each event response: 1. how many

satellites to reconfigure; 2. which specific combination of satellites to reconfigure; 3. how fast

should the satellites be reconfigured (selection of drift orbit altitude); and 4. which RGT

orbit should each reconfigured satellite be placed in (selection of ascending or descending pass

coverage). Additionally, the assignment process should penalize assignment of satellites that

have less than the average amount of propellant left in the constellation (to avoid premature

propellant depletion of some satellites) and should prevent assignment of satellites that have

run out of reconfiguration propellant or satellites that have failed.

In order to find globally optimal solutions, I have developed an optimization strategy

that optimizes assignment while also concurrently accounting for all of the previously listed

factors. The output from assignment is the direct tradeoff between regional coverage perfor-

mance and total constellation propellant use for each event. This information is then used

to aid decision makers when determining the appropriate level of response, or in the case of

this simulation model, to feed a decision model that mimics the response of a human deci-

sion maker. The decision model is explained in detail in Section 3.5.5. Figure 3-37 shows

the options available for each satellite in the constellation for each event response. Each

satellite can remain in GOM, or can be reconfigured into either an ascending or descending
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pass RGT orbit. If the satellite is reconfigured, then there are many options for the drift

orbit altitude, which is a balance between minimizing fuel use (∆VR) and minimizing time

to first pass (tfp). The difficulty in solving the assignment problem is the immense size of

the decision space. Each satellite has many reconfiguration options, and any combination of

satellites along with their reconfiguration options leads to an extraordinarily large decision

space.

Initial State (GOM)

Remain in GOM

Ascending/ 

Descending 

Pass RGT

Drift Orbit 

Altitude Options

Final State

Figure 3-37: There are many reconfiguration options available to each satellite in the con-
stellation

The assignment optimization process that I have developed is depicted in Figure 3-38.

Inputs to the process include the satellites’ current orbital state, propellant levels and the

event location (ϕ, λ). The next few sections will detail each of the process steps.

Step 1: Compute Pass Times

The first step in the process involves computing the pass times for ascending and descending

pass coverage for each satellite. This is a function of the satellite Ω and details for this

process were previously provided in Section 3.1.2.

Steps 2 & 3: Determine Non-dominated Satellite Reconfiguration Options

The second step in the assignment process is to calculate the total time to first pass tfp

vs. ∆VR tradeoff curves. The process begins by constructing a vector of possible drift
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Figure 3-38: Satellite assignment process diagram

orbit altitudes
−−→
∆hD, guided by parameters controlling the maximum altitude offset and

granularity. For this thesis these values have been fixed at ±100km and 10km, respectively,

yielding
−−→
∆hD = [−100 : 10 : 100]. Next, several filtering steps remove infeasible options. If

the drift orbit lies between GOM and ROM, then this will provide longer tfp for the same

∆VR (since phasing will be slower) and is removed from
−−→
∆hD. Also, if the resulting aD is

greater than the maximum altitude constraint, or if aD is less than the minimum altitude

constraint, then the option will also be removed from
−−→
∆alt. Once the pre-filtering steps

are complete then tfp and ∆VR are found for each value in
−−→
∆hD for both ascending and

descending pass RGT coverage. Section 3.5.3 described how tfp and ∆VR are determined

given the satellite state, the target location, and the drift orbit altitude.

Example curves for a case where aGOM is 20km higher than aROM are displayed in Figure

3-39. The ROM orbital altitude is plotted as a vertical dashed line at ∆hD = −20km. In the

top plot, which shows drift time (tD) vs. ∆hD, we see that the drift orbits lower than ROM

provide faster phasing for ascending RGT orbits and drift orbits higher than ROM provide
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Figure 3-39: The drift time (tD), time to first pass (tfp) and ∆VR as a function of ∆hD for
ascending and descending pass RGT orbits for an example case where aGOM is 20km higher
than aROM

faster phasing for descending RGT orbits. The middle plot shows time to first pass (tfp) vs.

∆hD. Here we see that in some cases, increasing ∆hD decreases tD but does not decrease

tfp and, therefore, consumes more ∆V with no added benefit. tD and tfp are different for

ascending and descending RGT orbits since the satellites must achieve different orbital slots

during phasing. In the bottom plot, we see that ∆VR is nearly a linear function with ∆hD

and has a constant bottom value between aGOM and aROM . This bottom value of ∆VR is

simply the amount of ∆V required to go from GOM to ROM and back. It is also clear

from these plots that there is no benefit for placing the drift orbit in between GOM and

ROM since phasing will be slower for no reduction in ∆VR, and, therefore, these options are
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filtered out in the pre-filtering step explained previously.

The third step in the assignment process is to eliminate the dominated solutions in

the tfp vs. ∆VR tradeoff. A dominated solution is one where another option provides

either the same or lower tfp, while simultaneously providing the same or lower ∆VR. This

process is illustrated in Figure 3-40. The top plot shows tfp vs. ∆VR for all reconfiguration

options shown previously in Figure 3-39, and the bottom plot shows only the non-dominated

reconfiguration options. This process is then repeated for all satellites in the constellation

to create a list of all non-dominated satellite reconfiguration options.
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Figure 3-40: Tradeoff between minimizing time to first pass and minimizing reconfiguration
propellant usage. The top plot shows all options, while the lower plot only shows non-
dominated options for the ascending and descending RGT orbits.

Step 4: Add Penalty Function

The fourth step in the assignment process applies a penalty function to penalize assignment

of satellites that have less than the average propellant remaining in the constellation. It

also blocks assignment for satellites that have run out of reconfiguration propellant or have

experienced failures. The reconfiguration cost is defined as the sum of the reconfiguration
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∆V and a penalty term:

CR = ∆VR + ∆Vpen (3.61)

(3.62)

Where ∆Vpen is governed by the following penalty function:

∆Vpen,i = −min

(
0, ∆Vsat,i −

1

NT

NT∑

k=1

∆Vsat,k

)
Gpen (3.63)

(3.64)

Where ∆Vsat,i is the ith’s satellite remaining reconfiguration ∆V and Gpen is a penalty func-

tion gain which is set to 0.1. Gpen can be used to control how tightly satellites are kept at

the same propellant level. The penalty function works by increasing the satellite reconfig-

uration cost proportional to the difference in its remaining reconfiguration ∆V compared

to the average remaining reconfiguration ∆V in the constellation. Additionally, no penalty

is applied for satellites with higher than the average propellant left. With Gpen = 0.1, the

applied penalty is 10% of the difference between the satellite’s remaining reconfiguration ∆V

and the average reconfiguration ∆V of the satellites in the constellation.

Step 5: Solve Optimum Assignment Problem

The fifth step in the assignment process is to determine the optimum assignment of satellites

to be reconfigured. The problem to be solved is what is the best combination of m satellites,

out of NT total satellites in the constellation that provides the minimum cost to benefit

ratio for providing coverage of the regional event. Additionally, each satellite has many

reconfiguration options including the type of RGT (ascending or descending) and drift orbit

altitude. This decision space is extremely large. Without filtering out dominated solutions,

the number of reconfiguration options for each satellite is equal to (1 + 2N∆hD), where N∆hD
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is the size of
−−→
∆hD. The total decision space for reconfiguring k of NT satellites is then:

ND,k = (1 + 2N∆hD)k
(
NT

k

)
(3.65)

Where
(
NT
k

)
are the complete set of combinations for choosing k satellites out of NT total

satellites and is equal to NT !
k! (NT−k)!

. For example, if we wanted to only reconfigure one satellite,

the size of the decision space would be equal to the number of reconfiguration options for

each satellite times the constellation size. If
−−→
∆hD = [−100 : 10 : 100] then N∆hD = 21 and

the number of reconfiguration options for each satellite is 43. The total decision space for

reconfiguring any number of satellites out of NT is then:

ND =

NT∑

k=1

[
(1 + 2N∆hD)k

(
NT

k

)]
(3.66)

The size of the decision space increases rapidly as the constellation size increases as shown in

Table 3.6. In practice, after filtering dominated options, the decision space will be smaller.

However, even if the number of non-dominated solutions is around 5 total per satellite (if

(1 + 2N∆hD) = 5), the total non-dominated decision space ND,nd is much smaller as shown

in Table 3.6, yet still unpractical for enumeration (brute force) based optimization schemes.

Table 3.6: Decision space size as a function of constellation size

NT ND ND,nd

2 1935 35

4 3.8× 106 1300

8 1.4× 1013 1.7× 106

12 5.3× 1019 2.2× 109

24 2.8× 1039 4.7× 1018

48 7.7× 1078 2.2× 1037

A dynamic programming based optimization approach was developed to overcome this

immense computational burden. Essentially, dynamic programming performs enumeration,

but greatly improves computational efficiency by not evaluating branches in the full-factorial

tree that are known to be dominated. This process is called ‘implicit enumeration’, which
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means that the entire decision space is searched implicitly. The algorithm is guaranteed to

find the global optimum when correctly implemented. Dynamic programming breaks the

optimization process down into simpler subproblems that are solved sequentially, and results

from earlier subproblems are used to solve later subproblems. More background on dynamic

programming can be found in published literature [19].

The basic building blocks of dynamic programming are stages and states. Each stage

corresponds to a separate subproblem and contains a set of states, which are particular

assignments. For the satellite assignment problem, the stages are how many of the satellites

in the constellation are to be reconfigured (index k in Equation 3.66). At each stage, the goal

is to minimize the reconfiguration cost (CR) divided by the predicted utility generated during

event response (U). This utility is the predicted performance due to persistence without GSD

effects (see Section 3.6.1). Table 3.7 shows the reconfiguration options for a three satellite

example. The options are a combined list of all non-dominated reconfiguration options for

each satellite. The options list contains the option identifier in the first column, the satellite

ID number, the type of RGT orbit (ascending or descending), the initial pass time θLMT in

local solar time for the event location, the time to first pass tfp, and the reconfiguration cost

CR from Equation 3.61.
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Figure 3-41: Dynamic programming optimization breaks the problem into a series of simpler
subproblems to dramatically reduce computational complexity

The dynamic programming optimization starts off in stage 1 where the goal is to select

one satellite from the constellation that minimizes CR/U . Figure 3-41 illustrates the process
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Table 3.7: Dynamic programming states for a 3 satellite example

Option Satellite RGT Type θLMT tfp CR CR/U ∆VR
hr hr m/s

O1 1 A 0.97 24.97 11.10 - 11.10
O2 1 D 7.70 7.70 44.57 22.28 44.57
O3 1 D 7.70 31.70 11.10 11.10 11.10
O4 2 A 8.95 104.95 26.47 26.47 25.36
O5 2 A 8.95 80.95 37.51 18.75 36.39
O6 2 A 8.95 56.95 48.52 16.17 47.41
O7 2 A 8.95 32.95 81.41 20.35 80.30
O8 2 D 15.69 111.69 26.47 2.94 25.36
O9 2 D 15.69 87.69 37.51 3.75 36.39
O10 2 D 15.69 63.69 48.52 4.41 47.41
O11 2 D 15.69 39.69 70.47 5.87 69.36
O12 3 A 16.95 112.95 25.36 2.82 25.36
O13 3 A 16.95 88.95 36.39 3.64 36.39
O14 3 A 16.95 64.95 47.41 4.31 47.41
O15 3 A 16.95 40.95 69.36 5.78 69.36
O16 3 D 23.69 119.69 25.36 - 25.36
O17 3 D 23.69 71.69 36.39 - 36.39
O18 3 D 23.69 47.69 58.39 - 58.39
O19 3 D 23.69 23.69 102.11 - 102.11

for a three satellite constellation example. The algorithm utilizes the states in the previous

stage as a starting point to determine the collection of states comprising the current stage.

Initially, the first stage is populated with each reconfiguration option as shown in Figure

3-41a, and the number of states is equal to the number of reconfiguration options. In stage

2, the goal is find the minimum cost to utility assignment by combining the states in stage

1 with each of the reconfiguration options. In stage 2, the algorithm starts off with state

1 where it evaluates the cost and performance of combining each state in stage 1 with

reconfiguration option 1. The combination with the minimum ΣCR/U is then selected to

be state 1 in stage 2. The cost is defined as the sum of each satellite’s reconfiguration cost
∑
CR and the utility is a function of the predicted pass times and is computed using the

method explained in Section 3.6, without the GSD term. Additionally, satellites can only

be assigned once and therefore some states are not valid and are excluded from the decision

space. Figure 3-41b shows that the minimum cost assignment for state 1 in stage 2 for

the three satellite example is to use reconfiguration options O12 and O1. This process is
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repeated for all remaining states in stage 2 and then all stages in the assignment problem.

Table 3.8 shows the completed dynamic programming state space including the cost,

performance, and ΣCR/U ratio for the three satellite example problem. States that are not

valid are denoted by dashes and we see that the number of valid states diminishes as the

stages increase. Once the dynamic programming optimization is complete, and the states

are found for each stage, then the state in each stage that has the minimum ΣCR/U value

is the optimal assignment for the stage. Table 3.8 shows that the minimum ΣCR/U value of

the optimum assignment increases with increasing stages. For stage 1, the minimum ΣCR/U

is 2.8, for stage 2 it is 2.9 and for stage 3 it is 3.3. This diminishing returns effect is intuitive

since the best satellites will be assigned earlier and as more satellites must be assigned,

efficiency will decrease.

Table 3.8: Dynamic programming states for a 3 satellite example

State Stage 1 Stage 2 Stage 3
U ΣCR ΣCR/U U ΣCR ΣCR/U U ΣCR ΣCR/U

1 O1 0.0 11.1 - O12,O1 9.0 36.5 4.1 O12,O8,O1 18.0 62.9 3.5
2 O2 2.0 44.6 22.3 O12,O2 11.0 69.9 6.4 O12,O8,O2 20.0 96.4 4.8
3 O3 1.0 11.1 11.1 O12,O3 10.0 36.5 3.6 O12,O8,O3 19.0 62.9 3.3
4 O4 1.0 26.5 26.5 O12,O4 10.0 51.8 5.2 - - - -
5 O5 2.0 37.5 18.8 O12,O5 11.0 62.9 5.7 - - - -
6 O6 3.0 48.5 16.2 O12,O6 12.0 73.9 6.2 - - - -
7 O7 4.0 81.4 20.4 O12,O7 13.0 106.8 8.2 - - - -
8 O8 9.0 26.5 2.9 O12,O8 18.0 51.8 2.9 O12,O3,O8 19.0 62.9 3.3
9 O9 10.0 37.5 3.8 O12,O9 19.0 62.9 3.3 O12,O3,O9 20.0 74.0 3.7
10 O10 11.0 48.5 4.4 O12,O10 20.0 73.9 3.7 O12,O3,O10 21.0 85.0 4.0
11 O11 12.0 70.5 5.9 O12,O11 21.0 95.8 4.6 O12,O3,O11 22.0 106.9 4.9
12 O12 9.0 25.4 2.8 O8,O12 18.0 51.8 2.9 - - - -
13 O13 10.0 36.4 3.6 O8,O13 19.0 62.9 3.3 - - - -
14 O14 11.0 47.4 4.3 O8,O14 20.0 73.9 3.7 - - - -
15 O15 12.0 69.4 5.8 O8,O15 21.0 95.8 4.6 - - - -
16 O16 0.0 25.4 - - - - - - - - -
17 O17 0.0 36.4 - - - - - - - - -
18 O18 0.0 58.4 - - - - - - - - -
19 O19 0.0 102.1 - - - - - - - - -

The output of the dynamic programming process is then condensed into a plot showing

the cost and predicted utility corresponding to the lowest ΣCR/U assignment for each stage.

Figure 3-42 shows these results for a 12 satellite assignment. The plot includes the optimal

assignment of each stage as well as the option to not reconfigure any satellites giving zero

predicted utility and zero reconfiguration cost. As the number of satellites reconfigured

increases, the total reconfiguration ∆V increases steadily while the increase in utility starts
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leveling off. This is caused by the situation where satellites able to provide the best coverage

are assigned first and as more satellites are assigned, the ability of these additional satellites

to provide coverage is reduced creating diminishing returns. A decision maker can then

utilize this information to determine the appropriate balance between performance and cost

to respond to the given event. Alternatively, in the place of a decision maker, a decision

model equipped with decision rules can automatically select the assignment. This process is

discussed in Section 3.5.5.
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Figure 3-42: Dynamic programming output for a 12 satellite example constellation

The dynamic programming-based optimization approach significantly reduces compu-

tational complexity. Table 3.9 shows the time it takes to solve for the optimal assign-

ment with enumeration and dynamic programming as a function of constellation size for

(1 + 2N∆alt) = 5 on an Intel Core i5-2410M processor. Enumeration is faster for small con-

stellation sizes due to computational overhead required to set up dynamic programming.

However, as the constellation size increases, dynamic programming provides a significant

reduction in computation time while still ensuring that the global optimal solutions are

found. The dynamic programming assignment process is validated through comparison with

enumeration for small constellation sizes in Section 3.7.
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Table 3.9: Dynamic programming optimization drastically reduces computational complexity

NT Enumeration DP

2 0.006s 0.019s
4 0.24s 0.026s
8 314s 0.059s
12 4.7hr 0.12s
24 2.7× 107yr 1.5s
48 1.3× 1026yr 23s

Steps 6 & 7: Select Desired Level of Performance and Maneuver Assigned Satel-

lites

For each event response, the dynamic programming optimization process gives decision mak-

ers the optimal tradeoff (for each event response) of generating utility for the current event

and preserving constellation capability for later events. Using this information, the decision

makers must then select the appropriate level of response (step 6) and then reconfigure the

assigned assets (step 7). To enable optimization, a decision model is implemented to mimic

decision maker preferences. Details on the decision model are provided next in Section 3.5.5.

3.5.5 Decision Rules for When and How to use Flexibility

In an operational system, human decision makers would use the dynamic programming

output to decide how many satellites to reconfigure for each event. However, this decision

making process needs to be automated in order to support the optimization process. In

this thesis, an automated weight-based decision model is utilized to mimic decision maker

preferences and allow for rapid assignment in the simulation model. This section details how

the decision model is implemented.

Two characteristics of the decision making process are captured in the decision model.

The first recognizes that there are two primary competing objectives facing the decision

maker: providing coverage for the current event and conserving system resources (propellant)

for later event responses. The second recognizes that the decision maker will likely alter

their preferences based on the current state of the system and changes in the future outlook.

The decision model converts the two competing objectives (coverage now vs. conserving
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propellant) into a single objective function using a weighting variable. This objective, to be

maximized, is then written as:

J = −α
∑

(∆VR) + (1− α)U (3.67)

Where J is the objective,
∑

(∆VR) is the total reconfiguration ∆V across all satellites, U is

the total event utility, and α is the decision model weight variable. In an operational system,

the decision maker would have to balance the use of resources so that the system would not

run out of propellant early, or have unused propellant at the end of the design lifetime. The

α variable is similar. Very high α values place too much emphasis on conserving propellant,

likely leaving unused propellant in the satellites at system end of life. This will correspond

to lost opportunity for generating utility. Conversely, very small α values place too much

emphasis on generating utility. This will cause the system to run out of propellant early

and the system will then be unable to effectively respond to later events. To avoid selecting

α a priori, I decided early on to include α in the design vector letting the optimization

process select the appropriate α for a given design optimized for a specific mission scenario.

In this way, the optimization process will likely select α so that most of the reconfiguration

propellant is used for event response.

The second characteristic that the decision model needed to capture was that as informa-

tion regarding propellant use becomes known during the system lifetime, the decision maker

might change their preferences. To model this behavior, α is continuously adapted during

the regional simulation based on propellant use. Assuming that the propellant would be

used at a constant rate during the system’s lifetime then the adapted α is given as:

α =





min [(−δPGDM + 1)α0, 1] δP ≥ 0

α0/ (δPGDM + 1) δP < 0

δP is related to the difference between the predicted and actual remaining propellant, GDM

is a gain term controlling how responsive the decision maker is to changing α based on new

information, and α0 is the initial weighting which is a design variable in the decision vector.
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δP is calculated by comparing the actual remaining propellant with an estimate of how much

propellant should be remaining. This estimate is based on assuming a constant depletion of

propellant during the system’s lifetime. If δP > 0 then the system is using propellant at a

slower rate than expected and α can be decreased for future events to avoid having excess

propellant at the end of the system lifetime. If δP < 0 then the system is using propellant

faster than expected and α should be increased so that the system does not run out of

propellant early. δP , normalized to the interval -1 to 1 is given as:

δP =

(
∆Vsat − κ∆Vrecon

)

∆Vrecon
(3.68)

Where ∆Vsat is the average satellite reconfiguration propellant remaining, ∆Vrecon is the

starting reconfiguration propellant, and κ is the fractional remaining lifetime of the constel-

lation. Figure 3-43 shows how α varies as a function of δP for three different gains with

α0 = 0.5. Here we see that when the constellation is using propellant faster than predicted

(corresponding to δP < 0), α is increased to place more emphasis on conserving ∆V . When

the constellation is using propellant slower than predicted (corresponding to δP > 0), α is

decreased to place more emphasis on generating event response performance. We also see

that as the gain increases, the model changes α more dramatically which results in the pro-

pellant use more closely matching a constant depletion rate. I have set GDM = 3 for the

work in this thesis.

Once α is determined, then the decision model objective function can be calculated using

Equation 3.67. Figure 3-44 shows J for three different α weightings for the assignment

output introduced in Figure 3-42. In this example, when α = 0.08, J is maximized when

10 satellites are reconfigured. As α increases, and more emphasis is placed on conserving

propellant, the number of satellites that maximizes J reduces. When α = 0.4, zero satellites

are reconfigured and regional coverage is only provided from GOM.

The design variable α0 is part of the constellation design and should inform the decision

maker as to what weightings should be used operationally in order to maximize system

performance. The reasoning behind this is that the optimization process designed the system

to perform well over the range of uncertain parameters with the specific value of α0. In the
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Figure 3-43: The decision model gain controls how closely the constellation follows the
linear propellant depletion. Large gain means that α will be adjusted more to ensure that
the constellation is using propellant at a constant rate throughout the lifetime

case where no additional information is gathered, changing α0 will only yield sub-optimal

system performance. It is likely, that new information regarding the system and future event

probabilities will arise, in which case a new optimization should be performed to determine

the new α0 weighting that should be used. Additionally, the optimal α0 for a given design is

only applicable to the specific mission scenario considered during optimization. If a different

mission scenario is investigated, the system will need to be re-optimized, likely changing the

value of α0.

3.5.6 ROM Simulation & Return to GOM

After satellite assignment, the satellite reconfiguration maneuvers are modeled and regional

event access times by the constellation are computed for the duration of the event response.

Numerical propagation and access calculations were the same as was used for GOM coverage

calculations (Section 3.5.1) except that a timestep of 20 seconds was used to keep errors

generally less than 0.3% (see model validation in Section 3.7).

After the event response is over, the satellites are then returned to GOM via a single

Hohmann transfer to await the next regional event response. In most cases, some satellites

will have remained in GOM and will have experienced different orbital precession rates.

When returning to GOM, the satellites return back to their original M position; however,
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Figure 3-44: The decision model weight directly affects how many satellites should be re-
configured to minimize the objective J . In this example, α = 0 results in zero satellites
reconfigured while α = 0.08 results in 10 satellites reconfigured.

the difference in Ω will be left uncorrected. This will cause the initial constellation pattern

to decay slightly over time. This approach is used for two reasons: 1. the Ω drift is small,

and 2. restoring the satellites to their initial position would cost additional propellant use.

Since differential orbital precession is limited by the short time spent in ROM, the Ω dif-

ference is guaranteed to be small. Also, each of the satellites will eventually execute many

reconfigurations, and, therefore, the Ω differences will tend to cancel out. Correcting for

Ω differences would require a net increase in ∆V since the ROM satellites would need to

maneuver to a drift orbit that would exhibit Ω̇ with a reversed sign. This means that if

the ROM altitude were lower than GOM, then the drift orbit would have an altitude higher

than GOM to restore the satellites to their initial GOM position. Figure 3-45 shows the Ω

drift of twelve satellites through 20 regional responses. The Ω shift is the difference between

the current satellite Ω and the Ω that would preserve the initial GOM constellation pattern,

referenced to the key satellite. It should be noted there that the entire GOM constellation

pattern will be shifted slowly over time. We see that the satellites stay within a few degrees

of their initial GOM position with minimal performance degradation.
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Figure 3-45: The amount of drift in Ω caused by not correcting for relative orbital precession
during event responses is small

Why not just stay in ROM to await the next event?

An alternative strategy would leave the reconfigured satellites in ROM to await the next

regional event. If the next event happened to be covered by the current RGT, then the

satellite would already be in position to provide coverage with no propellant expenditure.

While this sounds attractive, there are several drawbacks to this approach. The first draw-

back is that the partial global coverage provided by the constellation when not responding

to an event would likely degrade. The second drawback is that the satellites will then be

at different orbital altitudes for a significant amount of time. This will cause large relative

drift (in terms of Ω), which would likely cause bunching of satellites in Ω. This would result

in less diversity in pass time options for future event responses, which would lead to worse

persistence. The third drawback is that it is unlikely that the next regional event location

will be on the current RGT. In one case there is still coverage provided, but at off nadir

viewing angles and therefore lower resolution. In a second case, there is no coverage pro-

vided by the current RGT and the satellite will need to maneuver to a drift orbit to allow

for proper phasing, which diminishes any propellant savings by remaining in ROM in the

first place. It is because of these drawbacks that the strategy employed in this thesis is to

have all reconfigured satellites return to GOM after the event response is complete.
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3.6 Performance

Regional event accesses           
(coverage times and GSD)

Desired persistence & GSD

Performance

Performance Metric
Performance

Figure 3-46: The performance module computes the constellation’s aggregate performance
given the computed ROM coverage statistics and the desired persistence and GSD

The objective of the Earth observing optical satellite constellations investigated in this

thesis is to provide persistent coverage of regional events, where persistence is defined as

long-term, continuing coverage with a specified frequency of observation. Therefore, a per-

formance metric must capture how well the constellation matches the desired persistence.

If the provided coverage under-samples with respect to the desired persistence, then some

temporal event dynamics will be missed, and overall performance should decrease. If the

provided coverage over-samples with respect to the desired persistence, then all the tempo-

ral event dynamics will be captured, but little or no additional utility may be gained for

oversampling. In this case the performance should not increase beyond ideal sampling. Ad-

ditionally, the performance metric must also account several other factors influencing optical

imaging quality including solar illumination and spatial resolution. This section will first

motivate the need for a new performance metric tied directly to persistence and then will

detail how the metric is constructed.

Statistical metrics such as average and maximum revisit time are often used to evaluate

the performance of discontinuous coverage satellite constellations. However, these metrics

exhibit several undesirable traits stemming from their statistical underpinnings that make

them poor measures of persistence. Previous literature [224, 225, 119, 74] has shown that the

two objectives of average and maximum revisit time are often in tension and that optimizing

one often degrades the other. This basic tension illustrates how these statistical measures

fail in measuring persistence. Minimizing average revisit time involves simply increasing

the number of observations in some fixed time window regardless of when they occur. The

maximum revisit time simply measures the longest gap in coverage and does not account for
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any of the other coverage information. Recently, response time, which measures the mean

time to access in a given time period, has been proposed as a better measure of persistence

[165]. This metric provides significant improvements over average and maximum revisit time,

but it is still statistical in nature and, therefore, cannot easily incorporate additional factors

like spatial resolution. Instead, I propose a new metric that takes a micro-scale approach

to measuring persistence and can easily incorporate illumination constraints and spatial

resolution effects. The new performance metric, which I term the ‘Persistence Metric’, is

comprised of two utility functions: the first measures how well the desired persistence is met;

and the second measures how well the desired spatial resolution is met. I will first describe

the persistence (temporal resolution) term in Section 3.6.1 and then I will introduce the

spatial resolution term in Section 3.6.2.

3.6.1 Persistence Metric

U
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Time Since Last Observation (τ)
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Figure 3-47: The temporal utility function term in the persistence metric assigns utility for
a specific observation based on how well the time since the last observation matches the
desired time between observations

The temporal term in the persistence metric is comprised of a utility function based on

the time elapsed since the last observation. The utility function is described mathematically

by:

Uτ = min
([ τ
T

]
, 1
)

(3.69)
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Where T is the desired temporal resolution and τ is the time since last observation. This

utility function, shown in Figure 3-47, starts off at 0 when τ = 0 and ramps up to a maximum

value of 1 when τ is equal to the desired characteristic time constant T . Therefore, if the

scene was recently sampled, then the utility for the current observation would be low. If

τ ≥ T , then the utility for the current observation is set to 1 regardless of the size of τ . While

this may seem counterintuitive, there is an opportunity cost associated with undersampling,

since the objective is to maximize the utility generated in a fixed time period. Any period

where the utility is not accumulating is, therefore, lost opportunity in terms of maximizing

the total utility generated during an event. The total utility for n observations is then given

as the sum of each individual observation utility Uτ,i:

Uτ =
n∑

i=1

(Uτ,i) (3.70)
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Figure 3-48: The persistence utility function changes throughout the day based on when
observations occur

Figure 3-48 shows an example that illustrates how coverage performance is calculated

for four observations made in one day with a desired revisit time of T = 2hr. The plot

shows utility as a function of local time of day. For this example, only coverage between

8am and 4pm is desired for solar illumination reasons and, therefore, any coverage outside

of this time window has zero utility. The allowable observation window is a function of the

type of information collected by the satellites and future work can change or eliminate this

window when considering infrared and synthetic aperture radar missions. Additionally, the
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effect of weather on observation utility is not modeled and should be investigated in future

work. The first observation occurs at 9am and, since this is the first observation of the day

and τ is undefined, the utility is set to 1 giving U1 = 1. After the first observation, the

utility for subsequent coverage increases until τ = 2hr at which time it levels out at 1, which

occurs at 11am. The second observation occurs at 11:30am giving τ2 = 2.5hr and, therefore,

U2 = 1. The third observation occurs shortly after at 12:30pm giving τ3 = 1hr and U3 = 0.5.

The last observation for the day occurs at 2pm giving τ4 = 1.5hr and U4 = 0.75. The total

utility is then Utot = U1 + U2 + U3 + U4 = 3.25 out of a maximum of 5 if there were five

observations starting at 8am and spaced every 2 hours. In this way, the persistence metric

takes a micro-scale approach to measuring how well coverage matches the desired observation

frequency.

a) Ideal Sampling

c) Over Sampling

b) Under Sampling

d) Ideal with Missed Pass

e) Random Sampling

f) Clustered Sampling

Average Revisit Time

Max Revisit Time

Response Time

Persistence

Performance (normalized to ideal)

Figure 3-49: The persistence metric is not skewed by statistical outliers that plague tradi-
tional metrics like average and maximum revisit time

I now compare this new persistence metric with the traditional metrics of average revisit

time, maximum revisit time, and response time. Average revisit time (including end gaps)

is given by: Tsamp/n where n is the number of observations and Tsamp is the time period
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duration. Maximum revisit time (including end gaps) is given by the longest gap in coverage

during Tsamp. The response time metric measures the mean time to access in a given time

period and is based on the probability density function of the gap times [165], and mean

response time is given as: x̄ = 1
2Tsamp

∑n
i=1 (τ 2

i ).

Figure 3-49 shows a comparison of the four metrics for a number of different daily ob-

servation scenarios. The first scenario (a) is the ideal coverage scenario where observations

are made with a time between observations of τ = T as shown to the left of the figure.

The performance, given by the four metrics, is displayed on the right side of the figure and

is normalized to the ideal sampling scenario. The larger the horizontal bar, the better the

performance given by the respective metric. For the ideal scenario, all metrics give the same

value due to normalization. For the second scenario (b), where the scene has been under

sampled and τ = 2T , the four metrics all give roughly half the ideal performance. In the

third scenario (c), where the scene has been over sampled and τ = 1
2
T , the first three metrics

give roughly twice the ideal performance, while the persistence metric gives the same perfor-

mance as the ideal scenario. This highlights the first flaw of the traditional metrics, which is

that they overestimate performance for oversampling. The fourth scenario (d) is identical to

the ideal scenario, except that one of the observations is missing. For this case, performance

would be expected to be slightly lower than ideal performance given that coverage with the

desired persistence is provided for most of the day. While most of the metrics show this

trend, the maximum revisit time metric gives greatly reduced performance. Here we see the

flaw with the maximum revisit time metric, in that it is only governed by the largest gap in

coverage and ignores the rest of the observations entirely. The last two scenarios (e and f)

show what happens when the times of 9 observations are randomized. Both show the major

flaw of average revisit time that it is only governed by the number of observations in a fixed

time period. This is why the average revisit time performance for these two scenarios is iden-

tical to the ideal scenario despite the significant clustering of observations, and, therefore,

less than ideal persistence.

Overall, these examples show how macro-scale statistical metrics like average and maxi-

mum revisit time are often misleading in terms of measuring persistence. The response time

metric displays a response similar to the persistence metric with the exception of the over-
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sampling case. While this could be corrected for, the primary advantage of the micro-scale

persistence metric over the macro-scale response time metric is its potential for extensibility.

The persistence metric can be tailored in many ways including: a) modifying the curve to

reward over sampling; b) scaling utility as a function of solar elevation angle; and c) adding

in a term for spatial resolution. I will briefly discuss a and b as possible extensions to this

thesis work before going into detail on c (in Section 3.6.2) which is implemented in this

thesis.

Modifying the utility function to reward over sampling

The implicit assumption in the persistence metric is that all of the temporal information

content is acquired when sampling at the desired observation period T and no additional

information is gathered in the case of over-sampling. This is the case when the entire target

area can be imaged during a single observation. However, in the case where there is some

additional utility for over-sampling, the persistence metric can be modified by adding a

parameter p which alters the utility curve as follows:

Uτ = min
([ τ
T

]p
, 1
)

(3.71)

The value of p can be determined by finding the marginal increase in utility ∆U for over

sampling by a factor of two as follows:

p =
ln (0.5 + 0.5∆U)

ln (0.5)
(3.72)

P ≈ 0.8 when ∆U = 0.15, which corresponds to a 15% increase in utility for doubling the

sampling frequency. The utility curves with p values of 1, 0.8 and 0.3 are shown in Figure

3-50. The analysis in this thesis is limited to p = 1 and leaves the investigation of other p

values for future work.

137



U
τ

Time Since Last Observation (τ)

p = 1

p = 0.3

p = 0.8

0 T

0

1

Figure 3-50: The parameter p causes the persistence utility curve to shift upward to reward
oversampling

Scaling utility as a function of solar elevation angle

The second potential extension of the persistence metric would account for the effect of solar

elevation angle on observation quality, and, therefore, utility. Solar elevation angle is the

angle difference between the sun vector and the local horizontal. Larger solar elevation angles

yield better imagery by increasing illumination intensity and reducing shadows. Figure 3-

51 shows two potential solar elevation angle utility curves. The window function, where

observations only have utility in a fixed time window, was used earlier and is shown as the

shaded regions in Figure 3-48. A second method uses a utility curve based on the cosine

of the solar elevation angle, which corresponds to the intensity of the solar illumination.

This utility function is shown as the dashed curve in Figure 3-51. An example of four

observations (similar to what was presented in Figure 3-48) using this solar utility curve is

shown in Figure 3-52. The analysis in this thesis is limited to the rectangular window case

and leaves investigation of the solar elevation angle utility for future work. Additionally,

future work could also construct other solar illumination utility functions to accommodate

other mission scenarios (e.g.missions where imagery with near-constant shadow conditions

that allow analysts to better characterize imagery).
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Figure 3-51: While the rectangular window function is used in this thesis, a more detailed
window function based on solar elevation angle could be easily implemented to reward ob-
servations made around local noon
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Figure 3-52: Same four observations as plotted in Figure 3-48 with the solar elevation angle
window function applied

3.6.2 Persistence Metric with GSD

The third extension of the persistence metric accounts for differences in spatial resolution also

known as ground sample distance (GSD). Most literature on satellite constellation design

does not account for GSD differences, other than imposing fixed requirements. The analysis

in this thesis, however, deals with satellites at different altitudes (caused by the GOM and

ROM modes of operation and layered constellations) and also satellites that ensure nadir

passes in ROM (for reconfigured satellites). Therefore, it is important to include the effect

of GSD on performance.

GSD affects the information content contained in optical imagery. Similar to an event
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having a desired sampling rate, the event will also have a desired GSD which will be driven by

the end data product. Rather than the usual method of enforcing strict GSD requirements, I

introduce a GSD based utility function matched to the degradation in the optical information

content as GSD increases past the desired GSD. This degradation is matched to the change

in the National Imagery Interpretability Rating Scale (NIIRS) as predicted in the General

Image Quality Equation (GIQE) [123, 196]. The GIQE predicts that the change in NIIRS

based on increasing GSD (assuming good sharpness) is given by [196]:

∆NIIRS = −3.32log10

[ x
X

]
(3.73)

Where X is the desired GSD and x is the actual achieved GSD. The GSD utility function is

then given as a function of ∆NIIRS as follows:

UGSD = min

(
max

(
1− ∆NIIRS

δ
, 0

)
, 1

)
(3.74)

Where δ is a scaling parameter that maps the drop in UGSD to the drop in NIIRS, so that

UGSD = 0 when x ≥ 2δX. For this thesis I use δ = 2 meaning that UGSD = 0 when x/X = 4.

This means that the utility is zero when actual GSD is four times greater than desired GSD.

Figure 3-53 shows the GSD utility curve as a function of x/X. The plot shows that UGSD = 1

when x ≤ X and UGSD = 0 when x ≥ 4X. When X ≤ x ≥ 4X, the utility is governed by

the scaled NIIRS relation. This spatial resolution utility function exhibits similar behavior

to the persistence utility function with no additional utility generated through spatial over-

sampling.

The temporal and spatial resolution terms (Equations 3.71 & 3.74, respectively) are then

combined to form the complete persistence metric with GSD effects, which can be written

for the ith observation as:

U (τi, xi) = Uτ,i × UGSD,i (3.75)

The combined persistence utility surface (in terms of τ/T and x/X) is shown in Figure

3-54. Here we see that: the utility is 1 when x ≤ X and τ ≥ T ; the utility is 0 when x ≥ 4X
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Figure 3-53: The GSD utility function is a function of the ratio of the actual to desired
spatial resolution. The curve is plotted for δ = 2

or τ = 0; and the utility is on the interval 0→ 1 otherwise.
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Figure 3-54: Combining the persistence utility function with the GSD utility function creates
a two dimensional utility surface

Ensuring Symmetry

There is an inherent problem in combining the temporal and GSD utility curves, explained

with an example illustrated in Figure 3-55. The example consists of two observation scenarios

providing coverage for a target that has a desired revisit time of 1hr and desired GSD of 1m.

The first scenario contains two observations (A and B) as plotted on the utility surface in
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Figure 3-55: Three observations (A, B, B′) plotted on the persistence utility surface (left)
and observation details (right)

Figure 3-55 (left). Observation A provides 1.8m GSD while observation B occurs 0.2hr later

and provides 1.0m GSD. Since A is the first observation of the day, the temporal utility is 1

while the spatial utility is less than 1 given that x > X. Observation B occurs shortly after

A, meaning that the temporal utility will be low, however it provides much better GSD than

A. The total utility for the first scenario is then given as Utot = UA +UB = 0.58 + 0.2 = 0.78

as shown in Figure 3-55 (right). However, the second scenario shows that if only the second

observation occurred, the total utility would be Utot = UB′ = 1.0. It does not make sense

that adding an observation would actually reduce total utility. This situation arises because

the temporal utility function is artificially depressing the utility of the second observation

and does not take into account the fact that the second observation provides significantly

better GSD.

To fix this problem, a dynamic correction term is added to Equation 3.75. This dynamic

correction term augments Uτ in the case that later observations provide better GSD. The

persistence utility function with the correction term ∆U is given as:

U (τi, xi) = (Uτ,i + ∆Ui)× UGSD,i (3.76)

Where Uτ,i and UGSD,i are given in Equations 3.71 & 3.74, respectively, and ∆Ui is the
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following correction factor:

∆Ui = max [0, U (τi−1, xi,∆Ui−1)− U (τi−1, xi−1,∆Ui−1)]×
(

1− Uτ,i
UGSD,i

)
(3.77)
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Figure 3-57: The utility correction function ∆U adds utility for a subsequent observation
with better GSD than the first observation. This ensures that persistence is independent of
observation order

The correction factor provides an increase in Uτ based on the difference in utility between

the last observation utility U (τi−1, xi−1) and a hypothetical utility for the last observation

using the current observation GSD U (τi−1, xi). The
(

1−Uτ
UGSD

)
term normalizes the result to

ensure that the total utility is the same if the order of observations is reversed. For example,

if the observation GSD values were switched, the total utility should be the same. A simple

example will illustrate this process. Figure 3-57 shows the utility curve as a function of x2

corresponding to a second observation 0.2 hours after an initial observation with x1 = 1.8m,

X = 1m and T = 1hr. The uncorrected utility curve for U2 (dash-dot) shows the utility

generated by Equation 3.75. Here we see that U2 is very low even when the second observation

provides better GSD than the first observation. The utility correction factor ∆U2 for the

second observation (dashed) given by Equation 3.77 is positive for GSD values lower than the

first observation GSD of 1.8m. This term is applied to the corrected utility curve (Equation

3.76) to generate the corrected utility curve (solid) which provides an increase in utility for

second observations that provide better GSD.

The example discussed earlier and showed in Figure 3-55 can now be revisited with the

inclusion of the utility correction factor. Figure 3-58 (left) shows the persistence utility
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Figure 3-58: Persistence utility surface with corrected Uτ showing observation B (left) and
observation details using the corrected utility surface (right)

surface for the second observation including the correction factor ∆U in Uτ . This utility

surface, when compared with the uncorrected utility surface in Figure 3-55, shows increased

utility for new observations with better than 1.8m GSD. Figure 3-58 (right) shows that

the corrected total utility for scenario 1 is 1.12, which is greater than the utility with just

observation B, showing that the problem is fixed. Furthermore, the last two columns show

the results when the GSD of the observations is switched. When x1 = 1.0m and x2 = 1.8m,

the total utility is still equal to 1.12, and, therefore, the utility surface is independent of

observation order.

Figure 3-60 shows the persistence utility surface for a second observation parametrized by

the GSD ratios x1/X and x2/X for four time since the last observation was made (τ2). Here

we see the symmetry in the surfaces which guarantees order independence. Additionally, we

see that the correction factor diminishes with increasing time.

3.6.3 Calculating Constellation Performance

Performance for a constellation providing persistent surveillance to a regional event is de-

fined as the sum of the persistence utility generated by all observations. This is written

mathematically as the sum of the utility generated over all observations during each day and
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Figure 3-60: Contours of the two-dimensional persistence utility function for two consecutive
observations parametrized by x/X and τ/T

then summed over all the days during the event response:

PE =
∑

days

(
1 +

Nobs∑

i=2

U (τi, xi)

)
(3.78)

Where Nobs is the number of daily observations and U (τi, xi) is given in Equation 3.76.

Additionally, the mean performance, denoted by P is calculated to represent the aggregate

performance of the constellation while responding to all events during its lifetime.

One benefit of this performance formulation is that there is a maximum possible per-

formance (called the ‘ideal’ performance, Pmax) for a an event with a specified duration, a

specified daily time window and a desired persistence and GSD. For example, if the event
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duration was set to 14 days, the daily time window was set to 6am to 6pm, and T = 1hr,

X = 1m, then the best performance would occur if an observation (each with x = 1m) was

made every hour on the hour from 6am to 6pm. This results in 13 observations per day with

τ = 1hr, giving a total utility of 13 per day, and the ideal performance is then 14 days times

13 utility per day which equals 182. The performance for all results presented in this thesis

are normalized to Pmax.

3.7 Model Validation

If the simulation model does not accurately represent the system being optimized, then the

results of the optimization process are invalid and misleading. Therefore, detailed model

validation is essential to gaining confidence that the simulation model accurately represents

the cost and performance of a given constellation design. Table 3.10 details how the major

elements of the simulation model were validated. The spacecraft bus and payload sizing

is tied directly to the properties of existing systems through parametric models. This en-

sures that these elements are grounded in reality. Systems Toolkit (STK), a commercially

available modeling software, was then used to validate several critical elements in the astro-

dynamics module including: orbit propagation, reconfiguration maneuvers, and both GOM

and ROM coverage statistics. The dynamic programming based assignment optimization is

then validated by comparing the output with an enumeration approach for small constella-

tion sizes. Lastly, the cost model is validated by comparing it’s output to cost information

gathered from existing Earth observation optical satellites. This section provides details of

the validation process and quantifies modeling error.

3.7.1 Astrodynamics Validation

The astrodynamics module validation was focused on ensuring the accuracy of the orbit

propagation, RGT targeting of specific event locations, reconfiguration maneuver and cov-

erage calculations. Validation was performed by comparing the output from the simulation

model to the output from STK. Figure 3-61 shows how STK tools were integrated into the

simulation model for validation purposes. This integration allowed certain calculations to be
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Table 3.10: Simulation model validation strategy

Module/Model Validation Strategy

Satellite
Satellite mass & area Tied directly to existing EO satellites

Astrodynamics
Orbit propagation Comparison with STK
GOM coverage Comparison with STK Coverage module
Reconfiguration maneuver Comparison with STK Astrogator module
ROM coverage Comparison with STK Access module
Assignment optimization Comparison with enumeration (full factorial search)

Cost
Satellite cost Comparison with the cost of existing EO satellites

seamlessly switched to the external STK software, while keeping the rest of the simulation

model constant. The simulation model first sets up the constellation pattern by calculating

the initial system state. GOM coverage is then calculated with the STK Coverage tool and

results are sent back to MATLAB. The MATLAB simulation model then: determines the

target position; propagates the constellation to the time of the next event; computes the

propellant remaining on the satellites; solves the assignment problem; and uses the decision

model to select the appropriate course of action. Then, given each satellite’s drift orbit

altitude and drift time, STK Astrogator is used to numerically solve for the reconfiguration

maneuvers. Then STK Access is used to propagate the constellation, including reconfigura-

tion maneuvers, and compute access periods to the event ground location. This process was

repeated for all events during the system lifetime. The STK-MATLAB interface allowed for

STK to be seamlessly integrated into the simulation model to automate all of these tasks

and to allow for direct comparison with the simulation model code. The STK augmented

model is called the STK validation model. One might ask why the STK model isn’t just used

at the actual simulation model for optimization. The fast MATLAB simulation model was

created for two reasons: simulation runtime and licensing. Since the simulation model will

be run hundreds of thousands of times for a single optimization run, it must be as efficient

as possible and the MATLAB simulation model is approximately 1000 times faster than the

STK validation model. Also, licensing with STK on parallel compute nodes would have been

prohibitively costly.
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Figure 3-61: The simulation model uses STK to propagate the constellation, perform the
reconfiguration maneuvers and compute coverage during the model validation process

The astrodynamics validation section is organized as follows. First the GOM coverage is

compared to quantify the error between the simulation model and the STK validation model.

Next, ROM performance is compared for a single constellation responding to a single target

location. Following this initial validation, the model output was compared in a Monte

Carlo simulation with different target decks and a fixed constellation design to quantify how

the error varies over a distribution of uncertain parameters. Then, the model output was

compared for a wide range of constellation designs to assess modeling error over the entire

design space. A secondary goal of the validation process was to determine the appropriate

numerical time step to use in the simulation model, which is essentially a tradeoff between

simulation model run-time and modeling error.

GOM Maximum Revisit Time

The first validation effort focused on the effect of simulation model timestep on GOM max-

imum revisit time error. The modeling error is defined as the difference between the sim-

ulation model output and the STK validation model output as a percentage of the STK
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validation model value. Figure 3-62 shows the GOM maximum revisit time error as a func-

tion of constellation size for different simulation model timesteps. As expected we see that

the simulation model timestep decreases, the modeling error generally decreases. Also as

the number of satellites in the constellation increase, the errors also tend to increase. This

is likely caused by the decrease in the maximum revisit time for larger constellations, so any

absolute errors are magnified when converted to a percentage. Simulation model timesteps

less than 30s generally provide modeling errors less than 1%, while increasing the timestep

to 40s increases the error significantly, and the error also becomes less predictable as ev-

idenced by the spikes. Therefore, a 30s timestep was determined to be a good balance

between simulation run-time and modeling error and is used in the thesis for computing

GOM coverage.
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Figure 3-62: A 30s timestep for calculating the GOM maximum revisit time is a good
compromise between minimizing error and maximizing computational efficiency

Figure 3-63 shows the GOM maximum revisit time predicted by the MATLAB model

(crosses) and STK validation model (circles) for various constellation sizes using the 30s

timestep. The lower plot shows the percent difference between the two models in greater

detail than Figure 3-62. Here we see that the error is generally less than 0.1% for smaller

constellations and approaches a maximum of 0.6% for a constellation of 48 satellites. Ad-

ditionally, 88 random samples were taken from the design space to assess GOM maximum

revisit time modeling error throughout the design space. Using a 30s timestep, the median
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error was 0.144% with an interquartile range of 0.1% to 0.37%.
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Figure 3-63: A 30s timestep results in errors of 0.1% for small constellations and 0.6% for
large constellations

ROM Coverage

The second validation effort focused on the effect of simulation model timestep on total

performance generated for regional response over the system lifetime. Figure 3-64 shows the

total performance error as a function of constellation size and simulation model timestep

during ROM simulation. Here we see that the the modeling error increases with increasing

timestep and is not a strong function of constellation size. A ROM simulation timestep of

20s gives modeling errors generally less than 0.3% and is used in this thesis as a good balance

between run-time and modeling error. The small error for total performance validates that

many aspects of the simulation model are modeled correctly including: orbit propagation;

RGT targeting; the reconfiguration maneuver and phasing; and coverage calculations. If any

of these aspects were not modeled correctly, the satellites would not be properly aligned with

the target in the STK validation model and the resulting system performance calculated by

the two models would be substantially different.

I decided to also compare propagation error during a reconfiguration maneuver. Figure 3-

65 shows the absolute range difference between the simulation model and the STK validation
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Figure 3-64: A 20s timestep results in errors of less than 0.3% for predicting total constel-
lation performance

model using the J2 propagator. The satellite initially starts in GOM, executes the first

Hohmann transfer, then sits in the drift orbit before executing the second Hohmann transfer

into ROM. The discontinuities in the range error correspond to the two Hohmann transfers.

Overall this error, which is largely in-track, remains quite small over the 14 day ROM

duration. Errors are on the order of 10-20km in-track, corresponding to a 2-3s shift in pass

time, which is much smaller than the simulation timestep and does not introduce further

error.
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Figure 3-65: The total satellite position error between STK and MATLAB after 14 days of
propagation is less than 20km
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Additionally, the coverage predicted by the simulation model and the STK validation

model were compared for a single regional response for a static and a reconfigurable constel-

lation, both with 12 satellites. Figure 3-66 shows the GSD and access times for the static

(top) and reconfigurable (bottom) constellations with the STK validation model plotted as

circles and the simulation model plotted as crosses. We see very close agreement between the

two models, which again demonstrates that the simulation model correctly calculates target-

ing, reconfiguration maneuvers and coverage (including GSD). The only observed difference

between the models is that the STK validation model, since it uses a much smaller timestep

than the MATLAB coverage model, picks up a few additional passes at high grazing angle.

We also see the clear advantage for reconfigurable systems in that they ensure nadir passes

which provides the best achievable GSD.
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Figure 3-66: The MATLAB simulation model and STK validation model predict nearly
identical ROM coverage

The modeling error was also quantified for a fixed, 8-satellite constellation design, in a
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Monte Carlo simulation comprised of 65 different target decks. Figure 3-67 shows the mod-

eling error as a function of model timestep for three model outputs. Remaining propellant is

the average difference in the propellant remaining for each of the 8 satellites at the end of each

event response. Event utilities is the average difference in the performance for each regional

event, while total performance is the difference in the average performance over each event.

The boxes show the interquartile range with the median value plotted as the horizontal line.

The mean is plotted as a white filled circle while the bars show the 20th and 80th percentile

values and the outliers are plotted as black dots. We see that the remaining propellant error

is very low showing that the propulsive aspect of the reconfiguration maneuver is modeled

accurrately. For a 20s simulation timestep the individual event performance median error

is 0.23% with an interquartile range of 0.15% to 0.38% and the total performance median

error is 0.23% with an interquartile range of 0.14% to 0.36%.
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Figure 3-67: Model error as a function of timestep over 65 random target decks

The modeling error was also quantified over a wide range of constellation designs in the

design space. 88 designs were randomly sampled from the design space. Figure 3-68 shows

the modeling error as a function of timestep for these 88 designs. Here we see that the

modeling errors are higher that those reported in Figure 3-67, but are generally less than 1%

using a 20s timestep. We also see that the 10s timestep does not provide significantly lower
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error than the 20s timestep. Based on all of these results a 20s timestep was determined to

be a good balance between run-time and modeling error for the ROM simulation and is used

in the thesis for computing ROM coverage. For a 20s simulation timestep, the individual

event performance median error is 0.76% with an interquartile range of 0.52% to 1.17% and

the total performance median error is 0.80% with an interquartile range of 0.54% to 1.16%.
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Figure 3-68: Model error as a function of timestep over 88 random designs

3.7.2 Assignment Validation

An enumeration approach was taken to validate the dynamic programming based assignment

optimization process detailed in Section 3.5.4. This approach compared the output between

a full factorial search and the dynamic programming optimization. This comparison was

only feasible for constellation sizes up to 12 satellites due to the computational complexity

of full factorial search. For comparison, the runtime for the 12 satellite full factorial search

was around 2.5 hours, and the estimated runtime for a 13 satellite full factorial search is

around 18 hours. Figure 3-69 shows the suite of non-dominated assignment options for four

8 satellite constellation assignments (leftmost four plots) and for two 12 satellite constellation

assignments (right plots). The output from the full factorial search is plotted as open circles

and the output from the dynamic programming optimization is plotted as crosses. Here we
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see that the dynamic programming optimization found the globally optimal solutions for all

six cases tested.
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Figure 3-69: The dynamic programming optimization yields the same result as a full factorial
search for four 8-satellite cases (leftmost four plots) and two 12-satellite cases (right plots)

3.7.3 Cost Model Validation

The cost model was validated by comparing its output to the estimated cost of existing

optical Earth observation satellites. Figure 3-70 shows the spacecraft NRE, RE and total

(NRE + RE) cost generated by the cost model plotted as lines along with estimates of

the cost of six existing satellites plotted as individual data points. This estimated cost

was compiled from information gathered from many sources. The RapidEye constellation is

comprised of five satellites based on the SSTL-150 satellite bus. They each feature 14.5cm

optics and were launched in 2008. The total system along with ground station is reported

to have cost a total of $150M FY2008 [179]. Assuming a ground station cost of $20M and

adjusting to FY2010 dollars, each satellite is estimated to cost $26.96M. The NigeriaSat-2

satellite is based on the SSTL-300 platform and is reported to cost 32M GBP FY2008 [26] and

$55M FY2010 [5]. Converting to FY2010 USD, these estimates are then $53.23 and $53.92M

which is in between the RE and NRE model estimates. This is partially explained since SSTL

leveraged many existing components and designs from previous programs which would lower

overall costs. The Quickbird satellite has been reported to cost $60M FY2000 [158], $100M
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FY2008[68], and $200M FY2001 [62] which when converted to FY2010 dollars is $82.2M,

$103.7M, and $264.2M respectively. The larger estimates are based off the insured value

and possibly include additional coverage for lost revenue and launch. The lower values most

likely represent the cost of the spacecraft. The GeoEye-1 satellite has an optical aperture

size of 1.1m and is reported to cost $520.57M FY2010 ($502M FY2008) [83]. The successor

spacecraft, GeoEye-2, also has a 1.1m aperture and is reported to have cost $835M FY2010

[48] including launch on an Atlas V and insurance. Assuming 20% for insurance and $172M

FY2010 for the Atlas V launch [221], the spacecraft cost was then $552.5M FY2010. The

1.1m aperture Worldview-2 spacecraft is reported to cost $511.5M FY2010 ($500M FY2009)

[104].
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Figure 3-70: Comparison of modeled cost to estimated cost of six existing satellites

The cost model matches the general trend of the existing satellite cost quite well, however,

it seems to consistently over predict the total cost by roughly 30%. One explanation for this

is that the cost provided for existing satellites might not include some of the NRE cost

associated with the satellite. For instance, when building the RapidEye and NigeriSat-2

spacecraft, SSTL used an existing satellite bus design and likely reused previous designs for

the major subsystems from other small satellites that they previously produced, which would

reduce overall cost.
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3.8 Model Efficiency

Throughout construction of the simulation model there has been tension between adding

detail and reducing model runtime. From the outset I was determined to avoid some of the

simplifications made in previous research in order to capture as many interrelated effects as

possible. However, since I am attempting to optimize the system over uncertainty, computa-

tional efficiency is also extremely important. Optimization over uncertainty means that the

simulation model is essentially embedded within two nested loops, a Monte Carlo loop that

maps uncertain operating parameter distributions to system performance distributions and

an optimization loop that finds efficient designs. This nested loop approach amplifies the

computational burden of the simulation model. The total optimization time is a function of

the simulation model run time, the number of Monte Carlo samples, and the number of func-

tional evaluations needed for the optimization process to converge. For example, with a 60s

simulation model runtime, 24 Monte Carlo samples, and 20,000 functional evaluations, then

the total optimization time is 340 days. Therefore, any reduction in the simulation model

runtime translates to a 480,000X reduction in overall optimization time. Several approaches

were taken to construct an efficient simulation model without causing a substantial loss in

detail and are listed below.

1. Avoid external software calls: The simulation model was written entirely in MATLAB

with no function calls to external software. While MATLAB isn’t the fastest language,

it was chosen to speed the coding and debugging process. While STK is very efficient at

orbit propagation and coverage calculations, early testing showed that the communication

overhead and problem set-up time negated any overall speed advantage with incorporating

STK into the simulation model. Also, this would complicate efforts to run the simulation

model in parallel due to license restrictions.

2. Take advantage of MATLAB vectorization and avoid loops: Significant focus was places at

implementing a vectorized approach wherever possible since MATLAB is very efficient at

solving vectorized equations. Several areas in the simulation model benefited significantly

from vectorization including orbit propagation, coverage calculations, and implementing

the assignment dynamic programming optimization.
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3. Avoid numerical solvers: While numerical solvers are easy to implement in MATLAB,

they are computationally inefficient and unnecessary in many cases. When direct solu-

tion could not be implemented, another approach was taken that leveraged MATLAB’s

vectorized math capability. The calculation of the minimum reconfiguration maneuver

drift time was one example of this. This problem is difficult because while there are many

drift times that satisfy the phasing equation (Equation 3.55), we are only interested in

the smallest drift time. Additionally, the problem involves many variables that are mod-

ulo 2π. Initially, the simulation model used MATLAB’s ‘fminsearch’ numerical solver to

solve Equation 3.55. This approach correctly found the minimum phasing drift time, but

‘fminsearch’ had an total runtime of 44s for a 24 satellite constellation over 20 regional

event responses. Instead, a vectorized approach was taken that combined the satellite

state (Ω, M) and options for ∆alt, ascending / descending RGT and a variable that

searched over a modulo range into a concatenated 4D array. This 4D array then solved

for the error in satisfying Equation 3.55 in one step to find the minimum drift time solu-

tion with a run time of 0.16s, which is roughly 300 times faster than using ‘fminsearch’.

This is just one example of how the same problem can be solved in a different way with

significant simulation speedup.

4. Use MATLAB profiler to identify bottlenecks and slow functions: The MATLAB profiler

function was used extensively to identify and fix slow code. It also allowed me to identify

which built in functions were inefficient. The find function is one example of an inefficient

built in function and can be avoided entirely using MATLAB’s logical indexing feature.

5. Clear unused variables to reduce memory usage: The last major effort was focused

on managing memory use to avoid bottlenecks, by clearing unused variables. Efficient

memory management has allowed continuous optimization runs lasting over two weeks

without memory problems.

Figure 3-71 shows the simulation model execution time as a function of constellation

size for 20 regional event responses, each with a 14 day duration. The upper plot shows

a comparison of model runtime for reconfigurable and static constellations. Additionally,

the amount of time that the dynamic programming assignment optimization takes for the

reconfigurable constellation is indicated as a dashed line. For small constellation sizes, the
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reconfigurable constellation takes only a little more time to run than the static constellation.

For larger constellation sizes, the reconfigurable constellation has significantly longer execu-

tion time, with the increase driven by the additional assignment optimization. The lower

plot shows the execution time breakdown for the reconfigurable constellation in terms of:

assignment optimization, GOM propagation and coverage, ROM propagation and coverage,

and all other routines. Here we see that the propagation and coverage calculations dominate

the execution time for small constellation sizes while the assignment optimization dominates

execution time for large constellation sizes.
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Figure 3-71: Simulation run time breakdown for reconfigurable and static constellations over
20 regional event responses
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Chapter 4

Monte Carlo Sampling

This chapter introduces the Monte Carlo analysis layer of the constellation design and op-

timization framework, which uses Monte Carlo sampling to map input distributions of un-

certain parameters to distributions of system performance for specific constellation designs.

This chapter outlines the need for Monte Carlo simulation, provides details on the types of

uncertain parameters considered, and describes the Monte Carlo simulation implementation.

4.1 Monte Carlo Sampling
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Figure 4-1: The Monte Carlo layer maps uncertain parameter distributions to a distribution
of system performance

The Monte Carlo analysis process maps uncertain parameter distributions into perfor-

mance distributions through Monte Carlo sampling as illustrated in Figure 4-1. A simple

strategy to perform this mapping might simply use the expected values of the uncertain
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parameters and assume that this will produce a good estimate of the expected system per-

formance. However, the simulation model is non-linear, which means that the simulation

model response using expected values of the uncertain parameters will not give the correct

expected value of system performance due to the flaw of averages [173]. Therefore, Monte

Carlo analysis is needed to perform this mapping by sampling over the entire uncertain pa-

rameter distribution. The flaw of averages written as a mathematical inequality is given in

Equation 4.1.

f (E (x)) 6= E (f (x)) (4.1)

A simple example illustrates the flaw of averages. Consider the function f (x) = x2, with a

uniform distribution of x on the interval 0 ≤ x ≤ 1. The expected value of x is E (x) = 0.5

which yields f (E (x)) = (0.52) = 0.25. However, the actual expected value of f (x) when

the entire distribution is sampled is E (f (x)) ≈ 0.33. Therefore, sampling the distribution

of uncertain parameters is necessary to correctly approximate the expected performance of

a non-linear system response while operating under uncertainty.

4.2 Uncertain Parameters

There are many uncertain operating parameters associated with the responsive Earth ob-

servation satellite constellation investigated in this thesis. Three important uncertainties

are: 1) the event ground locations specified by latitude (ϕ) and longitude (λ); 2) the time

between events; and 3) the satellite failure rate. This thesis focuses on the event location and

event rate uncertainty and leaves investigation of the satellite failure rate for future work.

The rest of this section describes how the distributions for event locations and event rate

were developed and then describes how the two uncertain parameters combine to create a

set of target decks used by the Monte Carlo simulation.
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4.2.1 Uncertain Event Location

The location of future disaster events is highly uncertain. I investigate two different distri-

butions in this thesis: a uniform zonal probability distribution function (PDF) with event

locations contained within latitude bounds, and a more complex PDF generated from natu-

ral disaster risk data. These two distributions represent different levels of knowledge for the

future operating context of the system. It should be noted that the methodology developed

in this thesis was designed to be flexible and can easily accommodate any event location

PDF (e.g.a specific region, several regions, or another global PDF).

Figure 4-2: Natural disaster event location PDF with increasing probability indicated by
darker shading

The uniform distribution is comprised of a uniform PDF between the latitudes of −40◦

and +60◦. These latitude limits were chosen to cover more than 99.6% of the world’s pop-

ulation [79]. The natural disaster risk PDF is based on an estimated distribution of future

disaster events published by The World Bank [60]. The distribution is normalized by es-

timated total economic loss risk for a number of disaster types including: cyclones, earth-

quakes, floods, and volcanoes. The input data is a 2.5-minute grid of global multi-hazard

total economic loss risks with equal weighting between the four disaster types. The resulting

natural disaster event location PDF is shown in Figure 4-2, where increasing event probabil-

ity is indicated by darker shading. Figure 4-3 shows 1000 randomly sampled locations from
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the uniform (left) and natural disaster (right) event location PDFs.

Figure 4-3: 1000 samples drawn from the uniform (left) and disaster (right) distributions

4.2.2 Uncertain Event Rate

The number and specific timing of events during the constellation lifetime is also highly

uncertain. I have modeled this uncertainty of the time between disaster events as a normal

distribution. Two parameters representing the mean time between events and the standard

deviation of the time between events control the shape of the distribution, and these two

parameters should be tailored to specific stakeholder goals and objectives. For the purposes

of this thesis, I assume that the mean time between events is 3 months and the standard

deviation is 1 month. These sample values should be tailored to specific mission scenarios

in future work. The minimum time between events is constrained to 2.5 weeks to ensure

that events do not overlap given a 14-day event duration. While overlapping events is not

a focus of this thesis, it is an important topic for future research since the availability of

resources must then be split between the two events. In this case, decision makers would

have to consider the possibility of leaving satellites in GOM as a reserve in case a second

event were to occur during the current event response. The resulting distribution of the

time between events over 106 samples, is shown in Figure 4-4, and the small spike in the

distribution for small times is caused by the 2.5 week constraint. It should be noted here

that the time between events distribution coupled with the constellation lifetime together

specify the total number of events that occur during the constellation lifetime. The number

of events will affect the utility of a reconfigurable satellite constellation. In the extreme cases

where there are few events or many events, a reconfigurable constellation will have limited
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utility. Section 6.1.4 investigates how performance and cost vary with a doubling of the

constellation lifetime, which is similar to doubling the event rate.
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Figure 4-4: The distribution for the time between event distribution is modeled as a normal
distribution with a mean of three months and a standard deviation of one month

4.2.3 Constructing Target Decks

The uncertain event locations and uncertain event rate are sampled together to construct a

single target deck for each Monte Carlo simulation run. Each target deck, comprised of a

list of ground locations (ϕ and λ) and the time of each event, represents one possible future

operating context for the system. The number of events in the target deck is determined

by sampling the event rate distribution to see how many events occur within the system

lifetime. The process starts by randomly sampling the event rate PDF to determine the

time of the first event. Next, another random sample is taken from the event rate PDF that

corresponds to the elapsed time between the first and second events. Therefore, the time of

the second event is the cumulative sum of the first two samples. This process continues until

the cumulative sum exceeds the system lifetime (Tlife). This target deck generation process

leads to target decks of varying size. Figure 4-5 shows the distribution of target deck sizes

for 5 and 10 year constellation lifetimes over 105 samples.

Once the list of event times is constructed and any times that exceed Tlife are excluded,

then the event location distribution is sampled for each event. Figure 4-6 shows three example

target decks with differing size. Each target deck contains the latitude and longitude of the

events, the time of the events, and additional parameters that specify desired coverage for
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Figure 4-5: Target deck size distribution for 5yr and 10yr system lifetime

each event. These additional parameters include: the event duration, the desired persistence

(T ), the desired GSD (X), and the local time window constraint described by the starting

time θSLMT and ending time θELMT . The analysis in this thesis assumes that these additional

parameters are the same for each event; however, future work could relax this assumption

to include different classes of events, each with different desired observation characteristics.

For example, each event could have a threshold NIIRS where imagery with worse NIIRS

would provide zero utlity. The work presented in this thesis uses 14-day event durations

and a time window of 6am to 6pm (in local time) for all events. Section 3.6.1 previously

described examples of how future work could modify the time window to better account for

solar illumination constraints. Each Monte Carlo sample uses a different target deck that

represents a different operational context for the system.

4.3 Monte Carlo Implementation

The goal of Monte Carlo simulation in this thesis is to determine the distribution of system

performance over the distribution of uncertain parameters previously described. This system

performance distribution is then condensed into a single statistical performance measure to

represent design fitness during optimization. This performance measure could be the aver-

age, median or a percentile of the performance distribution generated through Monte Carlo

sampling and the choice should be based on stakeholder objectives and needs. Since they can

be skewed by outliers, averages are often misleading, and, therefore are not recommended.
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Target Deck 1 Target Deck 2 Target Deck 3

Event 𝝋 𝝀 Time Duration 𝑻 𝑿 𝜽𝑳𝑴𝑻
𝑺 𝜽𝑳𝑴𝑻

𝑬 Event 𝝋 𝝀 Time ⋯ Event 𝝋 𝝀 Time ⋯

# deg deg years days hr m hr hr # deg deg years # deg deg years

1 32.188 126.701 0.161 14 1 1 6 18 1 0.315 -89.583 0.326 1 31.453 34.782 0.343

2 31.558 106.223 0.486 14 1 1 6 18 2 -7.981 124.866 0.604 2 32.975 27.567 0.673

3 27.567 118.193 0.804 14 1 1 6 18 3 32.503 106.557 0.869 3 1.103 -91.001 0.982

4 -7.404 -76.613 1.018 14 1 1 6 18 4 38.174 39.745 1.044 4 34.498 -74.819 1.151

5 11.604 109.977 1.230 14 1 1 6 18 5 12.340 88.123 1.265 5 13.547 109.101 1.278

6 30.665 30.320 1.472 14 1 1 6 18 6 32.030 42.206 1.452 6 27.252 110.769 1.607

7 30.508 39.495 1.830 14 1 1 6 18 7 20.163 77.280 1.746 7 48.203 94.504 1.825

8 29.667 48.295 2.047 14 1 1 6 18 8 26.517 132.831 2.006 8 11.079 69.648 2.136

9 35.338 -93.837 2.268 14 1 1 6 18 9 24.417 112.354 2.279 9 5.986 -66.687 2.518

10 8.296 105.431 2.523 14 1 1 6 18 10 12.340 106.766 2.534 10 0.315 -89.750 2.877

11 -0.368 123.740 2.712 14 1 1 6 18 11 39.224 26.316 2.811 11 48.938 6.798 3.236

12 17.223 118.234 2.902 14 1 1 6 18 12 -3.256 -74.110 3.097 12 27.620 133.457 3.515

13 17.485 114.481 3.101 14 1 1 6 18 13 8.296 84.537 3.286 13 0.630 103.054 3.618

14 12.392 87.998 3.312 14 1 1 6 18 14 27.252 116.024 3.561 14 12.865 91.460 3.841

15 31.243 140.672 3.545 14 1 1 6 18 15 34.131 72.692 3.875 15 27.305 -77.905 3.959

16 12.392 110.352 3.848 14 1 1 6 18 16 -27.095 113.397 4.001 16 -12.602 -75.403 4.105

17 -26.569 112.437 4.174 14 1 1 6 18 17 -4.568 39.411 4.319 17 19.691 110.811 4.381

18 46.575 19.143 4.328 14 1 1 6 18 18 7.509 82.660 4.744 18 12.707 115.315 4.668

19 25.152 119.110 4.593 14 1 1 6 18 19 33.763 28.568 4.989

20 -5.251 -83.828 4.947 14 1 1 6 18

Figure 4-6: Three example target decks containing event locations and desired coverage
characteristics

The median measures the middle of the distribution, while a percentile value could incorpo-

rate some of the distribution spread in the overall system fitness. The analysis presented in

this thesis uses median values; however, this section provides also provides details on both

mean and percentile values to aid in future work.

The law of large numbers states that as the number of samples of a random process

increases, the difference between true mean and sampling mean decreases [63]. This means

that the Monte Carlo sampling error will decrease with increasing numbers of samples. The

sampling mean and variance of the mean with n samples is given as [226]:

P̄ =
1

n

n∑

i=1

Pi (4.2)

s2 =
1

n− 1

n∑

i=1

(
Pi − P̄

)2
(4.3)

Where P̄ is the mean performance and s is the standard deviation of the performance. The

basic Monte Carlo technique, without applying variance reduction strategies, converges with

167



the inverse square of the number of samples n, and the standard error of the mean is:

sP̄ =
s√
n

(4.4)

The one sigma (68%) confidence interval for the mean is given by P̄ ± sP̄ , and the error of

the mean for arbitrary confidence level is:

sP̄ =
s√
n

Φ−1

(
1 + α

2

)
(4.5)

Where α is the desired confidence level (e.g. α = 0.975 for 95% confidence), and Φ−1 (·) is the

inverse normal cumulative distribution function. This method assumes a normal distribution

for x; however, it also provides a good approximation for non-normal distributions [195].

Figure 4-7 shows the performance of a single constellation design for 500 Monte Carlo samples

plotted as crosses, each using a different target deck. The mean performance is shown as

a solid line, and the 68% and 95% confidence intervals are shown as dark and light shaded

areas, respectively. Here we see that as expected the mean performance stabilizes with

increasing number of samples.
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Figure 4-7: Mean performance (solid) as a function of number of samples showing 68%
confidence interval (dark shaded) and 95% confidence interval (light shaded)
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Quantifying the confidence interval for percentile values is more difficult. I have chosen

to implement a distribution-free method based on order statistics. I do not explain this

technique in detail here, but more information is provided in the following references [84, 93].

Figure 4-8 shows the median (upper curves) and 20th percentile (lower curves) values for

the same 500 Monte Carlo samples as in Figure 4-7. Again, the median and 20th percentile

performance is shown as a solid line, and the 68% confidence interval and 95% confidence

interval are shown as a dark and light shaded areas, respectively. By comparison with Figure

4-7, we see that the confidence interval for median is larger than the confidence interval for

the mean, and the confidence interval increases for percentiles further away from the median.

This means that more samples will be needed to maintain the same confidence interval size

for fixed confidence level as we move from mean to median and from median to percentiles

away from the median.
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Figure 4-8: Median (upper curves) and 20th percentile (lower curves) performance as a
function of number of samples showing 68% confidence interval (dark shaded) and 95%
confidence interval (light shaded). Top curves are for median and lower curves are for 20th
percentile

Figure 4-9 shows the 68% and 95% confidence interval size for the median as a function of

number of samples averaged over 20 different constellation designs. The confidence interval

size is expressed as a percent of the median value. For the results presented in this thesis,
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available computational resources limited the maximum number of Monte Carlo samples to

no more than 24, which gives a 68% confidence interval size of around 3% of median value.

Therefore, the actual median performance value is within ±1.5% of the performance value

used to determine the population fitness with 68% confidence.
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Figure 4-9: Confidence interval as a function of number of samples averaged over 20 designs
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Chapter 5

Multi-Objective Optimization

Traditional optimization techniques attempt to find the single “globally optimal” design that

best achieves a single objective like maximizing performance or minimizing cost. However,

complex, real-world systems often contain multiple competing objectives and focusing on only

one objective often leads to suboptimal designs. In these cases, multi-objective optimization

attempts to find the set of non-dominated designs where improving one objective always

results in worsening another. Absent further information or stakeholder preferences, one

non-dominated design cannot be determined to be better than another. Therefore, the goal

of multi-objective optimization is not to output the“best” design, but to give designers more

information about the direct tradeoff of multiple competing objectives, hopefully leading

designers to better-informed decision making. The goal of multi-objective optimization in

this thesis is to find the non-dominated set of designs that simultaneously maximize median

system performance over uncertain operating conditions, while minimizing total system cost.

The satellite constellation optimization problem investigated in this thesis presents a difficult

optimization problem for a variety of reasons, including:

1. the objective space is discontinuous and non-linear

2. the design vector contains continuous, integer, and discreet (categorical) variables

3. functional evaluations are computationally expensive

For these reasons, I chose to implement heuristic optimization as the primary optimiza-

tion strategy. Heuristic optimization uses randomness and “heuristic rules” to guide the

optimization process. These techniques are able to handle mixed design variable types easily
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while avoiding premature convergence to local optima. However, heuristic optimization does

not guarantee convergence to the global optima and is typically less efficient in terms of

functional evaluations than gradient-based or gradient-free methods. When using heuristic

methods, we must recognize that the output will likely not be the true Pareto front, but will

instead be a set of non-dominated designs close to the true Pareto front. Therefore, in order

to avoid confusion, the term non-dominated front will be used instead of Pareto front in this

thesis.

This chapter is organized as follows. First an overview of multi-objective evolutionary

algorithms (MOEAs) is provided in Section 5.1. Next, a new MOEA method is presented in

Section 5.2 that builds on the well established ε-NSGA-II algorithm by incorporating several

additional features that improve convergence, minimize computational effort, and provide a

means to measure both progress and termination criteria. Section 5.3 then describes how the

algorithm was modified to allow for large cluster parallel computing and introduces the 1024

processor grid computing resource utilized to perform optimization. The chapter concludes

in Section 5.4 by formally stating the optimization problem including objectives, constraints,

design variables, bounds, and parameters.

5.1 Multi-Objective Evolutionary Algorithms

Early MOEA optimization methods used weighting functions to convert problems with mul-

tiple objectives into a set of single objective problems. These single objective problems were

then solved with well-established single objective optimization methods, and the resulting

designs would each represent a single point on the non-dominated front. Examples of these

methods are: weighted sum, adaptive weighted sum [108], and normal boundary intersection

[40]. These techniques have difficulty dealing with complex Pareto front geometry, and the

procedures are computationally inefficient since each optimization run yields only one non-

dominated design [74]. These limitations are particularly severe with non-linear systems and

computationally expensive models, both encountered in this thesis.

The development of MOEA methods over the past decade has alleviated many of the

problems encountered with traditional single objective methods and have been used widely
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for aerospace applications [10]. MOEA methods attempt to approximate the Pareto front by

simultaneously trying to advance the non-dominated front while imposing an additional ob-

jective of spreading the non-dominated points out to capture the extent of the non-dominated

front in a single run. The difference between single objective optimization using weighting

between different objectives and multi-objective optimization techniques is shown in Figure

5-1. Here we see that the single objective optimization technique seeks one non-dominated

point that lies on the objective vector corresponding to the specified weighting for every

optimization run. The multi-objective scheme attempts to directly find the front by intro-

ducing an additional objective (in addition to the original objectives J1 and J2) of increasing

the spacing between non-dominated points. This strategy is able to find and approximate

complex Pareto front geometry and is much more computationally efficient.

𝐽1

𝐽2 𝐽2

Spreading 

Objective

Convergence 

Objective

Single Objective

Different weightings 

between 𝐽1 and 𝐽2

Multi-Objective

𝐽1

Figure 5-1: Single objective optimization with a weighted combination of objectives (left)
vs. true multi-objective optimization (right)

Several notable first generational MOEA algorithms are MOGA [78] and NSGA [183].

These algorithms proved to be quite effective by combining non-domination sorting to rank

the population and niching to maintain population diversity. Niching refers to the idea that

population members close together must compete for resources, which artificially reduces

their overall fitness, and, therefore, implicitly favors well spread out solutions. However,

these algorithms tend to become trapped in local optima and required an additional sharing

parameter to be assigned prior to optimization. These drawbacks led to the development

of several second generation algorithms including SPEA [233], PAES [111], and NSGA-II

[57]. Both SPEA and PAES incorporate a second archived population of non-dominated

designs with a maximum archive size. They differ in the way the archive is managed when
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the maximum size is reached. SPEA uses clustering to eliminate closely spaced solutions,

while PAES uses a density measure to replace existing archive members while ensuring a good

spread of solutions. The NSGA-II algorithm approached elitism differently by combining the

parent and offspring populations of equal size and then using both non-domination sorting

and sorting based on crowding distance to select the next population. Over the past decade,

NSGA-II has proven to be effective for a diverse set of applications and, therefore, serves as

the foundation for the optimization methodology employed in this thesis. A more detailed

history of MOEAs can be found in the extensive literature survey papers by Coello et al. [36]

and Zhou et al. [230].
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Figure 5-2: NSGA-II Algorithm Process (adapted from [57])

Figure 5-2 shows the NSGA-II optimization process for one generation. At the start of the

generation, the current population Pt of size Npop creates an offspring population C of size

Npop through selection, crossover and mutation. The combined population of size 2Npop is

then sorted into non-dominated fronts F1, F2, · · · , etc. The process first finds the population

members comprising the actual non-dominated front. These members become front F1 and

are removed from the population. The next non-dominated front is then found from the

remaining population and comprises front F2. This process is continued until all population

members are assigned to a front. In the example shown in Figure 5-2 there are five fronts

corresponding to five different ranks. The new generation population Pt+1 of size Npop is
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then formed by adding members of the combined population, front by front, until there is no

room to accommodate the entire population of the next front. When this happens, crowding

distance sorting determines the members that are included in the next population based on

how spaced out along the front they are. In the example shown in Figure 5-2, fronts F1 and

F2 are selected for the next generation, sorting determines which members of front F3 are

selected or rejected, and fronts F4 and F5 are entirely rejected. This optimization routine

repeats until convergence is observed or a specified number of generations are completed.

5.2 Modified ε-NSGA-II Algorithm

The second generation MOEAs (SPEA, PAES and NSGA-II) attempt to simultaneously

maintain convergence and diversity. These two conflicting goals are difficult to balance and

improving one will often result in the worsening of the other. The emphasis on preserving

diversity leads to the problem of deterioration [122]. Deterioration occurs when a fixed

population size forces the algorithm to remove non-dominated designs [91] and can eventually

lead the algorithm to sacrifice convergence for diversity. Additionally, Ferringer et al. [74]

discovered that the non-dominated fronts found by NSGA-II for a satellite constellation

problem were sensitive to the initial random seed, indicating that the algorithm became

trapped in different local optima. This led Ferringer et al. to take the best designs from

10 consecutive NSGA-II runs in order to mitigate the initial seed dependence effect and

generate a good approximation of the true Pareto front. A more desirable algorithm would

not deteriorate and will reliably converge close to the true Pareto front.

The search for solutions to both the deterioration and premature stagnation problems

has led to a third generation of algorithms including ε-MOEA [122], ε-NSGA-II [162, 112],

SPEA-2 [232], and Borg-MOEA [92]. The optimization algorithm employed in this thesis

builds on ε-NSGA-II by adding several additional features from ε-MOEA and Borg-MOEA.

The following sections describe these additional features (listed below) and rationale for

including them.

1. ε-dominance archiving to avoid deterioration (adapted from ε-MOEA)

2. ε-progress to efficiently measure convergence speed (adapted from Borg-MOEA)
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3. adaptive population sizing to reduce initial computational effort (adapted from ε-

NSGA-II)

4. time continuation to escape from premature population stagnation with ε-progress and

population size imbalance restarts (adapted from Borg-MOEA)

5. multiple recombination operators to improve convergence and handle complex design

variable interactions (adapted from Borg-MOEA)

6. real time archive use to improve convergence speed (adapted from ε-MOEA)

ε-Dominance Archiving, and ε-Progress

Laumanns et al. [122] introduced the ε-dominance archiving concept to solve the deteriora-

tion problem by preserving diversity and guaranteeing convergence. ε-dominance allows the

decision maker to specify a desired resolution for each objective, denoted by ε. This effec-

tively divides the objective space into rectangular boxes with side length ε. In order for a

solution to dominate another solution, it must occupy an ε-box that is better in one or more

of the objectives. If two solutions occupy the same ε-box, only the solution closer to the lower

left corner (assuming minimization) is saved, while the other is eliminated. This process di-

rectly ensures that solutions do not bunch close together on the Pareto front. The selection

of ε values also directly corresponds to the maximum number of permitted non-dominated

solutions ensuring that computational cost is commensurate with the desired resolution of

the final non-dominated front. Using notation from Hadka et al. [92], a given solution with

fitness vector u ε-box dominates another solution with fitness vector v (denoted by u ≺ε v)

if:

1.
⌊
u
ε

⌋
≺
⌊
v
ε

⌋
, or

2.
⌊
u
ε

⌋
=
⌊
v
ε

⌋
and

∥∥u− ε
⌊
u
ε

⌋∥∥ <
∥∥v − ε

⌊
v
ε

⌋∥∥

Where (b·c) is the floor function. The first statement states that solution u dominates

another solution v only if it resides in a different ε-box that is better in terms of at least one

objective. The second statement takes care of the situation when the two solutions reside in

the same ε-box. In this case, the algorithm saves the solution that is closer to the lower left

corner of the box (assuming minimization) and eliminates the other.
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The ε-Archive concept, first implemented in ε-MOEA [122], solves the deterioration prob-

lem by maintaining an archive of ε-box non-dominated solutions external to the normal

population. This ensures preservation of the best solutions and mitigates deterioration.

ε-NSGA-II uses the ε-Archive to seed a new population after restart while ε-MOEA and

Borg-MOEA use the ε-Archive to generate one of the parents during recombination. Hadka

et al. [92] introduced ε-Progress as an efficient method for measuring convergence using ε-

Dominance. During the ε-Archive update process, a counter tracks how many solutions are

accepted into the archive that reside in new ε-boxes (satisfies statement 1 in the ε-Dominance

definition above). This effectively uses ε as a minimum threshold for measuring improvement.

The number of new ε-boxes added to the archive is tracked for each generation. ε-Progress

is then defined as the cumulative number of new ε-boxes added to the archive over the most

recent five generations divided by the archive size. When the ε-Progress metric drops below

a specified value (0.2 is used in this thesis), then the optimization algorithm is determined

to have stagnated and optimization is restarted. The archive is maintained by the process

outlined in Algorithm 3.

Algorithm 3 ε-Archive Update and ε-Progress

Input: new solution x
1: progress ← false

2: for all solutions y in archive do
3: if x ≺ε y then . if x ε-dominates y
4: remove y from archive
5: if

⌊
x
ε

⌋
6=
⌊
y
ε

⌋
then

6: progress ← true . ε-Progress has occurred
7: end if
8: else if y ≺ε x then
9: return . x is ε-dominated by y

10: end if
11: end for
12: add x to archive . x is an ε-non-dominated solution

While ε-Dominance and the ε-Archive significantly improves diversity and convergence,

stagnation can still occur. Time continuation has been proposed [86, 184] as a way of

recovering from stagnation. Traditional evolutionary optimization techniques employ a single

large population until termination. In the time continuation paradigm, the optimization
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process is split between many ‘epochs’. When the population in one epoch stagnates, a

new epoch is started by seeding the new population with a diverse set of good performing

members of the last epoch.

Early research on time continuation kept the population size constant between epochs;

however, recent research has found that maintaining the population size proportional to

archive size improved convergence for complex problems [194]. Therefore, the population

size is allowed to vary from epoch to epoch based on archive size in the modified ε-NSGA-

II scheme implemented in this thesis. A 4:1 population size to archive size ratio is used,

since it has been shown to perform well in previous research [112]. Smaller populations will

converge faster than larger populations, but have a higher propensity to stagnate. Adaptive

population sizing allows the optimization routine to start with a small initial population

that is computationally efficient at performing a coarse search of the objective space. As

the archive grows, the population size also grows and the optimization transitions from

coarse search to refined search close to the true Pareto front. Additionally, the population

size can decrease if the archive size decreases. Eventually, when the archive size stabilizes,

the population size also stabilizes and the optimization process turns into classical time

continuation. The next section explains the restart procedure used to transition from one

epoch to the next in the modified ε-NSGA-II scheme implemented in this thesis.

Restarts

This section describes the restart process employed by the modified ε-NSGA-II algorithm in-

troduced in this thesis. The restart procedure is triggered when either stagnation is detected

via ε-Progress or when the population to archive size ratio differs from 4:1 by more than

25%. When a restart is triggered, the new population size is calculated to best achieve a 4:1

ratio, and the population is regenerated through a modified injection scheme. The original

injection scheme proposed for ε-NSGA-II [112] added all of the archive members to the new

population and then the remaining slots were populated with random solutions. Instead, I

use a modified injection scheme introduced by Hadka et al. [92] for Borg-MOEA where the

remaining population slots are filled by mutating randomly selected archive members using

uniform mutation with a probability of 1/n, where n is the number of design variables[92].
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This strategy maintains a higher level of elitism than simple random generation of new

population members. Additionally, the crossover tournament size is adjusted to keep the

tournament size proportional to the population size as is done in Borg-MOEA[92]. Figure

5-3 shows the overall modified ε-NSGA-II optimization process. The main loop is similar

to the original NSGA-II algorithm with the exception of the offline archive and the restart

and termination criterion. Also depicted is the restart process, which restarts the main loop

with a new population with adaptive population size.
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Figure 5-3: Modified ε-NSGA-II optimization process

Crossover and Mutation Operators

The recombination operator is the primary search mechanism for evolutionary algorithms

and is crucial to the success of the optimization process. Deb et al. [53] classified crossover

operators into two categories: variable-wise and vector-wise operators. Variable-wise oper-

ators treat each variable separately and, therefore, do not perform well for problems with

significant linkage between design variables. Vector-wise operators use linear combinations
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of the parents’ entire variable vectors to create an offspring variable vector. This strategy

preserves the linkage between variables and performs well for problems with coupled variables

[58]. Crossover operators can also use a single parent, two parents or many parents to create

offspring. Recent research has shown that multi parent operators can improve convergence

for complex problems [156]. Given these factors, I decided to implement a random multi-

operator approach where the optimization algorithm randomly selects an operator when

producing each offspring. This approach is similar to the approach taken in Borg-MOEA,

but I have chosen not to implement the adaptive scheme where the probability of selecting

different operators is adjusted based on the historical success of the offspring generated by

each operator. Nebro et al. [145] showed that the adaptive scheme did not provide significant

advantages over the random approach for bi-objective problems. The diverse set of operators

implemented in the modified ε-NSGA-II optimization routine are listed in Table 5.1 along

with the settings used. Polynomial mutation is also applied to all offspring except those pro-

duced by uniform mutation using recommended settings from Deb et al. [52]: distribution

index of 100 and a mutation probability of 1/n where n is the number of design variables.

Table 5.1: Set of crossover operators incorporated in the modified ε-NSGA-II algorithm. The
settings values are provided in the nomenclature found in the references.

Operator Settings Ref.

Uniform mutation (UM) Pc = 1/n, 1 parent
Simulated binary crossover (SBX) λ = 20, Pc = 0.9, 3 parents [6, 55]
Unimodal normal distribution (UNDX) σζ = 0.5, ση = 0.35√

n
, 3 parents [109]

Parent-centric crossover (PCX) σζ = ση = 0.1, 3 parents [54]
Differential evolution (DE) CR = 0.6, F = 0.5, 4 parents [192]
Simplex crossover (SPX) ε =

√
n+ 1, n+ 1 parents [198]

5.2.1 Termination Criteria

The optimization routine continues until the rate of improvement drops below a specified

threshold. The rate of improvement is defined as the number of archive updates per 100 func-

tional evaluations, averaged over the last 2500 functional evaluations, as a percentage of the

archive size. This improvement rate is similar to ε-Progress introduced previously, however,
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it adds in a smoothing term to overcome spikes in convergence. The rate of improvement I,

described mathematically, is:

I =

∑
2500

(archive updates)

2500
× 100

Narchive

× 100 (5.1)

Where
∑
2500

(archive updates) is the cumulative number of archive updates made in the last

2500 functional evaluations and Narchive is the archive size. Averaging over a large number

of functional evaluations is necessary to smooth out spikes in convergence typically observed

during optimization. Figure 5-4 (top) shows the cumulative number of archive updates as

a function of total functional evaluations for an example optimization run. The bottom

plot shows I with smoothing carried out for 500, 1000 and 2500 functional evaluations. 2500

functional evaluations was selected as a good balance between overcoming convergence spikes

while still being able to terminate the algorithm as soon as the rate of improvement slows to

below the specified threshold. Interpreting the meaning of I is straightforward. I = 5 means

that the optimization algorithm has improved 5% of the archive for every 100 functional

evaluations, when averaged over the last 2500 functional evaluations. The optimization

process was terminated when I dropped below 2.5, which gave a common stopping condition

for all of the optimization runs presented in this thesis.

5.3 Parallel Implementation and Computing Resources

I recognized early on that parallel computation was needed to overcome the long functional

evaluation time encountered in the reconfigurable satellite constellation problem. Parallel

processing refers to using multiple processors in parallel to share the computational burden

and reduce overall processing time. The least complex parallel implementation is the master-

slave approach. The master-slave approach utilizes a master processor that is responsible for

all of the optimization functions (recombination, archiving, restarts...) and communicates

with a set of slave processors to perform functional evaluations. For small clusters with lim-

ited resources, the master processor also performs functional evaluations. For large clusters,

the master processor only handles communication and optimization routine implementation.
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Figure 5-4: The cumulative archive updates (top) and improvement metric (bottom) with
various smoothing ranges as a function of total functional evaluations during a sample opti-
mization run.

Ideally, the overall speedup provided by the parallel processing approach should increase

linearly with the available number of processors (cluster size), but this is often not the

case in practice. Practical limitations reduce parallel efficiency due to increased overhead

associated with master to slave communication and slave idle time. Communication time

refers to the time that is required to pass messages between computer resources and generally

increases with cluster size. Computational bottlenecks and generational synchronization

are the primary causes of resource idle time. In parallel processing applications, assuming

memory is not an issue, computational bottlenecks occur when slave processors must wait

for messages from the master processor in order to execute additional tasks. This often

occurs when an overloaded master processor delays sending additional instructions to slave

processors. Generational synchronization idle time is caused by the fact that all current

generation functional evaluations must be complete in order for the master processor to move

on to the next generation, and, during this time, finished slave processors sit idle. Previous

research has shown that the master-slave approach suffers significant loss in efficiency due
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to generational synchronization with heterogeneous computational systems [73, 163]. This

is caused by the situation where faster processors must wait for slower processors to finish

execution, which effectively slows all resources down to the slowest processor. This behavior

is also encountered for systems with functional evaluations of varying computational time

like the simulation model considered in this thesis.

Several solutions have been proposed to reduce both communication time and idle time.

Instead of the master-slave approach, the multiple-population approach executes separate

optimization runs on each processor or a small cluster of processors, and periodically ex-

changes population information between the sub-populations. The implementation of this

approach is much more complex, but it has been shown to reduce both communication

time and overall processor idle time by effectively reducing cluster size [71]. Additionally,

asynchronous execution has also been proposed to alleviate the generational synchronization

problem. One asynchronous execution method allows the master processor to move to the

next generation before all previous generation functional evaluations are complete, allowing

for increased resource utilization. This technique uses a variable length offspring popula-

tion and functional evaluations from the last generation that complete during the current

generation are added to the current generation offspring population. This approach is im-

plemented in the LC-ε-NSGA-II algorithm [163, 75, 76]. Another asynchronous execution

method moves away from generational optimization to a stationary process that is inher-

ently asynchronous and eliminates idle time caused by generational synchronization. The

stationary approach is used in ε-MOEA [56] and Borg-MOEA [92]. In this approach, the

master processor produces one offspring for each slave resource and, as the slave resources

complete their functional evaluations, the master sends them more work [90].

The parallel approach that I have taken in this thesis is to use the simple master-slave

model with synchronous execution. This decision was driven primarily by the large functional

evaluation time difference between different constellation designs. Figure 3-71 illustrated this

time difference and a 4-satellite constellation takes around 5 seconds to evaluate while a 36-

satellite constellation takes around 80 seconds to evaluate. This time difference is further

complicated by the fact that each design needs to be evaluated for many Monte Carlo

samples. This large time difference would cause an asynchronous algorithm to preferentially
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evaluate more designs in the low performance (smaller constellation size) regime. Instead,

I have implemented a novel batch processing approach, which attempts to even out the

computational burden sent to each slave processor during each generation. This process splits

up the total computational task for each generation into a set of discrete evaluation blocks,

each with similar computational burden. Figure 5-5 shows the evaluation set generation

process.
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Figure 5-5: Evaluation set generation process

First, a population of offspring (labeled A to E in Figure 5-5) is generated through

recombination for each generation. Each of these offspring population members will need to

be evaluated for a number of Monte Carlo samples (labeled 1-6 in Figure 5-5). Therefore

the total number of evaluations for each generation is given by the offspring population size

times the Monte Carlo sample size (Npop×NMC). The second step in the process breaks up

the set of functional evaluations into evaluation blocks with a specified block size. This is

accomplished by assigning individual functional evaluations to evaluation blocks by looping

first through all Monte Carlo samples and then through all offspring population members.

By looping through the Monte Carlo samples in the outer loop, the individual offspring

designs are distributed amongst different evaluation blocks which helps average out block

evaluation time. Next, to further reduce idle time, an expected execution time is computed

for each block and then the blocks are sorted in terms of decreasing estimated execution

time. The estimated block execution time is based on the number of satellites for a given

design as shown in Figure 3-71. The master processor then sends out the individual blocks

to slave processors for execution. The batch processing approach alleviates idle time by:
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� reducing communication time by sending multiple functional evaluations at a time to

each slave processor

� reducing execution time variation by mixing different offspring population members in

each evaluation block

� reducing generational synchronization time by sending out blocks with longer estimated

processing times first so that blocks with shorter processing times can later be sent to

slave processors that have completed their previous evaluation block

The block size (Nblock) is chosen based on a user supplied desired number of calls to each

slave processor and is determined through the following relation:

Nblock = max

(⌊
NpopNMC

NcallsNcluster

⌋
, 2

)
(5.2)

Where Ncluster is the number of slave processors in the computational cluster, Ncalls is the

average number of calls that the master will make to each slave processor to evaluate the

entire offspring population, and b·c is the floor function. Increasing Ncalls will reduce com-

munication time, but will generally increase synchronization idle time since it is harder to

even out block execution time. For this reason, Ncalls is set to eight for reconfigurable archi-

tectures while Ncalls is set to six for static architectures since static architectures show less

variation in execution time as a function of constellation size.

The parallel master-slave implementation is depicted in Figure 5-6 from the perspective

of the master processor (left) and slave processors (right). For the master, once the list of

offspring is generated through recombination, the offspring and their Monte Carlo samples are

divided into evaluation blocks and sorted by descending estimated computational time. The

master then sends one evaluation block to each slave for evaluation using the MatlabMPI

message passing implementation included in pMatlab [21]. When each slave receives an

evaluation block in a message from the master, it performs the simulation model evaluations

contained in the evaluation block and then sends the results back to the master. After one

evaluation block is sent to each slave, the master then waits for messages from the slaves

indicating that they have completed their task. When the master receives a message, the

results are stored and then the master will perform one of three actions depending on the
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Figure 5-6: Master-slave parallel function evaluation process for the master (left) and slave
(right) processors

current evaluation state. If there are more evaluation blocks to be evaluated, then the next

evaluation block is sent to the now idle slave. If all evaluation blocks have been sent, but not

all results have been received, then the master will continue to wait for additional results from

the slaves. If all results have been received, then the master processor unsorts the results

and computes the bi-objective fitness (median performance and cost) for each offspring over

the Monte Carlo samples. The master then returns to the MOEA algorithm process to move

on to the next generation.

All optimization runs were performed on MIT Lincoln Laboratory’s LLGrid [21] com-

puting cluster running MATLAB R2014a. While I had access to 1024 processors in total,

each optimization run was limited to 256 processors in order to minimize the generational

synchronization efficiency loss. This efficiency loss is caused by the reduction in both the

number and size of evaluation blocks which makes it harder for the algorithm to even out

computational load. Limiting each optimization run to 256 processors allowed four opti-

mization runs to be performed in parallel to utilize the full 1024 processor capability. In

total, 85 optimization runs were completed over a span of three months, requiring almost
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40 million simulation model calls. Without parallel computing, this effort would have taken

approximately 151 years of non-stop computation by a modern computer processor (an Intel

Core i5-2410M was used as reference). Post processing included performing a 96 sample

Monte Carlo simulation on the final non-dominated fronts using a 16 core Dell T7200 Pre-

cision workstation equipped with two E5-2665 eight core processors running Ubuntu 12.04

and MATLAB R2014a.

5.4 Problem Formulation

The formal multi-objective problem formulation is expressed as:

min J (x,p) =

subject to: g (x,p) ≤ 0

h (x,p) = 0

xi,LB ≤ xi ≤ xi,UB (i = 1, . . . , n)

Where J are the objectives to be minimized, g are inequality constraints, h are equality

constraints, p are fixed parameters, and x is the design vector of design variables with bounds

xi,LB and xi,UB. The following sections will provide details on the objectives, constraints,

design variables, and parameters for the satellite constellation design problem.

5.4.1 Objectives

The optimization objectives are to maximize median constellation performance P̃ (over all

Monte carlo samples) while simultaneously minimizing total constellation cost C. The ob-

jectives vector, written as a minimization problem, is then:

J =

[
−P̃
C

]
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5.4.2 Constraints

Throughout development of the optimization methodology, I took great care to avoid unnec-

essarily constraining the optimization process. This emphasis resulted in only four inequality

constraints and no equality constraints. The four inequality constraints implemented are:

a minimum altitude constraint; a maximum propulsion system mass fraction constraint; a

maximum GOM revisit time constraint; and a constraint on the maximum number of satel-

lites in the constellation. The minimum altitude hmin was constrained to be greater than

300km during all phases of system life cycle including ROM, GOM, and drift orbits for both

deployment and reconfiguration. The propulsion system mass fraction MP

Mw
was constrained

t be less than 42% of the total satellite wet mass. The maximum revisit time for GOM

partial global coverage Trev must be less than or equal to 24 hours to provide overall sys-

tem utility in between event responses. Due to computational time limitations, the total

number of satellites in the constellation Ns is also constrained to less than or equal to 36

or 48 satellites depending on the desired level of persistence. While cost should naturally

limit the maximum constellation size, the computational time increases dramatically and

becomes impractical for greater than 48 satellites. Section 6.4.1 investigates how this maxi-

mum satellite constraint affects the value of reconfigurability. When a design violates these

any of these four constraints, the fitness is penalized and the optimization process naturally

tries to satisfy all constraints. These constraints can be changed easily and should be aligned

with stakeholder objectives. The constraints vector is then written as:

g =




300km− hmin
Mprop

Mw
− 0.42

Trevisit − 24hr

NT − 36



≤ 0

Additionally, the design variables are constrained within specified bounds. These bounds

are discussed further for the varied architectures studied in Chapter 6.
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5.4.3 Design Vector

One of the central objectives of this thesis work was to perform concurrent optimization of the

constellation pattern design, the satellite design, and the operational design. Therefore, there

are three categories of design variables in the multidisciplinary constellation design problem

studied in this thesis: constellation pattern design variables; satellite design variables; and

operational design variables. The complete set of design variables is called the design vector

x and is expressed as:

x =



x1

...

xn




This design vector will have a varying number of design variables n depending on whether the

constellation is static or flexible, and which type of constellation pattern is being considered.

The work in this thesis considers five unique constellation patterns: a symmetric pattern

with common inclination; a layered pattern comprised of two symmetric layers at different

inclinations; an asymmetric pattern with common inclination; and two different restricted

asymmetric designs with common inclination. Additionally, two other architectures are

optimized for comparison with the reconfigurable approach including: a traditional polar

sun-synchronous constellation and a rapid launch architecture utilizing responsive orbits

[218]. Chapter 6 elaborates on the design vector setup for each of these constellation patterns,

including the list of design variables and variable bounds, prior to presenting optimization

results.

5.4.4 Parameters

Parameters are semi-fixed quantities that define the operational context under which the

systems are optimized. Table 5.2 lists all of the parameters contained in the simulation

model and provides their nominal values as well as the section in this thesis where the

parameters were introduced in detail. Many of these parameters were varied as part of two

sensitivity studies presented in Sections 6.1.4 and 6.5.3.
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Table 5.2: Master table of parameters

Parameter Symbol Value Units Section

Pattern

Eccentricity e 0 - -

Satellite

Ballistic coefficient BC 75 kg/m2 3.3.2

LV correction ∆V ∆VLV 22 m/s 3.3.2

Stationkeeping ∆V ∆VSK 20 m/s/yr 3.3.2

Maximum deployment ∆V ∆Vdep,max 200 m/s 3.4.3

Deployment ∆V granularity - 10 m/s 3.4.3

Maximum deployment time Tdep 90 days 3.4.3

De-orbit perigee altitude - 75 km 3.3.2

Maximum field of regard ρmax 45 deg 3.1.3

Lifetime Tlife 5 yr -

Propulsion specific impulse Isp 240 s 3.3.2

Propulsion system dry mass fraction ξp 0.2 - 3.3.2

Propellant penalty function gain Gpen 0.1 - 3.5.4

Maximum reconfiguration altitude offset - 80 km 3.5.4

Reconfiguration altitude granularity - 5 km 3.5.4

Maximum reconfiguration time - 6 days 3.5.4

Launch vehicle packing factor ηpack 0.5 - 3.4.3

Learning rate b 0.9 - 3.4.4

Decision model gain GDM 3 - 3.5.5

Observation

Minimum elevation angle εmin 60 deg 3.1.3

Observation wavelength λs 500 nm 3.1.3

Temporal utility power P 1 - 3.6.1

Spatial utility scaling parameter δ 2 - 3.6.2

Desired Persistence T 1 hr 3.6.1

Desired GSD X 1 m 3.6.2
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Figure 6-1: Graphical organization and mapping of the results presented in Chapter 6

This chapter presents the results from 85 optimization runs conducted using eight dif-

ferent constellation patterns and four architectures, comprising over 1.64 million functional

evaluations and almost 40 million simulation model calls. Scenarios were chosen to investi-

gate the effectiveness of different constellation patterns and to assess the sensitivity of the

results to changes in selected parameters. Figure 6-1 graphically depicts the organization

of the chapter. Section 6.1 presents optimization results for both static and reconfigurable

architectures using traditional symmetric constellation patterns. Results for the nominal

scenario (1hr desired persistence, 1m spatial resolution, and event locations drawn from

the natural disaster PDF) are presented first. For this scenario, optimization run-data are

provided and data post processing activities are discussed. The static and reconfigurable
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non-dominated design fronts are then directly compared and the value of reconfigurability

is calculated. Following this, design details of the static and reconfigurable non-dominated

designs are compared to assess trends and identify major differences between the two archi-

tectures. A sensitivity analysis is then conducted to determine how both the non-dominated

designs and value of reconfigurability are affected by changes to the desired sampling reso-

lution (temporal and spatial) and other important parameters and constraints.

Following the symmetric pattern analysis, Section 6.2 presents the optimization results for

the layered pattern for scenarios 1 through 4. The layered pattern was found to significantly

improve the efficiency of the static architecture but had little effect on the efficiency of the

reconfigurable architecture. The asymmetric pattern results, presented in Section 6.3, show

increased efficiency over symmetric designs for both architectures, but suffered from slow

convergence caused by the large increase in the number of design variables. Post-optimization

analysis found that this increase in efficiency was caused by the ability to position satellites

closer together in Ω. Two quasi-asymmetric patterns are then introduced that allow for

this clustering design freedom, but use regular spacing in Ω and M to vastly reduce the

number of design variables needed to describe the pattern. The results from these two new

patterns show that they significantly outperform the symmetric pattern. Section 6.4 then

compares the results from all pattern designs and compiles combined non-dominated fronts

for static and reconfigurable architectures. Section 6.5 looks at how system designers and

stakeholders might select specific designs from the non-dominated fronts, and then compares

the performance of a single reconfigurable design and an iso-cost static design. Section 6.6

then compares optimized static and reconfigurable designs to optimized designs for two other

proposed architectures: the polar sun-synchronous pattern and a rapid launch architecture

using repeat coverage orbits. Section 6.7 then looks at how restricting the number of satellites

available to respond to a single event affects the non-dominated front for the reconfigurable

architecture. The chapter concludes by summarizing all results in Section 6.8. Design

variable details for selected non-dominated designs for all runs are provided in Appendix A.
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6.1 Symmetric Pattern

This section presents the symmetric constellation pattern optimization results for the static

and reconfigurable architectures and also presents details of the: optimization process, data

post-processing and sensitivity of optimization results to changes in parameters and con-

straints. The section is organized as follows. Section 6.1.1 provides details for the sym-

metric pattern construction and design variables for each architecture. Next, Section 6.1.2

presents details of the optimization process, a comparison of the reconfigurable and static

non-dominated fronts, and describes how the value of reconfigurability is computed for the

nominal scenario. Section 6.1.3 then investigates the effect of increased temporal and spa-

tial resolution requirements on the non-dominated designs and value of reconfigurability.

Section 6.1.4 further investigates how varying several other parameters affects the value of

reconfigurability.

6.1.1 Symmetric Pattern Design

A single symmetric constellation is comprised of satellites in circular orbits with common a

and i that are divided into Np equally spaced orbit planes, each containing Nsp satellites.

This gives a total number of satellites in the constellation as NT = NpNsp. Additionally,

the satellites in each plane are spaced equally in M , and the difference in M for satellites

in adjacent orbit planes is controlled by a phasing parameter F . The Walker Delta Pattern

is one method of constructing a symmetric constellation and is based on the pattern unit,

PU = 2π/ (NT ) [214, 221]. Using the pattern unit the orbit planes are then spaced in

Ω by Nsp × PU increments and the satellites within each orbit plane are spaced in M by

Np×PU increments. Satellites in adjacent orbit planes are shifted in M by F ×PU , where

F = 0, · · · , (Np − 1) is the phasing parameter. The pattern design process starts off by

determining the orbital state of a ‘key satellite’ (Ωkey and Mkey). The initial orbital states
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of the remaining satellites are then given as:

Ωkl =
2πk

Np

+ Ωkey (6.1)

Mkl =
2πl

Nsp

+
2πkF

NpNsp

+Mkey (6.2)

Where k = 0, · · · , (Np − 1) and l = 0, · · · , (Nsp − 1). Figure 6-2 shows the effect of F on

a 9 satellite constellation with Np = 3, Nsp = 3, Ωkey = 0◦, and Mkey = 0◦. In this case

the pattern unit PU = 360◦/9 = 40◦. We see that the three orbital planes are separated in

Ω by Nsp × PU = 120◦ and the three satellites in each orbital plane are separated in Ω by

Np × PU = 120◦. For F = 0 (top left), the satellites in adjacent planes have the same M .

For F = 1, satellites in adjacent planes are shifted in M by one PU . When F = Np = 3

the pattern repeats since F is on the interval 0 to Np − 1. The initial constellation orbital

state for the symmetric pattern is then given as the orbital elements for each satellite,

Xi = (a, e, i,Ωi, ω,Mi). The initial state of the whole 9 satellite constellation Φ is then given

as:

Φ =

∣∣∣∣∣∣∣∣∣∣∣∣

X1

X2

...

XNT

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a 0 i Ω1 0 M1

a 0 i Ω2 0 M2

...
...

...
...

...
...

a 0 i ΩNT 0 MNT

∣∣∣∣∣∣∣∣∣∣∣∣

The complete set of design variables for the symmetric pattern is shown in Table 6.1

for both the reconfigurable and static architectures. Starting first with the reconfigurable

architecture (subtable a), there are nine total design variables. Design variables x1 to x6

define the constellation pattern; design variables x7 and x8 define the satellite design; and

design variable x9 defines the operational decision maker preferences as explained in Section

3.5.5. There are three types of variables in this problem including continuous (cont.), integer

(int.), and categorical (cat.). Table 6.1 shows that for the reconfigurable architecture, there

are five continuous, three integer and one categorical design variables. Also shown are the

bounds of the design variables used in the optimization process. The static architecture

design vector differs from the reconfigurable architecture design vector in two ways. First,

the No/Nd and ∆alt design variables are collapsed into a single design variable for the
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Figure 6-2: The Walker phasing parameter F controls the M spacing of satellites in adjacent
orbit planes. For reference, the open circles show the F = 0 case

GOM altitude hGOM . Second, the ∆Vrecon and α0 design variables are eliminated since the

satellites will not be reconfigured. While the design vector could have been left the the

same for the static architecture by allowing the combination of No/Nd and ∆alt to specify

hGOM and setting ∆Vrecon and α0 to zero, reducing the design space improved optimization

convergence for the static architecture.

6.1.2 Symmetric Pattern Scenario 1 Results

Various scenarios were considered in order to investigate how changing parameters and con-

straints would affect the cost effectiveness of static and reconfigurable architectures and the

value of reconfigurability. Scenario 1 is the nominal scenario considered in this thesis. An

ideal design for scenario 1 would provide persistent coverage with 1hr temporal resolution

and 1m spatial resolution over a 5 year lifetime for event locations drawn from the natural

disaster PDF. Table 5.2 lists the rest of the parameter values used in scenario 1.
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Table 6.1: Symmetric constellation pattern design variables for (a) reconfigurable and (b)
static architectures

(a) Reconfigurable Architecture

# Variable Name Symbol Type Bounds

x1 RGT type No/Nd cat. [31
2 ,15

1 ,29
2 ,14

1 ,27
2 ,13

1 ]

x2 GOM altitude offset ∆alt cont. −50 to 50 km
x3 Number of orbit planes Np int. 1 to 36 (or 48)
x4 Number of satellites per plane Nsp int. 1 to 24
x5 Inclination i cont. 50◦ to 130◦

x6 Phasing parameter F int. 0 to Np − 1
x7 Aperture size D cont. 0.1 to 1.2 m
x8 ReCon ∆V ∆Vrecon cont. 0 to 1000 m/s
x9 Decision model weight α0 cont. 0 to 1

Pattern

Satellite

Operations

(b) Static Architecture

# Variable Name Symbol Type Bounds

x1 GOM altitude hGOM cont. 300 to 1000 km
x2 Number of orbit planes Np int. 1 to 36 (or 48)
x3 Number of satellites per plane Nsp int. 1 to 24
x4 Inclination i cont. 50◦ to 130◦

x5 Phasing parameter F int. 0 to Np − 1
x6 Aperture size D cont. 0.1 to 1.2 m

Pattern

Satellite

Optimization Run Data & Convergence

Various data was collected to measure optimization progress and this run data for scenario

1 is shown in Figure 6-3 for the reconfigurable (left) and static (right) architectures. The

top plots show the population to archive size ratio and ε-Progress as a function of the

number of completed functional evaluations. These two metrics determine when to trigger

the population restart procedure in the optimization algorithm, as was previously explained

in Section 5.2. A restart is triggered when the population to archive size ratio deviates

from 4 by more than 25% or when ε-Progress drops below 0.2. These trigger thresholds are

depicted in the figure by horizontal dashed lines and the triggering events are depicted by

filled in data markers. The middle set of plots show the population size and archive size as

a function of the number of completed functional evaluations. Here we see that initially the

population size grows with growing archive size. This growth period then transitions to a

period where the archive size and, therefore, the population size is nearly constant. For all

196



ǫ-Termination

Archive Size

Population Size

ǫ-Progress

Population to Archive Size Ratio

Functional Evaluations

0 6000 12000 18000

1

10

50

0
50
100
150
200

0

1

2

3

4

5

(a) Reconfigurable

ǫ-Termination

Archive Size

Population Size

ǫ-Progress

Population to Archive Size Ratio

Functional Evaluations

0 7000 14000 21000 28000

1

10

50

0
50

100
150
200

0

1

2

3

4

5

(b) Static

Figure 6-3: Symmetric pattern scenario 1 optimization run data and convergence

optimization runs in this thesis, this generally occurred when the archive size was around 30

to 50 and the population size was around 120-200. The lower plots show ε-Termination as a

function of the number of completed functional evaluations. An ε-Termination value of 2.5

was used as the termination criterion for all optimization runs in this thesis. For scenario 1,

the reconfigurable architecture optimization terminated after 17,887 functional evaluations

(427,288 simulation model calls with a Monte Carlo sampling size of 24), while the static

architecture optimization terminated after 25,405 functional evaluations (609,720 simulation

model calls).

Table 6.2 shows run statistics for the 77 optimization runs presented in this thesis. The

static and reconfigurable architectures both took, on average, around 20,000 functional eval-

uation for optimization termination, and the static designs had an a mean simulation model

execution time of 121s versus 126s for reconfigurable designs. In Section 3.8 we saw that

the simulation model runtime for reconfigurable designs is much longer; however, efficient
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reconfigurable designs feature fewer satellites than static designs and the overall mean model

runtime is similar. The SSO and rapid launch architectures took fewer functional evalua-

tions to converge. The estimated computational time for a single modern processor and 256

modern processors are also listed in Table 6.2. In total, over 151 years worth of calculations

(on a single Intel Core i5-2410M processor) were completed over the course of three months

using a 1024 processor computing cluster broken up into four, simultaneous, 256 processor

optimization runs.

Table 6.2: Optimization run statistics for the 85 optimization runs presented in this thesis

Computation Time

# Mean Functional Mean Sim 1 core� 256 cores*

Runs Evaluations s years days

Static 37 19,540 120.8 57.7 110.1

Reconfigurable 40 20,374 126.3 72.3 148.9

SSO 4 15,079 125.8 5.8 11.0

Rapid 4 9,493 18.4 0.5 1.0

Total 85 – – 151.2 287.3

� Intel Core i5-2410M

* 1.5 times faster than Intel Core i5-2410M, 50% parallel efficiency

Non-dominated Fronts & Computing the Value of Reconfigurability

Several post-processing steps prepared the data for analysis and comparison following op-

timization termination. First, a non-domination sort procedure was used to find the set of

non-dominated designs encountered over all functional evaluations performed during opti-

mization. For scenario 1 there were 245 unique non-dominated designs for the reconfigurable

architecture and 263 unique non-dominated designs for the static architecture. These unique

non-dominated designs are plotted in Figure 6-4 as solid markers for the reconfigurable (col-

ored black) and static (colored gray) architectures. Roughly 40 to 50 designs were selected

through ε-domination sorting for further evaluation with a 96 sample Monte Carlo simu-

lation. This additional sampling solved two problems. First, due to computational time

limitations, the Monte Carlo sampling size used in the optimization routine was limited to

24 samples giving a 68% confidence interval size for the median performance of around 3%.
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Figure 6-4: The reconfigurable non-dominated front (colored black) completely dominates
the static non-dominated front (colored gray) in terms of maximizing performance while
minimizing cost

Increasing the sample size to 96 halved this to around 1.5%. Second, since the optimization

process was evaluating designs over several independent Monte Carlo simulations, it is prone

to identify ‘favorable’ Monte Carlo sample draws. For example, if we perform two 24 sample

Monte Carlo simulation runs with the same design, the optimization process will select the

higher of the two median performance values and, as the optimization process proceeds, this

estimate of the median will drift further away from the true median value. The median

performance over 96 Monte Carlo samples is shown as a line with open circle markers in

Figure 6-4 for 37 reconfigurable designs and 53 static designs. As expected, the performance

of the designs given by the optimization routine is higher due to the ‘optimization’ of Monte

Carlo sample draws previously explained. This post-processing process with 96 Monte Carlo

samples is repeated for all results presented in this thesis. Additionally, the median perfor-

mance P̃ is normalized by the ideal performance for the scenario Pmax, which is described in

more detail in Section 3.6.2. The full design variable values for selected designs from both

fronts are listed in Appendix A.

Direct comparison of the reconfigurable and static non-dominated fronts shows that re-

configurable designs completely dominate the static designs in terms of maximizing perfor-

mance while minimizing cost. The value of reconfigurability (VoR) was previously defined as

the reduction in total system cost, while maintaining the same performance, made possible
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by adopting the more efficient reconfigurable architecture. VoR is determined by computing

the horizontal distance between the reconfigurable and static non-dominated fronts in Figure

6-4. Additionally, a bootstrap re-sampling procedure (with replacement) is used to capture

some of the effects of sampling error into the VoR calculation. 1000 bootstrap samples are

generated for each non-dominated design to construct 1000 different splines representing the

reconfigurable and static non-dominated fronts. VoR (the horizontal distance between the

non-dominated fronts) is then calculated from these splines. Figure 6-5 shows the mean

VoR (thick line) as well as the high and low 3σ VoR values (thin lines). The top plot shows

VoR in terms of FY2010 dollars while the lower plot shows VoR in terms of a percentage of

the static architecture cost. Here we see that VoR is between 20 to 50%, meaning that the

reconfigurable architecture is 20 to 50% less expensive than a static architecture for the same

performance level. Also, we see that VoR generally increases with increasing performance.

48.7%

$1031M FY2010

P̃ /Pmax

V
oR

(%
of

st
at
ic

co
st
)

V
oR

($
M

F
Y
20
10
)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

0

250

500

750

1000

1250

Figure 6-5: The value of reconfigurability, which is equal to how much cheaper the reconfig-
urable designs are when compared to iso-performance static designs, is 20-50% of the static
architecture cost
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Non-dominated Front Design Details

Figure 6-6 shows details of the reconfigurable (colored black) and static (colored grey) non-

dominated designs as a function of normalized performance. The plotted design details

include: the total number of satellites (NT ), aperture size (D), GOM altitude (hGOM), in-

clination (i), number of orbit planes (Np), number of satellites per orbit plane (Nsp), total

∆V (∆VT ), and total number of launches to deploy the constellation. Here we see that

the non-dominated designs for the two architectures are significantly different. In the low

performance region (P̃ /Pmax < 0.6), static designs tend to feature more satellites at a lower

altitude when compared to reconfigurable designs. However, despite the lower altitude,

static designs feature similar aperture sizes, since static designs must have larger apertures

to maintain good spatial resolution for off-nadir passes, while reconfigurable designs ensure

nadir viewing. The reduction in the number of satellites for reconfigurable designs is caused

by increased per-satellite utilization enabled by the ability to reconfigure. This is the fun-

damental cost reduction driver for reconfigurable architectures. In the higher performance

region (P̃ /Pmax > 0.6), the static architecture runs up against the maximum satellite con-

straint which is set to 36 for scenario 1. Therefore, to improve performance for static designs,

altitude and aperture size must increase, inflating overall system cost.

Reconfigurable designs, except for very low performance designs that feature small num-

bers of satellites, tend to feature prograde inclinations of around 60◦ and a single satellite

per orbit plane. This difference is likely caused by the tension between minimizing launch

cost and maximizing performance. For small numbers of total satellites, it is difficult for

two satellites to share a single launch because the orbit planes are too far apart in Ω to

be serviced by the differential orbital precession during the three month deployment period.

Therefore, a dedicated launch for each satellite is needed, which increases launch cost. How-

ever, the time of pass for a specific event location in an RGT orbit for the reconfigurable

architecture is a function of Ω only, and greater diversity in Ω leads to better persistence, as

was seen in Section 3.1.2. This explains why high performance reconfigurable designs tend to

feature only one satellite per orbit plane. Static designs tend to feature multiple satellites per

orbit plane, fewer total orbit planes, and retrograde inclinations of around 120◦. Therefore,
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Figure 6-6: Design details for the reconfigurable (colored black) and static (colored gray)
non-dominated fronts

for these static designs, the performance benefits of retrograde inclinations must outweigh

the increase in launch cost to launch to higher inclinations for retrograde designs to be on

the non-dominated front. There is, however, some chatter between prograde and retrograde

inclinations for low performing static designs, which indicates that the performance differ-

ence between prograde and retrograde designs is small. This chatter phenomenon between

prograde and retrograde inclinations in static designs was observed in many of the scenarios

studied in this thesis. Additionally, the effect of inclination bounds is studied later in Sec-

tion 6.1.4. Reconfigurable designs also feature nearly twice the total propulsive capability

of static designs in order to support reconfiguration maneuvers. The maximum propulsion

system mass fraction constraint (set to 42% which corresponds to around 980m/s using the
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parameters specified in Section 3.3.2) is active for many non-dominated reconfigurable de-

signs and relaxing this constraint will increase the value of reconfigurability, as we will also

see in Section 6.1.4.

Performance Comparison with Traditional Metrics

The performance metric used in this thesis directly measures both temporal and spatial

resolution for persistent surveillance and alleviates some of the problems encountered with

traditional satellite coverage metrics. However, it is useful to see how the static and recon-

figurable non-dominated designs found using the new performance metric compare in terms

of the traditional metrics. Figure 6-7 shows a comparison of the static and reconfigurable

non-dominated designs in terms of average and maximum revisit time, mean response time

and mean GSD as a function of overall system cost. The traditional metric values plotted

are the median metric value over all event responses during the system lifetime and over

the 96 Monte Carlo samples. The metric value for each event response is defined as the

daily value averaged over days 4 to 14 of the event response. Only counting days 4 through

14 gives the reconfigurable system time to complete the reconfiguration maneuvers and the

performance during days 1 through 3 are investigated later in Figure 6-9. The desired met-

ric values are plotted as horizontal dashed lines. Figure 6-7 shows that the reconfigurable

architecture provides better average revisit time and mean response time and significantly

better maximum revisit time. However, the static architecture provides better mean GSD

for low-cost designs. This likely means that, for static designs, it is less costly to increase

aperture size and therefore increase spatial resolution than to increase temporal resolution.

Consequently, the optimization process places more emphasis on providing better mean GSD

for these designs. This comparison shows that the traditional metrics tend to show the same

trends as the new persistence metric introduced in this thesis.

Table 6.3 shows the details of one reconfigurable design (labeled design R) chosen close to

the ‘knee’ in the non-dominated front. Two static designs were also chosen, one that features

similar cost as design R (labeled design S1) and one that features similar performance as

design R (labeled design S2). These selected designs are shown on the non-dominated fronts

in Figure 6-8. The performance metrics shown here are the same as for those plotted in
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Figure 6-7: When compared with traditional figures of merit, non-dominated reconfigurable
designs (colored black) generally outperform iso-cost non-dominated static designs (colored
gray)

Figure 6-7 except that they are averaged over all days during the event response. Here

we see that the performance for the reconfigurable design is significantly better than the

performance of the iso-cost static design for all five metrics. When compared to the iso-cost

static design, the reconfigurable design has a slightly larger aperture, significantly fewer total

satellites, a lower GOM altitude and roughly twice the total ∆V . In this case, the increase

in cost for the reconfigurable design is due to increased total ∆V , slightly increased aperture

size and increased number of orbit planes and is offset by the increase in cost for the static

design due to significantly more satellites at a higher inclination. While the performance

between the reconfigurable design and iso-performance static design is nearly the same, the

static design costs almost twice as much as the reconfigurable design. For this case, the value

of reconfigurability is around 47%.

While Figure 6-7 showed the metric values averaged over days 4 to 14 during the event

response, it is also important to look at how coverage varied from day to day. This will show

the performance as a function of time during event response, illustrating the response time
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Figure 6-8: The symmetric pattern non-dominated fronts with selected designs R, S1 and
S2 shown

Table 6.3: Performance and design details comparison between a reconfigurable design and
one iso-performance static design and one iso-cost static design

Avg. Max Mean Mean

Cost P̃ Revisit Revisit Response GSD i D NT hGOM ∆VT
$M - hr hr hr m deg m - km m/s

R 1002 142.7 0.86 1.12 0.46 1.00 57.73 0.31 23 484.9 917

S1 1000 102.2 1.05 1.83 0.67 1.20 121.37 0.29 36 517.6 453

S2 1878 143.4 0.71 1.31 0.46 1.05 123.55 0.51 36 816.3 458

for the reconfigurable architecture. Figure 6-9 shows the traditional performance metrics

as a function of days during event response for designs R, S1 and S2. The performance

is calculated as the average daily performance over all event responses and then averaged

over the 96 Monte Carlo samples. The vertical bars indicate the extent of the interquartile

range averaged over all event responses and averaged over the 96 Monte Carlo samples. The

coverage provided by the reconfigurable design initially starts off poor, but steadily improves

as satellites maneuver into ROM, and surpasses the coverage provided by the static designs

after three to four days. Additionally, the interquartile range for the reconfigurable design

is larger initially than the static designs, but becomes smaller after the satellites move into

ROM. This analysis shows that the response time for the reconfigurable architecture is on the

order of a few days. This response time can potentially be decreased by increasing the drift

orbit altitude to allow for faster phasing at the cost of additional propellant use; however,
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this would lead to a less efficient overall system design given the objectives investigated in

this thesis. Future work could consider changing the performance metric to reward quick

response times for missions where the time to first image is critical.
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Figure 6-9: Daily traditional metric comparison for a reconfigurable design (black), an iso-
cost static designs (filled gray), and an iso-performance static design (unfilled gray)

6.1.3 Effect of Increased Temporal and Spatial Resolution

Scenarios 2 through 4 investigate how increasing temporal and spatial resolution require-

ments affect the value of reconfigurability. Scenarios 2 and 4 increase the spatial resolution

requirement to 0.5m, while scenarios 3 and 4 increase the temporal resolution requirement to

0.5hr. For the cases with increased temporal resolution, the constraint on the maximum total

number of satellites was also increased to 48, since increased persistence generally requires

more satellites. Figure 6-10 shows the non-dominated fronts for scenarios 1-4. The non-

dominated fronts for scenarios 2-4 show the same type of trends as was seen for scenario 1.

As the temporal and spatial resolution requirements increase, the cost of the non-dominated

designs for a given normalized performance level also increases. However, static costs in-

crease faster than reconfigurable costs, which leads to increased VoR. Figure 6-11 shows that
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VoR generally increases with increasing temporal and spatial resolution requirements and

is more sensitive to increased temporal resolution. This indicates that the reconfigurable

architecture is better able to handle increased temporal resolution requirements due to its

more efficient use of satellites. The mean VoR over the normalized performance range of

0.5 ≤ P̃ /Pmax ≤ 1 is 36.5% for scenario 1, 46.7% for scenario 2, 48.5% for scenario 3, and

55.4% for scenario 4.

(a) Scenario 1: T = 1hr, X = 1m
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(b) Scenario 2: T = 1hr, X = 0.5m
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(c) Scenario 3: T = 0.5hr, X = 1m
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(d) Scenario 4: T = 0.5hr, X = 0.5m

Cost ($M FY2010)

P̃
/
P
m

a
x

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

Figure 6-10: Symmetric pattern non-dominated front comparison for scenarios 1 through 4

6.1.4 Value of Reconfigurability Sensitivity to Other Parameters

In addition to varying the desired temporal and spatial resolution, several other parameters

and constraints were varied to assess their effects on static and reconfigurable architecture

cost effectiveness and the value of reconfigurability. Table 6.4 lists the parameters and

constraints used for scenarios 1 through 11, and highlights the changes with respect to the

nominal scenario. The resulting value of reconfigurability curves as a function of normalized

performance are shown in Figure 6-12.
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Figure 6-11: The value of reconfigurability increases with increasing coverage requirements

Table 6.4: Parameters values used in scenarios 2 through 11 to investigate the sensitivity of
the value of reconfigurability to changes in parameters

Scenario T X Event PDF Lifetime b εmin i NT
MP

Mw

# hr m yr deg deg

1 1 1 Disaster 5 0.9 60◦ 50−130 ≤36 ≤0.42
2 1 0.5 Disaster 5 0.9 60◦ 50−130 ≤36 ≤0.42
3 0.5 1 Disaster 5 0.9 60◦ 50−130 ≤48 ≤0.42
4 0.5 0.5 Disaster 5 0.9 60◦ 50−130 ≤48 ≤0.42
5 1 1 Uniform 5 0.9 60◦ 50−130 ≤36 ≤0.42
6 1 1 Disaster 10 0.9 60◦ 50−130 ≤36 ≤0.42
7 1 1 Disaster 5 1.0 60◦ 50−130 ≤36 ≤0.42
8 1 1 Disaster 5 0.9 45◦ 50−130 ≤36 ≤0.42
9 1 1 Disaster 5 0.9 60◦ 50−100 ≤36 ≤0.42
10a 1 1 Disaster 5 0.9 60◦ 50−130 ≤12 ≤0.42
10b 1 1 Disaster 5 0.9 60◦ 50−130 ≤24 ≤0.42
11 1 1 Disaster 5 0.9 60◦ 50−130 ≤36 ≤0.50

Subplot (a) shows the effect of temporal and spatial resolution described previously in

Section 6.1.3. Subplot (b) shows that VoR is not a strong function of the event location

PDF. One reason for this is that both the disaster and uniform distributions studied in this

thesis contain distributions that are spread globally in longitude and have similar latitude

ranges. I would suspect that VoR might change as the input distributions were to become

focused on smaller, more localized regions. This investigation is left for future work. Subplot

(c) shows that increasing the system lifetime Tlife from 5 to 10 years (while maintaining the

same event rate) decreases VoR. This effect is primarily caused by insufficient propellant

for reconfigurable designs to service twice as many event responses since the maximum
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(b) Event Location Distribution
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(c) Constellation Lifetime
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(d) Learning Curve
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(e) Minimum Ground Elevation Angle

εmin = 45◦

εmin = 60◦

P̃ /Pmax

V
o
R

(%
o
f
st
a
ti
c
co

st
)

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

(f) Inclination Bounds
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Figure 6-12: Value of reconfigurability sensitivity to changing parameters in scenarios 1
through 11

209



propulsion system mass fraction constraint is already active for scenario 1. Doubling the

lifetime also increases the stationkeeping and drag makeup ∆V requirements, which further

reduces ∆Vrecon. Subplot (d) shows that the VoR is inversely correlated with the learning

curve effect. This trend is intuitive since static designs typically have more satellites and,

therefore, eliminating the learning curve (b = 1.0) increases the cost of static designs more

than reconfigurable designs. Subplot (e) shows that reducing the minimum ground elevation

angle (εmin) constraint significantly decreases VoR. Reducing εmin significantly increases

the satellite ground footprint and improves the coverage provided by static designs. It

is hypothesized that increasing εmin would have the reverse effect and would significantly

increase VoR. For space based optical imagery, a εmin value of at least 60◦ is generally needed

to avoid obscuration for areas with high relief and tall buildings. Subplot (f) shows that VoR

increases by a small amount if the inclination is kept smaller than a typical sun-synchronous

orbit. As static designs prefer retrograde inclinations, an increase in VoR was expected. This

is an important finding since launch restrictions typically make highly retrograde inclinations

harder to achieve. Subplot (g) shows that reducing the maximum satellite constraint causes

substantial increases to VoR. This is caused by the increased number of satellites needed in

static designs to overcome poor satellite utilization. When the maximum satellite constraint

is reached, the only alternative for increasing performance is to increase orbital altitude,

which improves coverage, but results in larger apertures and higher launch cost. Additionally,

as the maximum satellite constraint is reduced, the maximum performance of the static

architectures is substantially reduced as evidenced by the shortened horizontal extent of

the VoR curve. Therefore, not only does the reconfigurable architecture provide a larger

cost reduction, but it also allows for higher performing designs. Subplot (h) shows that

increasing the maximum propellant mass fraction increases VoR, especially for the mid-

performance region. It was expected that VoR would increase with an increase in the mass

fraction constraint since the constraint was active on the reconfigurable designs for scenario

1. Allowing the satellites to have more propellant, allows each satellite to respond to more

events that increases per-satellite utilization and overall system cost effectiveness.

The normalized VoR sensitivity to the eight changes to parameters and constraints that

were parametrically varied, excluding the event location PDF, is shown in Figure 6-13. The
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Figure 6-13: Normalized value of reconfigurability sensitivity to selected parameters

normalized sensitivity captures the relative sensitivity of changes to different parameters

and is defined as the % change in objective per % change in the parameter value.1 Positive

sensitivity values indicate a positive correlation between the parameter or constraint value

and VoR (increasing the value will cause an increase in VoR). The sensitivity magnitude

indicates how much VoR changes with a change in the parameter or constraint value. The

plot lists the parameters and constraints in order of descending VoR sensitivity and shows

that VoR is most sensitive to the minimum ground elevation angle εmin constraint and that

increasing εmin will increase VoR.

6.1.5 Value of Reconfigurability Sensitivity to Cost Model Param-

eters

The value of reconfigurability sensitivity to several cost model parameters was also investi-

gated. Table 6.5 lists the changes made to the OTA cost, FPA cost and FPA mass relations

previously introduced in Section 3.4. Scenario 1 is the base scenario. Scenario 12 reduces

the OTA cost model exponent on D by 10%. Scenario 13 reduces the FPA cost model expo-

nent on the FPA mass by 10% and scenario 14 reduces both the OTA and FPA cost model

exponents by 10%. Scenario 15 reduces the FPA mass model exponent on the scaling ratio

(R) from 3 to 2, which effectively changes the FPA mass growth from cubic to quadratic

in terms of aperture size. The last column of Table 6.5 shows the mean VoR over the nor-

1de Weck, O. and Willcox, K. “Gradient Calculation and Sensitivity Analysis”, ESD.77 Lecture Notes,
MIT, 2012
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malized performance range of 0.5 ≤ P̃ /Pmax ≤ 1, and Figure 6-14 compares the value of

reconfigurability curves for scenario 1 to scenarios 12, 13, 14 and 15.

Table 6.5: Parameters values used in scenarios 12 through 15 to investigate the sensitivity
of the value of reconfigurability to changes in cost model parameters

Scenario OTA Cost FPA Cost FPA Mass ¯V oR for P̃ /Pmax ≥ 0.5

1 COTA ∝ D1.6 CFPA ∝M0.89
FPA MFPA ∝ R3 43.6%

12 COTA ∝ D1.44 CFPA ∝M0.89
FPA MFPA ∝ R3 32.1%

13 COTA ∝ D1.6 CFPA ∝M0.801
FPA MFPA ∝ R3 38.0%

14 COTA ∝ D1.44 CFPA ∝M0.801
FPA MFPA ∝ R3 46.9%

15 COTA ∝ D1.6 CFPA ∝M0.89
FPA MFPA ∝ R2 34.6%

In general, the comparison in Figure 6-14 shows that the parametric cost model changes

do not significantly change VoR, showing that the VoR values presented in this thesis are

robust to small changes in the cost model. One reason for this stability is that VoR is

essentially the difference between static and reconfigurable design cost. Therefore, changes

to the cost model affect the cost of both architectures without causing a large difference in

VoR. Future work should work to further refine the cost models and assess their impact on

non-dominated static and reconfigurable designs.

6.1.6 Summary of Symmetric Pattern Results

Section 6.1 introduced optimization run and convergence details and described the data

post-processing procedure used on all optimization runs. We also saw that the optimization

framework coupled with a new persistence metric yielded well-balanced designs that were

not skewed by the statistical outliers that can occur when using traditional metrics. The

results show that the reconfigurable constellation architecture provides significant value (20

to 50% reduction in cost for scenario 1) when compared to traditional static constellations

and that this value increases with increasing temporal and spatial resolution requirements.
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(d) OTA Mass Exponent
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Figure 6-14: Value of reconfigurability sensitivity to changing cost model parameters in
scenarios 12 through 15.
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6.2 Layered Pattern

This section presents the layered constellation pattern optimization results for the static and

reconfigurable architectures. First, the symmetric pattern construction and design vector

for each architecture is provided in Section 6.2.1. This is followed by a comparison of the

non-dominated designs for scenario 1 in Section 6.2.2 and then for scenarios 1 through 4 in

Section 6.2.3.

6.2.1 Layered Pattern Design

The layered pattern considered in this thesis consists of satellites divided into two symmetric

Walker patterns. Each symmetric pattern can have a different inclination and a different

number of satellites. Additionally, two phasing variables ∆Ωkey and ∆Mkey specify the

phasing in Ω and M between the key satellites in each symmetric constellation. The two

symmetric sub-constellations, labeled with superscripts 1 and 2, are comprised of N1
p ,N2

p

orbit planes and N1
sp,N

2
sp satellites per orbit plane, giving a total number of satellites in

each sub-constellation as N1
T ,N2

T , and a total number of satellites in the constellation as

NT = N1
T +N2

T . The key satellite of the second sub-constellation is referenced from the key

satellite of the first sub-constellation as follows:

Ω2
key = Ω1

key + ∆Ωkey (6.3)

M2
key = M1

key + ∆Mkey (6.4)

Where the design variables ∆Ωkey and ∆Mkey are both on the interval 0 → 360◦ and Ω1
key

and M1
key are both set to 0◦. Each of the two sub-constellations have independent phasing pa-

rameters F 1 = 0, · · · ,
(
N1
p − 1

)
and F 2 = 0, · · · ,

(
N2
p − 1

)
which allow for each pattern to be

designed by Equations 6.1 and 6.2. The orbital state of the constellation is the combination
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of the sub-constellation states, Φ1 and Φ2 as follows:

Φ =

∣∣∣∣∣∣
Φ1

Φ2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 0 i1 Ω1
1 0 M1

1

...
...

...
...

...
...

a1 0 i1 Ω1
NT1

0 M1
NT1

a2 0 i2 Ω2
1 0 M2

1

...
...

...
...

...
...

a2 0 i2 Ω2
NT2

0 M2
NT2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Here we see that the semi-major axis a of the two sub-constellations are different. This is

caused by the difference in inclination, which leads to different RGT altitudes.

The design variables and variable bounds for the layered pattern are shown in Table 6.6

for the reconfigurable architecture. Here we see that the total number of design variables

has increased to 16 from 9 that described the reconfigurable symmetric pattern. Design

variables 2 to 6 describe the first layer; variables 7 to 11 describe the second layer; and

variables 12 and 13 define the phasing between the key satellites of the two patterns. The

static architecture (not shown) features 13 total design variables, and again combines the

No/Nd and ∆alt design variables into a single design variable for the GOM altitude hGOM

and eliminates the ∆Vrecon and α0 design variables.

6.2.2 Layered Pattern Scenario 1 Results

The post-processing procedure presented for the symmetric patterns in Section 6.1.2 was

used to find all non-dominated designs discovered during optimization and re-evaluate a

subset of these designs with a 96 sample Monte Carlo simulation. Figure 6-15 shows the non-

dominated fronts from the 96 sample Monte Carlo simulation for the static (gray) and recon-

figurable (black) architectures. The solid lines show the symmetric pattern non-dominated

fronts from Section 6.1.2 and the lines with markers are the layered pattern non-dominated

designs. Here we see that the layered pattern provides better static architecture designs, but

provides no improvement to reconfigurable architecture designs. The next few paragraphs

identify why the layered pattern improves static designs and does not improve reconfigurable
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Table 6.6: Layered constellation design variables for reconfigurable designs

# Variable Name Symbol Type Bounds

x1 RGT type No/Nd cat. [31
2 ,15

1 ,29
2 ,14

1 ,27
2 ,13

1 ]

x2 Inclination i1 cont. 0◦ to 180◦

x3 GOM altitude offset ∆alt1 cont. −50 to 50 km
x4 Number of orbit planes Np,1 int. 1 to 36
x5 Number of satellites per plane Nsp,1 int. 1 to 24
x6 Phasing parameter F1 int. 0 to Np,1 − 1
x7 Inclination i2 cont. 0 to 180◦

x8 GOM altitude offset ∆alt2 cont. −50 to 50 km
x9 Number of orbit planes Np,2 int. 1 to 36
x10 Number of satellites per plane Nsp,2 int. 0 to 24
x11 Phasing parameter F2 int. 0 to Np,2 − 1
x12 Ω offset ∆Ωkey cont. 0◦ to 360◦

x13 M offset ∆Mkey cont. 0◦ to 360◦

x14 Aperture size D cont. 0.1 to 1.2 m
x15 ReCon ∆V ∆Vrecon cont. 0 to 1000 m/s
x16 Decision model weight α0 cont. 0 to 1

Layer 1 Design

Layer 2 Design

Phasing

designs.

Figure 6-16 shows the number of satellites in each of the layers for the static (gray) and

reconfigurable (black) non-dominated designs. Here we see that for the reconfigurable ar-

chitecture, the smaller layer contains zero satellites for the majority of the non-dominated

front. When the second layer contains zero satellites, the layered pattern reverts back to

the single layer symmetric pattern. Therefore, the optimization process indicates that the

symmetric pattern is more cost effective than the layered pattern for the reconfigurable ar-

chitecture. While initially confusing, this outcome makes sense upon further analysis. Since

more coverage is provided to latitudes close to the inclination of a satellite, a layered pattern

with multiple inclinations provides a better distribution of coverage over latitude. However,

for the reconfigurable architecture, ROM coverage is independent of latitude negating the

potential benefits of a layered pattern. Additionally, the pass time of a RGT orbit for a

specific ground location is a function of the satellite’s Ω (see Section 3.1.2 for more details).

If satellites in the constellation have different inclinations, this leads to a difference in a to

satisfy the RGT criterion, both of which lead to differential orbital precession. This differ-

ence in orbital precession causes the relative spacing between the satellites in Ω to drastically

change as a function of time causing periodic clustering in Ω (situations where satellites oc-
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Figure 6-15: Layered pattern yields better static designs, but does not improve reconfigurable
designs
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Figure 6-16: The static designs (grey) feature one large layer and one small layer, while
for reconfigurable designs (black), the optimization chose to revert back to the symmetric
pattern by allocating zero satellites for one layer

cupy similar Ω). Figure 6-17 shows an example 12 satellite reconfigurable constellation with

two layers, six satellites at i = 60◦ (filled markers) and six satellites at i = 130◦ (open mark-

ers). As time progresses, the satellites in different inclinations are subjected to differential

Ω precession, which causes periodic clustering of the two layers.

This clustering reduces the ability of a reconfigurable constellation to provide well-spaced

coverage periods in ROM to satisfy persistence requirements. Additionally, the difference

in a for the two layers causes each layer to provide different nadir spatial resolution and,

therefore, one of the layers will be forced to exceed the spatial resolution requirement. The

combination of the lack of benefit provided by a layered pattern and poor pass separation
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Figure 6-17: Layers at different i and/or different a will be subjected to different orbital
precession causing periodic clustering of satellites in Ω

caused by bunching in Ω make the layered pattern perform worse than the symmetric pattern

for the reconfigurable architecture.
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Figure 6-18: The static designs features a large layer providing peak coverage for latitudes
from 35◦ → 45◦ and a smaller layer at higher inclination providing coverage up to a latitude
of 60◦to meet the global maximum revisit time constraint.

On the contrary, static architectures significantly benefit from spreading out the latitu-

dinal coverage with multiple layers. Figure 6-18(top) shows the two layer inclinations for

the non-dominated static designs. The bottom plot shows the maximum latitude of the

sub-satellite point, which is equal to the prograde inclination and the retrograde inclination
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is transformed by the following relation: 90◦ − |90◦ − i|. This essentially gives the latitude

of the greatest coverage provided by each layer. Here we see that the non-dominated static

designs typically feature a larger layer with 5-34 satellites at an inclination of around 135◦

providing highest coverage at 45◦ latitude, and a smaller layer with 3-5 satellites at an in-

clination of between 60◦ and 120◦ to provide coverage for latitudes up to 60◦ to service

high latitude regional events and meet the global maximum revisit time constraint. Figure

6-19 shows the benefits of such an arrangement for the static architecture. The plot shows

the normalized PDF and CDF of the event location |ϕ| for the natural disaster PDF. Also

plotted are the general peak coverage regions for the two static architecture layers described

above. The large layer is tuned to provide peak coverage for the upper end of the main

distribution and also provides coverage for all lower latitudes as well. The small layer fills

in the coverage for the upper tail of the distribution and satisfies the 24hr GOM maximum

revisit time constraint for latitudes up to 60◦.
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Figure 6-19: The large layer provides peak coverage for the upper end of the main event lati-
tude distribution, while the smaller layer fills in coverage for the upper tail of the distribution
and satisfies the GOM maximum revisit time constraint

6.2.3 Layered Pattern Scenarios 1 to 4 Results

The non-dominated fronts for scenarios 1-4, plotted in Figure 6-20, show the same trends

observed with scenario 1. The static architecture benefits from the layered pattern while the

reconfigurable architecture does not. For scenarios 3 and 4, in the reconfigurable architecture

the layered pattern performs much worse than the symmetric pattern at high performance

219



levels. This is likely an artifact of the optimization process having a hard time zeroing out

the second layer size to revert back to the single symmetric pattern.

(a) Scenario 1: T = 1hr, X = 1m
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(c) Scenario 3: T = 0.5hr, X = 1m
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(d) Scenario 4: T = 0.5hr, X = 0.5m
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Figure 6-20: Layered pattern non-dominated fronts for scenarios 1-4 compared to the sym-
metric pattern non-dominated fronts for reconfigurable (black) and static (grey) architec-
tures.

6.3 Asymmetric Pattern

This section presents optimization results for several asymmetric patterns. First, a fully

asymmetric pattern was investigated which produced designs with improved cost-effectiveness

but suffered from poor optimization convergence. However, these results led to the discovery

of two new quasi-asymmetric patterns which combine the benefits of an asymmetric pattern

with a vastly reduced number of design variables. Additionally, a layered asymmetric pattern

was investigated to see if this would improve cost-effectiveness.

220



6.3.1 Asymmetric Pattern Design

In the fully asymmetric pattern considered in this thesis, all satellites reside in circular orbits

with common a and i. No restrictions are placed on the relative phasing between satellites

in Ω and M , freeing the optimization process to select any possible configuration. The

abandonment of symmetry can lead to more efficient designs, but also considerably expands

the design space and increases optimization difficulty. For the asymmetric pattern, two

variables are needed to specify Ω and M for each satellite in the constellation.

Preliminary testing with the optimization routine showed that slightly modifying the

design variable construction improved optimization convergence and alleviated premature

stagnation. The first problem encountered with the asymmetric pattern is that the number

of design variables is a function of the number of satellites in the constellation. This causes

the genetic population to have different design vector lengths. To enable genetic operations,

dummy variables were introduced to make all designs have the same number of variables.

However, since these meaningless dummy variables are then used in genetic operations, the

optimization process significantly loses efficiency. To overcome this problem, the asymmetric

optimization problem was broken up into several subproblems, each with a fixed total number

of satellites NT , creating the same number of design variables for the genetic population.

The second problem encountered was that allowing Ω and M for each satellite to vary freely

between 0 and 360◦ led to non-unique solutions which produced very slow convergence.

This problem was alleviated by fixing the satellite order in Ω and re-formulating the Ω

design variables to instead describe the separation in Ω between adjacent spacecraft. This

reformulation reduced the design vector by one variable, without shrinking the design space,

and eliminated the possibility of non-unique solutions. The new design variables ~xΩ of length

NT − 1 fully define the initial satellite positioning in Ω with the recursive algorithm shown

in Algorithm 4.

Algorithm 4 Compute initial satellite Ω from ~xΩ

1: Ω1 ← 0◦

2: for i ← 2 to NT do
3: Ωi ← (360◦ − Ωi−1)xΩ,i + Ωi−1

4: end for
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Where the design variables ~xΩ have bounds 0→ 1. The design vector for the asymmetric

pattern is shown in Table 6.7. In this case, the three design variables that describe the

symmetric constellation pattern (Np,Nsp, and F ) are replaced by a fixed variable specifying

the total number of satellites NT , NT − 1 variables specifying Ω for each satellite, and NT

variables specifying M for each satellite. Therefore, the design vector length depends on the

total number of satellites NT .

Table 6.7: Asymmetric constellation design variables for reconfigurable designs

# Variable Name Symbol Type Bounds

x1 RGT type No/Nd cat. [31
2 ,15

1 ,29
2 ,14

1 ,27
2 ,13

1 ]

x2 GOM altitude offset ∆alt cont. −50 to 50 km
x3 Inclination i cont. 50◦ to 130◦

x4 Number of satellites NT int. Fixed
x5 Aperture size D cont. 0.1 to 1.2 m
x6 ReCon ∆V ∆Vrecon cont. 0 to 1000 m/s
x7 Decision model weight α0 cont. 0 to 1

x8 to x8+(NT−1) Satellite Ω spacing xΩ,1 to (NT−1) cont. 0 to 1

x9+(NT−1) to x8+2NT−1 Satellite M M1 toNT cont. 0◦ to 360◦

Figure 6-21 shows the results from four asymmetric optimization runs (with NT =

8, 12, 16, 24) for the reconfigurable (top) and static (bottom) architectures. The maximum

total number of satellites was restricted to 24 due to optimization convergence problems

with many design variables. The results show that the asymmetric pattern produced more

cost-effective designs than the symmetric pattern for the low performance region for both

the static and reconfigurable architectures. The asymmetric pattern would likely outperform

the symmetric pattern in the higher performance region if NT could be increased. Nonethe-

less, the asymmetric pattern results reinforce previous observations [94, 95, 82, 120, 157], by

showing that relaxing the constellation pattern symmetry constraint can yield better designs

for partial coverage satellite constellations.

Significant emphasis during data post processing focused on finding why the asymmetric

pattern out performed the static pattern. The extent of the spread of satellites in Ω is likely

one of the driving factors. Figure 6-22 shows this trend by plotting the initial satellite Ω

placement for each non-dominated design. The plots are interpreted as follows, as one sweeps

up the non-dominated front from Figure 6-21, the performance increases and number of satel-
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Figure 6-21: By outperforming the symmetric pattern in the low performance region for
static and reconfigurable architectures, the asymmetric pattern results show that relaxing
symmetry constraints can yield better designs
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lites increases, and Figure 6-22 shows the initial Ω placement for each satellite. Therefore,

each row of dots in the figure depict the satellite positions for a single non-dominated design.

The left two plots show the initial Ω for all non-dominated symmetric designs. Here we see

that the satellites are spread out to occupy the whole Ω range due to the construction of the

symmetric pattern, which distributes planes evenly in the Ω space. The right plots show the

initial Ω range (with Ω shifted to minimize the maximum satellite Ω) for all non-dominated

asymmetric pattern designs and only asymmetric designs that outperform symmetric designs

are shown. Here we see a clear trend that efficient asymmetric designs contain satellites that

are clustered closer together in Ω and only utilize a small range in the 360◦ total Ω space.
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Figure 6-22: Efficient asymmetric pattern designs place satellites in only a fraction of the
total Ω space, while symmetric designs, by definition, distribute satellites uniformly in Ω
space

This observation makes sense for reconfigurable designs. As was previously explained in

Section 3.1.2, the Ω of a satellite in a RGT orbit determines the local pass time for a given

event location, and the difference in Ω between two satellites dictates the difference in local
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pass times for those two satellites. A 15◦ difference in Ω translates into a 1hr difference

in pass time. Additionally, the satellite can provide coverage for an event with either an

ascending or descending pass via selection of two different RGT orbits that pass over the

event location. These two options provide different local pass times which are spread apart

by up to 12 hours. Therefore, reducing the spacing in Ω improves persistence by allowing for

smaller spacing between pass times, and restricting the Ω extent from 360◦ to around 180◦

doesn’t cause large gaps in ground coverage because of the choice of ascending and descending

pass coverage. The observation that allowing satellites to only occupy a subset of the total Ω

space led to the development of two new ‘quasi-asymmetric’ patterns. These patterns allow

for a shortened Ω extent while also using some equal spacing rules to dramatically reduce

the number of design variables in order to improve optimization. These two patterns are

explained in the next section.

6.3.2 Quasi-Asymmetric Patterns

Observations made on the fully asymmetric results led to the development of two new asym-

metric patterns that combine the benefits of vastly reduced number of design variables with

the ability of the pattern to populate only a small region in Ω space.

Restricted Asymmetric Pattern

The first quasi-asymmetric pattern is called the restricted asymmetric pattern and features

regular satellite spacing in Ω and M . This allows the constellation to populate only a small

region of the Ω and M space. Two variables specify this regular spacing amount for both Ω

and M . The ξΩ variable, with bounds 0 → 1, specifies the total extent of the constellation

in Ω space and the ∆M variable, with bounds 0 → 360◦, specifies the M spacing between

satellites in adjacent Ω slots. The ξΩ variable effectively specifies what fraction of the Ω

space is populated with satellites and then the satellites are distributed evenly in Ω within

that range. The initial orbital state of the constellation is then determined as follows. The

first satellite is set to [Ω1 = 0◦,M1 = 0◦] and then the ith satellite’s state is then determined
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by the following relations:

Ωi = Ωi−1 + ξΩ

(
360◦

NT

)
(6.5)

Mi = Mi−1 + ∆M (6.6)

Asymmetric Walker Pattern

The second quasi-asymmetric pattern is called the asymmetric Walker pattern and uses the

ξΩ design variable to alter the Ω extent of a regular symmetric Walker pattern. The benefit

of this pattern over the restricted asymmetric pattern is that it allows for multiple satellites

to share the same orbit plane. Equation 6.1, from the symmetric pattern section, is modified

as follows:

Ωkl = ξΩ

(
2πk

Np

)
+ Ωkey (6.7)

Where k = 0, · · · , (Np − 1) and l = 0, · · · , (Nsp − 1). The design vector is then the same

as what was shown in Table 6.1 with the exception that an additional continuous design

variable is added for ξΩ with bounds of 0→ 1.

6.3.3 Scenario 1 Quasi-Asymmetric and Symmetric Comparison

Figure 6-23 shows the restricted asymmetric pattern (black markers) and asymmetric Walker

pattern (white markers) non-dominated fronts for the reconfigurable (top plot) and static

(bottom plot) architectures. Also plotted are the symmetric and asymmetric pattern non-

dominated designs for scenario 1. Here we see that the two new quasi-asymmetric patterns

significantly outperform the symmetric and asymmetric patterns. The asymmetric Walker

pattern performs better for the static architecture and the restricted asymmetric pattern

performs better for the reconfigurable architecture. This observation was also seen in the

optimization results for scenarios 2 through 4. This makes intuitive sense, because the major

difference between the two patterns is that the asymmetric Walker pattern allows multiple

satellites per orbit plane (Ω slot). This ability improves coverage and reduces launch cost for
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Figure 6-23: Designs using the two ‘quasi’-asymmetric patterns outperform symmetric and
asymmetric designs. The restricted asymmetric pattern performs best for reconfigurable
designs while the asymmetric Walker pattern performs best for static designs

the static architecture, but reduces the pass time options and, therefore, reduces performance

for the reconfigurable architecture. While, the optimization process could set the number

of satellites per orbit plane to one for the reconfigurable architecture, this requires one

extra design variable and slows convergence. Therefore, the restricted asymmetric pattern,

by assuming one satellite per orbit plane, converges faster than the asymmetric Walker

pattern and, since reconfigurable designs tend to favor a single satellite per orbit plane, this

assumption does not eliminate efficient designs.
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Figure 6-24: The layered asymmetric pattern does not outperform the two ‘quasi’-
asymmetric patterns for the reconfigurable architecture, and does not outperform the asym-
metric Walker pattern for the static architecture

6.3.4 Layered Asymmetric Pattern

A layered pattern consisting of two asymmetric Walker sub-patterns at different inclina-

tion was not found to provide increased cost-effectiveness when compared to the ‘quasi’-

asymmetric patterns. Figure 6-24 shows a comparison of the layered asymmetric pattern

with the restricted asymmetric and asymmetric Walker patterns. Here we see that the

restricted asymmetric pattern outperforms the layered asymmetric pattern for the reconfig-

urable architecture, and the asymmetric Walker pattern outperforms the layered asymmetric

pattern for the static architecture.
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6.4 Comparing All Pattern Results

The results presented so far in this thesis have investigated a wide variety of constellation

patterns. This section now takes a broader view by determining which patterns perform best

under different circumstances for the static and reconfigurable architectures. Figure 6-25

shows the non-dominated fronts for the reconfigurable (left) and static (right) architectures

using the symmetric, layered, restricted asymmetric and asymmetric Walker patterns for

scenario 1. Here we see that the restricted asymmetric pattern generally performs the best

for the reconfigurable architecture while the asymmetric Walker pattern performs the best

for the static architecture. This trend was described previously in Section 6.3.3.
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Figure 6-25: Comparison of symmetric, layered, restricted asymmetric, and asymmetric
Walker pattern non-dominated fronts

Figure 6-26 shows the range in normalized performance where each pattern performed

within 3% of the combined non-dominated front performance. This validates the visible

trend in Figure 6-25 that the reconfigurable architecture performs best with the restricted

asymmetric pattern, and the static architecture performs best with the asymmetric walker

pattern. All patterns perform well in the high performance region for reconfigurable designs

and the symmetric pattern performs the best in a very small high performance band for

static designs.

Another factor to consider is the performance variability given by each of the patterns.

Figure 6-27 shows the performance standard deviation, as a percentage of the median value,

for the four patterns over 96 Monte Carlo samples for the reconfigurable (top) and static
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Figure 6-26: The restricted asymmetric pattern generally yields the best reconfigurable
designs, while the asymmetric Walker pattern generally yields the best static designs

(bottom) architectures. In the reconfigurable case, the symmetric pattern provides the small-

est performance variability and the two asymmetric patterns provide the highest variability,

although the variability difference is small for normalized performance over 0.7. In the static

case, the symmetric pattern and both asymmetric patterns provide the smallest variability

while the layered pattern gives the highest variability. For normalized performance over 0.4,

the symmetric, restricted asymmetric, and asymmetric Walker patterns provide almost iden-

tical performance variability. These results provide additional insight into the characteristics

of the different patterns. For reconfigurable designs, the greatly improved performance pro-

vided by the restricted asymmetric pattern when compared to the symmetric pattern likely

outweighs the increase in performance variability. For static designs, the layered and asym-

metric Walker patterns provide similar performance (see Figure 6-25 bottom) for normalized

performance between 0.7 and 0.8, but the layered pattern has twice the performance vari-

ance. This may lead to a decision to select the asymmetric Walker pattern over the layered

pattern.

Similar trends are observed in Figure 6-28 for scenarios 2 through 4. The gap between the

reconfigurable and static non-dominated curves grows with increasing spatial and temporal

resolution requirements; and, the maximum achievable performance for the static architec-

ture drops with increased temporal resolution requirements. These observations are quanti-
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Figure 6-27: Comparison of constellation performance variability (standard deviation as a
percentage of median performance value) as a function of pattern type

fied in Figure 6-29 which plots the value of reconfigurability for the four scenarios computed

with the combined non-dominated fronts. The mean VoR over the normalized performance

range of 0.5 ≤ P̃ /Pmax ≤ 1 is 27.5% for scenario 1, 40.2% for scenario 2, 48.4% for scenario

3, and 59.1% for scenario 4. Table 6.8 shows a comparison of the combined pattern VoR

values and the symmetric pattern VoR values that were presented previously in Section 6.1.3.

By introducing the layered and asymmetric patterns, the value of reconfigurability remained

nearly constant. VoR decreased for scenarios 1 and 2, which means that the more complex

patterns provided greater benefits to the static architecture than they provided to the recon-

figurable architecture. However, the VoR remained constant for scenario 3, and increased

slightly for scenario 4, meaning that the reconfigurable architecture benefited more with the

more complex patterns.
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(c) Scenario 3: T = 0.5hr, X = 1m
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(d) Scenario 4: T = 0.5hr, X = 0.5m
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Figure 6-28: Best non-dominated static and reconfigurable fronts, using designs from all
patterns, for scenarios 1-4

Combined Non-dominated Front Design Details

Figure 6-30 shows details of the combined non-dominated designs as a function of normal-

ized performance. The plotted design details include: the total number of satellites (NT ),

aperture size (D), GOM altitude (hGOM), inclination (i), total ∆V (∆VT ), and total number

of launches to deploy the constellation. Despite the fact that most of the designs are asym-

metric, the general design trends are similar to those observed for the symmetric pattern in

Section 6.1.2. Again, we see that the non-dominated designs for the two architectures are

significantly different. In the low performance region (P̃ /Pmax < 0.6), static designs tend to

feature more satellites at a lower altitude when compared to reconfigurable designs. Despite

the lower altitude, static designs feature similar aperture sizes to reconfigurable designs. This

is caused by the fact that there is no guarantee of nadir pass for static constellations, and

consequently, the satellites must have larger apertures to maintain good spatial resolution

for off-nadir passes. The reduction in the number of satellites for reconfigurable designs is

232



0.5hr, 0.5m

0.5hr, 1m

1hr, 0.5m

1hr, 1m

P̃ /Pmax

V
oR

(%
of

st
at
ic

co
st
)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Figure 6-29: Value of reconfigurability for scenarios 1 to 4 using the best static and recon-
figurable designs from all patterns

Table 6.8: Value of reconfigurability between the non-dominated symmetric pattern designs
and best combined pattern designs, as a percentage of static cost, for scenarios 1-4

Scenario

1 2 3 4

Symmetric only 36.5 46.7 48.5 55.4

Combined patterns 27.5 40.2 48.4 59.1

caused by increased per-satellite utilization enabled by the ability to reconfigure. This is the

fundamental cost reduction driver for reconfigurable architectures. At around P̃ /Pmax = 0.5,

the static architecture runs up against the maximum satellite constraint, which is set to 36.

Therefore, to improve performance for static designs past this point, the altitude must in-

crease to improve per-satellite coverage. Consequently, the aperture size must increase to

preserve the desired spatial resolution, and these two factors significantly increase overall

system cost.

Reconfigurable designs tend to feature prograde inclinations of around 60◦ while static

designs feature retrograde inclinations around 120◦. The chatter for static designs between

prograde and retrograde that was observed for the symmetric pattern results is not observed

for the combined pattern results. Again, the choice of retrograde inclination is an interest-

ing result given that the performance benefits of retrograde inclinations must outweigh the

increase in launch cost to launch to higher inclinations for retrograde designs to be on the
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Figure 6-30: Design details for the best static and reconfigurable designs from all patterns
for scenario 1 (T = 1hr, X = 1m)

non-dominated front . Reconfigurable designs also feature nearly twice the total propulsive

capability of static designs in order to support reconfiguration maneuvers. The maximum

propulsion system mass fraction constraint (set to 42% which corresponds to around 980 m/s

using the parameters specified in Section 3.3.2) is active for many non-dominated reconfig-

urable designs and relaxing this constraint will likely increase the value of reconfigurability,

similar to what was observed for the symmetric pattern in Section 6.1.4. Additionally, both

architectures feature similar total number of launches to deploy the constellation.

6.4.1 Factors That Determine Non-Dominated Front Shape and

Maximum Performance

This thesis has presented many non-dominated fronts that share the same overall shape. I

now discuss some of the factors that affect front shape and determine the maximum per-

formance achievable by reconfigurable and static designs. Each front exhibits three regions.
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Starting with low-performing and low-cost designs, the non-dominated front shows a near

linear increase in performance as cost increases. This transitions to a region of diminishing

performance increase and the fronts then approach an asymptote where an increase in per-

formance is not possible regardless of cost. We saw previously, in Figures 6-6 and 6-30, that

the transition from the linear relationship to the diminishing returns region occurred when

the maximum constellation size constraint became active. This indicates that the temporal

term of the persistence metric controls both the diminishing return effect and the maximum

achievable performance. This observation makes sense, given that providing coverage with a

repeatable revisit time is difficult for satellites that must obey orbital dynamics. When the

maximum constellation size constraint is reached, the optimizer must then increase altitude

and aperture diameter at great expense in order to improve overall coverage. These greatly

increased costs lead to the diminishing returns effect.

Several optimization cases were performed for scenario 1 with different maximum constel-

lation size constraints to further investigate this effect. Figure 6-31 shows non-dominated

fronts for the reconfigurable architecture with maximum constellation sizes of 12, 24, 36,

and 48 satellites; and the static architecture with maximum constellation sizes of 12, 24, 36,

48, and 60 satellites. Here we see that the static architecture is significantly affected by the

constellation size constraint, while the reconfigurable architecture is less affected. This differ-

ence is caused by two factors: the reconfigurable architecture uses satellites more efficiently

leading to smaller constellation sizes; and, the reconfigurable architecture features controlled

and predictable observation times for satellite’s in ROM, which improves temporal coverage.

The static architecture does not use reconfiguration to focus coverage and, therefore, must

rely on uncontrolled and intermittent observations. This increases the number of satellites

needed to produce a certain level of performance. Since increasing the maximum number

of satellites constraint benefits the static architecture more, the value of reconfigurability

changes. Figure 6-32 shows how the maximum number of satellites constraint affects the

value of reconfigurability. Here we see that VoR generally decreases with increasing maxi-

mum total number of satellites. The mean VoR over the normalized performance range of

0.5 ≤ P̃ /Pmax ≤ 1 is 46.7% for NT ≤ 24, 26.7% for NT ≤ 36, 14.1% for NT ≤ 48, and 12.2%

for NT ≤ 48 for reconfigurable designs and NT ≤ 60 for static designs. Computational
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Figure 6-31: The maximum number of satellites constraint has a greater effect on the static
architecture

constraints during reconfiguration assignment optimization limited reconfigurable designs

to less than 48 satellites. It should be noted that while static designs tend to favor large

constellation sizes, this may result in increased operations cost, which has not been modeled.

The asymptotes, where increasing cost stops increasing performance, is caused by two

effects. First, active constraints block the optimizer from increasing constellation size and/or

altitude, which prevents improvement in temporal coverage. Second, construction of the

performance metric is very sensitive to temporal coverage, and when compared to the ideal

performance, any coverage gaps longer than the desired revisit time results in decreased

performance. For example, assuming ideal GSD, the ideal daily performance for one hour

desired revisit time between 6am and 6pm is Pmax = 13. To achieve this, the first observation

must occur at exactly 6am, the last observation must occur at exactly 6pm, and the other
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Figure 6-32: The value of reconfigurability is reduced as the maximum number of satellites
constraint increases until NT ≈ 48.

11 observations must occur hourly on the hour. If the first observation is late or the last

observation is early, the performance will decrease. If the first observation is early or the

last observation is late, the performance will decrease by a large amount because these

observations are outside of the viewing time window and do not generate utility. If variation

with a standard deviation of only two minutes is introduced to the 13 observations, then the

median normalized performance over 10,000 trials is P/Pmax = 0.9065. This indicates that it

is very hard to find designs that perform close to the ideal performance, and it is remarkable

that the optimization process can find designs with normalized performance above 0.9.

6.5 Single Design Comparison & Sensitivity Analysis

One the optimization process is complete, stakeholders must then determine which specific

design best meets their goal and objectives. Section 6.5.1 first presents some of the con-

siderations that should be made to select the proper design using data generated during

optimization. Section 6.5.2 then compares the performance of the selected reconfigurable

design to the performance of an iso-cost static design for scenario 1, statistically over many

target decks, over one specific target deck, and for one event response. Section 6.5.3 compares

the performance and cost sensitivity for the static and reconfigurable designs to changes in

model parameters. Section 6.5.4 then presents a summary of reconfigurable and iso-cost
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static designs chosen using the previously described process for scenarios 2 through 4.

6.5.1 Selecting the ‘Right’ Design

The optimization process introduced in this thesis generates a set of non-dominated designs

that simultaneously maximize performance and minimize cost. This information gives deci-

sion makers the direct tradeoff of these two primary objectives and avoids applying a priori

weights. The next step in the process is determine which design best meets decision maker

and stakeholder needs. Using the restricted asymmetric pattern optimized for scenario 1,

Figure 6-33 shows several performance measures and design details for the reconfigurable

architecture. The leftmost plots show several measures of performance including: the nor-

malized performance metric, the average revisit time, the maximum revisit time, the mean

response time, and the mean GSD. All performance measures, except the normalized perfor-

mance, are averaged over each day (for days 4 through 14 giving the reconfigurable system

time to complete the reconfiguration maneuvers) of the regional event response, then aver-

aged over all event responses during the constellation lifetime, and then the median of this

value is taken over the 96 Monte Carlo samples. The vertical bars indicate the interquartile

range of the performance measure. The rightmost plots show five of the most important de-

sign details for the system including: the total number of satellites, the aperture diameter,

GOM altitude, inclination, and total ∆V .

6.5.2 Comparison between Selected Reconfigurable and Iso-cost

Static Design for Scenario 1

Given the information contained in Figure 6-6, decision makers must then decide the proper

tradeoff between maximizing performance and minimizing cost. The vertical gray line in-

dicates a hypothetical selection located at the ‘knee’ in the normalized performance curve,

and matches the desired performance (1hr revisit and 1m GSD) in terms of average revisit

time, mean response time, and mean GSD. Higher cost designs improve maximum revisit

time by first increasing the number of satellites and then increasing altitude and aperture

diameter. Table 6.9 shows the details of the selected reconfigurable design and an iso-cost
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Figure 6-33: Both performance and design details can influence which design best meets
stakeholder goals and objectives. The vertical line illustrates one design that balances both
cost and performance.
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static design using the asymmetric Walker pattern. The reconfigurable design provides better

performance for all performance measures, and uses 14 higher capability satellites compared

with 36 lower capability satellites for the static architecture. Figure 6-34 shows a histogram

of the average performance over all event responses generated by the reconfigurable (black)

and static (white) designs over 500 Monte Carlo samples.

Table 6.9: Selected reconfigurable design and iso-cost static design

Avg. Max Mean Mean

Cost P̃ Revisit Revisit Response GSD i D NT hGOM ∆VT
$M - hr hr hr m deg m - km m/s

R 666.8 122.3 1.12 2.00 0.62 1.0 58.01 0.310 14 466.5 943

S 652.7 97.7 1.65 2.99 0.93 1.18 120.92 0.225 36 401.1 590

P̃ = 122.3P̃ = 97.7
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Figure 6-34: Performance distribution comparison between selected reconfigurable and iso-
cost static design over 500 Monte Carlo samples

Figure 6-35 shows how the coverage provided by the two designs varied from day to day

during the event response. The performance is calculated as the average daily performance

over all event responses and then averaged over the 500 Monte Carlo samples. The vertical

bars indicate the extent of the interquartile range averaged over all event responses and

averaged over the 500 Monte Carlo samples. Here we see that the reconfigurable design

initially starts off with worse temporal coverage than the static design, but provides better

coverage within 2 to 4 days as reconfiguration maneuvers are completed. These results

are similar to the symmetric pattern results presented in Section 6.1.2. The reconfigurable

design provides significantly better spatial resolution, which improves as the spacecraft are
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Figure 6-35: The reconfigurable design initially starts off providing worse coverage due to
less than half the number of satellites as the static design. After satellites are reconfigured,
the reconfigurable design significantly outperforms the static design in all four performance
metrics.

reconfigured.

Figure 6-36 shows details of one specific future operating scenario. The map shows the

locations for 18 events comprising the target deck. For each of the 18 events, details of the

event response are provided under the map, where each row corresponds to a specific event

response. The boxes indicate which of the 14 satellites remained in GOM (white) or were

reconfigured (black), and the satellites are utilized frequently for this design. The ∆Vrecon

bar plot is like a fuel gauge and shows statistics of the remaining reconfiguration propellant

for satellites in the constellation. The filled area indicates the interquartile range, and the

horizontal lines show the min and max propellant range. The remaining propellant for the

satellites stays fairly uniform due to the adaptive decision model (described in Section 3.5.5),

which attempts to even out the propellant expenditure throughout the constellation. For

this target deck, the constellation has significant ∆V recon capability remaining after all

event responses. This is likely due to the fact that this specific target deck only has 18

events, while the average target deck will have 20 events, and some will have significantly
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Figure 6-36: Details of the reconfigurable and iso-cost static design response for a specific
target deck
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more. Also shown are the total constellation ∆V expenditure during event response and the

performance provided by the reconfigurable and static designs. The reconfigurable design

generally provides better performance with less than half of the satellites of the static design.
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Figure 6-37: Reconfigurable designs (plotted as crosses) provide observations with better
temporal and spatial resolution than iso-cost static designs (plotted as circles)

Figure 6-37 shows the coverage provided by the static (plotted as circles) and reconfig-

urable (plotted as crosses) designs for the 5th event response from Figure 6-36. Here we see

that the reconfigurable design provides more repeatable coverage with significantly better

and consistent GSD. For this case, the reconfigurable design provided 138 observations with

a mean GSD of 1.01m, while the static design provided 117 observations with a mean GSD

of 1.18m. During the first two days, when 11 satellites were transitioning from GOM to

ROM, the GSD and frequency of observation steadily increased. In the reconfigurable case,

the three satellites that remain in GOM provide the small amount of high GSD observations

after day three. The static GSD is highly variable due to varying slant ranges from satellite

to ground location, while the reconfigurable GSD is consistent since ROM ensures nadir

viewing.
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Figure 6-38: Performance and cost sensitivity to changing parameters for the reconfigurable
(solid bar) and static (open bar) designs

6.5.3 Sensitivity Analysis

A parametric sensitivity analysis was conducted to quantify the sensitivity of performance

and cost to changing parameter values. 96 Monte Carlo samples were performed for the

reconfigurable and static designs selected in the previous section (details provided in Table

6.9), while varying nineteen parameters. The sensitivity was then normalized as a percent

change in the objectives (cost and median performance) to a percent change in parameter

value. This allows for the comparison of the relative sensitivity of all parameters. Figure

6-38 shows the sensitivity for median performance (left) and cost (right). The parameters

are listed in order of decreasing reconfigurable design sensitivity. Positive sensitivity values

indicates positive correlation, where increasing the parameter value increases the objective

value. The figure shows that, for the reconfigurable design, performance is most sensitive

to the spatial (X) and temporal (T ) resolution, and that increasing the desired resolution
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significantly increases performance. The static design is also sensitive to these parameters,

but is most sensitive to the minimum ground elevation angle (εmin) parameter. Decreasing

εmin, significantly increases the satellite ground footprints, and leads to vastly improved

coverage, and, therefore, performance for the static design. The reconfigurable design is much

less sensitive to εmin because the reconfigurable architecture ensures nadir passes in ROM.

However, there is still some sensitivity because satellites remaining in GOM see improved

coverage with smaller εmin. Interestingly, increasing the solar time window leads to increased

performance for the static designs and decreased performance for the reconfigurable design.

In terms of cost sensitivity, both designs are most sensitive to the learning curve factor

(b), and increasing b lessens learning curve cost savings, which leads to larger cost. The

static design is more sensitive since it feature more than twice as many satellites as the

reconfigurable design. The static design is also very sensitive to the deployment time (Tdep)

and maximum deployment ∆V (∆Vdep,max). This is likely caused by a situation in which,

the static design could utilize fewer launch vehicles by increasing either Tdep or ∆Vdep,max by

a small amount.

6.5.4 Comparison between Selected Reconfigurable and Iso-cost

Static Design for Scenarios 1 through 4

Table 6.10 shows a comparison between a selected reconfigurable design and an iso-cost

static design for scenarios 1 through 4. The reconfigurable design for scenarios 2 through 4

were selected that balances performance and cost using the process outlined previously in

Section 6.5.2. Here we see that reconfigurable designs typically feature smaller constellations

with larger, more capable satellites, while static designs feature larger constellations with

smaller, less capable satellites. The reconfigurable designs provide better performance in all

performance measures than iso-cost static designs.
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Table 6.10: Properties of selected reconfigurable and iso-cost static designs for scenarios 1
through 4

Scenario 1 Scenario 2 Scenario 3 Scenario 4
(1hr,1m) (1hr,0.5m) (0.5hr,1m) (0.5hr,0.5m)

R S R S R S R S

Total Cost ($M)� 666.8 652.7 1131 1166 1005 1015 2201 2275
Satellite Cost ($M)� 27.8 13.4 60.5 27.7 22.9 16.6 51.5 40.3
Launch Cost ($M)� 277 170.3 283.8 170.3 340.5 220.3 397.3 340.5

P̃ /Pmax 0.672 0.537 0.629 0.489 0.711 0.459 0.732 0.470
Avg. Revisit (hr) 1.12 1.65 1.12 2.07 0.55 0.88 0.49 0.99
Max Revisit (hr) 2.00 2.99 2.14 4.96 1.49 4.22 1.15 3.15
Mean Response (hr) 0.62 0.93 0.64 1.49 0.35 1.03 0.30 0.82
Mean GSD (m) 1.00 1.18 0.54 0.62 1.01 1.37 0.52 0.59

hGOM (km) 466.5 401.1 469.3 356.0 476.5 577.9 490.2 496.1
i (deg) 58.0 120.9 58.1 121.3 61.8 122.6 59.1 119.9
NT 14 36 14 36 29 48 35 48
ξΩ 0.61 0.44 0.58 0.38 0.60 0.34 0.75 0.40
D (m) 0.31 0.225 0.57 0.38 0.31 0.28 0.61 0.56
∆VT (m/s) 943 590 866 812 937 455 948 396
MW (kg) 435 251 1038 536 432 289 1208 759
Launch Vehicles* 1c,4d 3d 5d 3d 6d 1c,3d 7d 6d
� Cost in FY2010 dollars
* a-Pegasus XL, b-Athena Ic, c-Minotaur IV, d-Falcon 9, e-Falcon Heavy

6.6 Comparison with Sun Synchronous and Rapid Launch

Architectures

Several other constellation architectures have been proposed to provide space-based persis-

tent surveillance. In this section, I compare the cost-effectiveness of the reconfigurable and

static architectures to the cost-effectiveness of a polar sun-synchronous constellation archi-

tecture and a rapidly launched architecture. In order to perform a meaningful comparison,

the constellation optimization framework developed in this thesis was also applied to opti-

mize both the SSO and rapid launch architectures. Sections 6.6.1 and 6.6.2 introduce the

two architectures and provide details on how they were modeled and optimized. Section

6.6.3 presents a comparison of the non-dominated fronts for the reconfigurable, static, SSO

and rapid launch architectures.
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6.6.1 Sun Synchronous Constellation

Many existing Earth observing spacecraft utilize near polar sun-synchronous orbits. Sun-

synchronous orbits (SSOs) preserve the orientation of the orbital plane with respect to the

Sun by matching orbital precession with the Sun’s apparent motion. This allows for the satel-

lites to provide imagery with consistent ground illumination conditions. The compatibility

condition is given as:

Ω̇ =
360◦

Ts
(6.8)

Where Ω̇ is the rate of change of Ω due to orbital precession in degrees per day (given in

Equation 3.3) and Ts is the length of the sidereal year in days. SSOs effectively sacrifice the

amount of coverage provided by the satellites in order to maintain consistent solar illumina-

tion. A satellite in an SSO will provide coverage for up to two times during the day, one for

the ascending pass and one for the descending pass, and these times are given by Equation

3.13. Typically, SSO satellites provide coverage within a few hours of local noon to provide

good illumination conditions and reduce ground shadows. SSO satellites are described by the

local time of coverage provided. For instance, the WorldView-2 currently resides in a 770km

SSO with 10:30am (local time) descending node coverage2, while the Worldview-3 satellite

planned for launch in 2014 will use a 617km SSO with 1:30pm (local time) descending node

coverage3.

A single SSO satellite can provide global coverage (with a potential small gap at the

poles) with a revisit time of several days. The revisit time is largest at the equator and

diminishes with increasing latitude. Increasing the satellite ground footprint, caused by

increasing altitude or decreasing the minimum ground elevation angle, also improves revisit

time, and multiple satellites can be deployed in a constellation to improve this revisit time.

In order to provide coverage with the same local time, these satellites must have common Ω.

Then, the relative spacing in M then defines the spacing between consecutive pass ground

swaths. Figure 6-39 shows a single pass ground swath for three satellites in a 500km SSO

2WorldView-2 Datasheet, http://www.satimagingcorp.com/satellite-sensors, Accessed: 05-7-2014
3WorldView-3 Datasheet, http://www.satimagingcorp.com/satellite-sensors, Accessed: 05-7-2014
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∆MSSO = 20◦ ∆MSSO = 60◦ ∆MSSO = 100◦

Figure 6-39: The difference in mean anomaly between satellites in a common SSO plane
controls the separation of the ground tracks

as a function of the mean anomaly separation. As the mean anomaly separation increases,

the swaths move apart. This effect is caused by the increased amount of time between

satellite passes coupled with the Earth’s rotation underneath the satellite’s orbit plane.

The minimum number of satellites required for daily coverage is determined by finding the

maximum permissible M spacing without creating coverage gaps at the equator, given by

the following relation:

∆Mmax =
2λ

ω⊕
n (6.9)

Where λ is the Earth central angle of the ground footprint and n is the mean motion. In

the case of a 500km SSO with a minimum ground elevation angle of 60◦, ∆Mmax = 72.15◦.

When the actual M spacing is larger than ∆Mmax, there will be gaps in coverage between

adjacent satellite ground swaths as shown in the rightmost plot in Figure 6-39.

The ∆Mmax calculation also specifies the minimum number of satellites needed in a single

plane to ensure that the constellation provides daily coverage. Basically, there needs to be

satellites populating the entire M range of 0 → 360◦ with a maximum satellite spacing

in M of less than ∆Mmax. This means that the minimum number of satellites is then

d360◦/∆Mmaxe, where d·e is the ceiling function. For the example above, the minimum

number of satellites is 5, since (360◦/72.15) ≈ 4.99. Figure 6-40 shows the effect of not

having this minimum number of satellites. The leftmost plot shows the coverage provided
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orbit 3 orbit 1

5 satellites, ∆MSSO = 72◦ 4 satellites, ∆MSSO = 72◦ 4 satellites, ∆MSSO = 90◦

Figure 6-40: The number and spacing of satellites in a SSO plane determines if there are
daily coverage gaps

by five satellites with ∆MSSO = 72◦ over three consecutive orbits shaded differently. Here

we see that there are no coverage gaps between adjacent orbits and therefore coverage will be

provided twice a day (one on the ascending pass and one on the descending pass). The center

plot shows the case where only four satellites are in the constellation, but the spacing remains

at ∆MSSO = 72◦. Here we see that the missing satellite causes one large coverage gap per

orbit cycle, and therefore, coverage will not be provided every day. The right plot shows

what happens if there are only four satellites, but the spacing is changed to provide uniform

spacing in M , giving ∆MSSO = 90◦. Here we see that the large coverage gap is replaced by

several small coverage gaps, and will not be guaranteed everyday. One example of an SSO

constellation is the planned SkyBox constellation which will consist of 24 satellites4 in four

orbital planes at 500km altitude5 providing 0.9m GSD coverage 4-5 times a day with a per

satellite design, build, and launch cost of $50M6.

The constellation design and optimization methodology was also used to optimize SSO

constellations for persistent surveillance allowing for a direct comparison with static and

reconfigurable designs. The SSO constellation design space consists of four design variables

as shown in Table 6.11. The inclination is determined from the altitude by solving Equation

4Henry, Caleb., “Skybox Imaging Exec Discusses Constellation Plans”, Via Satellite, 02-11-2014 http:
//www.satellitetoday.com, Accessed: 05-7-2014

5Ferster, Warren “News from Satellite 2014 — To Provide Propulsion for Sky-
box Satellite Fleet”, SpaceNews, 03-11-2014, http://spacenews.com/article/financial-report/
39822news-from-satellite-2014-to-provide-propulsion-for-skybox-satellite, Accessed: 08-10-2014

6Perry, Tekla S.“Start-up Profile: Skybox Imaging”, IEEE Spectrum article, 05-01-2013, http://spectrum.
ieee.org/at-work/innovation/startup-profile-skybox-imaging, Accessed: 08-10-2014
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Table 6.11: SSO constellation design variables

# Variable Name Symbol Type Bounds

x1 Altitude h cont. 300 to 1000 km
x2 Aperture size D cont. 0.1 to 1.2 m
x3 Number of planes Np int. 1 to 36
x4 Number of satellites per plane Nsp int. 1 to 36

6.8, and the mean anomaly spacing in each orbital plane is determined as follows. If there are

enough satellites to ensure no coverage gaps (i.e.Nsp ≥ d2π/∆Mmaxe), then ∆M = 2π/Nsp.

If there are not enough satellites to ensure no coverage gaps (i.e.Nsp < d2π/∆Mmaxe), then

∆MSSO = ∆Mmax. Since Ω determines the local time of coverage for each plane, Ω is set for

the Np orbital planes to distribute the local time of coverage evenly throughout the target’s

local time window constraint, which is set to 6am to 6pm for all events in this thesis (see

Section 4.2.3 for more details). Therefore, if Np = 5, then the five orbital planes are set to

provide pass times of 8am, 10am, 12pm, 2pm, and 4pm.

6.6.2 Rapidly Launched Satellites

Rapidly launching satellites in times of need has been proposed as an alternative strategy

for providing responsive space-based surveillance. This concept involves quickly integrating

and launching satellites that have been stored on the ground. Proponents of this strategy

point to several benefits. One benefit is that satellites stored on the ground will degrade

much slower than those stored in space, thereby giving each satellite a longer period of

capability. Also, each satellite can be treated as single-use only, which reduces the need for

highly reliable parts and should reduce cost. Another benefit is that satellites can be placed

in an orbit that maximizes coverage to the region of interest. However, there are downsides

to this concept as well. Integrating and launching satellites on the order of days or even

weeks has proved very difficult with current technology, and the number and availability of

launch facilities is currently also a limiting factor. There is also the problem of providing

coverage for subsequent regional event responses. Since the satellite was placed in an orbit

to maximize coverage for the first event, the satellite will likely provide poor or even no

coverage for another event. Third, each satellite needs a dedicated launch vehicle to quickly
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Figure 6-41: The repeat coverage orbit, where inclination is matched to the target latitude,
can provide coverage on successive orbits

place each satellite into different orbit planes to provide coverage spread out in time, which

further increases the cost of the concept.

The rapid launch strategy investigated in this thesis considers a system that will provide

coverage to regional events by placing satellites into LEO Repeat Coverage Orbits (RCO),

which have been proposed as way to provide periodic persistent surveillance by Wertz [218].

The RCO is a LEO orbit with the inclination set a little higher than the target latitude. This

allows the satellite to provide coverage during a period of successive orbits which repeats

daily. Figure 6-41 shows the coverage provided by a satellite in an RCO orbit over three

consecutive passes in the Earth fixed coordinate frame. The relative rotation of the satellite’s

orbit is caused by a combination of Earth’s rotation and orbital precession affecting Ω.

The constellation design and optimization methodology was also used to optimize the

rapid launch architecture in order to compare its cost-effectiveness to the other architectures

studied in this thesis. I consider a system that is capable of launching up to four satellites

for each event response. Optimistic values for launch cost and responsiveness were used to

represent potential future capability. The launch time (time from the start of the event

response to placement of the satellite into its final orbit) was set to 24 hours and the cost

of each launch was set to $10M FY2010. Despite these very optimistic assumptions for
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responsiveness and cost, we will see that the rapid launch architecture performs poorly

when compared to both the reconfigurable and static architectures. This indicates that the

rapid launch architecture is not a cost-effective solution for providing responsive persistent

surveillance for multiple events distributed geographically. The satellites in the rapid launch

architecture are spread out in Ω based on how many satellites will be launched for each

event and are distributed uniformly in M . The first satellite is set to have its last pass of

the day be at 4:00pm local time, ensuring that the first pass of the day (assuming three

passes covering the target per day) will be around 11:30am. Since we are only considering

prograde orbits, this time of pass will shift earlier for every day during the event response;

therefore, it is desirable to start off providing coverage towards the end of the time window.

If additional satellites are launched for the event response, then they are separated in Ω in

order to fill in the time gaps. If two satellites are launched to respond to an event, the 2nd

satellite will be placed to have its last pass of the day half of the orbit period earlier than

the first satellite at approximately 3:15pm local time. This will give coverage roughly every

45 minutes from 10:45am to 4:00pm which will shift earlier by around 20 minutes per day

(see Section 3.1.2 for more details). For four total satellites, there could be coverage every

23 minutes from 10:23am to 4:00pm. Additionally, the satellites remain in orbit to provide

coverage for later events.

The rapid launch architecture design space consists of five design variables as shown in

Table 6.12. The inclination offset design variable specifies the difference between the target

latitude and the inclination using the following relation:

i = ϕ+ ∆i× λ (6.10)

Where ϕ is the event latitude and λ is the Earth central angle of the satellite ground footprint

(see Section 3.1.3 for more details on Earth observation geometry). Therefore, the ∆i design

variable allows the inclination to vary from ϕ− λ to ϕ+ λ.
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Table 6.12: Rapid Launch constellation design variables

# Variable Name Symbol Type Bounds

x1 Altitude h cont. 300 to 1000 km
x2 Aperture size D cont. 0.1 to 1.2 m
x3 Total number of satellites NT int. 1 to 36
x4 Number of satellites per event response NE int. 1 to 4
x5 Inclination offset ∆i cont. −1 to 1

6.6.3 Non-dominated Front Comparison

Figure 6-42 shows the non-dominated fronts for the combined reconfigurable, combined

static, SSO, and rapid launch architectures for scenarios 1-4. The reconfigurable archi-

tecture completely dominates the static, SSO and rapid launch architectures, except for the

very low performance region where the rapid launch architecture is most cost-effective.

Given that SSO constellations are nearly a subset of the asymmetric walker pattern, it is

not surprising that the static architecture dominates SSO architecture. The orbit planes are

spaced close together and the inclination and altitude are set to satisfy the sun-synchronous

condition in the SSO pattern. The only difference between the two patterns is in how

the satellites are distributed in M within each orbit plane. The SSO pattern spaces the

satellites in M to ensure no coverage gaps in successive satellite passes and the Walker

pattern evenly distributes satellites in M . If there are enough satellites per orbit plane to

ensure no coverage gaps, then the SSO pattern evenly distributes satellites in M similar to

the Walker pattern. Shrinking the design space available for optimization can have different

effects on the quality of the final non-dominated fronts. If the removed portion of the design

space does not contain efficient designs, then the final non-dominated front is not affected,

and the final front can even be better since the optimization process will have an easier

time converging in the smaller design space. If the removed portion of the design space

does contain efficient designs, then the final non-dominated front will be affected, since the

optimization process will not be able to identify those designs. For the SSO pattern, the

reduced design space eliminates efficient designs causing the SSO non-dominated front to be

outperformed by the asymmetric Walker pattern.

Two primary factors reduce the effectiveness of SSO patterns for providing persistent
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(d) Scenario 4: T = 0.5hr, X = 0.5m
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Figure 6-42: Both the reconfigurable and static architectures are more cost-effective than
the SSO and rapid launch architectures are

surveillance. The near polar inclination increases launch cost due to lack of ability to conduct

plane changes during deployment, and the near polar inclination means that the SSO pattern

does not benefit from the coverage amplification for inclinations close to event latitude.

Despite the poor cost-effectiveness provided by the SSO pattern, this architecture ensures

imaging with nearly constant solar illumination. However, any constellation that provides

persistent surveillance with short coverage gaps will provide daily imaging with similar solar

illumination. As an example, Figure 6-43 shows the coverage provided by a reconfigurable

constellation, and static constellation and a SSO constellation drawn from the non-dominated

fronts shown in Figure 6-42a with similar total cost. The dots indicate each time the event

(ϕ = 30◦,λ = −70◦) is imaged between 6am and 6pm local time over the 14 day event

duration.

The reconfigurable constellation7 features 16 satellites in a restricted asymmetric pattern

7No/Nd = 15/1, ∆alt = 12.05km, i = 60.1◦, NT = 16, D = 0.314m, ∆Vrecon = 500.9m/s, α0 = 0.004,
ξΩ = 0.65, ∆M = 294◦
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Figure 6-43: Daily coverage comparison between iso-cost reconfigurable, static, and SSO
designs. The reconfigurable architecture provides coverage that is better matched to the
desired temporal and spatial resolution

and provides coverage nearly every hour with an average GSD of 1.00m with a total normal-

ized performance of P̃ /Pmax = 0.71 and a total cost of C = $761M . The static constellation8

features 36 satellites in as asymmetric Walker pattern with a total normalized performance

of P̃ /Pmax = 0.60 and a total cost of C = $770M . Despite having more than twice the

total satellites, due to bunching of observations and a higher average GSD of 1.04m, the

static design performs worse than the reconfigurable constellation. The SSO constellation9

features 35 satellites in an asymmetric Walker pattern with a total normalized performance

of P̃ /Pmax = 0.41 and a total cost of C = $777M . The SSO constellation costs more that

both the reconfigurable and static constellations and performs far worse. The SSO constella-

tion utilizes satellites inefficiently, and, despite having almost the same number of satellites

as the static constellation, it provides far fewer coverage periods with much worse average

GSD of 1.40m. The SSO constellation provides nearly constant solar illumination for each of

the seven orbit planes, as indicated by the vertical lines of observations, but both the static

and reconfigurable constellations provide far more observations and the time difference be-

tween daily observations is small. Therefore, the primary benefit of SSO constellations is

negated by the greater efficiency of both the static (using non-polar inclined orbits) and

reconfigurable architectures.

Despite optimistic assumptions ($10M FY2010 launch cost and a 24hr response time

8hGOM = 414.8km, Np = 9, Nsp = 4, i = 122.1◦, D = 0.265m, F = 5, ξΩ = 0.44
9hGOM = 452.9km, D = 0.213m, Np = 7, Nsp = 5
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between event notification and satellite placement into RCO), the rapid launch architecture

exhibits poor overall cost-effectiveness, except in the low performance region of the non-

dominated front. This is due to not having a GOM maximum revisit time constraint which

lower the ‘entry cost’ for rapid designs. The poor cost-effectiveness is caused by inefficient

satellite utilization. Rapid launch designs launch satellites into an orbit with an inclination

just above the event latitude to provide good event coverage. While the satellite provides ef-

ficient coverage for the current event, it will likely provide poor or no coverage for subsequent

events.

6.7 Retaining Satellites in GOM

All of the results presented in the previous sections have assumed that all of the satellites in

the reconfigurable constellation can be reconfigured to provide coverage for the current event.

However, some situations may limit the number of satellites that a decision maker would

want to commit to a single event response. The decision maker might want to preserve some

level of partial global coverage during an event response, or might want to leave satellites in

GOM, as a reserve, in case a second simultaneous event were to occur. While this is not the

focus of this thesis, I have investigated how limiting the total number of satellites available

to respond to each event changes the non-dominated design front. An additional parameter

(ξR), representing the fraction of the total satellites in the constellation that are available

for reconfiguration, was added to the simulation model. The maximum number of satellites

that can be reconfigured is then equal to dNT ξRe. Using this construction, ξR = 1 represents

a fully reconfigurable designs, and ξR = 0 represents a static design. ξR values in between

0 and 1 should then yield non-dominated fronts in between the reconfigurable and static

non-dominated fronts.

Figure 6-44 shows the non-dominated fronts for six ξR values using the restricted asym-

metric pattern. Here we see that as ξR increases, the resulting non-dominated front sweeps

from the static front to the reconfigurable front. Therefore, the value of reconfigurability

drops as constraints are placed on the number of satellites that are allowed to reconfigure

to support event response. Future work should investigate other ways to to incorporate the

256



 

 

Reconfigurable (ξR = 1)

ξR = 0.5

ξR = 0.375

ξR = 0.25

ξR = 0.125

Static (ξR = 0)

P̃
/P

m
a
x

Cost ($M FY2010)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Figure 6-44: As the maximum number of satellites allowed to reconfigure for each event
(expressed as a fraction of the constellation size) is reduced, the non-dominated front sweeps
from the fully reconfigurable front to the static front

secondary objectives of maintaining partial global coverage and reserving satellites for a sec-

ond simultaneous event response. One possible avenue to pursue would modify the satellite

assignment optimization problem to consider the reduction in partial global coverage caused

by maneuvering individual satellites into ROM.

6.8 Results Summary

This chapter has demonstrated that the constellation design and optimization framework in-

troduced in this thesis can successfully find efficient constellation designs for a wide variety

of system architectures and constellation patterns. Section 6.1 showed that, using symmetric

patterns, reconfigurable constellations cost 20 to 70% less than iso-performance static con-

stellations. This reduction in cost increases with increasing coverage requirements (temporal

and spatial resolution), and when compared to static constellations, reconfigurable constel-

lations provide increased cost-effectiveness over a wide range of parameter values. Section

6.2 showed that a layered pattern increases the cost-effectiveness of static constellations by

around 10%, but does not increase the cost-effectiveness of reconfigurable constellations due

to the loss in Ω phasing between satellites caused by differential orbital precession.
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Section 6.3 illustrated that, when compared to symmetric or layered patterns, asymmet-

ric patterns improve the cost-effectiveness of both reconfigurable and static constellations.

Optmization using a fully-asymmetric pattern improved cost-effectiveness primarily due to

asymmetric placement of orbit planes in Ω. This observation led to the development of

two ‘quasi’-asymmetric patterns that allow asymmetric placement of orbit planes in Ω, but

impose regular spacing in Ω and M to reduce the number of design variables and improve op-

timization convergence. Section 6.4 showed that the restricted asymmetric pattern provides

the most cost-effective reconfigurable designs and the asymmetric Walker pattern provides

the most cost-effective static designs. Using these ‘quasi’-asymmetric patterns, reconfig-

urable constellations were found to cost 20% to over 70% less than iso-performance static

constellations.

Section 6.5 showed that reconfigurable designs provide better performance, in terms of all

traditional performance metrics, than iso-cost static designs, and that reconfigurable designs

tend to feature smaller constellation sizes with larger, more capable satellites, while iso-cost

static designs tend to feature larger constellation sizes with smaller, less capable satellites.

Section 6.6 compared the best static and reconfigurable designs to optimized sun-synchronous

and rapid launch designs. The results show that these other traditional architectures are

significantly less cost-effective than reconfigurable or even static architectures. Section 6.7

looked at how restricting the number of satellites available to respond to a single event

affects the non-dominated front for the reconfigurable architecture. This analysis found that

as the maximum number of satellites available for reconfiguration constraint decreases, the

cost-effectiveness of the reconfigurable architecture decreases.
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Chapter 7

Conclusions and Future Work

This thesis presents a new approach to designing and operating satellite constellations. By

incorporating the flexible option of satellite reconfiguration, the ReCon concept improves

system cost-effectiveness and gives operators the ability to change the system to respond

to uncertain future conditions. This thesis introduces several tools to aid in the design,

optimization, and operation of reconfigurable satellite constellations. The following section

provides a brief summary of the work presented in this thesis. Section 7.2 lists specific

contributions made to the field, Section 7.3 details the general conclusions drawn from this

thesis, and Section 7.4 identifies several topics that should be considered in future research.

7.1 Thesis Summary

This thesis presents a new approach to providing cost-effective space based regional persistent

surveillance, and introduces a framework to guide the design and optimization of these recon-

figurable satellite constellations. Chapter 1 presents a comprehensive literature review that

details the many flaws of conventional approaches to satellite constellation design. Chapter

2 then introduces the new proposed approach that avoids these flaws by widening the design

space, explicitly considering uncertainty in future operating context, and utilizing state-

of-the-art parallel computing resources to identify cost-effective reconfigurable (and static)

designs. Chapter 3 explains the implementation of the detailed multidisciplinary simulation

model, which computes the performance and cost of many different satellite constellation
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architectures using varied constellation patterns. The simulation model balances the need

for a detailed model that captures the coupling between system elements with the need for

simulation efficiency. Chapter 4 presents the uncertainties considered in this thesis and the

Monte Carlo simulation approach, which maps distributions of uncertain parameters to a

distribution of constellation performance. Chapter 5 presents a novel multi-objective opti-

mization algorithm that incorporates several state of the art multi-objective optimization

techniques and is implemented on a large parallel computing cluster. Chapter 6 presents op-

timized reconfigurable and static constellation design, obtained using the developed satellite

constellation design and optimization framework, and showed that reconfigurable designs

cost 20 to 70% less than iso-performance static designs. Additionally, reconfigurable and

static designs are shown to be more cost-effective than sun-synchronous or rapid launch

architectures.

7.2 Contributions

This thesis:

1. Develops and demonstrates a comprehensive constellation design and optimization

framework that uses state of the art multi-objective optimization techniques; is easily

implemented on large cluster parallel computing resources; explicitly considers uncer-

tainty in future operating conditions; concurrently optimizes pattern design, satellite

design and operations design; and is broadly applicable to a wide range of constellation

design problems.

2. Develops and demonstrates a detailed multi-disciplinary simulation model to calculate

the performance and cost of a wide variety of constellation patterns for both static and

reconfigurable architectures.

3. Develops and demonstrates an assignment optimization procedure to identify the suite

of optimal reconfiguration options, enabling efficient decision making for reconfigurable

satellite constellations.
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4. Develops a new constellation coverage figure of merit that measures how well the

system provides coverage with a desired temporal and spatial resolution, and avoids

the problems observed with traditional metrics.

5. Finds that asymmetric patterns outperform symmetric patterns for both discontinuous

coverage static and reconfigurable constellations, and proposes two new asymmetric

patterns that outperform traditional patterns.

6. Successfully optimizes reconfigurable and static constellations under a wide range of

pattern designs and operating parameters and finds that reconfigurable constellations

cost 20 to 70% less than similarly performing static constellations for the scenarios

studied.

7. Finds that optimized reconfigurable and static constellations are more cost-effective

than optimized sun-synchronous and rapid launched designs for the scenarios studied.

7.3 Conclusion

This thesis presents methodology and tools to design, optimize, and operate reconfigurable

satellite constellations capable of providing responsive space-based regional persistent surveil-

lance. The developed framework avoids many limitations of previous research by focusing

on detailed modeling, concurrent and multi-objective optimization, and uncertainty in fu-

ture regional coverage needs. The results, presented in Chapter 6, show that reconfigurable

constellation designs cost 20 to 70% less than similarly performing static constellation de-

signs over a wide range of constellation patterns and operating parameters. The complete

framework is applicable to a broad range of constellation optimization problems and is eas-

ily altered to accommodate different uncertain parameter distributions and varied objective

functions.

Reconfigurable constellations are presented as a new approach to providing cost-effective

space-based regional persistent surveillance. Enabled by maneuverable satellites, reconfig-

urable constellations provide focused regional coverage in times of need, which leads to fewer

required satellites than traditional static constellation designs. Reconfigurable constellations
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change coverage by transitioning satellites between two operational modes: one that pro-

vides partial global coverage and one that provides focused regional coverage. While these

maneuvers necessitate satellites with increased ∆V capability, the ability to reconfigure the

constellation increases the coverage provided by individual satellites leading to increased

overall system cost-effectiveness.

This thesis develops and demonstrates a comprehensive constellation design and opti-

mization framework to identify cost-effective reconfigurable constellation designs. The devel-

oped framework is novel and avoids many of the assumptions and simplifications made in past

research. This improvement is accomplished by: explicitly considering uncertainty in future

operating conditions; concurrently optimizing pattern design, satellite design, and operations

design; and by investigating layered and asymmetric constellation patterns. The framework

consists of three layers: the simulation layer, the Monte Carlo layer, and the multi-objective

optimization layer. The simulation layer contains a detailed multi-disciplinary simulation

model that calculates the performance and cost of a variety of constellation architectures

using varied constellation patterns. The model captures the coupled interactions between

system elements including pattern design, satellite design, reconfiguration design, and de-

ployment strategy. The Monte Carlo layer samples uncertain parameter distributions and

uses the simulation model to generate the performance distribution. The multi-objective

optimization layer uses a modified version of the ε-NSGA-II evolutionary algorithm to find

designs that maximize performance while simultaneously minimizing cost. This optimization

algorithm provided fast and consistent convergence for all cases considered in this thesis,

despite dealing with a discontinuous, non-linear objective space, and continuous, integer,

and categorical variables. Additionally, the framework was implemented in parallel on a

1024-processor computing cluster to overcome the computational complexity caused by the

detailed simulation model. This parallel processing capability allowed 85 different optimiza-

tion cases to be investigated over the course of three months, and, using 256 processors,

each case had an average optimization time of approximately three days. Enabled by fast

optimization time, this thesis demonstrates a spiral design approach as the results from the

fully asymmetric pattern spur the development and subsequent optimization of two ‘quasi’-

asymmetric patterns. By design, the framework accommodates a wide range of constellation
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optimization problems, demonstrated in this thesis through the investigation of four distinct

constellation architectures (reconfigurable, static, sun-synchronous, and rapid launch), and

five different pattern types (symmetric, layered, asymmetric, restricted asymmetric, asym-

metric Walker, and asymmetric layered).

A new figure of merit is introduced to measure how well a design meets desired per-

sistence requirements, and introduces a process for identifying how decision makers, when

responding to a regional event, should employ the flexible option of reconfigurability. The

persistence metric directly measures how well the constellation provides the desired coverage

with specified temporal and spatial resolution. The persistence metric takes a micro-scale

view and computes the utility generated by each observation. In this case the utility is a

function of the observation’s temporal and spatial resolution. The total performance is then

the sum of the utility generated by all individual observations. This thesis avoids skewing

by statistical outliers, a problem observed with some traditional metrics, by using the new

persistence metric. The automated optimal assignment process, also developed in this the-

sis, identifies the optimal set of reconfiguration options that simultaneously maximize event

coverage and minimize propellant expenditure in their event response. As the effectiveness

of a reconfigurable constellation is contingent on quick and informed decisions on when and

how to employ the option of reconfigurability by decision makers, this is an important contri-

bution. The assignment process concurrently optimizes assignment to find globally optimal

solutions while determining how many satellites to reconfigure, the specific combination of

satellites to reconfigure, how quickly to reconfigure each satellite, and which RGT orbit to

place each reconfigured satellite. The assignment process also gives decision makers the op-

tion that maximizes future performance by balancing propellant use between satellites in

the constellation and adjusting recommendations based on currently available propellant in

the remaining system lifetime.

This thesis demonstrates that reconfigurable constellation designs cost 20 to 70% less than

similarly performing static designs over a wide range of constellation patterns and operating

parameters, which indicates that the value provided by reconfigurable constellations is ro-

bust to changing parameter values. This value of reconfigurability increases with increasing

requirements for temporal and spatial resolution. The two new quasi-asymmetric patterns
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introduced in this thesis outperformed symmetric and layered patterns for both architec-

tures, with the restricted asymmetric pattern providing the best results for reconfigurable

constellations, and the asymmetric Walker pattern providing the best results for the static

architecture. These patterns feature asymmetry in the Ω placement of orbit planes, but allow

for faster optimization by using regular spacing rules to reduce the number of design vari-

ables when compared to fully asymmetric patterns. The average value of reconfigurability,

for performance from P̃ /Pmax ≥ 0.5, was 27.5% for scenario 1 (T = 1hr, X = 1m), 40.2%

for scenario 2 (T = 1hr, X = 0.5m), 48.4% for scenario 3 (T = 0.5hr, X = 1m), and 59.1%

for scenario 4 (T = 0.5hr, X = 0.5m). When compared to iso-performance static designs,

reconfigurable designs, with less than half the number of satellites, provide better overall

performance in terms of persistence, average and maximum revisit time, mean response

time, and GSD. Given that the static designs need more satellites, the maximum satellite

constraint adversely affects static designs more than reconfigurable designs. When this con-

straint increased from 36 to 48 and 60 satellites, the average value of reconfigurability for

scenario 1 dropped from 27.5% to 14.1% and 12.2% respectively. However, un-modeled oper-

ations cost could potentially have a greater effect on static designs, which would increase the

value of reconfigurability. The maximum propulsion system mass fraction constraint was also

active for reconfigurable designs, so increasing the constraint or reducing non-reconfiguration

propellant use by employing electric propulsion would increase the value of reconfigurability.

Reconfigurable and static constellations are also shown to significantly outperform sun-

synchronous and rapid launch architectures in all cases tested. Sun-synchronous constella-

tions provide observations with constant solar illumination conditions, but sun-synchronous

orbits require near polar inclinations, reducing the coverage provided by each satellite and

causing poor overall cost-effectiveness. Additionally, reconfigurable or static constellations

with short revisit times provide observations with near constant illumination conditions,

negating some of the benefits of sun-synchronous constellations. When compared to static

architectures, the rapid launch architecture provides better cost-effectiveness for low-cost,

low-performance designs, but much worse cost-effectiveness for high-performance, higher-

cost designs, and reconfigurable designs are much more cost-effective over the entire range

of performance. The rapid launch architecture initially provides efficient coverage, but the
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satellites provide little or no coverage for later events.

7.4 Future Work

This thesis develops and demonstrates a comprehensive, generalized approach to constella-

tion design and optimization quickly able to find globally efficient designs, and shows that

reconfigurable constellations can provide cost-effective regional persistent surveillance. How-

ever, the work presented here is only a starting point, and many promising avenues for further

research are detailed below.

Improve models and expand design space

One promising avenue for future research is to refine the simulation model and expand the

design space. Specific attention should be paid to improving the cost models, expanding

analysis to include electric propulsion, and increasing simulation model computational effi-

ciency. The current method for predicting FPA mass (and cost) would benefit substantially

from a better model. Future work should try to obtain actual instrument properties for

current Earth observation satellites and see how well the simple scaling implemented in this

thesis matches this actual data. Additionally, future work could develop an operations and

retirement cost model for both reconfigurable and static constellations. If the operations

cost for reconfigurable constellations is significantly higher than static constellations, then

the value of reconfigurability will likely decrease. However, if the operations cost is solely a

function of the number of satellites, then the value of reconfigurability may increase as static

designs tend to feature more satellites.

The simulation model should also be extended to include electric propulsion. Electric

propulsion uses propellant mass more efficiently (higher ISP ), which would reduce propel-

lant mass needed for deployment, station keeping, return to GOM maneuvers, and de-orbit

maneuvers. This reduction in non-reconfiguration ∆V would allow the reconfiguration ∆V

to increase while staying below the maximum propulsion system mass fraction constraint

and would allow reconfigurable satellites to respond to more events. Additionally, electric-

propulsion could potentially be used to perform slower reconfiguration maneuvers, and the

choice between using chemical or electric propulsion could be added to the assignment op-
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timization process. Electric propulsion could also reduce launch cost by allowing for more

satellites to use shared launches due to improved maneuverability during deployment.

Additionally, improving the simulation model computational efficiency would allow for

faster optimization time, a larger Monte Carlo sample size during optimization, and, with

the inclusion of operations cost (explained earlier in this section), could potentially allow the

maximum constellation size constraint to be increased or eliminated.

Use the framework and modify tools to study other objectives and mission sce-

narios

A second promising avenue for future research is to use the framework to study other ob-

jectives or mission scenarios including synthetic aperture radar and infrared imaging. This

thesis considered an optical imaging mission where persistent coverage is desired for a num-

ber of events distributed around the globe and in time, and, when not responding to an

event; the constellation would provide partial global coverage. Future work could investigate

different objectives such as maintaining GOM coverage during event responses, investigating

the tradeoff between spatial and temporal resolution, and changing how the event perfor-

mance is calculated. Section 6.7 investigated restricting the number of satellites allowed to

reconfigure to support a single event response as a way to retain some GOM performance and

keep satellites in GOM in case a second, simultaneous event occurred. However, this strategy

does not ensure that the satellites kept in GOM would provide good partial global coverage

or would provide good ROM coverage for a future event. Instead, the optimal assignment

process could be modified to add these additional objectives, giving decision makers more

information about possible courses of action. The persistence metric presented in this thesis

combined the temporal and spatial utility functions into a single utility function. Future

work should also investigate the direct trade-off between these two objectives. One way to

accomplish this would be to treat these objectives separately, optimizing the constellations

with three objectives, and then analyzing the resulting surface of non-dominated designs to

compare iso-cost designs in terms of spatial and temporal resolution.

All events considered in this thesis had the same duration and desired temporal and spa-

tial resolutions. Instead, events could have a distribution of all these parameters, or different

classes of events could be considered, each with different frequencies of occurrence. Also, the
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event location probability distribution function should be changed to align with stakeholder

objectives for a specific scenario. The analysis can also be extended to include other uncer-

tain parameters like satellite failure rates and market uncertainty for the surveillance data

products in the case of a commercial system.

Future work could also investigate: modifying the temporal utility function to provide

some additional utility for oversampling; using a daily utility window based on solar elevation

angle rather than the rectangular window used in this thesis, and including a discount rate

on the daily performance where early observations have more utility than later observations.

Providing additional utility for oversampling would be useful in a situation where a satellite

cannot collect all the useful data in a single pass. The discount rate could represent the time

to first image vs. persistent imaging over event duration tradeoff. For some situations, images

collected in the first few hours or days would have a higher utility that images collected later.

With simple modifications, the framework could also be used to study missions other

than optical imaging. For example, future work could look into a reconfigurable synthetic

aperture radar (SAR) constellation capable of providing day/night and all weather data

products. SAR satellites typically use low altitudes due to power limitations, and therefore,

a reconfigurable SAR constellation providing persistent surveillance would likely be much

more cost-effective than a static SAR constellation.

Further study the implementation challenges associated with reconfigurable con-

stellations

A third avenue for future study is to further investigate the implementation challenges asso-

ciated with reconfigurable constellations. One such challenge could arise if separate stake-

holders handle satellite operations and payload tasking. In this case, fast communication

between stakeholders is essential to reconfigure the constellation quickly.

The data downlink architecture is another implementation challenge for reconfigurable

constellations. For missions where data latency is important, the framework could add in

an objective or constraint on how long it takes data products to reach stakeholders on the

ground. This may lower the value of reconfigurability since satellite-to-satellite crosslinking

is more difficult in a reconfigurable constellation with a constantly changing orbital pattern.

In this case, the simulation model could then directly model communication with ground
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stations and satellite crosslinks, and the optimization process would find constellation designs

with good coverage properties and fast data downlinking.

Future work should also utilize the optimal satellite assignment optimization algorithm

to develop interactive decision support tools, providing decision makers with real time and

interactive information to support reconfigurable constellation operations. As was explained

in Section 3.5.4, the ability to make quick and well informed decisions is critical to ensuring

effective use of a reconfigurable constellation.

Improve optimization tools

The fourth promising avenue for future work could improve and refine the tools employed in

this thesis. The optimization routine could be improved in several ways. First, the observed

parallel processing efficiency was around 50% meaning that optimization with 256 proces-

sors was around 130 times faster than an optimization on a single processor. As explained

in Section 5.3, this loss in efficiency is likely caused by generational synchronization. To

improve parallel implementation efficiency, future work should investigate moving the opti-

mization algorithm to a stationary process, which eliminates generational synchronization.

The optimization routine considered in this thesis maximized the median performance while

not considering the variability of performance. Future work could extend this analysis by

using a percentile away from the median or could penalize designs with high variation.
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Detailed Results
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A.1 Symmetric Pattern: Scenario 1
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Figure A-1: Scenario 1 non-dominated front comparison with VoR

Table A.1: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.017 147 2 29.5 2 2 87.1 1 0.12 435 0.53
0.051 164 1 34.2 2 3 58.4 1 0.12 87 0.88
0.073 204 1 34.5 2 4 58.5 1 0.13 234 0.91
0.125 237 2 -15.9 3 2 58.6 2 0.18 498 0.03
0.134 247 2 -14.9 3 2 60.0 2 0.20 498 0.03
0.160 295 2 -18.1 4 2 58.6 3 0.18 497 0.05
0.201 318 2 -9.4 5 1 88.1 2 0.20 671 0.00
0.256 352 2 -9.9 5 1 87.7 3 0.25 667 0.00
0.298 417 2 -1.2 11 1 58.9 6 0.19 360 0.16
0.362 444 2 15.6 12 1 58.3 7 0.20 462 0.02
0.390 496 2 15.6 13 1 58.5 7 0.20 468 0.02
0.422 561 2 18.8 16 1 57.8 6 0.20 446 0.01
0.468 596 2 -6.8 11 1 58.6 9 0.29 463 0.01
0.510 624 2 19.2 12 1 57.9 0 0.29 501 0.03
0.532 649 2 19.9 12 1 57.8 0 0.31 499 0.03
0.583 687 2 6.6 21 1 57.9 8 0.22 469 0.00
0.624 719 2 6.7 21 1 57.9 9 0.24 467 0.00
0.640 768 2 -19.7 21 1 58.0 9 0.27 300 0.16
0.654 837 2 -19.7 21 1 58.3 16 0.28 295 0.17
0.707 866 2 19.8 21 1 58.1 16 0.29 464 0.02
0.728 889 2 18.7 21 1 57.8 14 0.30 454 0.02
0.753 924 2 19.0 21 1 57.8 14 0.31 458 0.01
0.766 983 2 20.1 22 1 57.8 15 0.31 456 0.01
0.786 1002 2 -18.6 23 1 57.7 12 0.31 458 0.03
0.811 1028 2 -13.9 24 1 59.4 23 0.31 461 0.00
0.826 1154 2 -4.6 25 1 57.8 23 0.34 523 0.00
0.829 1241 2 -13.9 30 1 59.4 27 0.31 416 0.00
0.865 1858 4 6.3 30 1 58.5 11 0.52 432 0.00
0.891 2453 4 11.9 33 1 57.0 7 0.64 436 0.00
0.910 6284 6 -15.0 35 1 57.4 2 1.06 418 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.020 149 646 2 2 58.1 0 0.14
0.066 179 482 2 3 58.9 0 0.17
0.105 228 396 2 4 121.7 0 0.18
0.120 251 397 2 5 121.7 0 0.19
0.151 319 375 2 5 121.4 0 0.24
0.173 356 392 3 4 121.1 1 0.22
0.207 409 413 4 4 121.6 1 0.19
0.233 447 386 4 5 58.9 1 0.19
0.260 477 410 4 4 122.0 0 0.24
0.276 535 384 4 5 58.9 2 0.23
0.327 599 368 10 3 121.1 4 0.17
0.362 629 425 10 3 122.0 1 0.19
0.390 656 409 10 3 121.9 2 0.20
0.417 689 419 10 3 121.9 1 0.22
0.455 748 417 10 3 122.0 1 0.24
0.471 778 425 10 3 121.9 2 0.26
0.515 860 445 12 3 122.1 6 0.24
0.540 915 447 12 3 122.2 2 0.26
0.556 944 445 12 3 122.1 7 0.27
0.589 1026 473 12 3 121.7 6 0.29
0.606 1073 469 12 3 121.9 6 0.31
0.640 1183 553 12 3 122.6 1 0.34
0.672 1286 587 12 3 122.9 7 0.37
0.695 1371 628 12 3 123.0 5 0.41
0.718 1469 687 12 3 123.2 3 0.44
0.742 1646 696 18 2 123.0 11 0.44
0.777 1792 751 18 2 123.4 5 0.48
0.797 1936 822 18 2 123.6 14 0.52
0.826 2180 880 18 2 123.6 5 0.58
0.856 2505 967 18 2 123.7 14 0.66
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A.2 Symmetric Pattern: Scenario 2
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Figure A-2: Scenario 2 non-dominated front comparison with VoR

Table A.2: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.000 170 2 -32.3 2 3 57.9 0 0.15 1 0.70
0.026 214 1 -43.2 2 3 111.9 0 0.19 249 0.66
0.056 284 1 -50.0 2 3 116.4 0 0.28 228 0.74
0.096 322 2 -4.9 4 1 58.0 2 0.29 586 0.13
0.138 395 2 3.7 5 1 87.1 2 0.30 480 0.20
0.182 495 2 4.6 5 1 86.3 2 0.37 443 0.00
0.202 525 2 -4.8 5 1 86.3 2 0.41 443 0.00
0.247 626 2 14.0 11 1 58.7 4 0.31 465 0.02
0.273 661 2 12.9 11 1 58.3 4 0.34 446 0.00
0.298 719 2 -4.9 11 1 57.9 4 0.36 444 0.00
0.318 761 2 6.0 11 1 59.2 1 0.39 480 0.00
0.354 806 2 -4.9 11 1 57.9 4 0.42 444 0.05
0.370 835 2 11.6 11 1 58.0 4 0.44 444 0.00
0.413 886 2 13.2 12 1 57.4 4 0.45 494 0.01
0.436 952 2 11.6 13 1 58.0 4 0.44 487 0.00
0.461 1022 2 6.7 13 1 58.6 0 0.48 417 0.01
0.510 1078 2 -3.8 21 1 58.6 7 0.39 371 0.00
0.524 1093 2 -3.5 21 1 58.6 7 0.40 374 0.00
0.555 1147 2 -3.9 21 1 58.6 14 0.43 360 0.00
0.610 1250 2 13.9 21 1 57.7 11 0.47 448 0.00
0.653 1346 2 14.3 21 1 57.5 11 0.51 454 0.00
0.686 1428 2 14.1 21 1 57.5 11 0.54 449 0.00
0.696 1465 2 13.5 21 1 57.5 11 0.55 449 0.00
0.717 1508 2 -2.8 21 1 58.0 7 0.57 369 0.00
0.740 1574 2 -3.6 21 1 58.0 7 0.59 372 0.00
0.780 1738 2 6.7 24 1 57.7 8 0.59 432 0.00
0.793 1770 2 -4.8 24 1 57.9 7 0.60 501 0.00
0.817 1844 2 -2.9 24 1 57.8 18 0.62 495 0.00
0.830 2138 2 4.2 27 1 57.9 2 0.65 447 0.00
0.849 2763 2 16.5 33 1 58.6 2 0.73 433 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 139 805 2 2 90.8 1 0.10
0.025 220 414 2 4 120.2 1 0.17
0.040 251 401 2 5 120.2 1 0.19
0.065 298 382 2 5 120.8 0 0.22
0.098 388 378 2 5 120.6 1 0.30
0.123 479 343 2 6 121.6 0 0.32
0.174 623 371 4 5 119.8 1 0.27
0.191 663 360 4 5 120.2 1 0.29
0.229 761 353 10 3 121.8 5 0.24
0.237 778 353 10 3 121.8 5 0.25
0.271 853 374 10 3 121.6 1 0.28
0.294 911 374 10 3 121.8 1 0.30
0.326 1007 391 10 3 121.8 9 0.33
0.352 1074 377 10 3 121.8 1 0.36
0.385 1163 377 10 3 121.8 8 0.39
0.415 1249 372 10 3 121.8 8 0.43
0.448 1349 380 11 3 121.6 9 0.42
0.468 1406 416 12 3 122.1 9 0.42
0.498 1525 426 12 3 121.9 9 0.46
0.529 1629 415 12 3 121.9 8 0.48
0.555 1797 399 12 3 121.8 9 0.53
0.587 1930 459 12 3 122.1 11 0.57
0.612 2090 481 12 3 122.4 6 0.60
0.641 2337 536 12 3 122.4 11 0.66
0.677 2606 564 35 1 121.9 34 0.69
0.700 2757 551 36 1 121.7 35 0.71
0.738 3258 663 18 2 122.9 3 0.81
0.772 4312 709 18 2 122.4 3 0.91
0.797 4945 818 18 2 123.8 3 1.02
0.819 5481 836 18 2 123.7 3 1.10
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A.3 Symmetric Pattern: Scenario 3
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Figure A-3: Scenario 3 non-dominated front comparison with VoR

Table A.3: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.000 125 6 -35.7 2 1 119.6 0 0.10 139 0.46
0.044 169 2 2.3 2 2 57.6 1 0.18 460 0.09
0.051 216 2 36.9 2 3 60.4 0 0.19 482 0.16
0.083 264 2 9.6 3 2 58.6 1 0.23 290 0.04
0.094 303 2 9.7 4 2 58.6 1 0.20 283 0.04
0.157 402 2 13.7 11 1 57.7 6 0.17 492 0.02
0.199 433 2 12.7 12 1 57.8 7 0.19 468 0.01
0.233 493 2 12.6 13 1 57.4 7 0.20 469 0.00
0.276 578 2 18.3 16 1 57.7 8 0.21 404 0.16
0.305 621 2 16.2 21 1 57.7 17 0.18 502 0.06
0.358 666 2 7.2 21 1 57.5 17 0.21 477 0.00
0.398 709 2 15.1 21 1 57.6 16 0.23 509 0.00
0.415 730 2 15.2 21 1 57.6 17 0.24 501 0.00
0.440 795 2 14.9 24 1 57.8 14 0.24 475 0.00
0.454 836 2 1.7 24 1 57.9 22 0.26 306 0.00
0.516 917 2 10.2 27 1 58.0 24 0.25 479 0.00
0.556 982 2 13.4 32 1 58.5 31 0.25 477 0.00
0.590 1032 2 13.1 32 1 58.5 31 0.26 481 0.00
0.615 1076 2 12.0 32 1 58.6 21 0.28 477 0.00
0.642 1121 2 11.9 32 1 58.7 28 0.29 481 0.00
0.656 1156 2 12.3 32 1 58.7 28 0.30 483 0.00
0.687 1193 2 -2.5 41 1 57.7 34 0.27 307 0.00
0.726 1257 2 -1.0 41 1 57.6 32 0.28 338 0.00
0.775 1348 2 -2.5 41 1 57.5 33 0.31 368 0.00
0.800 1421 2 3.2 44 1 58.6 34 0.31 323 0.00
0.819 1446 2 3.5 45 1 59.4 10 0.31 408 0.00
0.843 1553 2 4.9 48 1 58.0 35 0.31 385 0.00
0.872 2472 4 9.2 48 1 57.9 36 0.54 341 0.00
0.889 4241 6 -2.6 46 1 57.8 35 0.80 393 0.00
0.908 4545 6 0.5 47 1 58.0 30 0.84 398 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.022 167 645 2 2 59.2 0 0.18
0.047 209 439 2 4 121.7 1 0.15
0.071 259 439 2 5 121.6 1 0.20
0.098 346 413 3 4 121.8 1 0.21
0.115 404 417 3 5 122.0 1 0.22
0.128 434 411 4 4 122.0 2 0.21
0.144 492 552 4 4 122.2 2 0.25
0.166 579 428 5 5 60.2 2 0.21
0.197 626 355 10 4 121.8 2 0.14
0.223 653 358 10 4 121.7 2 0.15
0.253 694 356 10 4 121.8 2 0.17
0.300 809 423 11 4 121.8 4 0.19
0.324 851 404 12 4 121.9 2 0.19
0.347 895 404 12 4 121.8 5 0.21
0.363 929 403 12 4 121.8 5 0.22
0.382 1015 450 12 4 120.4 7 0.25
0.408 1139 498 12 4 57.8 3 0.28
0.426 1207 501 12 4 57.9 3 0.29
0.445 1289 511 12 4 58.0 2 0.31
0.474 1431 583 12 4 57.7 7 0.35
0.500 1469 568 12 4 122.0 7 0.36
0.524 1560 658 14 3 122.5 0 0.41
0.556 1671 643 16 3 123.0 0 0.38
0.582 1789 716 16 3 123.2 6 0.42
0.602 1856 711 16 3 123.1 5 0.44
0.624 2009 785 16 3 123.4 13 0.47
0.648 2334 832 16 3 56.2 5 0.54
0.682 2562 965 22 2 122.6 0 0.58
0.720 2835 973 23 2 122.2 0 0.61
0.756 3112 1000 24 2 122.1 0 0.65
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A.4 Symmetric Pattern: Scenario 4
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Figure A-4: Scenario 4 non-dominated front comparison with VoR

Table A.4: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.000 139 3 -18.0 2 2 60.4 0 0.10 0 0.97
0.020 239 2 12.2 2 3 58.5 0 0.23 123 0.26
0.045 349 2 -9.4 5 1 58.5 3 0.25 374 0.00
0.061 396 2 -28.0 3 2 59.2 1 0.34 423 0.20
0.095 516 2 -14.9 6 1 62.6 2 0.36 422 0.02
0.132 598 2 -6.1 11 1 58.4 5 0.30 422 0.07
0.157 659 2 -6.4 12 1 59.0 0 0.32 379 0.00
0.191 762 2 -5.5 13 1 58.9 0 0.35 340 0.00
0.206 805 2 -12.2 11 1 58.5 2 0.42 468 0.05
0.260 951 2 -17.6 21 1 58.0 2 0.32 449 0.02
0.296 1015 2 -16.9 21 1 57.7 2 0.36 457 0.02
0.336 1079 2 -2.0 21 1 58.1 2 0.39 408 0.00
0.353 1133 2 -18.7 21 1 58.0 3 0.42 456 0.01
0.381 1216 2 -17.5 21 1 57.9 2 0.46 449 0.02
0.406 1302 2 -12.7 24 1 58.2 3 0.43 455 0.01
0.435 1371 2 -3.4 32 1 58.9 0 0.39 371 0.00
0.467 1434 2 1.3 31 1 58.0 1 0.42 405 0.00
0.491 1529 2 -3.4 35 1 58.0 33 0.40 381 0.00
0.536 1677 2 5.8 36 1 58.2 1 0.44 391 0.00
0.548 1725 2 -3.4 45 1 58.0 42 0.39 381 0.00
0.602 1849 2 -1.4 42 1 58.5 22 0.45 392 0.00
0.623 1916 2 -0.7 43 1 57.8 19 0.46 456 0.00
0.643 1980 2 -1.7 45 1 58.1 24 0.46 394 0.00
0.677 2081 2 0.7 44 1 57.5 39 0.49 338 0.00
0.704 2194 2 -5.0 44 1 58.1 12 0.52 440 0.00
0.733 2319 2 0.7 43 1 57.5 41 0.55 329 0.00
0.758 2397 2 0.7 44 1 57.5 42 0.56 329 0.00
0.799 2654 2 -3.1 46 1 57.7 14 0.59 362 0.00
0.816 2732 2 -7.9 45 1 59.0 23 0.62 428 0.00
0.847 3218 2 1.8 48 1 58.8 37 0.68 358 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 153 534 2 3 61.1 0 0.10
0.020 224 407 2 3 121.5 0 0.21
0.036 291 356 2 5 121.5 0 0.21
0.060 415 353 2 5 121.5 0 0.31
0.079 526 362 3 5 121.7 1 0.29
0.113 697 364 4 5 121.5 1 0.30
0.151 828 365 10 4 121.7 9 0.23
0.168 886 357 10 4 121.6 9 0.24
0.200 1018 366 10 4 121.9 6 0.28
0.215 1079 365 10 4 121.9 3 0.30
0.240 1224 351 11 4 121.6 10 0.30
0.265 1299 357 12 4 121.6 11 0.31
0.302 1463 359 12 4 121.6 7 0.35
0.329 1604 380 12 4 121.7 1 0.39
0.347 1671 381 12 4 121.6 2 0.42
0.386 1854 413 44 1 122.1 2 0.44
0.410 1978 411 47 1 122.1 2 0.44
0.427 2070 421 47 1 121.9 2 0.47
0.465 2305 449 45 1 122.2 2 0.55
0.475 2446 502 45 1 121.0 2 0.58
0.504 2575 507 48 1 122.5 2 0.57
0.529 2788 489 48 1 121.7 2 0.61
0.556 3107 573 45 1 122.8 2 0.70
0.584 3367 563 48 1 122.1 2 0.71
0.609 3709 606 48 1 122.8 2 0.77
0.643 5148 823 23 2 123.5 3 0.95
0.658 5203 788 24 2 123.0 3 0.93
0.696 6216 824 24 2 123.3 3 1.01
0.712 6664 941 24 2 124.2 3 1.07
0.745 8615 909 24 2 123.8 3 1.14

273



A.5 Symmetric Pattern: Scenario 5
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Figure A-5: Scenario 5 non-dominated front comparison with VoR

Table A.5: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.043 147 2 1.6 2 2 57.7 1 0.12 404 0.00
0.085 172 2 1.4 2 2 59.6 1 0.19 425 0.19
0.129 236 2 1.8 3 2 59.9 1 0.18 438 0.01
0.148 251 2 1.3 3 2 59.6 1 0.21 427 0.02
0.202 329 2 -13.8 5 1 92.2 1 0.22 580 0.04
0.242 358 2 15.2 5 1 97.0 4 0.26 568 0.05
0.284 387 2 -14.1 5 1 85.7 1 0.29 617 0.01
0.317 416 2 6.5 11 1 58.1 1 0.19 374 0.05
0.372 445 2 -0.9 11 1 58.2 0 0.22 338 0.05
0.393 463 2 -1.8 12 1 58.6 2 0.22 281 0.05
0.421 507 2 -1.7 13 1 57.9 4 0.22 300 0.05
0.442 519 2 -1.3 13 1 58.5 2 0.23 297 0.05
0.464 565 2 -13.1 11 1 57.8 0 0.27 506 0.00
0.486 588 2 -18.5 12 1 57.8 4 0.27 498 0.00
0.506 623 2 -4.9 12 1 60.4 6 0.30 365 0.02
0.534 644 2 -12.9 13 1 57.8 0 0.27 505 0.00
0.581 689 2 -5.8 21 1 58.6 3 0.23 356 0.03
0.634 718 2 -3.9 21 1 58.4 0 0.24 354 0.00
0.665 750 2 -5.2 21 1 57.9 3 0.26 361 0.00
0.701 838 2 -10.2 24 1 60.3 0 0.26 410 0.00
0.713 844 2 -10.2 24 1 58.0 2 0.26 410 0.00
0.763 899 2 -4.2 21 1 58.0 0 0.30 396 0.00
0.788 968 2 2.1 22 1 58.8 3 0.31 395 0.00
0.811 1017 2 7.1 23 1 59.0 6 0.32 347 0.00
0.837 1152 2 7.5 27 1 58.4 25 0.32 357 0.00
0.851 1295 2 7.1 35 1 59.0 10 0.32 347 0.00
0.860 1423 2 19.0 35 1 59.0 8 0.36 493 0.00
0.878 2007 4 -4.5 30 1 59.9 7 0.57 395 0.00
0.890 3289 4 3.7 36 1 59.2 0 0.77 477 0.00
0.909 4063 6 1.1 29 1 124.9 9 0.97 305 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.017 145 593 2 2 114.6 1 0.12
0.043 178 462 2 3 119.5 1 0.12
0.086 207 395 2 3 120.3 0 0.18
0.113 236 358 2 4 121.6 0 0.19
0.162 327 394 3 4 119.4 1 0.19
0.189 356 387 3 5 119.5 1 0.19
0.216 414 368 3 5 120.1 2 0.22
0.239 441 410 4 4 121.8 2 0.21
0.255 465 375 4 4 120.6 3 0.23
0.285 529 398 5 4 121.8 1 0.21
0.308 566 372 5 4 120.6 4 0.23
0.341 628 398 6 4 120.4 3 0.21
0.372 656 474 12 2 121.2 3 0.23
0.396 705 379 12 3 121.2 7 0.17
0.428 740 402 12 3 120.7 5 0.19
0.446 760 395 12 3 120.7 5 0.20
0.467 799 456 12 3 121.1 5 0.22
0.505 836 439 12 3 121.7 5 0.23
0.524 868 438 12 3 121.5 5 0.24
0.570 977 474 12 3 121.2 3 0.28
0.578 994 474 12 3 121.2 3 0.28
0.621 1106 509 12 3 121.9 8 0.32
0.637 1178 550 12 3 121.2 7 0.34
0.668 1278 593 12 3 122.1 5 0.37
0.725 1529 705 12 3 122.1 2 0.46
0.742 1657 710 18 2 121.8 10 0.45
0.779 1780 732 18 2 123.3 3 0.48
0.816 2110 970 30 1 124.1 2 0.61
0.873 2497 995 33 1 123.0 2 0.66
0.887 2644 998 34 1 123.0 2 0.67
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A.6 Symmetric Pattern: Scenario 6
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Figure A-6: Scenario 6 non-dominated front comparison with VoR

Table A.6: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.021 116 2 -1.9 1 4 75.4 0 0.12 338 0.13
0.057 152 2 -47.6 1 5 60.5 0 0.19 1 0.98
0.111 230 2 1.7 3 2 66.7 1 0.17 432 0.08
0.135 279 2 -0.2 3 2 69.7 1 0.21 498 0.24
0.177 319 2 0.8 4 2 60.0 0 0.21 286 0.05
0.201 358 2 2.2 5 1 86.3 2 0.25 529 0.24
0.212 374 2 3.1 5 1 87.1 2 0.27 539 0.24
0.245 433 2 -0.4 11 1 58.8 0 0.20 285 0.04
0.269 466 2 -1.6 5 2 86.5 2 0.24 471 0.29
0.306 507 2 -2.4 5 2 86.8 2 0.28 329 0.18
0.338 553 2 -0.1 5 2 87.5 1 0.31 326 0.18
0.375 584 2 -0.2 11 2 58.5 0 0.19 309 0.03
0.405 635 2 0.4 12 1 58.5 11 0.30 344 0.05
0.500 671 2 0.4 21 1 58.3 19 0.22 342 0.06
0.537 718 2 8.4 21 1 57.5 16 0.24 338 0.14
0.552 759 2 -4.0 22 1 58.0 16 0.23 338 0.16
0.593 792 2 0.3 23 1 58.4 12 0.24 354 0.06
0.616 826 2 9.7 24 1 58.5 17 0.25 370 0.09
0.633 862 2 0.8 21 1 58.4 19 0.28 342 0.06
0.676 916 2 0.3 21 1 58.2 19 0.31 342 0.06
0.710 983 2 0.4 23 1 58.5 21 0.30 344 0.05
0.730 1019 2 -2.6 24 1 60.8 13 0.30 376 0.02
0.744 1105 2 -3.0 26 1 60.4 14 0.30 372 0.01
0.764 1153 2 -3.6 27 1 59.5 6 0.31 376 0.04
0.788 1266 2 11.5 32 1 58.5 24 0.34 371 0.07
0.802 1475 2 11.5 35 1 58.5 25 0.38 342 0.07
0.822 1509 2 -15.0 28 1 122.7 25 0.43 417 0.10
0.842 2022 4 12.5 35 1 56.1 12 0.54 332 0.07
0.853 2186 4 12.5 36 1 56.1 12 0.57 352 0.08
0.887 4132 6 -19.7 35 1 55.0 1 0.87 361 0.07

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.024 153 576 2 2 83.9 1 0.15
0.066 200 413 2 4 120.3 1 0.13
0.110 239 403 2 4 121.4 1 0.19
0.142 306 373 2 5 121.1 1 0.22
0.174 358 422 3 4 121.5 2 0.22
0.226 435 404 4 4 121.5 1 0.20
0.265 519 377 4 5 121.3 2 0.21
0.280 544 396 4 5 121.3 2 0.23
0.299 595 453 12 2 121.4 0 0.19
0.327 629 459 11 2 121.5 3 0.22
0.394 719 405 11 3 121.3 3 0.19
0.415 740 423 11 3 121.5 3 0.20
0.463 797 407 11 3 122.1 4 0.22
0.483 831 437 11 3 122.2 4 0.24
0.512 866 422 12 3 122.1 3 0.24
0.535 917 441 12 3 121.7 4 0.25
0.550 940 447 12 3 122.2 4 0.26
0.569 980 441 12 3 122.1 3 0.27
0.608 1080 483 12 3 122.4 10 0.31
0.623 1141 492 12 3 122.4 4 0.32
0.650 1221 566 12 3 122.3 3 0.35
0.668 1308 567 12 3 122.0 3 0.38
0.697 1379 629 12 3 122.9 2 0.41
0.721 1527 677 12 3 122.6 4 0.45
0.744 1638 691 18 2 123.1 6 0.44
0.775 1782 745 18 2 123.2 10 0.48
0.798 1955 803 18 2 122.7 10 0.53
0.816 2089 963 32 1 122.9 2 0.56
0.849 2171 851 33 1 122.7 2 0.58
0.911 2497 954 36 1 123.6 2 0.65
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A.7 Symmetric Pattern: Scenario 7
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Figure A-7: Scenario 7 non-dominated front comparison with VoR

Table A.7: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.004 147 3 1.8 2 2 59.5 0 0.11 193 0.16
0.049 172 1 45.0 2 3 60.4 1 0.13 37 0.68
0.075 210 2 47.3 2 3 58.3 0 0.16 417 0.09
0.134 258 2 6.2 3 2 58.3 2 0.20 365 0.12
0.172 300 2 -0.6 4 1 61.8 0 0.25 342 0.01
0.184 313 2 -0.5 4 1 61.9 0 0.26 587 0.09
0.212 360 2 -0.5 4 1 61.9 0 0.32 587 0.13
0.236 409 2 2.2 5 1 57.9 3 0.30 343 0.09
0.286 443 2 10.9 11 1 57.8 0 0.18 384 0.12
0.333 474 2 5.2 11 1 57.8 2 0.21 317 0.07
0.349 494 2 -0.5 12 1 61.7 2 0.21 343 0.01
0.380 536 2 -2.2 13 1 61.0 1 0.20 365 0.05
0.404 557 2 -0.5 13 1 62.3 10 0.21 343 0.01
0.443 628 2 -4.6 11 1 57.9 1 0.28 341 0.06
0.465 655 2 10.4 16 1 57.9 4 0.22 385 0.07
0.474 674 2 -0.6 13 1 61.8 1 0.25 342 0.01
0.505 716 2 0.3 13 1 60.8 1 0.27 342 0.05
0.525 732 2 -0.4 13 1 60.8 1 0.28 342 0.05
0.551 775 2 -0.7 13 1 61.6 1 0.30 342 0.08
0.599 836 2 9.9 21 1 58.3 4 0.24 333 0.00
0.638 890 2 10.0 21 1 57.6 17 0.26 354 0.00
0.669 947 2 -9.9 22 1 57.5 6 0.26 348 0.00
0.718 1006 2 -1.7 21 1 57.8 12 0.29 350 0.00
0.746 1092 2 2.5 22 1 59.9 11 0.29 355 0.00
0.768 1129 2 -4.1 22 1 59.5 4 0.30 375 0.00
0.799 1189 2 6.1 23 1 60.0 21 0.31 414 0.00
0.817 1311 2 5.8 24 1 58.1 14 0.34 346 0.00
0.843 1599 2 12.2 32 1 57.8 30 0.35 341 0.00
0.868 2459 4 -1.3 29 1 58.3 0 0.56 344 0.00
0.894 4045 6 -10.0 33 1 57.5 2 0.77 326 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 102 996 2 1 87.2 0 0.10
0.003 141 994 2 1 87.1 0 0.17
0.043 174 509 2 3 59.6 0 0.13
0.066 191 496 2 3 59.0 0 0.17
0.097 236 399 2 4 121.7 0 0.17
0.131 311 402 2 5 121.4 0 0.20
0.167 387 419 3 4 120.5 1 0.21
0.190 443 471 3 4 122.2 1 0.25
0.231 499 406 4 4 121.3 1 0.21
0.254 548 461 4 4 122.2 0 0.24
0.275 597 388 10 2 121.8 0 0.19
0.306 645 408 10 2 121.9 0 0.22
0.347 739 386 10 3 121.8 0 0.18
0.375 777 377 10 3 121.7 0 0.19
0.395 803 386 10 3 121.7 1 0.20
0.430 881 355 10 3 121.7 1 0.22
0.460 973 353 11 3 121.7 0 0.22
0.490 1062 438 11 3 120.3 4 0.25
0.525 1112 450 12 3 121.9 0 0.25
0.549 1191 443 12 3 121.3 0 0.26
0.574 1259 471 12 3 122.3 1 0.28
0.611 1388 510 12 3 122.5 0 0.31
0.636 1493 538 12 3 122.6 0 0.33
0.681 1796 670 16 2 122.9 6 0.41
0.700 1908 687 16 2 122.7 13 0.44
0.748 2124 688 18 2 123.2 13 0.44
0.765 2236 777 17 2 123.5 3 0.48
0.793 2464 819 18 2 123.4 3 0.51
0.820 2780 893 18 2 123.6 14 0.56
0.858 3304 972 18 2 123.8 14 0.65
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A.8 Symmetric Pattern: Scenario 8
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Figure A-8: Scenario 8 non-dominated front comparison with VoR

Table A.8: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.000 101 4 -50.0 2 1 113.4 1 0.10 0 0.02
0.052 149 2 -8.8 2 2 56.4 1 0.13 327 0.17
0.093 174 2 -11.0 2 2 58.5 1 0.19 477 0.21
0.110 190 2 -11.8 2 2 59.6 1 0.22 284 0.20
0.163 238 2 11.2 3 1 87.3 1 0.25 651 0.08
0.200 296 2 -14.7 4 1 56.1 0 0.25 560 0.20
0.211 308 2 4.9 4 1 57.1 0 0.27 395 0.18
0.294 360 2 12.2 10 1 55.9 1 0.18 440 0.06
0.353 386 2 12.0 10 1 55.8 1 0.21 449 0.06
0.399 448 2 -14.4 12 1 56.1 6 0.21 455 0.01
0.439 503 2 -13.5 13 1 57.3 2 0.21 464 0.14
0.466 518 2 -8.6 10 1 56.8 3 0.28 422 0.00
0.508 590 2 -3.8 12 1 57.3 4 0.27 399 0.06
0.547 624 2 -14.2 12 1 57.4 6 0.29 512 0.06
0.579 652 2 -15.7 12 1 57.5 2 0.31 531 0.00
0.637 713 2 -15.8 13 1 57.5 7 0.31 530 0.00
0.690 769 2 -14.1 21 1 58.1 0 0.27 316 0.07
0.707 827 2 -14.1 22 1 58.5 12 0.27 317 0.07
0.726 859 2 -12.7 21 1 58.3 12 0.29 314 0.07
0.764 897 2 -14.1 21 1 58.6 8 0.30 323 0.04
0.790 929 2 -12.7 21 1 56.9 16 0.32 393 0.01
0.812 985 2 -11.1 22 1 57.8 17 0.32 389 0.00
0.836 1037 2 -11.1 24 1 57.8 19 0.32 389 0.00
0.852 1194 2 -11.8 24 1 123.7 10 0.39 308 0.01
0.863 1248 2 -23.5 24 1 123.0 5 0.41 443 0.04
0.879 1362 2 -23.4 24 1 124.7 5 0.46 447 0.04
0.895 1479 2 -3.3 25 1 124.7 5 0.47 450 0.00
0.908 1638 2 -6.7 31 1 124.8 25 0.49 323 0.00
0.929 2561 3 -24.2 18 2 124.8 14 0.67 2 0.27
0.937 6730 6 13.9 32 1 54.2 10 1.20 344 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.004 104 614 2 1 91.8 0 0.12
0.040 143 421 2 2 56.8 1 0.12
0.099 177 382 2 3 57.6 1 0.16
0.118 208 385 2 3 56.9 0 0.18
0.157 255 375 2 4 57.1 0 0.22
0.178 299 390 3 3 122.8 2 0.20
0.224 352 421 4 2 56.4 1 0.26
0.244 387 397 4 3 120.7 3 0.20
0.270 415 416 4 3 56.9 1 0.23
0.298 449 355 4 4 57.7 0 0.21
0.316 474 381 10 2 121.9 2 0.16
0.361 494 376 10 2 121.8 3 0.18
0.422 534 395 10 2 122.5 3 0.21
0.440 547 389 10 2 122.5 3 0.22
0.489 624 391 10 2 123.2 3 0.24
0.539 688 388 10 3 122.5 3 0.22
0.562 700 357 10 3 122.5 3 0.22
0.592 739 378 10 3 123.2 9 0.24
0.606 766 378 10 3 123.2 9 0.25
0.642 826 374 11 3 123.1 10 0.24
0.671 866 375 12 3 122.6 11 0.24
0.686 897 366 12 3 122.7 11 0.25
0.731 1045 364 12 3 122.8 6 0.29
0.757 1157 575 13 2 124.6 3 0.39
0.793 1222 559 14 2 124.5 3 0.39
0.809 1279 551 14 2 123.8 3 0.42
0.835 1369 559 16 2 124.5 3 0.40
0.858 1473 543 16 2 123.8 3 0.44
0.901 2067 698 17 2 54.4 11 0.58
0.915 2226 696 18 2 54.7 12 0.60
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A.9 Symmetric Pattern: Scenario 9
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Figure A-9: Scenario 9 non-dominated front comparison with VoR

Table A.9: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.026 119 2 -50.0 1 5 62.1 0 0.12 7 0.32
0.051 143 2 -42.4 1 5 59.3 0 0.17 233 0.90
0.062 180 2 -23.7 1 6 59.4 0 0.21 30 1.00
0.084 203 2 -0.8 2 3 58.4 0 0.17 244 0.15
0.123 236 2 25.4 3 2 60.8 1 0.18 448 0.06
0.157 295 2 25.1 3 2 73.1 1 0.23 397 0.06
0.227 327 2 3.8 5 1 86.2 4 0.22 548 0.01
0.270 359 2 3.1 5 1 87.0 3 0.26 467 0.01
0.303 418 2 0.9 11 1 58.2 0 0.19 381 0.04
0.349 442 2 4.6 11 1 58.7 1 0.21 386 0.00
0.379 460 2 -5.6 12 1 59.2 8 0.22 342 0.09
0.406 506 2 4.3 13 1 57.9 1 0.21 373 0.00
0.437 565 2 -8.1 16 1 57.7 0 0.20 375 0.01
0.458 593 2 -3.4 11 1 58.0 2 0.29 401 0.10
0.473 607 2 -4.4 11 1 58.0 3 0.30 380 0.09
0.500 654 2 -2.7 18 1 61.8 5 0.22 295 0.00
0.549 680 2 -10.6 13 1 58.0 2 0.29 474 0.00
0.597 720 2 -8.5 21 1 57.7 1 0.24 475 0.00
0.652 742 2 -4.2 21 1 58.0 17 0.25 382 0.00
0.670 808 2 7.1 24 1 57.8 2 0.24 361 0.00
0.688 829 2 -5.4 21 1 58.0 17 0.27 402 0.00
0.721 863 2 -4.2 21 1 58.0 17 0.29 380 0.00
0.741 883 2 -2.7 21 1 58.3 1 0.30 378 0.00
0.771 956 2 -5.3 22 1 57.6 5 0.30 369 0.00
0.790 1046 2 -5.0 22 1 58.1 4 0.34 441 0.00
0.810 1076 2 -5.0 23 1 58.1 5 0.34 442 0.00
0.831 1303 2 -3.2 28 1 58.6 26 0.35 305 0.00
0.852 1409 2 -3.6 35 1 57.9 6 0.35 379 0.00
0.867 1970 4 -13.0 25 1 57.3 4 0.63 388 0.00
0.901 5937 6 -19.7 34 1 57.3 17 1.04 363 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.036 120 483 1 4 58.5 0 0.15
0.057 145 434 1 5 58.6 0 0.18
0.084 204 379 1 6 58.2 0 0.24
0.108 238 449 2 4 57.9 0 0.20
0.141 298 360 2 5 58.5 1 0.22
0.155 327 358 2 6 58.7 1 0.22
0.184 365 393 3 5 58.0 2 0.20
0.239 449 370 4 5 58.3 3 0.19
0.260 507 397 4 5 58.9 2 0.21
0.293 569 380 4 6 58.6 1 0.22
0.337 616 401 10 3 58.4 3 0.18
0.401 688 415 10 3 58.2 6 0.22
0.418 711 410 10 3 58.1 6 0.23
0.443 774 394 12 3 58.4 9 0.21
0.468 805 419 12 3 58.1 8 0.22
0.488 869 457 11 3 58.3 5 0.26
0.513 889 446 12 3 58.3 6 0.25
0.545 949 451 12 3 58.3 6 0.27
0.564 1014 493 12 3 58.3 6 0.29
0.599 1092 513 12 3 57.7 6 0.31
0.621 1155 545 12 3 57.6 6 0.33
0.648 1242 570 12 3 58.0 8 0.36
0.665 1307 583 12 3 57.8 8 0.38
0.700 1445 705 12 3 58.0 6 0.43
0.721 1487 698 12 3 56.7 8 0.44
0.742 1685 781 12 3 58.2 8 0.50
0.773 1879 874 12 3 56.9 8 0.55
0.815 2331 980 18 2 57.5 15 0.62
0.829 2434 937 18 2 56.2 12 0.64
0.845 2624 988 18 2 56.3 12 0.68
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A.10 Symmetric Pattern: Scenario 10a
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Figure A-10: Scenario 10a non-dominated front comparison with VoR

Table A.10: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.033 118 1 21.6 1 5 58.9 0 0.11 3 0.47
0.050 137 1 29.4 1 6 58.7 0 0.14 1 0.99
0.060 158 1 32.5 1 6 60.4 0 0.17 6 0.97
0.070 175 1 32.5 1 6 59.8 0 0.20 5 0.93
0.094 218 2 13.0 3 2 73.4 1 0.15 327 0.08
0.123 237 2 -0.4 3 2 77.6 1 0.19 261 0.23
0.139 275 2 1.2 3 2 88.6 1 0.21 224 0.27
0.156 295 2 13.0 3 2 73.4 1 0.24 327 0.08
0.216 319 2 1.2 5 1 86.5 3 0.21 468 0.05
0.244 337 2 0.7 5 1 86.2 2 0.23 473 0.10
0.265 354 2 1.8 5 1 86.7 2 0.26 439 0.00
0.288 377 2 1.6 5 1 86.4 2 0.28 445 0.01
0.305 400 2 6.7 5 1 88.3 4 0.31 533 0.00
0.353 458 2 4.2 7 1 87.1 4 0.24 474 0.01
0.379 478 2 7.1 7 1 87.1 5 0.26 509 0.05
0.400 497 2 6.8 7 1 86.0 5 0.28 511 0.06
0.413 509 2 7.0 7 1 86.0 5 0.29 511 0.05
0.437 531 2 -6.7 7 1 87.0 3 0.31 480 0.03
0.451 576 2 13.6 9 1 86.4 7 0.25 593 0.09
0.479 594 2 1.5 9 1 86.5 4 0.26 633 0.12
0.510 614 2 -2.7 9 1 87.6 5 0.28 556 0.13
0.538 638 2 6.0 9 1 86.5 8 0.30 577 0.14
0.555 656 2 7.4 9 1 87.1 5 0.31 474 0.09
0.572 715 2 0.1 11 1 88.1 8 0.27 579 0.01
0.592 737 2 -2.0 11 1 87.6 10 0.28 665 0.00
0.621 754 2 4.1 11 1 88.0 10 0.29 616 0.00
0.641 773 2 0.4 11 1 87.1 6 0.31 432 0.04
0.660 787 2 0.3 11 1 87.0 6 0.32 464 0.04
0.673 896 2 -2.2 11 1 87.8 8 0.33 484 0.00
0.690 924 2 -3.4 11 1 88.4 8 0.34 610 0.11

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 90 851 1 3 63.1 0 0.10
0.029 120 460 1 5 58.8 0 0.12
0.047 133 443 1 5 57.9 0 0.16
0.062 156 480 1 4 57.9 0 0.23
0.077 188 341 1 6 59.0 0 0.21
0.081 201 341 1 7 59.0 0 0.21
0.102 234 340 2 4 58.7 1 0.18
0.121 257 428 2 5 58.0 0 0.20
0.124 265 434 2 5 59.1 0 0.20
0.143 294 370 2 5 121.8 0 0.22
0.157 335 461 3 4 120.9 1 0.20
0.171 354 448 3 4 120.6 0 0.22
0.184 375 447 3 4 120.5 1 0.24
0.194 406 452 4 3 122.1 1 0.22
0.206 427 450 4 3 121.7 1 0.24
0.223 459 529 4 3 122.6 1 0.27
0.239 495 458 4 3 122.1 1 0.29
0.248 519 497 4 3 121.8 1 0.31
0.264 580 521 4 3 122.5 3 0.33
0.274 617 631 4 3 123.0 2 0.35
0.294 670 661 4 3 123.0 1 0.39
0.306 699 667 4 3 123.0 1 0.42
0.317 755 752 4 3 122.9 3 0.46
0.328 814 750 4 3 122.8 3 0.49
0.341 895 811 4 3 122.9 1 0.54
0.347 914 887 4 3 123.0 1 0.55
0.356 957 967 4 3 124.0 0 0.57
0.368 1007 958 4 3 123.9 0 0.60
0.402 1179 992 6 2 121.5 2 0.63
0.412 1351 934 6 2 123.2 0 0.71
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A.11 Symmetric Pattern: Scenario 10b
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Figure A-11: Scenario 10b non-dominated front comparison with VoR

Table A.11: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.027 117 1 39.3 1 5 62.6 0 0.11 55 0.90
0.055 146 1 36.1 1 6 61.8 0 0.16 4 0.96
0.066 171 1 38.5 1 6 63.1 0 0.19 10 0.40
0.073 182 1 39.0 1 6 61.3 0 0.21 0 0.99
0.117 230 2 -1.8 3 2 87.8 1 0.18 164 0.15
0.162 297 2 2.0 3 2 87.1 1 0.24 216 0.31
0.204 325 2 4.2 5 1 85.8 3 0.22 372 0.14
0.259 352 2 -2.4 5 1 87.6 1 0.25 450 0.03
0.298 388 2 -5.6 5 1 86.5 4 0.29 500 0.05
0.308 401 2 -5.6 5 1 86.9 3 0.31 514 0.03
0.328 443 2 -5.0 7 1 86.4 4 0.23 438 0.00
0.383 480 2 6.4 7 1 86.4 3 0.26 575 0.04
0.407 501 2 -8.1 7 1 86.6 5 0.28 558 0.03
0.430 530 2 -12.9 7 1 87.0 5 0.31 531 0.14
0.467 589 2 -3.4 9 1 88.5 4 0.26 483 0.11
0.522 625 2 -6.1 9 1 87.0 7 0.29 452 0.08
0.535 637 2 2.2 9 1 87.0 7 0.30 452 0.17
0.572 717 2 -4.7 11 1 87.5 5 0.27 553 0.11
0.610 746 2 -0.7 11 1 87.5 2 0.29 460 0.09
0.618 754 2 -4.4 11 1 87.5 5 0.29 547 0.11
0.655 789 2 7.7 23 1 58.8 13 0.24 372 0.00
0.663 863 2 -0.7 13 1 88.0 3 0.29 460 0.09
0.678 878 2 -0.8 13 1 87.5 2 0.30 427 0.09
0.715 925 2 -3.8 22 1 57.6 11 0.29 369 0.01
0.735 956 2 7.5 22 1 57.7 6 0.30 368 0.01
0.792 982 2 7.7 23 1 57.5 12 0.30 372 0.00
0.807 1130 2 7.7 23 1 120.9 12 0.37 372 0.00
0.835 1160 2 2.2 24 1 121.0 4 0.37 395 0.00
0.855 1670 4 -15.7 24 1 123.9 12 0.57 351 0.03
0.867 1832 4 -16.4 24 1 123.6 13 0.62 345 0.03

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.026 115 470 1 4 88.1 0 0.13
0.050 138 387 1 6 121.0 0 0.14
0.081 198 372 1 6 119.7 0 0.23
0.107 229 397 2 4 121.8 0 0.18
0.124 260 396 2 5 118.7 0 0.20
0.155 324 402 3 4 121.3 2 0.19
0.187 376 404 3 4 121.0 0 0.24
0.216 415 364 4 4 121.9 2 0.19
0.235 440 378 4 4 121.2 0 0.21
0.250 465 419 4 4 121.3 0 0.23
0.287 540 370 4 5 121.2 0 0.23
0.302 589 426 5 4 121.8 1 0.25
0.328 618 383 6 4 120.9 1 0.21
0.349 654 431 6 4 121.2 1 0.23
0.392 774 567 12 2 121.6 10 0.26
0.400 796 522 11 2 121.7 4 0.29
0.420 829 450 24 1 57.8 22 0.26
0.458 917 587 11 2 122.1 9 0.34
0.494 950 559 12 2 122.1 3 0.34
0.519 1029 585 12 2 122.1 10 0.37
0.530 1154 575 12 2 122.1 10 0.43
0.563 1193 749 24 1 57.9 22 0.40
0.582 1229 775 23 1 56.7 21 0.43
0.609 1287 748 23 1 57.1 21 0.45
0.623 1307 762 24 1 58.2 22 0.45
0.654 1361 759 24 1 56.6 22 0.47
0.704 1557 903 24 1 55.9 22 0.54
0.720 1620 926 24 1 56.0 22 0.56
0.749 1756 967 24 1 55.9 22 0.60
0.768 1904 978 24 1 56.0 22 0.65
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A.12 Symmetric Pattern: Scenario 11
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Figure A-12: Scenario 11 non-dominated front comparison with VoR

Table A.12: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.030 117 2 -21.7 1 4 67.4 0 0.13 161 0.08
0.051 140 1 34.2 1 6 62.3 0 0.15 1 0.06
0.069 171 1 27.2 1 6 60.8 0 0.19 4 0.79
0.108 224 2 0.5 3 2 57.7 1 0.17 215 0.02
0.150 263 2 -19.0 3 2 61.5 2 0.23 290 0.06
0.215 320 2 2.4 5 1 87.0 2 0.21 445 0.00
0.263 359 2 -19.8 5 1 87.4 2 0.25 672 0.03
0.297 388 2 1.1 5 1 87.6 1 0.29 434 0.00
0.355 445 2 10.4 12 1 57.5 6 0.20 360 0.08
0.374 475 2 -6.2 7 1 86.3 3 0.26 514 0.09
0.404 499 2 7.7 13 1 59.7 7 0.21 407 0.00
0.427 521 2 3.9 7 1 86.4 2 0.30 543 0.00
0.452 568 2 -23.1 12 1 58.9 4 0.25 754 0.01
0.470 585 2 -7.6 9 1 86.2 4 0.26 489 0.09
0.517 621 2 -8.0 9 1 86.9 4 0.28 646 0.06
0.561 679 2 -12.1 21 1 58.7 5 0.22 333 0.01
0.604 719 2 -14.8 21 1 57.8 4 0.24 323 0.01
0.626 743 2 -13.3 21 1 57.8 4 0.26 319 0.00
0.644 760 2 -13.0 21 1 58.6 4 0.26 352 0.01
0.657 804 2 -13.3 22 1 57.8 4 0.26 352 0.01
0.705 834 2 -1.7 23 1 57.5 5 0.26 328 0.00
0.746 960 2 23.2 22 1 59.0 20 0.30 604 0.00
0.769 971 2 -4.7 23 1 59.9 15 0.30 454 0.00
0.805 1016 2 -4.9 24 1 59.4 16 0.31 457 0.00
0.816 1059 2 -13.5 24 1 57.5 3 0.32 436 0.00
0.839 1242 2 -11.8 25 1 121.8 8 0.37 368 0.00
0.866 1393 2 -33.7 32 1 122.3 0 0.39 665 0.00
0.895 3185 6 -19.7 27 1 57.3 13 0.83 519 0.00
0.912 3587 6 -19.7 35 1 57.3 17 0.83 519 0.00
0.924 5975 6 -19.7 35 1 124.8 17 1.01 519 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 90 656 1 3 60.6 0 0.10
0.020 113 656 1 3 60.6 0 0.15
0.057 144 429 1 5 59.6 0 0.18
0.071 172 342 1 6 59.2 0 0.19
0.108 239 360 2 4 58.9 1 0.19
0.126 258 380 2 5 58.9 0 0.19
0.170 355 413 3 5 59.1 1 0.19
0.182 371 420 3 5 59.1 1 0.21
0.237 445 350 4 4 121.5 1 0.21
0.250 469 409 4 5 58.0 2 0.20
0.278 520 355 4 5 121.5 1 0.21
0.309 619 401 6 5 58.9 1 0.18
0.354 687 359 5 6 95.9 2 0.22
0.390 747 417 7 5 88.6 3 0.20
0.416 779 427 7 5 90.6 3 0.21
0.423 831 389 7 5 94.3 5 0.21
0.462 891 410 7 5 89.2 4 0.24
0.490 951 421 7 5 90.6 4 0.26
0.521 1016 427 9 4 90.7 0 0.26
0.546 1123 461 9 4 90.4 3 0.27
0.588 1221 522 9 4 90.7 1 0.30
0.605 1255 519 9 4 90.4 4 0.31
0.649 1345 663 15 2 123.1 6 0.40
0.665 1402 689 16 2 122.9 14 0.41
0.705 1552 659 18 2 121.7 17 0.41
0.742 1646 738 17 2 123.1 8 0.46
0.767 1737 760 18 2 123.6 8 0.47
0.800 1944 815 18 2 123.6 16 0.53
0.818 2188 930 11 3 89.8 6 0.59
0.855 3874 995 11 3 89.4 8 0.94
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A.13 Symmetric Pattern: Scenario 12
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Figure A-13: Scenario 12 non-dominated front comparison with VoR

Table A.13: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.015 112 2 10.6 1 4 78.6 0 0.11 215 0.27
0.046 132 1 50.0 1 5 59.5 0 0.15 24 0.72
0.062 172 1 50.0 1 5 59.5 0 0.20 415 0.54
0.117 234 2 -14.4 3 2 60.4 1 0.18 311 0.18
0.140 252 2 -3.2 3 2 59.1 1 0.21 382 0.20
0.183 301 2 10.1 4 1 59.1 0 0.26 439 0.00
0.248 344 2 -4.6 5 1 86.6 2 0.24 526 0.09
0.289 382 2 -0.9 5 1 87.5 2 0.28 519 0.10
0.360 468 2 -8.7 7 1 86.9 2 0.25 495 0.08
0.398 503 2 -18.9 7 1 87.5 1 0.28 661 0.09
0.466 584 2 -5.0 9 1 87.0 4 0.25 528 0.00
0.508 623 2 -19.0 9 1 87.3 1 0.28 693 0.09
0.555 691 2 -13.2 21 1 57.9 8 0.23 278 0.19
0.587 720 2 -14.2 21 1 57.6 8 0.24 282 0.18
0.622 754 2 -14.6 21 1 57.9 9 0.26 268 0.17
0.643 813 2 -19.7 21 1 57.7 2 0.26 435 0.00
0.686 846 2 -14.5 24 1 58.1 2 0.26 343 0.00
0.716 931 2 -14.6 21 1 58.0 2 0.31 343 0.19
0.745 975 2 -17.3 24 1 58.8 3 0.29 384 0.08
0.758 991 2 -11.3 23 1 57.8 10 0.31 300 0.08
0.798 1040 2 -16.9 24 1 60.0 6 0.31 418 0.01
0.819 1145 2 -14.0 26 1 59.7 6 0.32 416 0.00
0.824 1491 2 -1.3 15 2 87.5 1 0.34 219 0.20
0.839 1689 4 -15.8 25 1 122.7 2 0.54 421 0.00
0.850 1789 2 -0.1 26 1 120.7 0 0.56 298 0.00
0.865 1809 4 -6.7 28 1 58.5 12 0.53 392 0.00
0.880 2147 4 -0.5 36 1 123.1 3 0.56 271 0.00
0.885 2197 4 -0.5 36 1 56.4 3 0.58 271 0.00
0.897 2409 4 -0.5 36 1 123.1 13 0.62 271 0.00
0.913 6042 6 10.5 34 1 124.6 33 1.06 280 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.000 91 720 1 3 57.8 0 0.10
0.053 138 389 1 5 58.5 0 0.16
0.068 166 439 1 5 58.0 0 0.22
0.107 238 429 2 4 57.8 0 0.19
0.135 290 402 2 5 58.5 1 0.21
0.167 343 421 3 4 121.2 2 0.21
0.192 383 412 3 4 122.0 0 0.24
0.231 440 425 4 4 121.3 2 0.21
0.259 480 411 4 4 121.6 0 0.24
0.298 579 404 5 4 121.6 0 0.24
0.344 627 372 10 3 58.6 2 0.18
0.394 681 386 10 3 58.5 6 0.21
0.413 707 397 10 3 58.3 2 0.22
0.440 767 385 12 3 120.5 4 0.20
0.494 829 394 12 3 121.5 6 0.22
0.548 920 440 12 3 122.1 4 0.26
0.561 987 457 11 3 122.1 8 0.29
0.603 1068 498 12 3 122.2 4 0.30
0.637 1183 486 35 1 57.9 33 0.29
0.661 1235 545 36 1 57.4 34 0.30
0.680 1283 539 35 1 57.5 33 0.32
0.697 1312 537 35 1 57.6 33 0.33
0.710 1364 589 35 1 58.0 33 0.34
0.740 1420 590 35 1 57.4 33 0.36
0.762 1458 596 36 1 57.8 34 0.37
0.785 1526 602 36 1 57.3 34 0.39
0.816 1611 654 36 1 57.9 34 0.43
0.847 1758 713 36 1 59.0 34 0.47
0.871 1970 756 36 1 58.2 34 0.53
0.886 2242 826 36 1 63.1 34 0.55
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A.14 Symmetric Pattern: Scenario 13
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Figure A-14: Scenario 13 non-dominated front comparison with VoR

Table A.14: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.040 130 2 25.3 1 4 69.7 0 0.17 271 0.10
0.064 166 1 43.8 1 6 59.9 0 0.19 30 0.99
0.097 222 1 34.8 2 4 58.4 0 0.17 13 0.95
0.128 265 2 -2.4 4 1 110.7 2 0.20 518 0.00
0.201 312 2 1.2 5 1 86.7 1 0.20 426 0.05
0.262 351 2 1.2 5 1 86.7 1 0.25 426 0.05
0.304 399 2 -10.3 5 1 87.3 3 0.31 525 0.00
0.353 441 2 -10.3 12 1 57.9 10 0.20 448 0.01
0.390 484 2 1.6 7 1 87.2 1 0.27 453 0.07
0.447 539 2 -2.4 7 1 86.7 2 0.32 440 0.10
0.466 580 2 20.2 12 1 58.1 0 0.26 482 0.10
0.492 622 2 -15.2 12 1 58.8 11 0.29 405 0.11
0.542 663 2 -18.1 21 1 58.5 9 0.21 373 0.03
0.596 706 2 -15.4 21 1 58.4 0 0.23 430 0.00
0.620 765 2 -9.0 24 1 59.1 8 0.23 338 0.00
0.659 793 2 -2.7 24 1 59.3 13 0.24 338 0.00
0.714 855 2 -9.0 24 1 59.5 19 0.26 338 0.00
0.730 896 2 -17.5 21 1 58.5 9 0.30 373 0.03
0.765 940 2 -1.5 21 1 58.4 10 0.32 484 0.00
0.808 1020 2 8.4 24 1 58.9 6 0.31 506 0.00
0.812 1053 2 7.0 24 1 58.9 6 0.32 506 0.00
0.829 1193 2 -19.9 24 1 122.8 4 0.39 446 0.01
0.832 1272 2 -20.0 24 1 122.6 5 0.42 449 0.01
0.858 1348 2 -25.0 32 1 122.7 4 0.37 477 0.00
0.869 1426 2 -20.5 32 1 122.7 6 0.41 463 0.00
0.887 2174 4 -29.6 33 1 122.9 5 0.57 469 0.00
0.892 2335 4 -29.6 34 1 122.9 5 0.59 475 0.00
0.905 2789 4 -18.5 35 1 123.1 4 0.69 472 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.044 125 387 1 5 121.6 0 0.13
0.067 170 365 1 6 116.7 0 0.19
0.118 247 389 2 5 120.7 1 0.18
0.140 291 384 2 5 121.5 1 0.22
0.189 377 398 3 4 121.3 1 0.24
0.220 422 394 4 4 121.4 0 0.20
0.257 475 397 4 4 121.4 0 0.24
0.310 561 414 10 2 122.1 2 0.23
0.363 624 418 10 3 122.0 4 0.19
0.397 660 405 10 3 122.0 2 0.20
0.456 742 418 10 3 122.0 1 0.24
0.481 788 417 10 3 122.0 2 0.26
0.522 866 399 12 3 121.7 8 0.24
0.563 943 426 12 3 122.0 2 0.27
0.571 962 435 12 3 122.2 7 0.27
0.588 1019 474 12 3 121.7 9 0.29
0.610 1104 491 12 3 121.4 5 0.32
0.628 1143 516 12 3 121.7 1 0.33
0.669 1253 576 12 3 122.6 9 0.36
0.686 1343 578 12 3 122.6 0 0.40
0.716 1429 635 36 1 123.0 2 0.36
0.753 1511 668 36 1 123.2 2 0.40
0.778 1546 671 36 1 123.2 2 0.41
0.799 1652 697 36 1 122.3 2 0.45
0.822 1744 704 36 1 123.0 2 0.47
0.838 1802 753 36 1 122.7 2 0.49
0.853 1925 802 36 1 121.5 2 0.52
0.876 2013 856 36 1 123.5 2 0.55
0.890 2141 893 36 1 123.5 2 0.58
0.909 2373 914 36 1 123.5 2 0.64
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A.15 Symmetric Pattern: Scenario 14

P̃ /Pmax

V
o
R

(%
)

Static

Reconfigurable

Cost ($M FY2010)

P̃
/P

m
a
x

0 0.2 0.4 0.6 0.8 1

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

Figure A-15: Scenario 14 non-dominated front comparison with VoR

Table A.15: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.000 96 5 -19.2 1 2 124.2 0 0.10 466 0.00
0.030 119 2 17.0 1 4 58.6 0 0.14 186 0.24
0.054 145 2 25.3 1 4 58.1 0 0.20 207 0.23
0.072 190 1 49.8 1 6 60.1 0 0.21 456 0.95
0.110 230 2 -7.7 3 2 67.1 2 0.17 283 0.24
0.151 292 2 -1.3 3 2 75.0 1 0.23 341 0.11
0.223 326 2 2.0 5 1 87.2 1 0.21 431 0.02
0.262 358 2 2.1 5 1 86.7 3 0.26 409 0.01
0.295 387 2 2.1 5 1 87.1 1 0.29 427 0.01
0.314 408 2 0.5 5 1 87.3 1 0.31 423 0.01
0.323 449 2 -1.0 7 1 88.4 0 0.23 402 0.02
0.380 488 2 -1.3 7 1 86.7 4 0.27 415 0.07
0.405 519 2 -1.2 7 1 86.8 2 0.30 401 0.08
0.431 536 2 -1.3 7 1 86.5 3 0.32 413 0.07
0.468 594 2 -1.2 9 1 86.7 1 0.26 400 0.04
0.519 625 2 -5.0 9 1 87.6 8 0.29 492 0.10
0.573 726 2 -7.7 11 1 87.2 4 0.27 560 0.12
0.609 751 2 11.1 11 1 87.8 4 0.29 557 0.09
0.626 766 2 10.8 11 1 88.4 4 0.30 559 0.10
0.653 805 2 8.3 23 1 59.9 7 0.24 459 0.00
0.681 827 2 -3.3 24 1 59.1 20 0.25 406 0.00
0.702 922 2 -2.3 13 1 88.4 1 0.33 399 0.02
0.741 979 2 -11.8 24 1 59.7 11 0.29 305 0.07
0.770 1019 2 -11.2 24 1 60.2 10 0.31 305 0.08
0.800 1101 2 -11.2 26 1 60.2 14 0.30 348 0.00
0.828 1183 2 10.8 23 1 122.4 7 0.39 402 0.00
0.842 1209 2 -5.4 24 1 122.2 23 0.39 430 0.00
0.855 1320 2 11.6 27 1 122.3 15 0.38 381 0.00
0.872 1461 2 10.8 33 1 122.4 10 0.39 402 0.00
0.895 6078 4 5.8 30 1 124.2 29 1.20 465 0.00

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.012 108 498 1 4 121.4 0 0.10
0.062 155 425 1 5 120.6 0 0.19
0.091 216 410 2 4 121.7 1 0.16
0.121 251 372 2 5 121.2 0 0.18
0.151 316 369 2 5 121.8 1 0.23
0.177 364 419 3 4 120.3 2 0.23
0.220 432 412 4 4 120.1 2 0.20
0.247 469 446 4 4 122.1 1 0.23
0.294 568 392 4 5 121.9 0 0.24
0.333 638 427 6 4 121.8 2 0.22
0.346 661 440 6 4 121.6 2 0.23
0.392 736 380 7 4 122.0 3 0.22
0.406 802 389 6 5 60.5 0 0.24
0.432 851 379 8 4 120.2 5 0.23
0.468 907 394 9 4 121.4 6 0.21
0.498 947 383 9 4 121.9 6 0.23
0.524 1014 432 9 4 121.3 1 0.25
0.529 1044 482 9 4 91.2 1 0.27
0.557 1168 477 9 4 92.6 1 0.28
0.584 1222 508 9 4 89.5 4 0.30
0.621 1317 546 9 4 91.1 4 0.33
0.647 1404 598 9 4 88.8 1 0.36
0.665 1441 581 9 4 89.0 1 0.37
0.701 1557 659 9 4 90.5 5 0.41
0.714 1621 659 9 4 90.4 5 0.44
0.749 1812 758 9 4 90.7 6 0.49
0.766 1928 860 11 3 90.4 4 0.52
0.792 2044 878 11 3 90.6 4 0.55
0.820 2252 970 11 3 89.2 8 0.61
0.855 3042 995 11 3 89.7 8 0.80
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A.16 Symmetric Pattern: Scenario 15
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Figure A-16: Scenario 15 non-dominated front comparison with VoR

Table A.16: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i F D ∆VR α0

- $M - km - - deg - m m/s -

0.021 118 1 26.0 1 5 109.8 0 0.11 4 0.81
0.042 134 1 26.3 1 6 63.8 0 0.13 9 0.01
0.057 161 1 26.6 1 5 111.1 0 0.20 0 0.05
0.121 237 2 -0.7 3 2 67.5 1 0.18 254 0.12
0.142 290 2 -4.3 4 1 100.3 2 0.24 508 0.09
0.219 329 2 8.1 5 1 86.4 1 0.21 498 0.10
0.257 358 2 7.8 5 1 86.4 1 0.25 504 0.10
0.285 381 2 -2.0 5 1 86.9 4 0.28 484 0.16
0.315 417 2 -3.5 5 1 87.4 3 0.32 475 0.17
0.363 473 2 6.5 7 1 86.3 5 0.25 508 0.10
0.396 499 2 1.0 7 1 87.3 2 0.28 446 0.06
0.409 512 2 -2.6 7 1 86.5 5 0.29 506 0.09
0.430 569 2 10.5 9 1 86.4 7 0.23 500 0.10
0.476 594 2 0.6 9 1 86.7 2 0.26 526 0.06
0.509 624 2 -6.0 9 1 86.4 8 0.28 518 0.03
0.539 647 2 -3.2 9 1 86.5 1 0.30 496 0.03
0.561 673 2 4.4 9 1 86.9 7 0.32 446 0.07
0.594 744 2 1.7 11 1 87.4 10 0.28 440 0.14
0.629 775 2 1.8 11 1 87.2 10 0.30 449 0.06
0.661 803 2 0.4 11 1 87.3 9 0.32 443 0.01
0.711 917 2 -3.1 13 1 88.1 10 0.32 471 0.00
0.742 1041 2 -21.9 21 1 122.7 3 0.36 405 0.00
0.768 1096 2 -4.3 24 1 121.9 4 0.33 398 0.00
0.790 1138 2 -20.3 22 1 122.5 3 0.37 405 0.00
0.810 1169 2 -20.1 23 1 122.8 15 0.37 439 0.00
0.844 1229 2 -6.6 24 1 122.3 12 0.39 442 0.00
0.861 1375 2 -20.1 32 1 122.7 0 0.37 411 0.00
0.879 2024 2 24.7 35 1 122.2 0 0.53 456 0.00
0.887 3793 6 -38.7 18 2 124.6 8 0.81 410 0.02
0.912 4016 6 -20.5 35 1 124.6 15 0.87 403 0.02

(b) Static

P̃ C hGOM Np Nsp i F D
- $M km - - deg - m

0.048 132 390 1 5 121.1 0 0.14
0.061 162 361 1 6 120.8 0 0.17
0.082 222 367 1 7 118.9 0 0.23
0.124 265 415 2 5 121.5 1 0.20
0.139 290 415 2 4 122.1 1 0.25
0.169 349 369 3 5 119.3 0 0.18
0.223 443 382 4 5 119.2 1 0.17
0.256 485 428 4 4 122.1 2 0.24
0.267 508 417 4 4 122.1 2 0.25
0.321 619 382 6 4 122.0 1 0.20
0.391 671 393 10 3 122.0 5 0.20
0.406 689 394 10 3 122.0 5 0.21
0.470 805 404 12 3 121.6 6 0.21
0.484 826 386 12 3 121.5 6 0.22
0.506 900 491 12 3 121.8 3 0.25
0.553 982 493 11 3 122.5 2 0.29
0.562 1018 514 12 3 122.3 7 0.28
0.602 1117 523 12 3 121.4 3 0.31
0.619 1158 507 12 3 121.4 3 0.32
0.639 1239 567 12 3 122.2 5 0.35
0.690 1392 645 12 3 123.1 3 0.40
0.692 1400 645 12 3 123.1 2 0.40
0.730 1514 588 35 1 121.9 2 0.39
0.756 1563 681 35 1 122.3 2 0.41
0.777 1611 692 36 1 122.7 2 0.42
0.805 1695 707 36 1 122.9 2 0.44
0.830 1863 825 34 1 123.7 2 0.51
0.866 2005 838 36 1 123.7 2 0.53
0.884 2123 869 36 1 124.0 2 0.56
0.905 2354 922 36 1 124.2 2 0.62
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A.17 Layered Pattern: Scenario 1

Table A.17: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

i1 ∆alt1 Np,1 Nsp,1 F1 i2 ∆alt2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D ∆VR α0

- $M - deg km - - - deg km − − − deg deg m m/s -

0.019 116 1 117.5 2 1 5 0 176.2 -15 -3 0 0 155 339 0.10 72 0.03
0.039 136 1 116.0 2 1 5 0 178.3 -11 -7 0 3 351 356 0.16 8 0.02
0.064 178 1 120.2 1 1 5 0 178.4 -14 -12 0 0 341 348 0.23 94 0.02
0.099 235 2 34.1 -1 1 2 0 109.7 -1 -18 4 0 99 97 0.24 178 0.37
0.116 266 2 37.4 -19 2 2 0 116.4 -37 -21 4 0 79 26 0.19 311 0.28
0.168 328 2 37.0 -0 2 2 0 110.7 -2 -31 3 0 98 86 0.28 150 0.35
0.191 344 2 61.5 8 5 1 3 169.2 -50 -35 0 2 175 67 0.25 339 0.04
0.235 385 2 61.9 -6 5 1 3 171.7 9 -43 0 0 232 111 0.29 490 0.02
0.284 418 2 62.4 -0 12 1 0 154.6 -46 -52 0 0 349 50 0.18 273 0.02
0.339 449 2 62.4 -1 12 1 0 155.3 -46 -62 0 0 349 145 0.21 272 0.02
0.367 480 2 58.1 -1 13 1 3 110.5 -49 -67 0 17 189 139 0.19 349 0.01
0.405 501 2 58.7 -0 13 1 3 155.9 -50 -74 0 17 233 142 0.21 348 0.00
0.428 513 2 58.1 -1 13 1 3 110.5 -49 -78 0 17 187 141 0.22 349 0.00
0.448 563 2 57.6 18 12 1 8 171.9 -49 -82 0 1 131 321 0.25 498 0.04
0.476 591 2 57.6 16 12 1 8 171.4 -49 -87 0 1 8 328 0.27 498 0.04
0.503 622 2 58.8 20 12 1 7 166.7 45 -92 0 1 39 341 0.29 514 0.04
0.561 690 2 59.7 19 13 1 10 134.1 -48 -102 0 22 39 70 0.30 515 0.04
0.631 747 2 57.9 -0 21 1 1 172.8 -17 -115 0 24 163 280 0.26 378 0.00
0.652 802 2 57.9 -0 22 1 1 172.9 -17 -119 0 24 163 281 0.26 378 0.00
0.673 827 2 57.6 18 24 1 16 171.9 -49 -123 0 0 12 321 0.25 394 0.00
0.689 880 2 57.6 11 25 1 16 171.9 -49 -125 0 2 12 321 0.25 394 0.00
0.743 920 2 57.9 -12 21 1 5 174.3 -47 -135 0 0 154 270 0.31 361 0.01
0.776 983 2 58.1 -12 24 1 6 179.4 -46 -141 0 0 242 288 0.29 357 0.00
0.808 1019 2 57.9 -8 24 1 10 179.8 -39 -147 0 0 251 294 0.31 446 0.00
0.827 1198 2 51.7 15 28 1 4 119.8 39 -151 3 0 297 233 0.33 329 0.00
0.872 1700 2 133.2 7 28 1 16 116.2 -28 -159 3 1 50 121 0.46 369 0.00
0.884 1762 2 132.4 6 29 1 17 116.5 -27 -161 3 0 49 128 0.46 367 0.00
0.908 6556 6 120.8 -20 26 1 21 138.0 -8 -165 2 2 276 125 1.17 454 0.00

(b) Static

P̃ C i1 hGOM,1 Np,1 Nsp,1 F1 i2 hGOM,2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D
- $M km deg - - - deg km − − − deg deg m

0.026 115 58.8 389 1 5 0 87.8 348 15 0 4 23 131 0.10
0.059 147 121.3 440 1 5 0 17.5 715 26 0 0 295 49 0.19
0.081 203 120.2 372 1 6 0 89.6 409 6 0 0 295 341 0.24
0.107 231 121.6 408 2 4 1 137.5 697 29 0 16 1 193 0.19
0.124 266 117.7 421 2 5 0 128.7 409 1 0 0 283 286 0.21
0.160 329 72.6 401 1 4 0 50.3 341 2 4 1 101 173 0.19
0.183 349 58.5 440 1 5 0 40.2 440 2 4 0 86 54 0.21
0.201 369 59.1 446 1 4 0 47.5 408 2 4 0 65 50 0.23
0.230 444 58.5 441 1 5 0 41.7 439 3 4 0 86 59 0.21
0.297 500 139.4 409 7 2 4 60.1 546 1 4 0 202 297 0.20
0.330 547 141.3 386 8 2 5 63.1 547 1 4 0 198 58 0.20
0.366 595 143.3 448 7 2 5 71.0 612 1 3 0 139 85 0.26
0.399 609 59.8 419 1 3 0 140.0 376 7 3 2 291 331 0.21
0.412 631 141.1 369 8 3 5 63.5 542 1 4 0 204 182 0.20
0.444 689 58.5 432 1 3 0 139.7 367 7 4 2 296 330 0.21
0.466 708 59.7 434 1 3 0 139.9 360 8 4 2 286 330 0.20
0.480 750 138.3 492 8 3 7 79.3 561 1 3 0 221 317 0.26
0.520 796 138.9 408 10 3 4 69.0 581 1 3 0 106 196 0.23
0.567 867 135.4 409 10 3 4 92.8 589 1 3 0 97 188 0.26
0.606 984 133.3 499 10 3 5 105.4 594 1 3 0 266 232 0.30
0.617 1012 133.9 503 10 3 5 100.0 598 1 3 0 268 228 0.31
0.633 1117 140.0 535 10 3 6 105.4 590 1 3 0 260 229 0.34
0.713 1289 138.5 581 17 2 16 122.3 585 1 2 0 39 341 0.36
0.733 1305 136.2 583 17 2 15 121.3 581 1 2 0 41 342 0.36
0.793 1470 134.8 650 17 2 3 102.2 702 1 2 0 206 218 0.42
0.810 2110 123.9 925 17 2 14 143.9 504 19 0 13 3 351 0.58
0.842 2274 123.8 919 18 2 15 148.2 495 20 0 13 5 343 0.61
0.844 2287 124.0 911 18 2 14 135.1 484 20 0 13 1 356 0.61
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A.18 Layered Pattern: Scenario 2

Table A.18: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

i1 ∆alt1 Np,1 Nsp,1 F1 i2 ∆alt2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D ∆VR α0

- $M - deg km - - - deg km − − − deg deg m m/s -

0.001 123 1 86.3 -8 1 5 0 107.2 48 -0 0 5 240 175 0.13 0 0.68
0.021 153 1 87.3 1 1 5 0 19.6 38 -4 0 0 272 14 0.19 40 0.66
0.062 299 2 68.1 46 1 4 0 40.8 19 -11 1 0 299 168 0.32 350 0.06
0.096 355 2 86.3 -2 5 1 4 138.6 11 -17 0 2 10 331 0.26 395 0.00
0.142 404 2 87.3 -8 5 1 1 132.4 7 -26 0 0 25 345 0.31 442 0.00
0.151 413 2 87.4 -8 5 1 1 132.4 -26 -27 0 0 25 235 0.32 442 0.00
0.169 485 2 87.1 -8 5 1 1 133.9 6 -31 0 0 24 347 0.35 442 0.00
0.213 539 2 86.1 0 5 1 2 148.8 -9 -39 0 0 12 330 0.42 388 0.02
0.241 616 2 58.1 -16 11 1 0 95.5 8 -44 0 5 97 276 0.31 467 0.00
0.275 658 2 57.6 -1 11 1 5 47.1 14 -50 0 12 15 215 0.34 415 0.00
0.320 719 2 86.9 -0 7 1 4 150.0 -10 -58 0 0 35 329 0.44 398 0.05
0.354 806 2 59.1 -9 11 1 4 94.9 8 -64 0 2 42 265 0.42 466 0.02
0.384 853 2 59.4 -3 11 1 3 137.0 7 -70 0 0 42 267 0.45 437 0.00
0.415 927 2 60.4 -1 13 1 7 160.9 3 -76 0 11 13 201 0.43 393 0.02
0.447 962 2 58.2 10 13 1 1 164.4 -34 -81 0 1 154 171 0.45 475 0.00
0.489 1045 2 58.3 -1 13 1 6 137.9 -4 -89 0 2 0 307 0.50 390 0.00
0.536 1118 2 57.9 -10 21 1 12 164.4 5 -98 0 3 51 49 0.41 447 0.00
0.593 1215 2 57.6 -7 21 1 12 158.5 -9 -108 0 7 33 55 0.46 412 0.00
0.611 1257 2 58.6 -5 21 1 7 172.2 -26 -111 0 1 94 86 0.47 437 0.00
0.639 1317 2 58.6 -4 21 1 12 160.4 33 -116 0 2 44 260 0.50 351 0.00
0.657 1392 2 58.6 -5 23 1 13 163.2 38 -120 0 1 47 244 0.48 381 0.00
0.689 1436 2 57.9 -2 21 1 18 154.8 11 -125 0 0 26 242 0.55 340 0.00
0.732 1571 2 57.9 -4 21 1 12 162.8 -29 -133 0 4 44 62 0.59 317 0.00
0.772 1673 2 57.5 -1 23 1 1 149.0 -1 -140 0 0 0 254 0.58 349 0.00
0.783 1738 2 58.5 -8 24 1 15 169.9 -5 -143 0 0 60 127 0.59 353 0.00
0.795 1763 2 57.9 -2 23 1 18 147.3 30 -145 0 0 76 329 0.61 355 0.00
0.834 2174 2 58.1 -7 29 1 22 97.6 -24 -152 0 0 118 181 0.63 391 0.00
0.848 2565 2 57.9 -3 35 1 28 29.5 -49 -154 0 5 39 61 0.67 494 0.00

(b) Static

P̃ C i1 hGOM,1 Np,1 Nsp,1 F1 i2 hGOM,2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D
- $M km deg - - - deg km − − − deg deg m

0.000 128 62.1 370 1 6 0 163.1 938 22 0 2 139 354 0.11
0.036 199 61.4 401 1 6 0 124.8 509 22 0 1 151 50 0.24
0.074 328 140.3 376 1 5 0 118.7 435 1 4 0 249 229 0.26
0.101 405 140.5 385 2 2 1 62.0 506 1 4 0 229 281 0.31
0.132 493 137.6 378 2 4 1 100.0 439 1 4 0 226 125 0.30
0.161 582 145.5 389 7 2 4 67.8 463 1 4 0 185 333 0.24
0.189 627 144.6 395 7 2 4 65.7 460 1 4 0 187 337 0.26
0.234 706 140.6 380 8 2 4 66.0 530 1 4 0 234 341 0.28
0.252 760 145.1 378 8 2 3 67.1 527 1 4 0 243 322 0.31
0.277 831 143.2 413 8 2 5 66.5 464 1 5 0 164 84 0.33
0.311 888 139.8 357 8 2 5 66.8 468 1 5 0 156 282 0.35
0.353 1002 145.1 389 8 2 5 65.2 467 1 4 0 159 343 0.43
0.380 1071 142.9 399 8 2 6 67.1 472 1 4 0 156 349 0.46
0.434 1180 141.2 372 8 3 2 90.7 571 1 5 0 173 284 0.41
0.470 1260 139.1 413 14 2 7 61.6 567 1 3 0 168 204 0.41
0.513 1394 142.9 411 14 2 6 61.4 558 1 3 0 168 0 0.45
0.528 1467 143.0 423 14 2 6 61.9 558 1 3 0 169 302 0.48
0.554 1550 143.0 411 14 2 7 60.7 561 1 3 0 167 3 0.50
0.586 1620 142.1 404 15 2 7 60.7 574 1 3 0 166 11 0.51
0.605 2037 38.6 428 29 1 10 57.8 620 3 2 0 159 164 0.56
0.649 2291 57.1 616 36 1 34 63.6 476 21 0 1 242 245 0.61
0.671 2390 57.8 612 36 1 34 63.6 474 21 0 1 240 245 0.63
0.696 2587 57.0 619 34 1 32 61.0 476 20 0 2 241 247 0.70
0.737 2729 57.4 547 36 1 34 63.1 464 2 0 0 354 204 0.71
0.764 2941 57.2 634 36 1 34 63.7 475 21 0 2 234 250 0.75
0.793 3199 58.9 646 36 1 34 70.5 480 21 0 4 194 356 0.80
0.817 3462 57.0 680 36 1 34 63.2 792 2 0 1 214 202 0.85
0.861 5578 60.2 717 36 1 34 8.9 391 20 0 4 352 302 1.11
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A.19 Layered Pattern: Scenario 3

Table A.19: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

i1 ∆alt1 Np,1 Nsp,1 F1 i2 ∆alt2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D ∆VR α0

- $M - deg km - - - deg km − − − deg deg m m/s -

0.014 116 2 59.2 48 1 4 0 0.5 -34 -5 0 0 328 242 0.13 150 0.24
0.033 147 1 58.1 38 1 5 0 93.2 -43 -11 0 14 183 192 0.18 0 0.22
0.068 234 2 58.5 -4 3 2 1 165.0 22 -24 0 13 244 269 0.19 319 0.02
0.092 299 2 58.4 -1 4 2 1 169.7 23 -32 0 13 200 269 0.19 330 0.01
0.113 357 2 58.7 -7 5 1 2 80.9 5 -40 0 0 185 182 0.26 375 0.00
0.175 416 2 57.9 -20 12 1 4 129.8 -35 -61 0 18 78 264 0.17 493 0.05
0.222 455 2 58.4 -4 12 1 8 62.2 39 -78 0 0 75 116 0.21 390 0.00
0.266 565 2 58.8 -8 12 1 8 91.1 19 -93 0 8 187 276 0.25 491 0.10
0.285 580 2 58.4 -3 16 1 14 92.5 -1 -100 0 10 76 131 0.21 342 0.02
0.312 629 2 58.6 -18 21 1 12 97.0 4 -109 0 3 175 51 0.19 392 0.14
0.343 656 2 58.3 -16 21 1 3 157.3 37 -120 0 0 285 359 0.21 384 0.14
0.373 679 2 58.5 3 21 1 17 77.4 11 -131 0 10 56 305 0.22 393 0.00
0.390 749 2 58.0 -18 23 1 9 91.2 32 -137 0 0 55 19 0.22 508 0.14
0.413 762 2 58.5 -18 24 1 10 43.1 31 -145 0 0 191 182 0.22 507 0.08
0.447 808 2 59.1 -21 24 1 12 162.8 15 -157 0 1 223 269 0.24 501 0.07
0.467 831 2 58.3 -18 24 1 20 32.5 14 -163 0 1 230 298 0.25 462 0.07
0.500 898 2 58.9 -1 32 1 7 101.0 -49 -175 0 2 72 121 0.22 357 0.00
0.536 950 2 58.0 -19 31 1 11 20.4 4 -188 0 0 200 8 0.24 488 0.01
0.558 986 2 58.3 -18 32 1 8 83.6 -4 -195 0 2 227 298 0.25 465 0.07
0.575 1029 2 58.3 -13 32 1 10 74.7 -17 -201 0 2 159 85 0.26 430 0.00
0.615 1079 2 58.0 -19 32 1 12 56.0 3 -215 0 0 202 124 0.28 476 0.00
0.628 1101 2 58.0 -19 32 1 11 56.0 3 -220 0 0 202 0 0.29 485 0.00
0.662 1161 2 57.9 -18 32 1 11 56.9 0 -232 0 0 204 249 0.31 488 0.01
0.701 1272 2 58.3 -18 35 1 12 61.7 1 -245 0 0 204 228 0.31 515 0.01
0.718 1339 2 57.7 4 37 1 11 56.1 -17 -251 0 0 88 290 0.31 488 0.00
0.736 1424 2 58.0 -4 37 1 13 62.7 1 -258 0 1 127 250 0.33 497 0.00
0.761 1767 2 57.9 -5 35 1 11 56.2 -9 -267 1 0 7 221 0.31 502 0.00
0.822 3089 2 85.9 -4 36 1 28 61.2 32 -288 1 0 201 278 0.34 528 0.00

(b) Static

P̃ C i1 hGOM,1 Np,1 Nsp,1 F1 i2 hGOM,2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D
- $M km deg - - - deg km − − − deg deg m

0.018 119 118.6 418 1 5 0 78.6 634 17 0 7 331 56 0.12
0.030 145 117.8 429 1 6 0 178.5 445 18 0 4 276 164 0.16
0.050 207 110.0 551 1 3 0 144.2 422 1 3 0 244 166 0.18
0.060 231 109.4 553 1 3 0 142.9 486 1 3 0 135 217 0.22
0.102 327 108.9 574 1 3 0 141.8 467 2 3 0 206 195 0.23
0.143 418 109.4 562 1 3 0 141.8 473 3 3 0 186 193 0.23
0.162 466 109.3 559 1 3 0 141.7 472 3 3 1 186 196 0.27
0.201 541 117.8 747 1 2 0 139.5 445 8 3 2 329 160 0.16
0.250 588 107.8 594 1 3 0 139.9 417 8 3 1 346 152 0.19
0.277 630 115.3 596 1 2 0 138.1 456 8 3 2 208 189 0.21
0.303 671 109.6 541 1 3 0 141.8 473 8 3 2 344 167 0.23
0.320 712 109.3 556 1 3 0 141.7 472 8 3 1 202 195 0.25
0.342 768 118.0 617 1 3 0 141.4 493 8 3 1 164 196 0.27
0.381 802 95.6 796 1 2 0 141.1 380 14 3 2 308 272 0.19
0.413 867 106.1 599 1 3 0 140.8 453 14 3 3 149 130 0.21
0.439 925 110.1 518 1 3 0 145.1 388 15 3 2 341 161 0.22
0.464 989 110.3 536 1 3 0 141.6 504 14 3 3 346 161 0.25
0.498 1010 107.3 562 1 3 0 142.2 440 15 3 4 134 126 0.25
0.508 1038 107.4 562 1 3 0 142.2 442 15 3 4 133 193 0.25
0.547 1159 106.6 552 1 3 0 142.3 472 15 3 4 134 195 0.28
0.594 1489 118.7 659 1 2 0 134.7 560 14 3 4 28 223 0.36
0.604 1574 114.6 621 1 3 0 139.6 699 12 3 6 277 138 0.43
0.626 1648 118.9 671 1 3 0 134.2 555 15 3 4 182 226 0.36
0.640 1680 106.6 647 1 3 0 137.2 647 14 3 6 332 195 0.41
0.673 1913 109.5 618 1 3 0 139.6 713 14 3 7 277 140 0.47
0.721 2279 114.5 789 1 2 0 137.3 859 13 3 10 337 125 0.58
0.750 2618 114.0 742 1 3 0 138.2 973 15 3 0 170 178 0.59
0.780 3134 110.9 778 1 3 0 133.4 987 15 3 0 335 135 0.63

288



A.20 Layered Pattern: Scenario 4

Table A.20: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

i1 ∆alt1 Np,1 Nsp,1 F1 i2 ∆alt2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D ∆VR α0

- $M - deg km - - - deg km − − − deg deg m m/s -

0.000 130 1 118.8 2 1 5 0 50.0 3 -0 0 1 150 342 0.14 261 0.21
0.043 352 2 48.0 -18 1 4 0 63.7 -5 -15 3 0 121 354 0.32 193 0.24
0.075 449 2 120.7 36 1 2 0 50.0 -22 -26 1 2 28 116 0.33 475 0.14
0.084 502 2 120.9 29 1 2 0 49.9 -22 -29 1 2 27 117 0.32 475 0.12
0.130 580 2 120.9 -26 1 2 0 46.9 -21 -46 1 6 28 118 0.33 476 0.14
0.153 670 2 112.4 2 1 2 0 48.0 -7 -54 1 2 196 298 0.35 372 0.09
0.176 743 2 114.9 -2 1 2 0 46.9 -10 -62 1 0 186 360 0.44 335 0.14
0.198 795 2 121.3 -27 1 2 0 43.2 -21 -69 1 4 120 123 0.47 476 0.14
0.230 892 2 121.1 -26 1 2 0 50.0 -24 -81 1 8 31 118 0.32 481 0.13
0.245 943 2 117.1 -28 1 2 0 51.0 -6 -86 1 4 59 227 0.34 360 0.19
0.292 1039 2 117.7 -33 1 2 0 46.3 -20 -102 1 15 105 60 0.40 403 0.18
0.314 1100 2 115.5 -33 1 3 0 46.1 -20 -110 1 16 104 67 0.41 408 0.18
0.345 1153 2 113.8 -38 1 3 0 43.2 13 -121 1 5 129 150 0.37 314 0.14
0.390 1243 2 114.4 -41 1 3 0 43.3 12 -137 1 12 119 153 0.42 313 0.14
0.412 1315 2 97.3 -3 1 2 0 48.6 -19 -144 1 23 156 313 0.39 458 0.12
0.463 1414 2 102.4 6 1 2 0 51.7 -19 -162 1 19 152 348 0.43 448 0.08
0.501 1573 2 100.6 -39 1 3 0 48.7 -21 -176 1 11 54 126 0.42 496 0.11
0.529 1614 2 94.8 46 1 2 0 44.2 -18 -185 1 19 68 327 0.45 446 0.06
0.545 1725 2 118.7 6 1 2 0 52.0 -20 -191 1 20 146 338 0.53 392 0.11
0.583 1799 2 98.4 -34 1 3 0 46.7 -11 -204 1 25 186 196 0.50 432 0.00
0.613 1942 2 86.5 -18 1 3 0 46.6 -19 -214 1 14 186 212 0.52 388 0.08
0.627 1980 2 87.0 -18 1 3 0 46.7 -18 -219 1 14 189 213 0.53 389 0.06
0.656 2113 2 86.4 -18 1 3 0 46.6 -19 -230 1 14 204 197 0.55 419 0.08
0.681 2276 2 60.1 -16 36 1 14 175.4 -32 -239 0 0 15 353 0.60 410 0.01
0.721 2697 2 48.0 -18 36 1 15 88.9 -32 -252 8 0 73 339 0.61 431 0.01
0.740 4345 2 48.4 -15 36 1 26 116.4 -32 -259 10 0 10 356 0.82 416 0.00
0.784 4528 2 88.4 -19 35 1 23 89.3 -50 -274 10 0 1 263 0.66 571 0.00
0.799 4930 2 88.4 -19 35 1 23 89.7 -50 -280 10 0 318 262 0.73 566 0.00

(b) Static

P̃ C i1 hGOM,1 Np,1 Nsp,1 F1 i2 hGOM,2 Np,2 Nsp,2 F2 ∆Ωkey ∆Mkey D
- $M km deg - - - deg km − − − deg deg m

0.000 134 90.7 437 1 6 0 28.3 404 16 0 4 100 274 0.14
0.022 220 100.4 376 1 7 0 95.0 509 8 0 2 43 344 0.24
0.051 361 144.2 364 2 3 0 106.2 477 1 4 0 341 210 0.24
0.063 422 144.3 367 2 3 0 106.9 480 1 4 0 328 212 0.28
0.083 513 144.7 464 2 3 1 57.5 488 1 4 0 145 115 0.35
0.103 594 142.6 498 2 3 0 117.8 478 1 3 0 165 256 0.44
0.137 671 144.3 377 7 3 1 104.7 493 1 4 0 344 210 0.24
0.154 749 145.2 377 7 3 0 110.5 490 1 4 0 215 206 0.27
0.183 819 142.5 419 8 3 4 109.3 562 1 3 0 74 172 0.29
0.204 893 141.9 425 8 3 1 105.7 551 1 3 0 355 168 0.31
0.242 1023 141.8 424 8 3 4 105.0 558 1 3 0 358 168 0.36
0.273 1113 141.4 427 8 3 1 106.1 547 1 3 0 345 170 0.41
0.279 1221 139.2 362 9 4 1 121.9 620 1 5 0 261 122 0.32
0.329 1342 141.0 446 9 3 2 97.2 570 1 3 0 221 234 0.45
0.349 1456 142.0 410 12 3 4 97.3 574 1 3 0 164 356 0.39
0.399 1619 140.9 409 12 3 4 97.5 564 1 3 0 165 359 0.45
0.442 1669 140.6 374 15 3 7 73.3 529 1 3 0 12 360 0.41
0.470 1851 140.3 379 14 3 9 120.2 613 1 4 0 243 262 0.47
0.488 2172 143.7 441 14 3 4 112.1 597 1 3 0 152 181 0.53
0.546 2607 140.6 487 14 3 3 111.7 680 1 3 0 224 327 0.62
0.586 2962 141.2 540 15 3 0 116.6 730 1 3 0 140 45 0.66
0.603 3375 141.2 600 15 3 8 61.7 674 1 3 0 26 188 0.71
0.640 4029 141.4 611 15 3 4 112.0 670 1 3 0 42 322 0.78
0.669 4938 139.5 736 14 3 6 117.9 702 1 5 0 309 58 0.91
0.692 5152 139.6 694 15 3 0 118.9 765 1 3 0 97 44 0.93
0.718 6441 137.3 811 14 3 4 122.3 759 1 5 0 189 37 1.05
0.729 6828 142.5 853 15 3 0 124.0 892 1 3 0 216 14 1.08
0.742 8655 142.3 848 15 3 0 122.4 878 1 3 0 218 14 1.14
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A.21 Restricted Asymmetric Pattern: Scenario 1
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Figure A-17: Scenario 1 non-dominated front comparison with VoR

Table A.21: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.010 117 3 25.0 60.9 4 0.02 238 0.13 138 0.21
0.068 134 2 15.6 62.0 4 0.06 1 0.17 428 0.25
0.137 172 2 9.0 61.7 4 0.19 16 0.18 490 0.20
0.158 193 2 9.4 61.7 5 0.19 16 0.18 489 0.19
0.234 230 2 -6.2 61.7 6 0.25 0 0.20 491 0.12
0.284 297 2 1.1 62.4 8 0.33 67 0.19 485 0.16
0.346 330 2 3.3 58.4 9 0.36 73 0.22 471 0.15
0.370 345 2 3.9 58.3 9 0.37 72 0.23 470 0.14
0.402 389 2 -3.3 62.8 10 0.41 12 0.22 491 0.09
0.442 418 2 -4.9 61.9 10 0.40 12 0.25 469 0.11
0.491 449 2 -2.8 60.3 12 0.49 0 0.24 464 0.14
0.522 465 2 -3.0 61.2 12 0.49 56 0.25 435 0.06
0.560 532 2 -6.8 59.0 11 0.45 210 0.30 506 0.00
0.595 558 2 -3.9 61.2 12 0.48 313 0.30 506 0.00
0.613 576 2 -4.5 61.7 12 0.49 305 0.31 504 0.00
0.623 625 2 -8.7 57.9 14 0.60 237 0.29 463 0.01
0.643 651 2 -9.4 58.0 14 0.59 168 0.30 463 0.00
0.667 667 2 -9.6 58.0 14 0.61 80 0.31 486 0.00
0.685 715 2 -10.8 57.9 15 0.62 330 0.32 529 0.00
0.710 761 2 12.1 60.1 16 0.65 294 0.31 501 0.00
0.740 859 2 -8.5 58.0 25 0.60 16 0.30 486 0.00
0.755 882 2 -8.5 58.0 25 0.60 18 0.31 486 0.00
0.773 967 2 -8.5 58.0 27 0.60 80 0.31 486 0.00
0.800 1078 2 -11.4 58.0 33 0.60 118 0.31 486 0.00
0.826 1184 2 -32.8 59.2 35 0.72 2 0.32 461 0.04
0.840 1271 2 10.6 58.1 35 1.00 7 0.31 516 0.00
0.848 1310 2 10.9 58.1 36 1.00 304 0.31 475 0.00
0.888 2098 4 -8.0 123.3 27 1.00 74 0.64 421 0.00
0.912 3933 6 8.9 125.1 30 1.00 102 0.93 425 0.00
0.924 4468 6 19.0 125.1 35 0.99 250 0.93 425 0.00

(b) Static

P̃ C hGOM i NT ξΩ ∆M D
- $M km deg - − deg m

0.019 116 465 115.5 5 0.07 4 0.10
0.059 144 551 118.9 5 0.09 44 0.18
0.091 175 422 119.0 8 0.10 28 0.16
0.125 206 386 121.3 10 0.09 31 0.18
0.144 270 423 115.9 12 0.16 27 0.17
0.171 286 413 121.5 14 0.18 164 0.17
0.210 325 400 121.5 14 0.16 164 0.20
0.235 354 402 121.4 14 0.18 164 0.23
0.260 376 401 119.4 20 0.20 170 0.20
0.297 411 408 121.1 20 0.21 167 0.22
0.315 444 407 121.1 23 0.20 173 0.22
0.357 473 394 121.3 24 0.21 97 0.23
0.375 504 380 121.2 24 0.22 97 0.24
0.405 576 524 122.3 23 0.32 42 0.26
0.443 625 390 120.9 29 0.41 68 0.22
0.493 657 400 122.1 36 0.43 158 0.20
0.511 677 406 122.0 36 0.42 160 0.21
0.534 703 402 122.1 36 0.42 160 0.22
0.558 744 394 122.0 36 0.42 158 0.24
0.583 788 402 121.7 36 0.42 158 0.25
0.642 924 480 120.6 36 0.38 213 0.30
0.661 993 525 122.1 36 0.42 47 0.32
0.697 1116 560 121.6 35 0.51 46 0.34
0.718 1165 571 122.7 35 0.54 47 0.36
0.748 1273 644 121.5 35 0.51 165 0.40
0.772 1352 685 121.7 35 0.51 47 0.43
0.801 1486 691 121.1 36 0.54 166 0.44
0.828 1640 765 122.5 36 0.60 169 0.49
0.855 1877 871 122.5 36 0.60 170 0.55
0.885 2368 975 124.4 35 0.67 172 0.66
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A.22 Restricted Asymmetric Pattern: Scenario 2
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Figure A-18: Scenario 2 non-dominated front comparison with VoR

Table A.22: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.000 91 3 5.0 61.2 3 0.00 240 0.10 94 0.07
0.001 128 1 25.4 59.6 6 0.00 62 0.11 76 0.42
0.027 195 1 19.8 64.2 8 0.03 197 0.18 360 0.27
0.070 238 2 2.5 58.1 6 0.23 111 0.22 294 0.00
0.094 266 2 -0.2 58.1 6 0.25 346 0.26 254 0.36
0.116 287 2 -0.3 58.1 6 0.25 344 0.28 257 0.11
0.139 308 2 -3.7 59.1 6 0.25 227 0.28 474 0.16
0.202 390 2 -3.7 59.9 6 0.24 225 0.37 473 0.15
0.223 420 2 -3.8 59.9 6 0.26 223 0.41 368 0.14
0.277 498 2 -7.5 60.8 9 0.38 358 0.34 462 0.16
0.317 533 2 -1.9 60.9 9 0.37 285 0.37 466 0.05
0.341 567 2 -0.6 61.0 9 0.39 345 0.41 403 0.03
0.359 604 2 3.1 59.1 9 0.38 290 0.44 404 0.04
0.411 683 2 -3.4 58.3 9 0.39 228 0.49 457 0.06
0.442 734 2 -3.2 58.8 12 0.49 229 0.43 445 0.00
0.469 774 2 -9.9 58.0 12 0.52 224 0.45 497 0.00
0.500 819 2 -3.9 59.6 12 0.50 209 0.48 458 0.06
0.532 898 2 -3.1 60.4 13 0.55 72 0.48 491 0.00
0.556 977 2 -5.0 58.5 12 0.48 197 0.56 472 0.07
0.573 1011 2 -6.5 57.8 14 0.61 144 0.52 439 0.01
0.611 1110 2 -6.7 58.1 14 0.58 275 0.56 412 0.03
0.650 1179 2 -5.5 58.6 14 0.58 294 0.60 420 0.02
0.677 1264 2 -5.7 58.1 15 0.62 285 0.61 418 0.00
0.697 1410 2 -10.3 57.6 18 0.76 76 0.60 381 0.00
0.713 1483 2 -10.2 57.6 18 0.76 76 0.63 382 0.00
0.748 1582 2 -4.1 58.7 18 0.75 253 0.66 486 0.00
0.777 1645 2 1.4 58.3 21 0.88 101 0.62 374 0.00
0.803 1781 2 -0.6 58.7 23 0.98 34 0.62 338 0.00
0.831 2335 2 -5.7 57.7 34 0.92 136 0.63 412 0.00
0.843 2455 2 -10.3 60.5 36 1.00 58 0.64 385 0.00

(b) Static

P̃ C hGOM i NT ξΩ ∆M D
- $M km deg - − deg m

0.000 91 893 57.3 3 0.02 207 0.10
0.018 173 367 119.4 8 0.01 48 0.16
0.047 209 362 120.8 9 0.07 36 0.19
0.080 268 385 120.6 11 0.10 211 0.23
0.093 291 377 120.8 11 0.10 210 0.25
0.125 389 351 121.3 15 0.16 213 0.23
0.161 476 342 121.0 22 0.19 218 0.23
0.194 534 365 121.3 21 0.21 215 0.27
0.225 600 346 120.5 27 0.29 211 0.23
0.247 658 357 120.5 27 0.29 44 0.26
0.281 710 357 120.7 28 0.30 211 0.27
0.305 769 347 121.4 36 0.33 242 0.25
0.340 869 372 120.5 30 0.33 157 0.32
0.381 979 372 120.5 30 0.33 157 0.36
0.396 1005 382 121.1 36 0.41 28 0.32
0.427 1109 348 121.7 35 0.29 239 0.37
0.467 1166 348 121.8 35 0.32 239 0.39
0.491 1247 408 121.3 35 0.42 159 0.41
0.531 1349 412 121.2 36 0.41 163 0.44
0.570 1490 407 120.4 36 0.43 159 0.48
0.589 1671 491 122.4 36 0.44 168 0.53
0.609 1732 472 121.7 36 0.49 162 0.53
0.635 1870 470 121.4 36 0.47 165 0.56
0.670 2080 489 121.9 36 0.46 163 0.60
0.709 2335 518 122.6 36 0.52 164 0.66
0.729 2702 547 121.7 36 0.49 163 0.72
0.778 3318 659 121.9 36 0.58 166 0.83
0.798 3758 690 123.0 36 0.53 167 0.88
0.827 4767 749 122.5 36 0.62 167 0.99
0.848 5225 801 121.7 36 0.60 169 1.06
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A.23 Restricted Asymmetric Pattern: Scenario 3
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Figure A-19: Scenario 3 non-dominated front comparison with VoR

Table A.23: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.036 126 2 3.4 64.0 5 0.08 203 0.12 472 0.00
0.080 171 2 -5.5 61.5 7 0.10 73 0.16 468 0.07
0.120 221 2 -6.6 59.4 7 0.20 147 0.17 483 0.02
0.161 267 2 0.4 58.5 7 0.18 126 0.23 493 0.03
0.212 298 2 -7.1 60.3 10 0.22 198 0.21 486 0.00
0.249 359 2 -12.3 60.0 10 0.21 0 0.26 482 0.02
0.289 397 2 -4.7 60.6 15 0.33 95 0.20 503 0.17
0.338 444 2 -11.4 58.9 15 0.35 320 0.23 477 0.00
0.357 467 2 -12.2 58.9 15 0.35 72 0.24 477 0.00
0.411 537 2 -3.2 59.0 15 0.33 322 0.29 507 0.00
0.431 577 2 -5.2 59.1 24 0.45 136 0.21 494 0.02
0.485 616 2 -5.0 61.9 20 0.42 284 0.26 494 0.01
0.500 661 2 3.5 60.6 20 0.40 226 0.28 482 0.00
0.532 709 2 3.4 60.4 20 0.40 227 0.30 483 0.00
0.553 730 2 2.6 61.4 24 0.51 205 0.26 495 0.00
0.599 803 2 -5.1 62.5 25 0.52 222 0.28 494 0.02
0.628 837 2 -0.3 59.1 25 0.56 276 0.29 435 0.00
0.655 937 2 -5.1 62.6 26 0.53 236 0.31 487 0.00
0.673 965 2 -5.4 62.5 27 0.56 233 0.31 487 0.00
0.713 1004 2 0.4 61.8 29 0.60 304 0.31 463 0.00
0.750 1159 2 -13.2 58.0 34 0.65 228 0.33 488 0.00
0.772 1302 2 -6.0 61.5 39 0.80 121 0.32 403 0.00
0.815 1438 2 2.8 60.5 45 0.95 293 0.31 451 0.00
0.825 1504 2 -5.2 59.4 46 0.97 149 0.31 449 0.00
0.839 1631 2 12.7 58.4 48 1.00 0 0.33 403 0.00
0.855 2449 4 -6.8 62.5 48 1.00 31 0.51 345 0.00
0.865 2513 4 -5.5 61.4 47 0.99 5 0.53 391 0.00
0.884 3352 4 3.8 57.2 48 1.00 337 0.70 389 0.00
0.897 4456 6 0.2 58.7 48 0.99 360 0.81 421 0.00
0.907 5672 6 6.4 55.1 48 1.00 339 0.92 364 0.00

(b) Static

P̃ C hGOM i NT ξΩ ∆M D
- $M km deg - − deg m

0.022 125 458 121.5 5 0.02 65 0.14
0.045 177 532 121.2 9 0.08 204 0.16
0.084 221 391 120.2 14 0.10 120 0.15
0.114 269 391 120.2 19 0.10 120 0.16
0.138 352 476 119.7 16 0.10 79 0.25
0.168 405 359 119.2 30 0.20 193 0.15
0.194 446 372 118.5 30 0.19 59 0.18
0.209 465 354 120.0 29 0.18 194 0.19
0.245 532 391 119.2 36 0.19 202 0.20
0.268 574 383 119.2 43 0.19 240 0.19
0.296 613 402 120.3 37 0.27 196 0.20
0.321 654 371 120.8 44 0.28 240 0.19
0.348 702 411 121.8 42 0.31 242 0.22
0.376 739 379 120.8 48 0.30 78 0.21
0.409 881 380 120.9 47 0.35 238 0.24
0.440 939 470 120.3 48 0.30 81 0.27
0.464 948 473 121.5 48 0.30 81 0.27
0.489 1101 484 122.1 46 0.39 237 0.30
0.528 1201 541 122.6 47 0.36 240 0.32
0.549 1284 551 122.5 47 0.39 237 0.34
0.570 1395 602 122.1 47 0.38 123 0.37
0.591 1464 650 122.9 47 0.39 124 0.40
0.612 1522 662 122.9 48 0.38 124 0.41
0.639 1654 689 122.2 48 0.45 125 0.43
0.656 1767 724 121.5 48 0.44 124 0.46
0.675 1888 736 122.1 48 0.43 83 0.48
0.685 1964 804 123.3 48 0.51 126 0.49
0.723 2221 862 124.0 48 0.52 127 0.54
0.750 2698 991 124.3 48 0.66 129 0.61
0.777 2996 986 124.2 48 0.55 127 0.65
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A.24 Restricted Asymmetric Pattern: Scenario 4
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Figure A-20: Scenario 4 non-dominated front comparison with VoR

Table A.24: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.000 108 4 -24.8 72.5 4 0.01 117 0.10 66 0.00
0.038 186 2 -2.6 59.6 5 0.10 37 0.23 383 0.05
0.059 264 2 -7.6 62.3 6 0.09 354 0.29 435 0.05
0.114 369 2 -4.0 58.0 9 0.21 140 0.28 464 0.01
0.151 448 2 8.5 58.4 10 0.21 296 0.33 423 0.00
0.179 502 2 1.8 62.1 10 0.21 294 0.37 424 0.02
0.214 588 2 -3.5 57.8 13 0.29 141 0.34 467 0.00
0.249 647 2 0.2 57.8 15 0.31 325 0.35 490 0.00
0.275 710 2 -2.1 58.4 13 0.29 305 0.43 512 0.00
0.325 809 2 7.6 58.0 17 0.38 152 0.39 482 0.00
0.367 886 2 6.9 58.2 20 0.46 186 0.39 487 0.00
0.401 941 2 6.8 60.5 20 0.45 164 0.42 486 0.00
0.442 1098 2 -3.4 62.0 21 0.45 46 0.46 492 0.04
0.490 1200 2 6.4 60.8 24 0.51 233 0.46 494 0.00
0.516 1227 2 -6.0 60.9 25 0.51 234 0.46 494 0.00
0.548 1414 2 -1.3 58.0 24 0.45 319 0.56 465 0.04
0.575 1479 2 1.1 59.9 24 0.49 337 0.56 465 0.00
0.587 1528 2 -12.6 60.1 24 0.51 175 0.57 479 0.04
0.609 1617 2 9.6 59.2 25 0.54 261 0.59 426 0.03
0.626 1694 2 -1.3 60.2 29 0.59 269 0.55 457 0.02
0.653 1796 2 13.9 59.2 27 0.56 148 0.60 482 0.02
0.722 2093 2 7.7 58.1 32 0.66 208 0.62 404 0.00
0.748 2362 2 15.0 61.3 37 0.76 158 0.62 482 0.02
0.770 2445 2 14.0 59.2 40 0.88 146 0.61 492 0.00
0.788 2572 2 14.3 59.0 41 0.88 144 0.62 481 0.00
0.808 2720 2 9.9 60.3 47 1.00 200 0.59 451 0.00
0.830 2983 2 13.6 58.8 47 1.00 26 0.64 504 0.00
0.858 4363 2 14.1 121.4 47 0.99 212 0.81 459 0.00
0.881 8993 4 7.1 121.9 46 0.99 262 1.20 328 0.00
0.896 9120 4 6.5 122.4 48 1.00 259 1.18 339 0.00

(b) Static

P̃ C hGOM i NT ξΩ ∆M D
- $M km deg - − deg m

0.000 107 755 71.8 4 0.00 224 0.10
0.016 179 375 63.3 6 0.00 63 0.20
0.044 278 370 121.2 17 0.10 240 0.18
0.069 350 399 121.5 16 0.10 237 0.24
0.074 391 423 121.8 17 0.10 245 0.26
0.101 504 375 121.8 16 0.09 240 0.33
0.138 606 362 121.6 28 0.18 239 0.26
0.172 743 372 121.5 39 0.28 81 0.24
0.215 897 362 121.5 40 0.25 194 0.28
0.252 1046 369 121.5 40 0.26 200 0.32
0.271 1186 463 121.9 38 0.29 203 0.38
0.302 1264 454 121.8 39 0.30 202 0.41
0.316 1312 381 121.6 48 0.35 235 0.34
0.360 1494 373 121.7 48 0.35 235 0.39
0.381 1587 388 121.4 48 0.38 239 0.42
0.404 1708 389 121.4 48 0.35 239 0.45
0.414 1829 456 121.9 46 0.37 242 0.48
0.453 2175 493 121.9 47 0.39 246 0.54
0.472 2197 495 121.9 48 0.35 241 0.54
0.490 2480 548 121.0 47 0.42 201 0.60
0.533 2818 513 121.2 48 0.36 241 0.65
0.542 3080 547 121.5 47 0.41 202 0.69
0.559 3169 579 121.5 48 0.45 240 0.70
0.586 3707 599 122.5 48 0.49 202 0.77
0.611 4252 736 121.8 48 0.45 203 0.84
0.638 4833 724 123.2 47 0.46 202 0.90
0.668 6139 792 123.6 48 0.68 236 1.00
0.683 6509 891 123.9 48 0.68 246 1.05
0.721 8603 936 122.6 48 0.56 251 1.13
0.736 8960 964 122.8 48 0.57 253 1.17
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A.25 Restricted Asymmetric: Limited Satellites Results

Table A.25: Non-dominated front design details

(a) NT ≤ 12

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.000 104 4 -46.7 120.1 3 0.00 239 0.12 2 0.97
0.033 119 2 -2.8 57.8 5 0.08 10 0.10 336 0.20
0.091 137 2 -2.3 58.6 5 0.11 179 0.15 361 0.13
0.128 177 2 -1.3 57.9 5 0.22 333 0.15 387 0.02
0.188 209 2 4.7 58.0 6 0.27 258 0.17 504 0.17
0.220 224 2 4.7 58.0 6 0.27 258 0.20 381 0.17
0.236 239 2 -7.2 57.7 6 0.23 301 0.22 478 0.06
0.255 250 2 5.3 57.9 6 0.26 256 0.23 393 0.17
0.280 275 2 5.5 57.8 6 0.26 33 0.26 395 0.17
0.295 294 2 -7.0 57.9 8 0.39 300 0.21 391 0.03
0.325 315 2 -6.5 60.1 9 0.39 273 0.21 370 0.00
0.338 320 2 -4.2 61.5 9 0.39 275 0.21 379 0.01
0.370 333 2 -0.1 61.0 9 0.38 193 0.22 367 0.19
0.384 348 2 -5.8 57.9 9 0.38 271 0.24 409 0.18
0.434 404 2 -6.1 59.3 9 0.38 273 0.27 415 0.12
0.448 412 2 -4.2 61.5 9 0.38 277 0.27 484 0.00
0.473 432 2 -10.9 61.8 11 0.46 360 0.24 490 0.00
0.507 458 2 -1.2 58.3 12 0.51 152 0.25 343 0.11
0.520 479 2 -0.1 58.3 12 0.54 161 0.27 336 0.17
0.568 540 2 -7.3 62.2 11 0.46 300 0.30 484 0.01
0.586 570 2 1.8 58.4 12 0.48 241 0.31 463 0.02
0.605 588 2 7.6 62.1 12 0.50 330 0.32 457 0.14
0.645 747 2 -0.5 87.2 11 0.47 279 0.29 416 0.04
0.665 758 2 -0.9 86.4 11 0.46 299 0.30 469 0.02
0.684 779 2 -0.5 87.2 11 0.47 279 0.32 416 0.04
0.699 789 2 0.7 86.5 11 0.46 300 0.32 461 0.04
0.720 822 2 -0.8 87.2 12 0.50 304 0.30 470 0.02
0.769 969 2 -2.4 87.0 12 0.51 337 0.33 471 0.12

(b) NT ≤ 24

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.058 120 2 9.3 58.7 4 0.10 156 0.13 360 0.09
0.089 136 2 9.2 58.9 4 0.09 151 0.17 361 0.09
0.102 159 2 -13.8 58.9 5 0.10 30 0.18 322 0.00
0.151 189 2 1.1 57.7 5 0.19 54 0.18 390 0.06
0.188 207 2 0.4 58.7 6 0.26 202 0.17 442 0.12
0.268 255 2 2.9 58.7 6 0.26 47 0.24 435 0.14
0.318 309 2 15.2 60.9 9 0.37 41 0.19 510 0.00
0.368 331 2 1.8 58.7 9 0.40 42 0.22 414 0.13
0.420 404 2 1.4 60.2 10 0.44 17 0.24 474 0.11
0.456 428 2 -2.5 59.9 11 0.48 100 0.24 429 0.20
0.494 453 2 -5.1 61.5 12 0.49 94 0.25 432 0.18
0.527 501 2 -1.7 61.0 11 0.47 106 0.28 428 0.18
0.554 524 2 -2.4 61.2 12 0.51 105 0.28 433 0.18
0.571 550 2 0.0 57.9 12 0.49 105 0.29 427 0.01
0.600 574 2 -1.6 58.9 12 0.51 98 0.31 439 0.18
0.624 623 2 8.3 58.2 14 0.58 6 0.28 501 0.00
0.644 641 2 -4.4 58.9 14 0.57 108 0.30 443 0.06
0.677 679 2 5.7 58.1 15 0.64 3 0.30 491 0.00
0.703 749 2 15.1 58.8 16 0.63 3 0.31 498 0.00
0.722 803 2 15.6 59.6 18 0.74 40 0.31 438 0.01
0.744 855 2 8.6 58.9 19 0.79 30 0.31 431 0.00
0.765 909 2 -13.4 58.9 21 0.90 30 0.31 444 0.00
0.786 990 2 16.9 59.3 21 0.85 69 0.34 511 0.00
0.812 1043 2 5.8 58.1 24 1.00 43 0.32 343 0.00
0.841 1198 2 11.6 122.5 24 1.00 219 0.39 398 0.00
0.858 1739 4 -18.0 122.5 24 0.99 220 0.59 357 0.06
0.877 2102 4 -5.0 123.0 24 0.99 216 0.69 414 0.00
0.895 4556 6 13.1 122.5 24 1.00 220 1.05 349 0.00

(c) NT ≤ 48

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.028 116 2 4.9 58.6 4 0.02 251 0.13 140 0.52
0.076 154 2 -19.5 59.0 7 0.11 52 0.13 445 0.01
0.118 176 2 -19.5 59.0 7 0.11 52 0.17 445 0.01
0.175 209 2 0.8 59.2 4 0.17 49 0.23 488 0.00
0.248 238 2 -2.3 59.0 6 0.26 57 0.22 441 0.02
0.287 266 2 -2.0 59.5 6 0.26 55 0.25 443 0.02
0.292 290 2 1.2 59.0 8 0.35 47 0.20 461 0.13
0.353 321 2 -0.1 59.1 9 0.40 51 0.21 429 0.12
0.399 349 2 -0.3 58.0 9 0.41 46 0.24 457 0.00
0.431 404 2 8.4 59.1 9 0.40 219 0.27 430 0.12
0.449 424 2 4.6 59.9 12 0.51 23 0.23 415 0.16
0.483 445 2 -3.5 59.1 9 0.40 44 0.30 428 0.12
0.492 475 2 8.5 59.1 9 0.40 204 0.32 465 0.12
0.516 501 2 -0.1 60.9 13 0.54 1 0.24 454 0.12
0.549 536 2 15.7 61.8 15 0.62 196 0.24 500 0.02
0.589 592 2 -0.1 60.8 13 0.55 3 0.28 454 0.11
0.605 616 2 8.0 60.9 13 0.54 4 0.30 454 0.07
0.665 660 2 11.7 58.9 14 0.59 89 0.31 482 0.08
0.701 772 2 13.0 58.9 16 0.63 97 0.32 493 0.07
0.749 910 2 21.3 59.1 21 0.85 44 0.30 528 0.05
0.764 964 2 -3.4 61.4 23 1.00 212 0.30 382 0.00
0.780 984 2 -4.3 61.4 23 1.00 254 0.30 382 0.00
0.801 1018 2 -4.3 61.4 24 1.00 254 0.31 382 0.00
0.831 1260 2 -42.0 58.0 42 0.83 7 0.30 421 0.08
0.853 1347 2 -37.4 58.0 43 0.84 27 0.31 474 0.00
0.870 1562 2 -25.8 59.5 47 0.96 123 0.32 430 0.00
0.897 1962 2 2.5 118.5 48 1.00 1 0.42 495 0.00
0.928 3238 4 -12.0 122.8 48 1.00 161 0.66 430 0.00
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A.26 Restricted Asymmetric: Limited Reconfigured Satellites

Table A.26: Non-dominated front design details

(a) ξR = 0.125

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.027 118 2 -40.7 119.8 4 0.06 198 0.13 178 0.22
0.051 139 2 -14.7 119.8 4 0.05 198 0.19 169 0.23
0.082 173 2 -43.5 58.3 8 0.11 87 0.16 262 0.51
0.114 208 2 -43.8 57.9 8 0.10 87 0.21 262 0.62
0.148 239 2 -43.8 57.9 9 0.11 93 0.23 264 0.06
0.168 268 2 -43.8 58.0 9 0.21 94 0.20 263 0.06
0.187 296 2 -43.8 57.9 9 0.21 93 0.23 264 0.06
0.222 350 1 -34.1 119.2 17 0.19 211 0.19 131 0.99
0.281 380 1 -49.1 121.4 20 0.22 211 0.20 66 0.99
0.306 445 1 -49.1 121.4 21 0.23 212 0.21 68 0.99
0.334 473 1 -33.4 121.6 24 0.31 211 0.20 2 0.75
0.365 498 1 -35.7 121.0 29 0.30 214 0.18 16 0.40
0.417 535 1 -41.7 121.1 30 0.31 212 0.20 6 0.09
0.446 569 1 -41.3 121.1 30 0.31 212 0.22 6 0.03
0.473 599 1 -33.2 121.2 30 0.32 212 0.23 7 0.03
0.499 659 1 -37.6 122.0 32 0.31 213 0.24 0 0.68
0.549 717 1 -37.2 120.9 35 0.39 212 0.23 15 0.77
0.588 806 1 -44.2 122.0 36 0.42 38 0.26 19 0.86
0.623 925 1 40.9 120.7 35 0.39 214 0.30 17 0.84
0.660 1047 2 -38.2 120.4 34 0.47 165 0.33 0 0.84
0.669 1076 2 -38.1 120.4 34 0.47 163 0.33 19 0.83
0.734 1227 2 -45.5 122.6 35 0.54 52 0.37 354 0.15
0.768 1431 3 -48.8 121.6 34 0.49 48 0.45 190 0.84
0.787 1469 3 -40.9 120.3 36 0.59 48 0.44 0 0.96
0.823 1720 3 -49.6 120.8 36 0.57 48 0.51 169 0.99
0.853 1930 4 -49.4 122.8 36 0.61 73 0.56 1 0.49
0.880 2522 5 -47.7 122.4 33 1.00 22 0.65 339 0.95
0.915 2983 5 -46.8 122.3 34 0.99 22 0.74 2 0.99

(b) ξR = 0.25

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.015 116 3 -24.2 121.7 3 0.03 72 0.16 19 0.05
0.043 148 1 -23.9 119.9 8 0.09 92 0.11 172 0.77
0.074 178 1 -1.1 119.4 9 0.07 124 0.15 227 0.15
0.109 208 1 -1.6 122.1 9 0.09 178 0.19 227 0.65
0.141 224 2 21.4 58.0 9 0.11 158 0.21 274 0.29
0.177 298 2 -32.7 60.7 12 0.19 44 0.19 427 0.17
0.222 320 2 13.9 58.0 9 0.40 159 0.21 362 0.29
0.243 358 2 -22.5 58.2 13 0.29 182 0.19 207 0.32
0.280 385 2 -22.8 58.7 14 0.33 180 0.21 205 0.30
0.304 413 2 -22.8 58.3 13 0.29 182 0.24 208 0.29
0.334 440 2 -25.6 58.3 18 0.33 105 0.21 201 0.01
0.371 507 2 -32.4 57.7 17 0.33 123 0.25 395 0.14
0.425 557 2 -25.6 58.3 18 0.33 105 0.28 201 0.01
0.457 622 2 25.5 59.0 19 0.41 56 0.27 237 0.16
0.491 647 2 -24.3 57.6 25 0.40 43 0.25 172 0.20
0.517 685 2 -24.3 57.6 25 0.40 43 0.26 172 0.20
0.547 717 2 -25.5 57.7 25 0.56 98 0.25 199 0.00
0.581 767 2 -47.4 60.3 25 0.55 37 0.27 345 0.19
0.630 839 2 -47.4 60.3 30 0.55 37 0.27 345 0.19
0.646 867 2 -24.8 58.2 35 0.54 170 0.26 187 0.28
0.681 926 2 -25.3 58.2 34 0.52 161 0.28 200 0.30
0.722 1007 2 -25.2 59.7 35 0.53 168 0.30 225 0.31
0.739 1074 2 -24.8 58.4 35 0.55 167 0.32 186 0.30
0.770 1229 2 -23.9 121.7 35 0.54 164 0.37 242 0.31
0.798 1395 2 -23.3 122.4 36 0.68 161 0.41 230 0.22
0.832 1996 4 -30.7 124.0 34 0.96 22 0.55 210 0.96
0.874 2455 5 -40.8 124.0 31 0.99 22 0.67 11 0.89
0.900 2679 5 -41.9 123.7 34 0.99 22 0.68 1 0.88

(c) ξR = 0.375

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.024 118 1 -26.4 119.9 5 0.00 138 0.11 253 0.95
0.080 144 2 -11.2 59.7 5 0.10 38 0.17 197 0.19
0.089 159 2 -11.2 59.7 6 0.09 50 0.17 185 0.19
0.120 202 2 10.1 58.3 5 0.20 79 0.20 220 0.11
0.163 236 2 11.6 57.7 7 0.21 58 0.20 221 0.11
0.187 265 2 5.4 58.3 9 0.20 79 0.20 221 0.18
0.223 296 2 11.6 57.7 11 0.21 58 0.20 221 0.11
0.282 355 2 19.6 57.9 12 0.33 136 0.21 202 0.22
0.308 386 2 26.2 59.4 14 0.31 86 0.21 291 0.06
0.355 437 2 -19.2 59.5 14 0.33 29 0.24 283 0.05
0.395 478 2 -21.6 58.1 15 0.32 47 0.26 304 0.03
0.446 534 2 -27.8 58.0 19 0.41 55 0.23 343 0.04
0.481 596 2 -21.4 59.7 19 0.39 56 0.26 339 0.04
0.523 623 2 -25.0 60.9 19 0.42 46 0.27 344 0.00
0.555 678 2 22.3 58.6 20 0.45 95 0.29 271 0.16
0.590 716 2 22.7 58.0 20 0.48 94 0.31 325 0.12
0.619 766 2 -24.2 57.8 30 0.58 186 0.25 238 0.08
0.645 804 2 -24.5 58.5 30 0.58 112 0.26 239 0.08
0.666 823 2 -22.2 57.8 30 0.58 65 0.27 260 0.12
0.689 858 2 -21.8 57.8 30 0.58 67 0.28 256 0.12
0.735 926 2 -23.4 57.7 30 0.59 202 0.30 266 0.13
0.745 956 2 -22.2 57.8 30 0.58 65 0.31 260 0.12
0.773 1044 2 -22.2 58.0 35 0.67 71 0.30 278 0.18
0.802 1081 2 -22.5 58.0 35 0.67 71 0.31 263 0.14
0.829 1279 2 -45.9 121.9 35 0.63 154 0.37 505 0.02
0.858 2051 4 -28.9 121.3 34 0.76 62 0.56 270 0.13
0.895 3408 6 -28.3 124.9 36 1.00 130 0.79 274 0.00
0.912 4029 5 41.7 121.2 34 0.99 23 0.88 310 0.94

(d) ξR = 0.5

P̃ C No
Nd

∆alt i NT ξΩ ∆M D ∆VR α0

- $M - km deg - − deg m m/s -

0.019 112 2 5.1 58.5 4 0.00 274 0.11 372 0.41
0.041 138 2 0.5 58.5 5 0.01 285 0.16 415 0.37
0.106 179 2 -24.6 58.5 5 0.19 223 0.15 389 0.04
0.171 234 2 -21.9 58.9 8 0.23 66 0.18 402 0.27
0.200 267 2 17.1 58.9 8 0.24 253 0.20 409 0.05
0.234 296 2 20.4 59.1 7 0.31 248 0.22 402 0.09
0.284 330 2 22.9 58.2 9 0.35 253 0.22 399 0.07
0.337 388 2 -20.9 59.1 11 0.47 356 0.21 331 0.04
0.366 415 2 -19.3 58.1 9 0.42 252 0.28 407 0.10
0.399 449 2 -18.2 58.8 12 0.55 223 0.24 397 0.13
0.414 465 2 -18.0 58.8 12 0.55 38 0.25 399 0.13
0.471 539 2 -29.5 60.3 15 0.62 117 0.24 415 0.12
0.516 589 2 -18.6 59.8 20 0.45 265 0.25 342 0.05
0.540 628 2 -20.9 60.1 20 0.42 281 0.26 412 0.15
0.562 652 2 -20.5 59.8 20 0.45 266 0.27 475 0.04
0.577 683 2 29.1 58.2 21 0.49 321 0.26 430 0.05
0.615 714 2 24.4 59.4 20 0.44 279 0.30 421 0.07
0.633 742 2 23.7 58.7 25 0.56 85 0.26 429 0.03
0.659 778 2 27.1 58.1 25 0.54 225 0.27 441 0.02
0.674 793 2 26.8 58.1 25 0.54 224 0.28 439 0.02
0.717 859 2 25.2 58.4 25 0.57 145 0.30 424 0.05
0.733 891 2 28.1 61.1 25 0.53 221 0.32 427 0.02
0.765 980 2 27.3 58.8 29 0.59 117 0.30 421 0.01
0.792 1034 2 -30.8 59.3 30 0.65 188 0.31 465 0.03
0.803 1105 2 -32.1 59.3 31 0.67 192 0.32 467 0.01
0.831 1327 2 22.0 60.3 36 0.68 70 0.34 419 0.02
0.858 1874 4 20.5 123.2 27 0.99 192 0.58 361 0.00
0.883 2267 4 20.2 124.2 36 1.00 206 0.59 361 0.00
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A.27 Asymmetric Walker Pattern: Scenario 1
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Figure A-21: Scenario 1 non-dominated front comparison with VoR

Table A.27: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i ξΩ F D ∆VR α0

- $M - km − - deg − − m m/s -

0.025 115 2 -15.3 1 4 57.8 0.02 0 0.13 194 0.02
0.050 139 2 -48.7 1 5 61.0 0.36 0 0.17 17 0.05
0.066 175 2 -47.2 1 5 60.4 0.40 0 0.22 7 0.25
0.171 199 2 -11.7 5 1 60.2 0.19 1 0.19 521 0.09
0.203 226 2 -11.7 6 1 60.5 0.21 2 0.20 539 0.09
0.215 241 2 -11.7 5 1 60.1 0.19 1 0.24 525 0.09
0.295 289 2 -9.7 8 1 60.0 0.34 4 0.20 452 0.15
0.348 326 2 -6.3 9 1 58.2 0.35 2 0.21 508 0.09
0.380 344 2 -5.9 9 1 58.7 0.36 2 0.23 503 0.08
0.398 370 2 -8.4 9 1 58.0 0.35 3 0.26 427 0.03
0.404 409 2 -10.5 11 1 58.2 0.34 4 0.25 439 0.00
0.443 449 2 2.0 9 1 58.2 0.33 3 0.30 423 0.10
0.499 457 2 -6.8 12 1 59.2 0.56 5 0.25 429 0.11
0.530 536 2 4.8 11 1 62.8 0.44 7 0.30 365 0.01
0.561 546 2 5.7 12 1 59.7 0.50 0 0.29 359 0.02
0.589 580 2 4.7 12 1 61.0 0.50 0 0.32 359 0.02
0.634 652 2 0.4 14 1 60.9 0.55 7 0.31 348 0.00
0.685 748 2 -6.2 14 1 58.3 0.60 0 0.36 508 0.00
0.704 777 2 -6.7 18 1 58.8 0.71 4 0.30 400 0.00
0.715 807 2 -6.7 18 1 58.8 0.71 4 0.31 400 0.00
0.740 868 2 -19.2 25 1 61.3 0.55 13 0.31 361 0.07
0.757 940 2 -21.6 27 1 60.6 0.58 14 0.30 361 0.04
0.779 987 2 -23.1 29 1 61.2 0.62 15 0.31 366 0.04
0.791 1009 2 -22.1 29 1 61.2 0.61 15 0.31 366 0.04
0.811 1085 2 -28.4 34 1 57.7 0.67 18 0.31 378 0.06
0.838 1169 2 28.2 18 2 58.8 0.71 3 0.33 386 0.01
0.857 1733 4 -27.0 33 1 56.5 0.70 7 0.51 388 0.08
0.871 1851 4 -25.6 35 1 56.7 0.73 7 0.53 384 0.05
0.897 2376 4 -25.2 36 1 123.5 0.99 12 0.62 320 0.01
0.918 5853 6 -16.6 33 1 123.3 1.00 18 1.04 377 0.00

(b) Static

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.027 116 539 1 4 122.2 0.00 0 0.13
0.065 149 415 2 3 120.4 0.17 1 0.15
0.102 177 377 3 3 121.7 0.14 1 0.15
0.133 204 378 3 4 121.8 0.14 1 0.15
0.157 232 360 3 5 121.8 0.15 1 0.15
0.172 245 377 3 4 121.9 0.14 2 0.20
0.204 294 422 3 4 121.3 0.14 1 0.24
0.220 327 362 4 4 120.8 0.19 1 0.19
0.245 348 380 6 4 121.2 0.28 5 0.14
0.296 382 394 6 4 120.4 0.27 2 0.17
0.337 419 392 6 4 120.8 0.29 2 0.20
0.391 481 383 6 4 121.5 0.30 2 0.23
0.425 537 415 8 4 121.3 0.38 3 0.19
0.457 565 393 8 4 120.9 0.37 3 0.20
0.498 592 374 9 4 122.0 0.41 3 0.20
0.526 626 380 9 4 121.3 0.40 3 0.21
0.536 653 401 9 4 120.9 0.44 4 0.22
0.568 711 414 9 4 121.2 0.44 5 0.25
0.587 736 426 9 4 121.9 0.44 1 0.25
0.612 783 434 9 4 121.2 0.44 4 0.27
0.639 896 483 9 4 120.7 0.42 5 0.30
0.656 936 493 9 4 121.7 0.41 5 0.32
0.680 996 536 12 3 121.9 0.53 1 0.32
0.731 1165 633 12 3 122.4 0.52 2 0.37
0.752 1203 634 12 3 122.4 0.53 2 0.38
0.790 1319 673 12 3 122.4 0.52 2 0.43
0.803 1404 677 12 3 121.6 0.51 2 0.45
0.829 1748 821 12 3 113.7 0.53 3 0.52
0.853 1965 858 12 3 121.4 0.59 3 0.57
0.880 2790 966 12 3 111.0 0.57 3 0.70
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A.28 Asymmetric Walker Pattern: Scenario 2
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Figure A-22: Scenario 2 non-dominated front comparison with VoR

Table A.28: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i ξΩ F D ∆VR α0

- $M - km − - deg − − m m/s -

0.000 130 3 -8.5 1 3 58.5 0.98 0 0.20 148 0.10
0.030 179 2 -10.2 3 2 58.8 0.09 2 0.20 356 0.03
0.043 212 2 -21.6 7 1 62.8 0.08 0 0.23 344 0.01
0.118 268 2 3.6 6 1 59.5 0.26 3 0.25 410 0.07
0.146 311 2 2.9 6 1 59.6 0.27 3 0.28 409 0.07
0.164 332 2 2.9 6 1 59.6 0.27 3 0.31 410 0.07
0.214 391 2 1.4 6 1 58.0 0.28 1 0.37 415 0.06
0.236 420 2 1.4 6 1 58.1 0.28 1 0.40 414 0.06
0.266 479 2 1.5 9 1 60.0 0.38 6 0.33 400 0.06
0.296 531 2 -6.2 8 1 60.9 0.34 4 0.40 415 0.10
0.357 582 2 0.6 9 1 60.5 0.39 5 0.42 434 0.07
0.394 667 2 1.3 11 1 59.7 0.46 7 0.40 408 0.05
0.439 718 2 -2.3 12 1 59.7 0.52 6 0.42 392 0.02
0.463 758 2 5.1 12 1 60.5 0.50 6 0.44 463 0.00
0.490 804 2 5.1 12 1 60.5 0.51 9 0.47 458 0.00
0.535 892 2 14.7 12 1 60.1 0.50 9 0.52 507 0.03
0.561 945 2 -1.3 12 1 59.3 0.49 6 0.55 406 0.01
0.579 1012 2 17.1 14 1 59.7 0.57 7 0.51 510 0.00
0.606 1058 2 16.7 14 1 59.6 0.58 7 0.54 511 0.00
0.615 1096 2 13.2 14 1 60.4 0.61 10 0.55 478 0.01
0.645 1152 2 11.4 15 1 60.8 0.62 12 0.56 495 0.02
0.671 1194 2 15.3 15 1 58.9 0.61 11 0.58 507 0.03
0.680 1245 2 18.5 15 1 60.6 0.62 12 0.60 503 0.02
0.731 1454 2 17.0 18 1 60.5 0.70 14 0.61 517 0.00
0.758 1607 2 0.7 20 1 59.3 0.83 6 0.62 397 0.00
0.777 1650 2 0.4 21 1 59.2 0.88 6 0.62 393 0.00
0.806 1807 2 -0.9 24 1 58.9 0.99 0 0.61 382 0.00
0.825 2135 2 1.7 26 1 58.9 1.00 6 0.66 388 0.00
0.845 2899 2 47.2 36 1 59.3 0.69 35 0.73 539 0.05
0.861 4659 2 6.1 36 1 58.0 1.00 8 0.95 431 0.00

(b) Static

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.000 90 613 1 3 58.5 0.00 0 0.10
0.000 127 368 1 6 63.7 0.56 0 0.11
0.040 197 350 1 6 59.4 0.58 0 0.23
0.086 264 349 3 4 120.4 0.14 1 0.21
0.108 312 352 3 4 120.4 0.15 1 0.25
0.156 437 366 5 4 121.4 0.24 3 0.23
0.185 489 362 5 4 121.5 0.24 2 0.25
0.211 538 358 6 4 121.6 0.26 3 0.25
0.244 615 358 6 4 121.6 0.26 3 0.28
0.270 652 351 6 5 121.0 0.29 2 0.26
0.295 718 366 9 4 121.1 0.38 3 0.24
0.326 787 351 9 4 121.2 0.35 3 0.26
0.351 840 377 9 4 121.6 0.37 3 0.28
0.372 895 354 9 4 121.2 0.35 3 0.30
0.429 1025 356 9 4 121.3 0.38 3 0.33
0.455 1108 348 9 4 121.5 0.36 3 0.36
0.485 1166 356 9 4 121.3 0.38 3 0.38
0.511 1217 367 9 4 121.0 0.37 3 0.41
0.559 1364 397 9 4 121.2 0.38 3 0.46
0.586 1611 496 12 3 121.2 0.48 1 0.51
0.622 1737 486 12 3 121.2 0.48 1 0.55
0.640 1798 474 12 3 120.9 0.47 1 0.56
0.660 2016 487 12 3 121.1 0.49 1 0.59
0.701 2324 509 12 3 121.1 0.49 1 0.66
0.719 2422 550 12 3 122.3 0.50 1 0.68
0.751 2949 620 12 3 121.2 0.53 1 0.76
0.778 3559 669 12 3 123.0 0.58 1 0.84
0.806 3971 709 12 3 122.0 0.58 2 0.91
0.828 4965 741 12 3 122.3 0.59 2 1.02
0.854 6825 873 12 3 116.7 0.57 3 1.14
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A.29 Asymmetric Walker Pattern: Scenario 3
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Figure A-23: Scenario 3 non-dominated front comparison with VoR

Table A.29: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i ξΩ F D ∆VR α0

- $M - km − - deg − − m m/s -

0.030 124 2 10.4 5 1 59.1 0.07 0 0.12 470 0.00
0.077 166 2 -3.0 5 1 62.8 0.08 2 0.19 441 0.05
0.095 182 2 -6.0 6 1 63.8 0.09 1 0.20 460 0.09
0.157 252 2 2.5 9 1 59.6 0.19 2 0.18 405 0.05
0.206 294 2 -2.0 10 1 58.0 0.21 5 0.21 487 0.16
0.216 319 2 -1.2 10 1 61.8 0.20 6 0.23 495 0.01
0.267 375 2 -6.0 14 1 59.2 0.32 7 0.19 425 0.01
0.313 415 2 -4.7 15 1 58.2 0.33 7 0.21 428 0.11
0.330 444 2 0.3 15 1 60.4 0.32 1 0.23 386 0.06
0.382 502 2 -3.8 15 1 60.8 0.33 0 0.27 424 0.01
0.419 540 2 -4.5 20 1 58.0 0.43 11 0.22 489 0.06
0.440 583 2 -7.6 23 1 58.8 0.44 12 0.22 499 0.16
0.486 625 2 -5.2 19 1 58.0 0.40 11 0.27 489 0.12
0.508 670 2 -4.5 24 1 59.6 0.44 13 0.25 486 0.04
0.527 708 2 -8.1 24 1 61.3 0.50 18 0.25 457 0.10
0.566 752 2 -6.6 25 1 57.8 0.53 10 0.26 422 0.00
0.583 784 2 -6.6 25 1 59.9 0.52 10 0.27 498 0.11
0.621 833 2 -5.2 25 1 59.7 0.53 6 0.29 480 0.09
0.648 882 2 -5.0 25 1 60.0 0.54 3 0.31 485 0.07
0.690 984 2 -13.9 29 1 58.3 0.60 15 0.30 471 0.08
0.701 1011 2 -11.7 30 1 57.7 0.61 15 0.31 481 0.08
0.725 1134 2 -11.9 32 1 57.9 0.64 16 0.32 475 0.04
0.738 1243 2 -12.4 35 1 58.8 0.70 8 0.33 474 0.05
0.773 1294 2 -16.1 40 1 58.0 0.76 27 0.32 439 0.05
0.802 1529 2 -19.6 47 1 58.2 0.87 38 0.34 413 0.04
0.815 1627 2 -20.0 43 1 122.1 0.88 16 0.37 475 0.04
0.828 1700 2 -21.6 48 1 121.9 0.89 2 0.38 474 0.04
0.848 2221 2 -4.6 24 2 87.2 0.50 3 0.33 374 0.18
0.859 2260 2 -4.5 24 2 87.1 0.50 3 0.34 377 0.18
0.868 3739 2 -4.4 24 2 87.3 0.50 4 0.63 392 0.17

(b) Static

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.017 119 520 1 4 60.9 0.28 0 0.14
0.045 165 385 4 2 121.9 0.11 2 0.14
0.062 202 414 2 5 58.7 0.13 1 0.18
0.097 249 379 3 5 58.4 0.12 1 0.17
0.115 294 441 4 5 59.3 0.11 2 0.18
0.149 335 383 5 5 58.8 0.12 2 0.17
0.167 373 417 5 5 58.0 0.11 2 0.20
0.217 458 417 8 4 120.9 0.23 3 0.18
0.234 499 416 7 5 120.4 0.22 3 0.19
0.254 538 415 8 5 59.5 0.23 3 0.19
0.275 575 414 8 5 59.4 0.23 3 0.20
0.283 626 393 9 5 59.6 0.19 5 0.20
0.324 667 480 22 2 121.3 0.30 8 0.20
0.344 708 465 21 2 121.6 0.28 8 0.23
0.367 760 481 22 2 121.6 0.28 8 0.24
0.385 836 513 19 2 121.7 0.30 7 0.28
0.427 866 408 48 1 121.6 0.38 32 0.24
0.452 1015 578 16 3 122.6 0.34 1 0.28
0.496 1088 551 16 3 122.6 0.34 1 0.29
0.537 1277 583 15 3 122.6 0.33 1 0.37
0.551 1389 580 48 1 57.2 0.39 32 0.37
0.583 1496 627 48 1 122.3 0.49 32 0.38
0.619 1669 793 22 2 123.3 0.43 9 0.46
0.628 1739 816 22 2 123.3 0.42 9 0.47
0.650 1782 801 23 2 123.2 0.42 9 0.47
0.676 1962 811 47 1 123.0 0.47 32 0.49
0.684 2020 837 47 1 123.3 0.48 32 0.51
0.723 2418 948 47 1 123.6 0.49 32 0.58
0.742 2578 959 48 1 123.9 0.52 34 0.59
0.762 3002 999 48 1 122.9 0.51 34 0.65
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A.30 Asymmetric Walker Pattern: Scenario 4
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Figure A-24: Scenario 4 non-dominated front comparison with VoR

Table A.30: Non-dominated front design details

(a) Reconfigurable

P̃ C No
Nd

∆alt Np Nsp i ξΩ F D ∆VR α0

- $M - km − - deg − − m m/s -

0.000 133 2 -2.6 1 4 93.7 0.18 0 0.17 287 0.36
0.030 224 2 -0.5 6 1 63.2 0.16 5 0.20 431 0.00
0.056 261 2 -8.1 6 1 61.3 0.21 2 0.25 427 0.00
0.118 369 2 -5.5 10 1 60.1 0.23 2 0.27 497 0.03
0.143 428 2 2.5 9 1 59.4 0.20 5 0.33 471 0.00
0.194 524 2 -2.5 10 1 59.8 0.21 9 0.40 482 0.17
0.215 595 2 -1.8 10 1 61.3 0.21 8 0.45 486 0.26
0.268 672 2 -5.1 15 1 58.9 0.35 1 0.37 455 0.01
0.284 733 2 -7.6 14 1 60.0 0.29 6 0.43 465 0.02
0.322 814 2 -3.7 17 1 59.0 0.37 1 0.39 471 0.01
0.374 895 2 -4.0 19 1 59.7 0.44 14 0.41 466 0.02
0.407 973 2 -2.9 20 1 60.8 0.42 6 0.44 472 0.00
0.436 1025 2 -6.0 20 1 61.5 0.42 5 0.46 480 0.00
0.467 1103 2 -5.9 20 1 58.2 0.44 6 0.49 503 0.00
0.478 1161 2 -9.8 25 1 60.6 0.56 7 0.43 477 0.00
0.508 1242 2 12.1 25 1 59.7 0.53 22 0.46 486 0.04
0.546 1343 2 -5.0 25 1 59.2 0.54 15 0.50 483 0.00
0.558 1389 2 12.1 25 1 59.7 0.54 16 0.52 486 0.04
0.575 1495 2 14.1 26 1 60.2 0.54 16 0.52 486 0.00
0.600 1553 2 -17.7 29 1 59.5 0.59 5 0.51 523 0.01
0.621 1632 2 -16.3 29 1 59.6 0.57 5 0.53 516 0.00
0.638 1668 2 -2.0 28 1 58.7 0.58 22 0.55 495 0.00
0.656 1762 2 14.4 29 1 60.1 0.59 13 0.57 511 0.02
0.676 1860 2 14.2 29 1 58.9 0.59 13 0.60 515 0.01
0.705 1945 2 15.8 30 1 59.4 0.64 19 0.61 500 0.00
0.759 2250 2 -5.8 35 1 59.4 0.72 34 0.62 476 0.00
0.786 2716 2 -16.1 40 1 61.9 0.80 0 0.66 509 0.00
0.815 3030 2 1.6 25 1 86.9 0.52 1 0.67 531 0.00
0.839 3136 2 -4.2 48 1 61.6 0.98 4 0.66 432 0.00
0.848 3865 2 2.7 24 2 87.0 0.50 11 0.66 331 0.17

(b) Static

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.001 137 496 1 5 104.8 0.53 0 0.17
0.023 199 393 2 4 59.5 0.10 1 0.20
0.052 299 358 3 4 59.6 0.09 2 0.24
0.085 445 387 10 2 121.3 0.22 1 0.24
0.106 506 376 11 2 121.8 0.22 2 0.25
0.131 583 367 14 2 121.3 0.21 2 0.25
0.147 653 393 14 2 121.3 0.20 2 0.28
0.172 749 378 14 3 121.3 0.21 2 0.25
0.194 795 355 15 3 121.3 0.34 0 0.23
0.222 899 348 24 2 120.1 0.29 3 0.25
0.235 941 348 24 2 120.0 0.29 3 0.26
0.254 1006 348 24 2 121.7 0.29 3 0.28
0.271 1066 359 24 2 121.9 0.29 3 0.29
0.297 1169 356 24 2 121.9 0.29 4 0.32
0.325 1273 389 24 2 121.9 0.30 4 0.35
0.359 1494 353 23 2 121.6 0.30 4 0.41
0.395 1644 409 23 2 121.9 0.35 8 0.45
0.418 1737 411 24 2 122.0 0.34 8 0.46
0.473 2274 496 16 3 119.9 0.40 0 0.56
0.489 2389 489 24 2 122.4 0.45 7 0.58
0.521 2842 522 16 3 121.0 0.45 1 0.65
0.550 3057 563 16 3 122.7 0.48 0 0.68
0.562 3192 553 16 3 122.4 0.41 0 0.71
0.585 3718 630 16 3 120.5 0.38 1 0.76
0.601 3966 632 16 3 120.6 0.38 1 0.79
0.636 4701 721 16 3 121.7 0.45 1 0.87
0.648 5152 763 16 3 121.5 0.43 1 0.93
0.672 6076 782 16 3 121.2 0.43 1 0.99
0.684 6321 761 16 3 122.7 0.43 1 1.02
0.706 6822 899 24 2 124.0 0.99 0 1.09
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A.31 Asymmetric Walker: Limited Satellites Results

Table A.31: Non-dominated front design details

(a) NT ≤ 12

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.000 99 772 3 1 112.9 0.00 2 0.10
0.029 118 444 1 4 86.5 0.28 0 0.14
0.045 133 374 1 6 120.9 0.10 0 0.13
0.051 143 407 1 6 61.5 0.72 0 0.16
0.082 165 387 2 4 120.5 0.13 1 0.15
0.098 180 386 2 4 120.5 0.13 1 0.17
0.114 193 390 3 4 121.9 0.13 1 0.14
0.133 207 390 3 4 121.9 0.13 1 0.16
0.146 219 386 3 4 120.5 0.13 1 0.17
0.165 237 380 3 4 119.7 0.14 1 0.19
0.173 255 470 3 4 122.2 0.15 1 0.21
0.202 323 450 12 1 120.9 0.22 2 0.22
0.214 342 448 12 1 121.0 0.22 2 0.24
0.225 357 444 12 1 120.8 0.22 2 0.25
0.235 386 460 12 1 120.8 0.21 2 0.27
0.272 476 574 6 2 122.7 0.22 3 0.33
0.306 554 663 12 1 122.9 0.21 2 0.39
0.311 563 663 12 1 122.9 0.21 2 0.39
0.324 613 660 12 1 122.6 0.35 2 0.39
0.349 688 760 12 1 123.3 0.36 1 0.44
0.358 719 718 12 1 122.7 0.32 4 0.46
0.374 824 792 12 1 123.3 0.36 1 0.49
0.394 829 901 12 1 123.9 0.29 5 0.53
0.413 899 903 12 1 123.8 0.34 2 0.57
0.424 966 905 12 1 123.8 0.34 2 0.60
0.438 1063 977 12 1 124.1 0.36 2 0.62
0.443 1103 985 12 1 124.2 0.37 2 0.64
0.466 1698 998 12 1 124.5 0.36 5 0.88

(b) NT ≤ 24

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.034 120 400 1 5 60.7 0.13 0 0.12
0.057 143 426 1 5 121.8 0.31 0 0.18
0.089 169 363 3 3 121.4 0.13 2 0.13
0.131 205 367 3 4 121.5 0.13 2 0.15
0.150 219 363 3 4 121.3 0.15 1 0.17
0.179 263 367 3 4 121.3 0.13 0 0.21
0.206 294 352 4 4 121.5 0.13 2 0.20
0.228 329 361 4 4 121.5 0.13 3 0.23
0.254 354 369 6 3 121.8 0.28 3 0.19
0.303 388 362 6 4 121.8 0.30 3 0.17
0.326 411 369 6 4 121.8 0.28 3 0.19
0.344 426 390 6 4 121.6 0.30 3 0.20
0.381 476 390 6 4 121.4 0.26 1 0.23
0.422 567 440 8 3 121.5 0.37 1 0.25
0.450 615 452 8 3 121.8 0.37 6 0.27
0.471 655 451 8 3 121.8 0.36 7 0.28
0.486 705 484 8 3 120.8 0.37 6 0.31
0.513 762 539 8 3 122.7 0.32 1 0.33
0.535 809 533 8 3 122.5 0.34 1 0.35
0.564 906 642 8 3 122.3 0.35 2 0.39
0.586 1012 681 8 3 119.2 0.40 2 0.42
0.608 1108 756 8 3 119.0 0.39 2 0.46
0.623 1168 768 8 3 118.4 0.38 2 0.48
0.640 1294 841 8 3 118.2 0.38 2 0.53
0.662 1422 931 8 3 118.5 0.41 2 0.57
0.690 1521 956 23 1 124.3 0.45 11 0.60
0.712 1705 978 24 1 124.1 0.45 12 0.64
0.731 1824 967 24 1 124.1 0.47 11 0.68

(c) NT ≤ 48

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.028 118 429 1 5 120.8 0.31 0 0.11
0.068 149 403 2 3 121.0 0.13 1 0.15
0.093 174 399 3 3 120.4 0.13 1 0.15
0.133 206 421 3 4 121.9 0.14 1 0.16
0.163 233 403 3 4 122.0 0.14 2 0.19
0.182 264 407 3 5 121.9 0.14 2 0.19
0.205 318 403 3 6 121.7 0.14 2 0.21
0.248 349 359 5 4 121.7 0.23 2 0.17
0.301 384 409 6 4 122.0 0.28 2 0.18
0.329 410 359 6 4 121.9 0.27 1 0.19
0.357 445 374 6 4 121.9 0.29 2 0.21
0.380 469 402 6 4 121.5 0.28 2 0.23
0.412 508 375 6 5 121.1 0.29 1 0.21
0.468 567 399 9 4 121.2 0.41 2 0.19
0.516 630 385 9 4 120.6 0.39 1 0.21
0.531 654 397 9 4 120.7 0.41 0 0.23
0.571 705 380 9 4 120.9 0.42 0 0.24
0.598 748 409 9 4 121.1 0.43 3 0.26
0.635 804 400 11 4 121.2 0.50 3 0.23
0.673 837 392 12 4 121.6 0.50 5 0.23
0.718 925 429 12 4 121.8 0.52 5 0.25
0.736 988 455 12 4 121.8 0.52 5 0.27
0.760 1045 434 12 4 121.4 0.55 5 0.28
0.794 1196 505 12 4 121.3 0.54 6 0.32
0.822 1395 538 12 4 121.5 0.52 6 0.37
0.855 1461 587 15 3 122.8 0.62 2 0.39
0.878 1630 604 16 3 122.7 0.63 2 0.41
0.904 1895 702 16 3 120.3 0.65 3 0.47

(d) NT ≤ 60

P̃ C hGOM Np Nsp i ξΩ F D
- $M km − - deg − − m

0.029 118 419 1 5 121.2 0.61 0 0.11
0.060 148 424 1 5 59.0 0.53 0 0.19
0.088 168 359 2 4 119.1 0.12 1 0.15
0.131 206 351 3 4 120.7 0.14 1 0.15
0.161 240 380 3 4 119.6 0.12 1 0.19
0.180 297 402 6 3 121.4 0.29 5 0.14
0.221 323 401 6 3 121.4 0.27 4 0.17
0.261 359 432 6 3 121.9 0.29 2 0.20
0.291 379 424 6 4 122.1 0.29 2 0.17
0.320 409 431 6 4 121.9 0.30 1 0.19
0.363 444 418 6 4 122.1 0.29 2 0.21
0.394 510 419 7 4 122.0 0.34 2 0.20
0.405 520 423 7 4 122.1 0.31 3 0.21
0.448 565 417 8 4 122.0 0.34 2 0.21
0.487 589 420 9 4 120.3 0.41 4 0.20
0.515 618 424 9 4 120.8 0.39 3 0.21
0.572 712 433 9 4 121.7 0.42 3 0.25
0.605 772 420 11 4 121.0 0.46 4 0.22
0.637 802 413 11 4 120.0 0.46 5 0.23
0.657 835 412 12 4 119.9 0.46 6 0.23
0.700 891 415 12 4 122.1 0.50 4 0.24
0.748 1007 441 12 4 119.2 0.49 5 0.27
0.771 1042 385 15 4 119.3 0.61 5 0.23
0.798 1146 368 15 4 119.3 0.62 5 0.25
0.842 1289 470 14 4 120.9 0.60 5 0.30
0.865 1348 486 15 4 120.6 0.62 7 0.30
0.885 1421 482 15 4 120.8 0.61 7 0.31
0.914 1951 646 18 3 122.9 0.66 5 0.45
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A.32 Sun-Synchronous Architecture Results

Table A.32: Non-dominated front design details

(a) Scenario 1

P̃ C hGOM Np Nsp D
- $M km − - m

0.017 116 485 1 5 0.11
0.042 136 485 1 5 0.16
0.061 175 443 1 5 0.22
0.093 235 433 2 5 0.17
0.125 296 433 2 5 0.22
0.163 353 412 3 5 0.19
0.190 420 363 4 5 0.16
0.232 467 413 4 5 0.20
0.269 538 393 5 5 0.18
0.285 561 413 5 5 0.20
0.306 623 413 5 5 0.22
0.341 654 403 6 5 0.20
0.390 743 402 7 5 0.19
0.406 777 453 7 5 0.21
0.441 837 381 6 6 0.23
0.468 919 461 9 4 0.23
0.492 952 461 9 4 0.24
0.526 1013 462 9 4 0.26
0.553 1137 462 9 4 0.28
0.593 1213 488 9 4 0.30
0.631 1336 515 9 4 0.34
0.660 1498 659 9 4 0.39
0.686 1551 659 9 4 0.41
0.718 1746 727 11 3 0.46
0.745 2001 794 12 3 0.50
0.766 2408 956 16 2 0.58
0.799 2548 952 17 2 0.58
0.826 2704 955 18 2 0.59

(b) Scenario 2

P̃ C hGOM Np Nsp D
- $M km − - m

0.000 107 758 1 4 0.10
0.004 156 359 1 8 0.13
0.034 218 345 1 9 0.20
0.079 354 365 2 6 0.25
0.099 427 365 2 6 0.30
0.132 530 365 3 6 0.27
0.174 668 365 4 6 0.26
0.186 704 365 4 6 0.28
0.229 838 365 5 6 0.28
0.254 913 365 5 6 0.30
0.284 1007 365 6 6 0.28
0.319 1110 365 6 6 0.31
0.351 1220 365 6 6 0.35
0.373 1289 365 6 6 0.37
0.403 1389 381 6 6 0.41
0.434 1488 364 7 5 0.43
0.465 1612 392 7 5 0.47
0.493 1755 413 7 5 0.52
0.525 1897 462 9 4 0.52
0.559 2056 461 9 4 0.56
0.598 2315 542 9 4 0.62
0.621 2452 515 9 4 0.65
0.649 2742 542 9 4 0.72
0.682 3109 605 12 3 0.76
0.717 3666 663 12 3 0.86
0.743 4895 871 17 2 1.04
0.771 5179 878 17 2 1.09
0.806 5548 880 18 2 1.10

(c) Scenario 3

P̃ C hGOM Np Nsp D
- $M km − - m

0.009 114 443 1 5 0.10
0.027 148 414 1 5 0.19
0.062 268 413 2 5 0.21
0.070 312 412 2 5 0.24
0.095 375 413 3 5 0.21
0.124 476 413 4 5 0.21
0.146 553 365 4 6 0.21
0.171 634 402 6 5 0.19
0.191 713 383 7 5 0.18
0.211 754 383 7 5 0.20
0.230 827 382 8 5 0.19
0.257 917 382 9 5 0.19
0.278 986 495 9 5 0.22
0.306 1109 433 8 5 0.27
0.320 1139 402 9 5 0.25
0.346 1225 433 9 5 0.27
0.370 1423 557 24 2 0.26
0.392 1495 557 24 2 0.28
0.415 1578 563 24 2 0.30
0.437 1650 561 24 2 0.32
0.460 1792 683 22 2 0.39
0.487 1875 673 22 2 0.42
0.504 1984 611 24 2 0.41
0.536 2193 748 15 3 0.44
0.555 2279 748 16 3 0.43
0.576 2346 751 16 3 0.45
0.598 2469 748 16 3 0.48
0.621 2745 887 15 3 0.57

(d) Scenario 4

P̃ C hGOM Np Nsp D
- $M km − - m

0.000 107 874 1 4 0.10
0.006 166 358 1 8 0.15
0.034 353 358 2 8 0.21
0.056 457 365 2 6 0.32
0.080 609 364 3 6 0.31
0.103 766 365 3 6 0.39
0.136 926 365 5 6 0.31
0.159 1053 365 6 6 0.30
0.182 1182 365 7 6 0.29
0.209 1332 365 8 6 0.29
0.245 1550 381 7 6 0.40
0.268 1705 363 9 5 0.39
0.294 1847 392 9 5 0.44
0.312 1979 393 9 5 0.47
0.334 2204 498 24 2 0.47
0.371 2458 493 24 2 0.52
0.395 2659 504 24 2 0.56
0.415 2859 550 24 2 0.60
0.440 3295 665 16 3 0.65
0.465 3516 663 16 3 0.69
0.500 3898 630 12 4 0.79
0.515 4049 663 16 3 0.77
0.543 4451 727 16 3 0.84
0.580 4982 751 16 3 0.91
0.596 5271 793 16 3 0.95
0.621 6719 864 16 3 1.02
0.646 7186 863 16 3 1.08
0.673 8971 964 16 3 1.17
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Table A.33: Non-dominated front design details

(a) Scenario 1

P̃ C hGOM NT NE ∆i D
- $M km − - − m

0.017 52 427 1 2 0.64 0.15
0.051 88 392 3 2 0.32 0.14
0.083 117 408 3 2 0.58 0.21
0.099 150 530 4 3 0.31 0.23
0.129 173 391 5 2 0.87 0.23
0.151 204 424 7 2 0.46 0.21
0.163 215 428 7 2 0.79 0.22
0.187 259 429 9 2 0.98 0.22
0.239 329 439 11 2 0.71 0.25
0.267 385 456 13 2 0.75 0.25
0.283 413 448 13 2 0.62 0.27
0.316 479 388 17 2 0.81 0.25
0.348 539 415 19 2 0.82 0.26
0.357 557 432 19 2 0.82 0.27
0.373 619 529 17 2 0.87 0.33
0.394 685 567 17 2 0.85 0.36
0.408 730 495 22 2 0.82 0.31
0.424 756 501 23 2 0.85 0.31
0.447 837 506 25 2 0.90 0.32
0.466 916 663 21 2 0.78 0.42
0.490 1029 740 21 2 0.79 0.47
0.511 1115 593 29 2 0.85 0.39
0.546 1312 675 31 2 0.88 0.44
0.565 1491 800 29 2 0.71 0.52
0.576 1559 799 31 2 0.72 0.52
0.606 1889 866 34 2 0.93 0.58
0.621 2231 1000 32 2 0.69 0.68
0.636 2490 1000 36 2 0.85 0.69

(b) Scenario 2

P̃ C hGOM NT NE ∆i D
- $M km − - − m

0.008 59 349 1 2 0.41 0.17
0.035 116 358 3 2 0.44 0.21
0.049 145 376 3 2 0.52 0.26
0.072 205 368 5 4 0.06 0.27
0.095 258 382 5 4 0.48 0.33
0.113 317 405 7 2 0.85 0.33
0.134 385 343 9 1 0.32 0.32
0.159 444 387 9 2 0.67 0.38
0.179 504 371 9 2 0.65 0.43
0.205 560 373 13 2 0.64 0.36
0.223 613 349 13 2 0.75 0.40
0.255 695 397 15 2 0.71 0.41
0.268 759 337 19 2 0.67 0.35
0.302 846 344 19 2 0.72 0.41
0.312 894 383 19 2 0.72 0.44
0.337 1007 412 19 2 0.89 0.50
0.362 1110 408 21 2 0.70 0.50
0.380 1199 358 25 2 0.85 0.47
0.402 1341 390 25 2 0.79 0.53
0.426 1471 402 29 2 0.70 0.52
0.451 1760 501 29 2 0.65 0.60
0.467 1845 411 35 2 0.71 0.55
0.491 2061 477 33 2 0.83 0.63
0.509 2309 503 36 2 0.85 0.66
0.537 2923 669 31 2 0.75 0.85
0.556 3243 671 35 2 0.86 0.86
0.591 4286 789 35 2 0.85 1.03
0.597 4948 841 32 2 0.90 1.18

(c) Scenario 3

P̃ C hGOM NT NE ∆i D
- $M km − - − m

0.007 49 368 1 2 0.79 0.13
0.031 89 368 3 2 0.79 0.13
0.040 106 469 3 2 0.43 0.19
0.068 141 491 4 3 0.26 0.22
0.088 171 422 4 3 0.83 0.26
0.103 235 591 4 3 0.77 0.35
0.123 254 374 9 4 0.80 0.21
0.145 290 441 10 3 0.63 0.23
0.157 322 395 13 3 0.79 0.20
0.185 379 444 13 3 0.78 0.25
0.198 412 409 16 3 0.58 0.22
0.214 446 430 16 3 0.62 0.25
0.226 476 438 16 3 0.63 0.26
0.258 561 451 19 3 0.71 0.27
0.292 650 429 25 3 0.87 0.25
0.319 773 471 25 3 0.76 0.30
0.332 823 494 28 3 0.60 0.29
0.346 859 456 28 3 0.90 0.30
0.377 998 511 31 3 0.74 0.32
0.379 1023 472 31 3 0.83 0.33
0.398 1102 492 35 3 0.80 0.32
0.420 1215 566 34 3 0.83 0.37
0.432 1299 636 34 3 0.81 0.40
0.446 1411 699 35 3 0.90 0.43
0.468 1588 789 34 3 0.80 0.49
0.495 1825 836 34 3 0.92 0.56
0.506 2035 951 34 3 0.84 0.61
0.519 2368 981 36 4 0.85 0.67

(d) Scenario 4

P̃ C hGOM NT NE ∆i D
- $M km − - − m

0.006 69 346 1 2 0.84 0.21
0.039 154 374 4 3 0.81 0.24
0.052 198 341 5 4 0.78 0.25
0.070 262 370 5 4 0.73 0.33
0.090 359 374 9 4 0.78 0.31
0.108 424 372 10 3 0.29 0.33
0.132 517 400 10 3 0.55 0.42
0.138 555 380 13 3 0.93 0.36
0.164 656 408 13 3 0.91 0.43
0.175 720 379 19 3 0.76 0.34
0.191 777 467 16 3 0.88 0.44
0.214 863 407 19 3 0.80 0.43
0.223 918 406 19 3 0.90 0.45
0.240 1003 406 22 3 0.74 0.44
0.271 1146 341 28 3 0.72 0.41
0.279 1200 387 25 3 0.83 0.48
0.297 1311 400 28 3 0.74 0.48
0.314 1428 384 31 3 0.68 0.48
0.328 1510 379 31 3 0.80 0.50
0.350 1605 402 34 3 0.88 0.50
0.368 2071 456 33 3 0.89 0.63
0.390 2112 477 34 3 0.89 0.63
0.397 2220 508 34 3 0.92 0.66
0.418 2854 633 32 3 0.90 0.82
0.435 2952 616 34 3 0.90 0.81
0.452 3537 681 34 3 0.78 0.92
0.464 3930 759 34 3 0.75 0.99
0.481 4806 931 33 4 0.71 1.14
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