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Abstract

Bayesian inference provides a probabilistic framework for combining prior knowl-
edge with mathematical models and observational data. Characterizing a Bayesian
posterior probability distribution can be a computationally challenging undertaking,
however, particularly when evaluations of the posterior density are expensive and
when the posterior has complex non-Gaussian structure. This thesis addresses these
challenges by developing new approaches for both exact and approximate posterior
sampling. In particular, we make use of deterministic couplings between random
variables—i.e., transport maps—to accelerate posterior exploration.

Transport maps are deterministic transformations between (probability) measures.
We introduce new algorithms that exploit these transformations as a fundamental tool
for Bayesian inference. At the core of our approach is an efficient method for con-
structing transport maps using only samples of a target distribution, via the solution
of a convex optimization problem. We first demonstrate the computational efficiency
and accuracy of this method, exploring various parameterizations of the transport
map, on target distributions of low-to-moderate dimension. Then we introduce an
approach that composes sparsely parameterized transport maps with rotations of
the parameter space, and demonstrate successful scaling to much higher dimensional
target distributions. With these building blocks in place, we introduce three new
posterior sampling algorithms.

First is an adaptive Markov chain Monte Carlo (MCMC) algorithm that uses a
transport map to define an efficient proposal mechanism. We prove that this algorithm
is ergodic for the exact target distribution and demonstrate it on a range of parameter
inference problems, showing multiple order-of-magnitude speedups over current state-
of-the-art MCMC techniques, as measured by the number of effectively independent
samples produced per model evaluation and per unit of wall clock time.

Second, we introduce an algorithm for inference in large-scale inverse problems
with multiscale structure. Multiscale structure is expressed as a conditional inde-
pendence relationship that is naturally induced by many multiscale methods for the
solution of partial differential equations, such as the multiscale finite element method
(MsFEM). Our algorithm exploits the offline construction of transport maps that
represent the joint distribution of coarse and fine-scale parameters. We evaluate the
accuracy of our approach via comparison to single-scale MCMC on a 100-dimensional
problem, then demonstrate the algorithm on an inverse problem from flow in porous
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media that has over 105 spatially distributed parameters.
Our last algorithm uses offline computation to construct a transport map repre-

sentation of the joint data-parameter distribution that allows for efficient conditioning
on data. The resulting algorithm has two key attributes: first, it can be viewed as
a “likelihood-free” approximate Bayesian computation (ABC) approach, in that it
only requires samples, rather than evaluations, of the likelihood function. Second, it
is designed for approximate inference in near-real-time. We evaluate the efficiency
and accuracy of the method, with demonstration on a nonlinear parameter inference
problem where excellent posterior approximations can be obtained in two orders of
magnitude less online time than a standard MCMC sampler.

Thesis Supervisor: Youssef Marzouk
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction and background

Scientists and engineers use mathematics as a convenient language for describing
our belief of how the world should behave. On the other hand, we have reality –
how the world actually behaves. Ensuring that our mathematical descriptions agree
with observations of reality is important when using mathematics as a tool to make
predictions and decisions. This fundamental problem of calibrating a mathematical
description (a mathematical model) to observations is generally called an inverse prob-
lem. We will formulate inverse problems with probabilistic representations of what we
believe should happen and what actually happens. This corresponds to formulating
the inverse problem as a Bayesian inference problem, where beliefs are represented
as probability distributions. Our goal in this work is to develop new and more effi-
cient ways for characterizing probability distributions which arise in the solution of
Bayesian inference problems. In particular, we will use deterministic transformations
called transport maps to develop efficient posterior sampling algorithms.

1.1 A qualitative Bayesian example

To introduce many of the ideas of Bayesian analysis at a high level, we begin by ana-
lyzing a simple question: should our friend Bill decide to go on a run this afternoon?
Note that we are not trying to decide if we think Bill should run or not. Instead, we
are trying to analyze Bill’s own decision making process.

We assume Bill’s decision to run or not this afternoon is based primarily on how
hard it is going to rain this afternoon. If it is not raining, or only sprinkling, Bill
is going to enjoy his run. On the other hand, if there is a steady drizzle, Bill is not
going to enjoy his run as much. Oddly, for some unexplained reason, our friend Bill
also enjoys running in heavy downpours. This means that if the rain becomes harder
than a drizzle, Bill will again enjoy his run. These features of Bill’s enjoyment are
shown graphically in Figure 1-1.

In Bayesian analysis, the function shown in Figure 1-1 is called the utility func-
tion and summarizes all the information needed for Bill to make a decision. In more
sophisticated situations, the utility function may represent a company’s balance of
profit and environmental risk, or some other compromise. In any case, utility func-
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Figure 1-1: Bill utility function. Bill enjoys running when he can stay dry or get
completely soaked. However, one of his quirks is that he will not run in a drizzle.

tions are related to specific decisions or questions just like “Will Bill decide to go on
a run this afternoon?”

From the utility function in Figure 1-1, we can see that Bill would decide to go on
a run if he definitely knew it was going to be sunny or if he knew that it was definitely
going to downpour. However, Bill (or anyone for that matter) does not know exactly
how hard it is going to rain this afternoon. There might be no rain, or a storm might
develop and bring intense rain. Similar to his utility function, Bill’s belief about this
afternoon’s rain is given graphically in Figure 1-2. The spike on the left represents
Bill’s belief that it will not rain while the bump of high intensity rain indicates Bill’s
belief that a storm might develop this afternoon.

Rain intensity
DrizzleNo rain Downpour
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Figure 1-2: Bill’s prior beliefs. It looks sunny outside, but rumor has it that there
may be a storm developing this afternoon. Therefore, before checking the radar, Bill
believes it will either not rain or downpour.
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Now that Bill has a representation of his possible enjoyment (via the utility func-
tion) and a characterization of his uncertainty in this afternoon’s rain, he can make a
decision. To make the decision, Bill would implicitly weight the utility function with
his belief in the rain intensity and then take an average. The higher the average,
the more likely it is that Bill will enjoy his run. Because Bill likes to run when it
is either lightly raining or down pouring, and he believes it will either rain lightly
or down pour this afternoon, his expected enjoyment would be high and he would
decide to head out for a run this afternoon. However, suppose that as Bill is putting
on his running shoes, he checks the radar and sees that it is more likely to drizzle!
This changes his beliefs about the rain intensity and therefore makes him question
his decision to run.

After seeing the radar, Bill’s belief might change to something like that shown
in Figure 1-3. Comparing Figure 1-3 with his utility function in Figure 1-1 and
recomputing his expected enjoyment, Bill decides that he is not likely to enjoy his
run. He therefore chooses to unlace his shoes and takes a nap.

Rain intensity
DrizzleNo rain Downpour

L
ik

el
ih

oo
d

of
oc

cu
rr

in
g

Figure 1-3: Bill’s posterior beliefs. After observing the radar, Bill thinks that is more
likely for a drizzle to occur.

The process of combining Bill’s prior belief in Figure 1-2 with the radar observation
to produce his posterior belief in Figure 1-3 is an application of Bayesian inference.
Bayesian inference provides a probabilistic mechanism for this type of knowledge
integration. The remainder of this thesis develops efficient tools for solving Bayesian
inference problems. Our goal is to efficiently combine prior beliefs, mathematical
forward models, and observations into a complete probabilistic description such as
Figure 1-2. Like Bill’s combination of belief and utility, the output of our tools
provide all the information needed to make well informed decisions that take into
account the many sources of uncertainty in our beliefs.
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1.2 Bayesian inference

As alluded to in section 1.1, probability distributions provide a way of representing
one’s degree of belief about some parameter θ. To formalize this concept mathemat-
ically, let θ be a random variable defined on the probability space (Ω, σ, P ), where Ω
is the sample space, σ is a sigma algebra on Ω,1 and P : σ → [0, 1] is a probability
measure that assigns a probability to every set in σ. Recall that a random variable is
a function defined over Ω, i.e., θ : Ω→ Xθ where Xθ is the set of possible values of θ.
In all of our applications, random variables will be real valued, so we have Xθ ⊆ RDθ ,
where Dθ is the dimension of θ. Notice that we can also define a sigma algebra Fθ
on Xθ, and a probability measure µθ : Fθ → [0, 1]. The measure µθ is called the
distribution of the random variable θ. Collecting Xθ, Fθ, and µθ, we will say that the
random variable θ corresponds to the probability space (Xθ,Fθ, µθ). Notice that for
any set A ∈ Fθ, the probability density π(θ) is related to the distribution µθ by

µθ(A) =

∫
A

π(θ)λ(dθ), (1.1)

where λ(·) is a reference measure (often the Lebesgue measure), and λ(dθ) is the
measure of the infinitesimal dθ. In this thesis, we will almost always assume that µθ
admits a density with respect to Lebesgue measure.

In the Bayesian context, the density π(θ) represents an a priori belief about the
random variable θ.2 Observations are represented by another random variable d and
the conditional density π(θ|d) represents the a posteriori knowledge of the parame-
ters. Unfortunately, we cannot usually evaluate or sample the density π(θ|d) directly.
However, Bayes’ rule expands the posterior density into a more useful form. Bayes’
rule can be simply derived from the law of total probability3 to obtain

π(θ|d) =
π(d, θ)

π(d)
=
π(d|θ)π(θ)

π(d)
∝ π(d|θ)π(θ), (1.2)

1Recall that a σ-algebra is a collection of subsets of the sample space Ω that is closed under
a countable number of set operations. For more information, chapter 2 of [92] provides a nice
introduction to σ-algebras and rigorous probability theory.

2In some situations, people will claim that π(θ) represents all prior knowledge. In my view, this
claim is incorrect. The model itself and the form of the error model is a form of prior information
that is embedded into the likelihood function. Thus, π(θ) represents all prior information given the
particular structure of the likelihood. Model selection is beyond the scope of this thesis and we will
thus continue to follow the classic presentation of Bayes’ rule. However, readers should be aware that
a more rigorous presentation of Bayes’ rule in our context would include the model parameterization
of the posterior: π(θ|d;M) = π(d|θ;M)π(θ;M)/π(d;M). In fact, in [56], Jaynes goes a step further,
using π(θ|d; I) = π(d|θ; I)π(θ; I)/π(d; I) where I represents all prior modeling assumptions, human
bias, etc.

3 Bayes’ rule was originally introduced by Reverend Thomas Bayes in the mid 18th century. The
original formulation was for the Binomial distribution but was later generalized into its modern form
around 1800 by Pierre-Simon Laplace and Carl Friedrich Gauss as a mechanism for combining past
information with current observations to learn about parameters of a statistical model. See [44] for
a thorough history of Bayesian inference.
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where π(θ) is the prior probability density, π(d|θ) is called the likelihood function, and
π(d) =

∫
Xθ
π(d|θ)π(θ)λ(dθ) is a normalization constant called the evidence. Using

a predictive model taking θ as an input, the likelihood function compares model
predictions to data for a particular value of θ.

Consider again Bill’s decision to run or not to run. In this example, π(θ) is rep-
resentative of Bill’s belief in the rain intensity before looking at the radar. Assuming
Bill is both a runner and a Bayesian statistician, he would use π(θ) and his utility
function h(θ) to express his a priori expected enjoyment as

Eprior =

∫ ∞
−∞

h(θ)π(θ)λ(dθ). (1.3)

This is simply the mathematical form of combining Figures 1-1 and 1-2. Now let
d denote the radar observations. After observing d, Bill’s belief about the rain is
represented by a new a posteriori density π(θ|d), which corresponds to Figure 1-3.
Bill’s expected enjoyment is now given by

Epost =

∫ ∞
−∞

h(θ)π(θ|d)λ(dθ). (1.4)

The only thing that has changed between (1.3) and (1.4) is Bill’s belief in the rain
intensity. Unfortunately, evaluating the posterior integral (1.4) can be quite difficult
because no general analytic forms exists for Bayesian posteriors. Moreover, the ev-
idence π(d) cannot generally be computed efficiently, so methods for characterizing
π(θ|d) and subsequently computing (1.4) need to rely solely on either evaluations of
π(d|θ)π(θ) or on prior samples of π(d|θ)π(θ).

Existing methods that only use the numerator of (1.2) to characterize the posterior
π(θ|d) can be broadly separated into two groups. The first group contains methods
that represent the posterior with samples. Typical examples of this group are Markov
chain Monte Carlo methods and importance sampling methods. Importantly, these
methods yield exact posterior estimates as the number of samples grow to infinity.
The second group contains variational Bayesian methods that build variational ap-
proximations to the posterior density itself [54]. The accuracy of these method is
limited by the class of approximating distributions and how well the approximating
distributions match the target distribution. The focus of this work will be on efficient
sampling strategies because of their flexibility and robustness. Moreover, properly
defined sampling methods can exactly represent any posterior distribution.

After some necessary background in the remainder of this chapter, we will develop
three methods for efficiently sampling π(θ|d) in chapters 3, 4, and 5. All three of these
approaches utilize a new method for constructing transport maps from samples, which
we first introduce in Chapter 2.
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1.3 Sampling methods

One approach to approximate (1.3) or (1.4) is with Monte Carlo integration. Monte
Carlo strategies rely on numerous realizations of a random variable to approximate
the expectations with a finite sum. However, generating the necessary samples from
arbitrary densities, such as π(θ|d), is not a trivial task. Variable transformations
provide one avenue for this sampling. For example, sampling a one dimensional
random variable with analytically defined inverse cumulative distribution functions
(CDF) is as easy as evaluating the inverse CDF. This is a simple example of a one
dimensional random variable transformation. More general variable transformations,
such as the Knothe-Rosenblatt transform, can be constructed in higher dimensions
[91, 102], and will serve as a fundamental component of all new methods we develop.
However, exact variable transformations are not always available and other indirect
methods are required. Indirect methods build upon easily sampled distributions (e.g.,
Gaussian, uniform, etc...) to generate samples from more difficult densities such as
π(θ|d).

An abundance of algorithms have been developed that combine an analytically
tractable proposal distribution with a correction step to generate samples (perhaps
weighted) of the target random variable. Important examples include importance
sampling, rejection sampling, and Markov chain Monte Carlo (MCMC) [68, 82]. Of
these strategies, our work will focus on MCMC; however, the underlying concepts
introduced in Chapter 4 can easily be passed on to methods with other correction
techniques.

1.3.1 Markov chain Monte Carlo

Originally introduced in [76] by a group of Los Alamos and University of Chicago
researchers in the context of statistical physics, MCMC methods construct an ergodic
Markov chain in the parameter space Xθ that has the desired target distribution as a
stationary distribution. In the Bayesian setting, the target distribution is the posterior
distribution µθ|d defined for any A ∈ Fθ by

µθ|d(A) =

∫
A

π(θ|d)λ(dθ). (1.5)

After a sufficient number of steps, the states of the chain can be used as correlated
samples of the target distribution. This relies on the fact that the Markov chain is
ergodic and has the target distribution as a stationary distribution. The transition
kernel of the chain at step t can depend on the current state, θt and is often defined
by coupling a position dependent proposal distribution, q(θ|θt), with an accept-reject
corrective stage. To ensure convergence to the target distribution, a sample θ′ ∼
q(θ|θt) will be accepted as the next point in the chain, θt+1, with an acceptance
probability given by

α = min

{
1,
π(θ′|d)q(θt|θ′)
π(θt|d)q(θ′|θt)

}
. (1.6)
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This expression is called the Metropolis-Hastings rule, and is the basis for almost
all modern MCMC approaches. In [45], Hastings proposed this generalization of
Metropolis’s original acceptance rule in [76].

Unlike direct sampling approaches, MCMC produces correlated samples of the
posterior4 because the transition kernel depends on the current state of the chain.
Intuitively, this correlation reduces the amount of “information” contained in the
samples, and subsequently reduces the Monte Carlo integration accuracy.

Consider in more detail the impact of this correlation on a Monte Carlo estimate.

Let ˆ̄θn be the estimate of θ̄ = Eθ|d[θ] using n correlated samples: {θ0, θ1, . . . , θn}.
Assuming the target distribution has finite variance and under some additional con-
ditions on the Markov chain (e.g., the chain is geometrically ergodic [55, 84]), the
Monte Carlo estimate will satisfy a central limit theorem and converge (see [59] for
details) as

√
n
(

ˆ̄θn − θ̄
)
→ N

(
0, σ2

)
, (1.7)

where

σ2 = Var
θ|d

[θ] + 2
∞∑
i=1

Cov [θ0, θi] . (1.8)

The inter-sample covariance Covθ|d [θ0, θi] describes the correlation between states in
the chain. It is important to realize that this covariance is a function of the chain
itself, and only indirectly depends on the target density. In fact, this covariance
qualitatively captures the average difference between subsequent states in the chain.

Notice that the inter-sample covariance Covθ|d [θ0, θi] increases the variance of
the Monte Carlo estimate. Since our goal is to obtain an accurate estimate of θ̄
by reducing the Monte Carlo variance, with larger inter-sample correlations, we will

need a longer chain to obtain an accurate estimate ˆ̄θ. Longer chains mean more
computational effort, which may prove intractable when posterior evaluations require
expensive model solves. To overcome this, efficient MCMC schemes must reduce the
inter-sample correlation. This correlation occurs for two reasons:

• The Metropolis-Hastings correction rejects many proposals because α is near
zero.

• The proposed moves are small deviations from the current state, i.e., ‖θt+1−θt‖
is small.

In attempts to alleviate both of these issues, modern MCMC algorithms try to con-
struct proposal mechanisms that (at least locally) mimic the posterior. This ensures
that large proposal steps will have a high acceptance probability and subsequently
reduce inter-sample correlation. Most strategies to construct such proposal mecha-
nisms use either on-line proposal adaption [41, 5], maintain multiple points in the

4In this context, we are discussing the correlation between states in the MCMC chain, not the
correlation between components of θ. It may be useful here to think of the entire MCMC chain as
a random variable, where one MCMC run produces one sample of the chain random variable.
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state space [103, 23], utilize higher order derivative information [39, 73, 20], or com-
bine adaptation with higher order information [72, 9]. There has also been work on
problems where θ is high dimensional and represents the discretization of an infinite
dimensional random field [43, 25, 65]; however, this work is not applicable to general
target distributions and we will not discuss this topic in detail.

1.3.2 Approximate Bayesian computation

For some problems, especially in applications with a large number of latent or hid-
den variables, it can be inexpensive to draw a sample from the likelihood π(d|θ),
but expensive to evaluate the density. These problems motivated the development
of approximate Bayesian computation (ABC) methods, also known as likelihood-free
methods, that can approximately solve Bayesian inference problems without evalu-
ating the likelihood. In order to sample the posterior, a very basic ABC algorithm
would first generate a sample θ′ from π(θ) or some other distribution, then use θ′ to
generate a sample d′ ∼ π(d|θ′), and finally compare d′ to the observed data. The
sample will be rejected if there is a large discrepancy between d′ and observations.
Discrepancy is measured by the difference between some statistics of d and d′, e.g.,
ρ(d, d′) = ‖ψ(d)−ψ(d′)‖ where ψ(d) is a sufficient statistic for d. In the simplest case,
ψ(d) is simply d itself. Different ABC algorithms will generate the initial sample θ′ in
difference ways. Basic algorithms simply use the prior while more sophisticated algo-
rithms use techniques such as MCMC [71] or sequential Monte Carlo [95]. Using more
sophisticated proposals for θ′ reduces the number of rejected samples and increases
sampling efficiency. See [27] or [70] for a more complete review of ABC variants.

As Algorithm 1 shows, the basic ABC algorithm can be written in four steps. This
simple algorithm provides an intuitive view of Bayesian inference: Bayesian inference
creates a “slice” of the joint distribution of (d, θ) by rejecting samples that do not
satisfy d = d′. To see this more clearly, consider the basic rejection-based algorithm
for a problem with θ ∈ R2 and d ∈ R. Figure 1-4 shows joint samples of (d, θ) and
what is left after rejecting samples that disagree with the data. This process becomes
exact, although increasingly inefficient, as the tolerance ε in Algorithm 1 goes to
zero. As mentioned above, more efficient ABC methods use MCMC or importance
sampling ideas to steer the proposal towards regions where d ≈ d′.

ABC methods are often called likelihood-free methods because they do not require
evaluations of the likelihood function. In Chapter 5 we will introduce a new likelihood-
free inference methodology that, like ABC, uses only samples of π(d, θ) and not
likelihood evaluations. However, our approach differs from ABC in two ways: (i) we
do not require the observation of d for most of our computation, and (ii) once an
initial set of joint samples is generated, we do not even require the model to generate
samples of an approximate posterior. In this sense, our new method can be seen as a
model-free extension of classic likelihood free algorithms.

Being model-free also allows us to decompose the posterior sampling into two
stages. The first stage is a computational expensive offline stage where we generate
joint prior samples of θ and d in order to construct a transport map. This offline stage
is followed by an online stage where we use the transport map to rapidly generate
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Algorithm 1.1: Simple rejection-based ABC algorithm.

Input: Distance function ρ(d, d′), tolerance ε, Number of samples Ns

Result: Approximate samples, {θ1, θ2, . . . , θNs}, of the posterior distribution
π(θ|d)

1 while t < Ns do
2 Generate θ′ from π(θ)
3 Simulation d′ from π(d′|θ)
4 if ρ(d, d′) < ε then
5 Accept sample: θt = θ′

6 t = t+ 1

samples of π(θ|d) once d has been observed.

θ1θ2

d

(a) Joint samples of π(d, θ) before rejection

θ1θ2

d

(b) Posterior samples approximating π(θ|d =
0)

Figure 1-4: Illustration of the basic ABC algorithm. We first generate joint samples
of θ and d as illustrated in Figure 1-4(a). Then, samples that do not agree with the
data are rejected. In this problem, joint samples that do not satisfy |d| < ε = .0001
are rejected. This leaves us with samples of the posterior, illustrated in Figure 1-4(b).

1.4 A qualitative overview of transport maps

In order to build upon existing methods such as MCMC and ABC and to make our
inference algorithms efficient, we will use a mathematical tool called a transport map.
Transport maps are functions that transform between probability distributions such
as Bill’s beliefs prior beliefs in Figure 1-2 and his posterior beliefs in 1-3. Like Bill’s
running example, this section uses a scenario to provide a high level description of
transport maps.

Here we will discuss the exploits of a man named Tim5, who has an eyesore of a

5We chose the name Tim for a reason. T im’s actions will be analogous to our use of a transport
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dirt pile in his backyard and will transfer the dirt to a pit in his neighbor’s backyard.
It may seem odd to talk about moving dirt in the context of probability theory, but
this dirt transportation problem is intricately linked to transport maps. In fact, the
original mathematical discussion of this problem by Gaspard Monge in 1781 also
focused on such a dirt transportation problem [78].

Tim wants to move his dirt pile, but needs a place to put it. Fortunately, his
neighbor Frank6 has a large empty pit that is exactly the same size as the dirt pile.
After some neighborly discussion, Frank has agreed to let Tim transport all the dirt
from his pile to the pit. The top row of Figure 1-6 shows the pile of dirt and the
nearby pit.
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Figure 1-5: Tim’s second attempt results in optimal dirt transportation when he
cannot spread the dirt throughout the pit.

There are many ways for Tim to move all of the dirt from the pile to the pit. He
could move all the dirt on the left of the pile to the right of the pit, he could do the
opposite and move all the dirt on the right to the left, etc... Having multiple solutions
means this problem is ill-posed. When using transport maps to transform between
probability distributions, a similar problem arises: there are multiple ways to exactly
transform one distribution into another. In both Tim’s situation and the more general
transport map context, some form of tie-breaking regularization is needed to find a
unique solution. For Tim, the tie-breaker is to minimize the effort it takes to move
the dirt pile. In other words, he wants to move the dirt as little as possible on average.
This results in the solution shown in Figure 1-5. In this solution, Tim moves the dirt
on the right of the pile to the right of the pit.

map denoted by T in later sections.
6The name Frank is also chosen for a reason. F rank’s actions will be analogous to the action of

the transport map F in subsequent sections.
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Now suppose that Tim instead wants to expend as much effort as possible, perhaps
he is trying to lose weight. This results in a different type of regularization and results
in the dirt transfer shown in Figure 1-6. When Tim is trying to lose weight, he carries
the dirt on the left side of the pile, as far as possible to the right side of the pit.
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Figure 1-6: Tim’s first attempt results in suboptimal dirt transportation.

The minimum effort solution in Figure 1-5 and the maximum effort solution Figure
1-6, illustrate that the best method of moving the dirt is dependent on the Tim’s goals.
In other words, the type of regularization dictates the form of the transformation.
This is the same with transport maps; the form of the optimal transport map is
dependent on a regularization cost and different cost functions result in different
forms of the map. This fact is given a more mathematical treatment in Section 2.1.

Both the minimum and maximum effort solutions above are deterministic trans-
formations, i.e., Tim took dirt from a small area of the pile and placed it in a small
area of the pit. An alternative is for Tim to take a shovel-full of dirt, walk to the edge
of the pit, and scatter the dirt randomly into the pit. This would result in the dirt
transfer shown by Figure 1-7. In the field of optimal transport, this scattering type
of transformation is a generalization of a transport map called a random coupling
or random transport plan. General couplings are outside the scope of our work but
interested readers can find the details of these transformations in [102].

Tim’s dirt transportation issues are analogous to many of the issues we face with
transport maps: (i) there are many ways that Tim can move the pile of dirt into the
pit, (ii) the pile to pit transformation is exact, i.e., all the dirt from the pile makes it
into the pit, and the pit does not change shape, and (iii) the optimal way of moving
the dirt depends on Tim’s ultimate goals. In the transport map context, these three
issue remain, except that the piles of dirt correspond to probability densities. Chapter
2 will address these issues mathematically.
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Figure 1-7: Tim can spread dirt through the pit by randomly scattering each load.

Now that Tim has filled the pit, we turn to his neighbor, and owner of the pit:
Frank. Unfortunately, Frank is a very nostalgic guy, who now misses the pit he
once thought was an eyesore. Frank therefore decides to reverse Tim’s actions and
empty the pit. But what should he do with the dirt? One option is to just pile it
up without any structure as in Figure 1-8(a). However, an alternative is to build a
pyramid using the dirt as in Figure 1-8(b). Frank will obviously need to work more
carefully to construct a pyramid than to simply make another pile. More generally,
the complexity of Frank’s transformation will be proportional to how far his target is
from the simple pile in Figure 1-8(a).

A similar problem exists in the transport map setting: it is more difficult to build
a map to a complicated probability density than a simple density. More complicated
target densities require more degrees of freedom in the map. For very complex densi-
ties, there may be too many degrees of freedom and it will not be feasible to construct
an exact transformation. In that case, we are forced to live with an approximation.
In this dirt transportation example, using an approximate map is like Frank building
the approximate pyramid shown in Figure 1-8(c). While not exact, this coarse pyra-
mid still captures much of the form Frank wanted in the original pyramid of Figure
1-8(b). Similarly, approximate transport maps often capture most of the structure
we need to develop efficient methods. We will use this fact throughout Chapters 3,
4, and 5 to develop efficient methods for sampling Bayesian posterior distributions.

Notice that T im and F rank have opposing objectives. Tim wants to take the tar-
get pile of dirt and transform it to the reference pit. On the other hand, Frank wants
to empty the reference pit and create a target pile. In chapter 2, the transport maps
T and F will have similar purposes: T will transform a general target distribution to
a Gaussian reference distribution, while F will transform the Gaussian reference into
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Target dirt pileReference pit

(a) A simple choice for emptying the pit requires little effort.

Target pyramidReference pit

(b) Building a pyramid with the dirt is more complicated and
requires more effort.

Approximate targetReference pit

(c) If Frank cannot construct the pyramid shown above, he may
have to settle with an approximation like the one shown here.

Figure 1-8: Frank’s construction choices.

the target distribution.

1.5 Thesis contributions

In Bayesian inference, exploring the posterior distribution π(θ|d) can be computation-
ally intractable due to a few key challenges: (i) computationally expensive posterior
evaluations; and (ii) high dimensional, strongly correlated, and non-Gaussian target
distributions which are difficult to sample or otherwise characterize. The leading
strategies for such problems include the many variants of Markov chain Monte Carlo
(MCMC) [17] and, more recently, optimal transport maps [79].

MCMC methods use an approximation to the posterior and a corrective method
to generate correlated samples of the posterior distribution. Unfortunately, local cor-
relations make it difficult to obtain adequate approximations even when derivative
information is available. This yields MCMC methods that require an unacceptable
number of posterior evaluations to estimate posterior expectations. On the other
hand, the optimal transport approach of [79] seeks a mapping that can that can push
samples of a reference random variable to approximate samples of the posterior. In
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many situations, this map is nearly exact and excellent performance can be achieved.
However, using the map directly cannot ensure statistically exact sampling in cases
where deterministic transformations of reasonable complexity cannot adequately ap-
proximate the posterior. In addition to these accuracy concerns, both the existing
transport map approach and MCMC also require observations to be known before
performing any computation. This precludes the use offline pre-observation compu-
tation, which could allow for near real-time post-observation posterior exploration.
These inadequacies and fundamental challenges frame the main research objectives
of this thesis:

1. To create a framework for approximate Bayesian inference that uses prior sam-
ples and extensive offline computation to enable fast Bayesian inference in the
context of nonlinear inverse problems with computationally intensive forward
models.

2. To rigorously formulate a computationally efficient, broadly applicable, and sta-
tistically exact sampling scheme for non-Gaussian Bayesian inference problems:
in particular, a scheme that targets posterior distributions with varying local
correlation structures while requiring no derivative information.

We will tackle the first objective in two ways, (i) with a framework for posterior
sampling when the posterior exhibits multiscale features (Chapter 3), and (ii) by a
new use of transport maps for approximate posterior sampling (Chapter 5). Both of
these approaches use extensive offline computation; however, the multiscale approach
is geared towards problems with large spatially-varying parameters while the direct
use of transport maps is more applicable to smaller dimensional problems that require
extremely fast post-observation sampling. To tackle the second objective, we will
combine transport maps with the Metropolis-Hastings rule to create an adaptive
MCMC algorithm (Chapter 4). All of these algorithmic developments require the
efficient construction of transport maps. Chapter 2 therefore provides an extensive
background on building transport maps from samples. All of the techniques and
tests in this thesis rely on the MIT Uncertainty Quantification software library that
we have developed. Thus, Chapter 6 provides a high level overview of the library.
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Chapter 2

Constructing transport maps from
samples

Like an automobile manufacturer that must build a fast engine before constructing a
fast sports car, this chapter constructs the engine we need to develop fast algorithms
in chapters 3–5. This chapter is devoted to techniques for efficiently constructing
nonlinear transformations called transport maps. After an initial discussion of trans-
port map basics in Section 2.1, Section 2.2 will introduce the general framework for
constructing transport maps using samples of a target distribution. Sections 2.3 and
2.4 will then discuss more practical aspects of map construction: function parame-
terizations and efficient computational implementation. Section 2.5 will demonstrate
how to approximate the inverse of a transport map, Section 2.6 will provide some
initial numerical results, and Section 2.7 will show that compositions of maps can be
used to construct transport maps in high dimensional space.

Note that the map construction techniques developed here are different from the
original work of [79]. In that work, evaluations of the posterior density were used to
construct a transformation from the prior distribution to the posterior distribution.
However, in our approach, we use samples of an arbitrary distribution to build a
transformation to a reference distribution; here the reference distribution is a stan-
dard Normal distribution. Our approach is more efficient when samples of a target
distribution are available, while the methods in [79] are more useful when only density
evaluations of the target are available.

2.1 Transport map overview

Here we will consider two random variables: the target and reference random vari-
ables. These random variables will be denoted by θ and r and will correspond to
probability spaces (X ,B(X ), µθ) and (Y ,B(Y), µr), where X ⊆ RDθ , Y ⊆ RDθ , and
B(A) denotes the Borel sets of A. The probability measures µθ and µr correspond to
the distributions of θ and r. A transport map is a nonlinear transformation from X
to Y that “transports” the probability in µθ to µr. In fact, an exact transport map,
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denoted by T , is an exact random variable transformation from θ to r given by,

r
i.d.
= T (θ), (2.1)

where
i.d.
= denotes equality in distribution.

For our use of T as a variable transformation, we need this map to be invert-
ible and have continuous derivatives. We will therefore force T to be a monotone
diffeomorphism so that T and T−1 are continuously differentiable and monotone al-
most everywhere. This definition of transport map is equivalent to the deterministic
coupling of random variables presented in [102].

Assume that the target distribution µθ is a Bayesian posterior or other compli-
cated distribution, but let µr to be a well understood distribution, such as Gaussian
distribution or uniform distribution. In this case, the complicated structure of µθ is
captured by the exact map T . This allows sampling and other tasks to be performed
with the simple reference distribution instead of the more complicated distribution.
In particular, when an exact map is available, sampling the target density πn is as
simple as taking a sample r′ ∼ µr and pushing it to the target space with θ′ = T−1(r′).
This concept was exploited by [79] for sampling Bayesian posteriors. Unfortunately,
for target distributions that are wildly different than the reference distribution, find-
ing an exact map that satisfies (2.1) can become computationally intractable and we
are often relegated to working with approximations to T . Figure 2-1 illustrates the
important difference between the approximate map T̃ and the exact map T . Even
though an approximate map does not capture all of the target distribution’s struc-
ture, it can still be useful in decoupling multiscale problems (as illustrated in Chapter
3), generating efficient proposals in the MCMC context (as in Chapter 4), or directly
sampling an approximate posterior distribution (as in Chapter 5).

As is well known in the optimal transport literature (see [102] for a thorough
guide to this area) there can be many monotone transformations that map between
any two random variables, making some form of tie-breaking regularization necessary
to ensure the map-selection process is unique.

One common approach is to introduce a transport cost. The transport cost,
denoted here by c(θ, r), represents the cost of moving one unit of mass from some
point θ to another point r. Using this unit cost, the total cost of pushing µθ to µr is
given by

CT̃ (T ) =

∫
RD
c (θ, T (θ))µθ(dθ). (2.2)

The problem of minimizing this cost subject to the constraint µθ = T]µr is often called
the Monge problem, in reference to Gaspard Monge, who first posed this problem in
1781 [78].1 The transport map satisfying the distributional equality in (2.1) and min-
imizing the transport cost in (2.2) is the optimal transport map. The seminal works
of Brenier [16] and McCann [75] show that this map is unique and monotone when

1Interestingly, Monge did not work on this problem out of pure mathematical curiosity. Like
we described in Section 1.4, he posed this problem to minimize the transport costs of moving dirt
excavated during fort construction [100].
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π(θ) p(r)

π̃(r)

T (θ)

T̃ (θ)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure π to the standard Gaussian
reference p while the approximate map only captures some of the structure in π,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(θ, T (θ)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
θ ∼ N(0, I) and r ∼ N(0,Σ) for some covariance matrix Σ. In this Gaussian example,

the transport map will be linear: r
i.d.
= Σ1/2θ, where Σ1/2 is any one of the many

square roots of Σ. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(θ, T (θ)) = ‖θ − T (θ)‖2, (2.3)

the optimal square root, Σ1/2, will be defined by the eigenvalue decomposition of Σ,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(θ, T (θ)) = lim
t→0

D∑
k=1

tk−1|θk − Tk(θ)|, (2.4)

the optimal square root, Σ1/2, will be defined by the Cholesky decomposition of Σ.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting
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the transformation easy, is also present in the more general Rosenblatt transfor-
mation. This structure helps ensure the map is monotone but also has important
computational advantages that we will demonstrate in Section 2.2.

While the lower triangular result is advantageous, working with the tk−1 term in
cRos quickly results in numerical underflow as the problem dimension, Dθ, increases.
The cost function cRos is meaningful for theoretical analysis, but we have not found it
useful in practice. Thus, we will not directly attempt to minimize (2.2). Instead, we
directly impose the lower triangular structure and search for an approximate map,
T̃ , that approximately satisfies the measure constraint. i.e., µr ≈ T̃]µθ. This is a key
difference between our approach and classic optimal transport theory. We fix the form
of the map and then try to approximately satisfy the distributional equality in (2.1),
while classical optimal transport theory begins with exact measure transformation
(2.1) and then uses the transport cost to find a unique map whose form comes from
the particular choice of transport cost.

2.2 Constructing maps from samples

As mentioned above, the Cholesky factor provides a linear lower triangular transfor-
mation. In the more general nonlinear setting, a lower triangular map T (θ) will have
a similar form, given by

T (θ) = T (θ1, θ2, . . . , θD) =


T1(θ1)
T2(θ1, θ2)
...
TD(θ1, θ2, . . . , θD)

 , (2.5)

where θd is component d of θ and Td : Rd → R is a map for component d of the
output. The lower triangular structure in (2.5) helps regularize the choice of maps
and we no longer have to explicitly impose a transport cost; however, we do need to
search for the lower triangular map that (at least approximately) satisfies the measure
constraint µθ = T]µr. We will do this by first defining a map-induced density π̃(θ),
and then minimizing the difference between this map-induced density and the true
density π(θ).

2.2.1 Formulation

To mathematically construct the map-induced density, let p(r) be the reference den-
sity over r and consider a µθ-differentiable monotone transformation T .2 This map
will induce a density π̃ over θ given by

π̃(θ) = p (T (θ)) |det(∂T (θ))| , (2.6)

2Notice that T takes the target variable θ as an argument, not the reference random variable r.
This is in contrast to previous works in [79] or [61] that build a map in the opposite direction: from
the reference space to the target space.
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where ∂T (θ) is the Jacobian matrix of the map at the point θ and |det(∂T (θ))| is the
absolute value of the Jacobian matrix determinant.

To satisfy the measure constraint µθ = T]µr, the map induced density π̃ must be
equivalent to the target density π. Thus, we can find T by minimizing the “difference”
between π̃ and π. We will use the Kullback-Leibler (KL) divergence to measure this
difference. The KL divergence between π and π̃ is denoted by DKL(π‖π̃) and defined
by

DKL(π‖π̃) = Eπ
[
log

(
π(θ)

π̃(θ)

)]
= Eπ

[
log π(θ)

− log p (T (θ))− log |det(∂T (θ))|
]
. (2.7)

Using this definition, the exact transport map T is defined as

T = argmin
t∈T

Eπ
[
− log p (T (θ))− log |det(∂T (θ))|

]
, (2.8)

where T is the space of all lower triangular diffeomorphisms on RDθ .
Notice that the KL divergence is not symmetric. We chose to take the expectation

with respect to π(θ) because in the forthcoming applications we will often only have
samples of π(θ) and can therefore only calculate a Monte Carlo approximation to
the expectation. Furthermore, as we will show below, this ordering allows us to
dramatically simplify (2.7) when p is Gaussian, which leads to a quite manageable
optimization problem.

Assume we have K samples of π denoted by {θ(1), θ(2), . . . , θ(K)}. As is done in
sample average approximation (SAA) [62], we use these samples to create the following
Monte Carlo approximation to (2.7)

DKL(π‖π̃) ≈ 1

K

K∑
i=1

[
log π(θ(i))

− log p
(
T (θ(i))

)
− log

∣∣det(∂T (θ(i)))
∣∣]. (2.9)

The map minimizing this expression is given by

T̃ = argmin
t∈T

1

K

K∑
i=1

[
− log p

(
T (θ(i))

)
− log

∣∣det(∂T (θ(i)))
∣∣]. (2.10)

Notice that because we have replaced the expectation in (2.7) with the finite sum in
(2.9), T̃ is an approximation to T and only approximately pushes µθ to µr. However,
when optimizing over the space of all monotone diffeomorphisms, i.e., T̃ ∈ T , the
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approximate map will approach the exact map T as the number of Monte Carlo
samples K grows to infinity. However, in practice, we will characterize T̃ with a finite
expansion and T̃ will remain in some approximate space T̃ ⊂ T , even as K →∞. As
we will describe in section 2.3, the approximate space T̃ will be the span of a finite
number of basis functions. Thus, T̃ is approximate for two reasons: because we use
a finite number of samples used in (2.9), and because T̃ lies within T̃ .

2.2.2 Enforcing monotonicity

Recall that we also require the map, T̃ from here on, to be monotone. To enforce
monotonicity we need the Jacobian of T̃ to be positive definite µθ-almost everywhere.
More precisely, we require

∂T̃ (θ) � 0 ∀θ ∈
{
x ∈ RD : π(x) > 0

}
. (2.11)

Notice that his implies the determinant det(∂T̃ (θ)) is also positive µθ-almost every-
where. This positive definite constraint is all we need to define the map-induced
density π̃; however, to show convergence of our MCMC scheme in Chapter 4, we will
also need to impose the mildly stricter condition that T̃ be bi-Lipschitz. For this
condition, we require T̃ to satisfy the following constraints

‖T̃ (θ′)− T̃ (θ)‖ ≥ dmin‖θ′ − θ‖ (2.12)

‖T̃ (θ′)− T̃ (θ)‖ ≤ dmax‖θ′ − θ‖, (2.13)

where 0 < dmin ≤ dmax < ∞. Notice that the lower bound in (2.12) implies a lower
bound on the map derivative given by

∂T̃i(θ)

∂θi
≥ dmin. (2.14)

Furthermore, because T̃ is lower triangular, the Jacobian ∂T̃ is lower triangular, and
(2.14) subsequently ensures the Jacobian is positive definite. Thus, we can impose
(2.12) instead of directly requiring (2.11). The reasons for requiring (2.12) and (2.13)
instead of (2.11), will become more clear in the MCMC convergence discussion of
Section 4.4 and Appendix A.

The derivative lower bound in (2.14) also allows us to remove the absolute values
from the determinant term in (2.11). By removing the absolute values, and closing
the set of feasible maps (i.e., (2.14) has a ≥ while (2.11) uses a >), we have made
the feasible domain of this optimization problem convex. Because the objective is
also convex, we have a convex optimization problem that can be solved efficiently.
As pointed out in [61], removing the absolute value, which removes the decreasing
solution, does not restrict restrict map performance.

Many representations of T̃ (e.g., a polynomial expansion) will yield a map with
finite derivatives over any finite ball, but will have infinite derivatives as ‖θ‖ → ∞.
Clearly, this class of map would not satisfy the upper bound constraint in (2.13).
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Fortunately, a minor alteration of such a map can be used to satisfy (2.13).
Let P (θ) be a continuously differentiable map with infinite derivatives as ‖θ‖ →

∞, but finite derivatives over any ball B(0, R) with R <∞. We can satisfy (2.13) by
setting T̃ (θ) = P (θ) over B(0, R), but forcing T̃ (θ) to be linear outside of this ball.
To make this concept mathematically concrete, let w(θ) = R θ

‖θ‖ be the projection

of θ to the closest point in B(0, R) and let d(θ) = θ
‖θ‖ · ∇P (w(θ)) be the directional

derivative of P (θ) at the ball boundary. Using these definitions, we define T̃ (θ) in
terms of P (θ) as

T̃ (θ) =

{
P (θ) ‖θ‖ ≤ R
P (w(θ)) + d(θ)(θ − w(θ)) ‖θ‖ > R

. (2.15)

Figure 2-2 also illustrates the difference between P (θ) and T̃ (θ) in a one dimensional
setting.

θ

P (θ)

T̃ (θ)

R−R

Figure 2-2: Illustration of the difference between P (θ) and T̃ (θ) in (2.15). In this one
dimensional illustration, P (θ) and T̃ (θ) are identical for θ ∈ [−R,R]; however, when
θ is outside this interval, T̃ becomes linear. The slope of T̃ (θ) for θ > R is given by
dP/dθ evaluated at R.

Notice that a continuously differentiable P (θ) will yield a continuously differen-
tiable T̃ (θ). Moreover, assuming P (θ) satisfies the lower bound in (2.12), T̃ (θ) now
satisfies both (2.12) and (2.13). We would like to point out that some parameteriza-
tions of T̃ , such as radial basis perturbations of a linear map (to be be discussed in
Section 2.3), do not require the correction in (2.15) to satisfy the bounds in (2.12)
and (2.13)

When a finite number of samples are used to approximate (2.9), R can usually
be chosen so that all samples lie in B(0, R) and P can be used directly. However,
our MCMC convergence theory requires finite derivatives of T̃ as ‖θ‖ → ∞, which is
provided by the correction in (2.15).

35



Unfortunately, we cannot generally enforce (2.14) over the entire support of the
target measure. This leads us to a weaker, but practically enforceable, alternative
– we require the map to be increasing at each sample used to approximate the KL
divergence. Mathematically, we have

∂T̃d
∂θd

∣∣∣∣∣
θ(i)

≥ dmin ∀d ∈ {1, 2, . . . , D}, ∀i ∈ {1, 2, . . . , K}. (2.16)

In practice, we have found (2.16) sufficient to ensure the monotonicity of a map
represented by a finite polynomial or radial basis expansion.

2.2.3 Simplifications of the KL cost function

Now we consider the task of minimizing the KL divergence in (2.9). From an optimiza-
tion standpoint, the log π and 1/K terms in DKL(π‖π̃) do not affect the minimization
problem and can be removed. Our new goal is then to minimize the cost function
given by

CKL(T̃ ) =
K∑
i=1

− log p
(
T̃ (θ(i))

)
− log det

[
∂T̃ (θ(i))

]
. (2.17)

While we could tackle this minimization problem directly, as in [79], we can further
simplify this cost with a strategic choice of the reference density p.

Let r ∼ N(0, I). This choice of reference distribution implies

log p(r) = −D
2

log(2π)− 0.5
D∑
d=1

r2
d. (2.18)

Now, notice that the lower triangular form of T̃ yields a lower triangular Jacobian
matrix. This allows us to write the determinant term in (2.17) as

log
(

det∂T̃ (θ)
)

= log

(
D∏
d=1

∂T̃d
∂θd

)
=

D∑
d=1

log
∂T̃d
∂θd

. (2.19)

Using this expression and (2.18) in the KL cost (2.17) yields a new form for the cost
given by

CKL(T̃ ) =
D∑
d=1

K∑
i=1

[
0.5T̃ 2

d (θ(i))− log
∂T̃d
∂θd

∣∣∣∣∣
θ(i)

]
. (2.20)

As we demonstrate in the next section, an appropriate parameterization of T̃ will
allow us to solve the large optimization problem in (2.20) by independently solving
Dθ smaller optimizations problems - one for each output of the map.
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2.3 Transport map parameterization

Let γ̄ = [γ1, γ2, . . . , γD] be a collection of vector-valued parameters that define the
approximate map T̃ (θ) = T̃ (θ; γ). Assume each vector γd has Md components and
takes values in RMd . The dimension of each parameter vector, Md, is dependent
on the parametric form of T̃ , which will be discussed in more detail below. Now,
assume that the parameters for each component T̃d of the map are independent, that
is, T̃d(θ; γ̄) = T̃d(θ; γd). In this case, we can split the minimization of the KL cost in
(2.20) into independent minimization problems for each dimension. Each of the Dθ

different optimization problems is given by

minimize
γd

K∑
i=1

[
0.5T̃ 2

d (θ(i); γd)− log
∂T̃d(θ; γd)

∂θd

∣∣∣∣∣
θ(i)

]

subject to
∂T̃d(θ; γd)

∂θd

∣∣∣∣∣
θ(i)

≥ dmin ∀i ∈ {1, 2, . . . , K}
(2.21)

We should also mention that all of these optimization problems could be solved in
parallel and no evaluations of the target density π(θ) are required. This is an impor-
tant feature of our approach that is critical to the multiscale and offline techniques
that will be discussed in chapters 3 and 5. Importantly, each of the optimization
problems is also convex anytime the map components T̃d are linear in the coefficients
γd. Ensuring T̃d is linear in γd also has several computational advantages that will be
discussed in section 2.4.

2.3.1 Multivariate polynomials

One way to parameterize each component of the map T̃d, is with an expansion of mul-
tivariate polynomials. We define each multivariate polynomial as a tensor product of
Dθ scalar polynomials. The particular univariate polynomials used in the multivari-
ate polynomial ψj are defined by a multi-index j = (j1, j2, . . . , jD) ∈ ND through the
expression

ψj(θ) =
D∏
p=1

ϕjp(θp). (2.22)

The one dimensional polynomials, ϕjp , could be Hermite polynomials, Legendre poly-
nomials, or members of your favorite polynomial family. 3 Using the multivariate
polynomials, we can express the map as a finite expansion with the form

T̃d(θ) =
∑
j∈Jd

γd,jψj(θ), (2.23)

3In the polynomial chaos community, the polynomials are usually chosen to be orthogonal with
respect to the input measure, µθ [108, 66]. However, we may only have samples of µθ, µθ may not
be known, or µθ may not be one of the canonical distributions found in the Wiener-Askey scheme.
Because we cannot follow the Wiener-Askey scheme to choose an orthogonal polynomial family, our
choice of scalar polynomial is not as straightforward as in the typical polynomial chaos setting.
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where, Jd is a set of multi-indices defining the polynomial terms in the expansion.
Notice that the cardinality of the multi-index set defines the dimension of each pa-
rameter vector γd, i.e., Md = |Jd|. Readers should also note that a proper choice
of each multi-index set Jd can force T̃ to be lower triangular. An example of this
construction is given in the sets J TO

d , J NM
d and J NC

d defined below.
To make the concept of multi-indices and polynomial expansions more concrete,

consider the use of monomials in (2.23). In this setting, the multivariate polynomial
is defined by the product of monomials with powers given by the multi-index j =
(j1, j2, . . . , jD). Mathematically, the multivariate polynomial is expressed as ψj(θ) =∏D

i=1 θ
ji
i . A typical choice of multi-index set Jd would then be to limit the total order

of the polynomial to some value p such as

J TO
d = {j : ‖j‖1 ≤ p, ji = 0∀i > d}.

The first constraint in this set, ‖ji‖1 ≤ p, limits the polynomial order while the second
constraint ji = 0 ∀i > d forces T̃ (θ) to be lower triangular. A problem with using
J TO
d is that the number of terms in the set grows exponentially. A more feasible

multi-index set in moderate dimensions is to remove all mixed terms in the basis,

J NM
d = {j : ‖j‖1 ≤ p, jijk = 0∀i 6= k, ji = 0∀i > d}.

An even more parsimonious option is to remove all cross terms, yielding the set

J NC
d = {j : ‖j‖1 ≤ p, ji = 0∀i 6= d}.

Figure 2-3 illustrates the difference between these three sets for a maximum order of
p = 3.

Reducing the number of terms in the basis reduces the map complexity, allowing
us to tackle higher dimensional problems. However, by reducing the map complexity,
we are also limiting how much structure the map can capture. As the problem
dimension increases, it becomes more important to strategically choose a basis set.
More on constructing high dimensional maps will be discussed in Section 2.7.

2.3.2 Radial basis functions

An alternative to a polynomial parameterization of T̃ is to use an expansion of linear
terms and radial basis functions. The general form of the expansion in (2.23) remains
the same; however, the nonlinear multivariate polynomials are replaced with radial
basis functions to yield the expansion

T̃d(θ) = ad,0 +
d∑
j=1

ad,jθj +

Pd∑
j=1

bd,jφj(θ1, θ2, . . . , θd; θ̄
d,j), (2.24)

where Pd is the total number of radial basis functions in the expansion, φj(θ1, θ2, . . . , θd; θ̄
d,j)

is a radial basis function centered at some point θ̄d,j ∈ Rd that only depends on the
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Terms in multi-index set.
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j1

j2

Total order set J TO
2 .

Set with no cross terms J NM
2 .

Set with no mixed terms J NC
2 .

Figure 2-3: Visualization of multi-index sets for the second component of a two
dimensional map, T̃2(θ1, θ2). In this case, j1 is the power on θ1 and j2 is the power
on θ2. A filled circle indicates that a term is present in the set of multi-indices.

first d dimensions of the target random variable, and the a and b coefficients consti-
tute the map coefficients γd = [ad,0, ad,1, . . . , ad,d, bd,1, . . . , bd,Pd ]

T . In (2.24), we have
kept the constant term ad,0 and linear terms in each direction. We have found that
keeping all the linear terms dramatically improves map performance with only slightly
more computational costs. However, we should note that monotonicity can also be
enforced using only the linear term in dimension d (i.e., θd).

Using MATLAB-like notation, where θ1:d = [θ1, θ2, . . . , θd]
T , a typical form for the

radial basis function φj is

φj(θ1, θ2, . . . , θd; θ̄
d,j) = exp

[
−
(
θ1:d − θ̄d,j

)T
Hj
(
θ1:d − θ̄d,j

)]
. (2.25)

where Hj ∈ Rd×d is a symmetric matrix defining the shape and width of the radial
basis function. In general, defining a general matrix Hj requires us to choose the
d(d+1)

2
entries in the matrix. For large dimensions, this becomes even more difficult

than working with the total order polynomials shown in Figure 2-3. Fortunately, we
can restrict the form of Hj ∈ Rd×d to simplify the problem much like we simplified
our multi-index set in Figure 2-3 to simplify the polynomial expansion in (2.23).

One simplification is to only use one dimensional radial basis functions in (2.24).
In terms of the Hj matrix, this is equivalent to only allowing a single diagonal element
of Hj to be nonzero. In this setting (which is similar to J NC

d above), the expansion
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in (2.24) takes the form

T̃d(θ) = ad,0 +
d∑
j=1

ad,jθj +
d∑

k=1

Pd,k∑
j=1

bd,k,jφj,k(θk; θ̄
d,j
k ), . (2.26)

where φj,k is now a one dimensional radial basis function given by

φj,k(θk; θ̄
d,j
k ) = exp

[
−Hj

kk

(
θk − θ̄d,jk

)2
]
. (2.27)

Note that we could also require k = d and ad,j = 0, ∀d 6= j in (2.26). These
restrictions would yield an expansion analogous to the J NM

d polynomial expansion.
Note that this choice leads to a fully diagonal map. For diagonal maps, the dimension
of the optimization problem in (2.21) is constant in the dimension. Diagonal maps
are therefore useful in very high dimensional problems.

When using radial basis functions, we could try to simultaneously optimize (2.21)
over γd and the center of each function θ̄d,jk ; however, the nonlinear dependence of

the map on θ̄d,jk makes the optimization problem significantly more difficult than

optimizing only over γd. In this work, we instead fix the locations θ̄d,jk a priori and
only optimize over the expansion coefficients. Choosing the function locations can be
a tricky problem-dependent task. However, when using the one dimensional radial
basis functions in (2.27), it is helpful to look at the marginal sample distributions of
θ before constructing the maps.

In particular, we have found that evenly spacing the centers θ̄d,jk of the radial
basis functions between the 1% and 99% quantiles of θk works well. Let Qk,01 denote
the 1% quantile of θk and Qk,99 denote the 99% quantile of θk. Evenly spaced node
locations are then given by

θ̄d,jk = Qk,01 + (j − 1)
Qk,99 −Qk,01

Pd,k − 1
. (2.28)

We have also found that a reasonable heuristic for the radial basis function scale is
given by

Hj
kk = 0.4

Pd,k
Qk,99 −Qk,01

. (2.29)

Choosing Hj
kk much larger than this can make enforcing monotonicty difficult while

choosing Hj
kk much smaller than this can make the map too smooth and make the

optimization problem in (2.21) more difficult. Of course, better results could be
obtained by tuning Hj

kk on a problem by problem basis, but all the examples in this
thesis will use the heuristics in (2.28) and (2.29).

2.3.3 Choosing map ordering

With either polynomials or radial basis functions, we regularize the optimization
problem in (2.20) by forcing the map T̃ to be lower triangular. The lower triangular
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map also allows us to separate the large optimization problem in (2.20) to the Dθ

problems defined by (2.21). However, with a lower triangular map, the ordering of the
target random variable θ is important. This section discusses the ordering problem
and provides one way of ordering the map.

Assume we have an operator S that reorders θ such that S(θ) = [θs(1), θs(2), . . . , θs(Dθ)]
T

where s can be any bijection between {1, 2, 3, . . . , Dθ} and itself. When the target
distribution µθ contains no atoms, we know by the existence of the Rosenblatt trans-
form, that for any reordering S, an exact map exists in the space of continuous
transformations C(RDθ). However, when the map is represented within some finite
dimensional space T ⊂ C(RDθ), different reorderings S can result in approximate
maps with dramatically different errors.

To illustrate this point, consider a simple two dimensional example where samples
of [θ1, θ2]T are generated with a simple transformation given by[

θ1

θ2

]
=

[
r1

r2
1 + r2

]
, (2.30)

where r1 and r2 are standard Normal random variables. In this example, an exact

lower triangular map Tl(θ1, θ2)
i.d.
= r is obtained with the simple quadratic polynomial[

r1

r2

]
= Tl(θ1, θ2) =

[
θ1

θ2 − θ2
1

]
. (2.31)

However, if we swap the order of θ and try to build a lower triangular map Tu(θ2, θ1),
the exact map cannot be expressed in terms of a finite polynomial expansion because
constructing the map would require us to use the CDF of r2

1 + r2, which cannot be
represented with analytic functions. Thus, a simple quadratic polynomial can be used
to build an exact lower triangular map from (θ1, θ2) to (r1, r2), but trying to construct
a map from (θ2, θ1) to (r1, r2) requires a much more complicated parameterization of
T̃ . Clearly, we need a way of detecting this and subsequently finding an appropriate
reordering S(θ).

In the simple two dimensional example given above, building the reverse ordered
map (i.e., from (θ2, θ1) to (r1, r2)) was difficult because the conditional density π(θ2|θ1)
was a simple Gaussian density, but the marginal density π(θ2) was much more com-
plicated. In general, we want to place θi ahead of θj when the difference between
π(θi|θj) and π(θi) is smaller than the difference between π(θj|θi) and π(θj).

A useful indication of this ordering dependence is the asymmetric expression given
by

Γi,j = E
[(
θi − θ̄i

) (
θj − θ̄j

)p]
, (2.32)

where θ̄i = E[θi] and p > 1.4 This expression represents the nonlinear dependence of

4When p is an integer, each value of Γi,j is an entry in a p+ 1 order symmetric tensor. Clearly,

when p = 1, Γi,j is an entry in a covariance matrix. For p = 2, we can write out Γi,j = Γ̂i,j,j
where Γ̂i,j,k = E

[(
θi − θ̄i

) (
θj − θ̄j

) (
θk − θ̄k

)]
defines a symmetric third order tensor. This third

order tensor is related to the skewness-tensor, which is often used in combination with the Fisher
information metric to define connections on manifolds of statistical models [3].
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θi on θj. When Γi,j = 0, this indicates that there is minimal dependence of θi on θj,
thus θi should come before θj in the reordering. In general, θi should come before θj
when Γi,j < Γj,i. This observation allows us to sort the components of θ with Monte
Carlo approximations to (2.32). In practice, we typically set p = 2 in (2.32). With
this value of p, algorithm 2.1 shows one method of computing the reordering using an
insertion sort. The insertion sort algorithm was used here for illustration but more
efficient sorting algorithms such as merge sort of quicksort should be used in practice.
Regardless of the sorting algorithm, the Gamma function in algorithm 2.1 would remain
unchanged. Also, efficient implementations of algorithm 2.1 should precompute the

(θ
(k)
i − ˆ̄θi) and (θ

(k)
j − ˆ̄θj)

2 terms used by the Gamma function.
As a side note, a normalized version of (2.32) is also used to analyze non-Gaussian

distributions in remote-sensing [40] and in the quantitative finance community [37],
where it is often referred to as co-skewness.

Algorithm 2.1: Example of sorting dimensions of map using an insertion sort
and Monte Carlo approximation to (2.32). Recall that K is the number of
samples in the Monte Carlo approximation and Dθ is the parameter dimension.

1 Function InsertionSort(Samples Θ = {θ(1), θ(2), . . . , θ(K)})
2 sd = d for d ∈ {1, 2, . . . , Dθ}
3 for i← 2 to Dθ do
4 j ← i
5 while j > 1 and Gamma(sj, sj−1,Θ) < Gamma(sj−1, sj,Θ) do
6 Swap sj and sj−1

7 j ← j − 1

8 end

9 end
10 return s

1 Function Gamma(i,j,Θ)

2
ˆ̄θi = 1

K

∑K
k=1 θ

(k)
i

3
ˆ̄θj = 1

K

∑K
k=1 θ

(k)
j

4 Γij = 1
K

∑K
k=1(θ

(k)
i − ˆ̄θi)(θ

(k)
j − ˆ̄θj)

2

5 return Γij

2.4 Solving the optimization problem

When using either the radial basis expansion with fixed locations, or the polyno-
mial expansion, the map T̃d(θ) is linear in the expansion coefficients. This allows the
objective in (2.21) to be evaluated using efficient matrix-matrix and matrix-vector
operations. To see this, assume we have two matrices Fd ∈ RK×Md and Gd ∈ RK×Md

with components defined by Fdij = ψj(θ
(i)) and Gdij =

∂ψj

∂θd
(θ(i)) for all j ∈ Jd. Recall

that K is the number of samples in our Monte Carlo approximation of the KL diver-
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gence. Using these matrices and taking advantage of (2.23) or (2.24), we can rewrite
(2.21) as

minimize
γd

1

2
γTd (F T

d Fd)γd − cT log(Gdγd)

subject to Gdγd ≥ dmin,
(2.33)

where c is a K dimensional vector of ones and the log is taken componentwise. Clearly,
the objective can be evaluated with efficient numerical linear algebra routines.

On top of efficient evaluations, the only difference between (2.33) and a simple
quadratic program is the log term. However, as shown in Figure 2-4, the quadratic
term often dominates the log term, making a Newton-like optimizer quite efficient.
In practice, we usually observe convergence in less than 10 Newton iterations. We
should also point out that the constraints are never active at the solution of this
problem because the log term in (2.33) acts as a barrier function for the constraints.

Map Slope

M
ap

In
te

rc
ep

t

Optimal Coefficients

Figure 2-4: Illustration of the objective function in (2.21) for a Gaussian π and linear
map. The colored surface are the values of the objective in (2.33). The lightly shaded
region to the left of the contour line is the region of the parameter space where the log
term is larger than the quadratic term in the objective. Clearly the problem is convex
and most of the solution space is dominated by the quadratic term. These features
make Newton methods particular suitable for efficient for solving this problem.

All the of exploitable structure in (2.33) means that repeatedly solving this prob-
lem in an adaptive MCMC framework is tractable. More details on such an adaptive
MCMC sampler are given in Section 4.2.

2.5 Approximating the inverse map

Until now, we have focused entirely on constructing a map from the target random
variable θ to the reference random variable r. However, in many cases, an inverse
map from r to θ is needed. Because T̃ (θ) is lower triangular, we could simply perform
back-substitution through a sequence of Dθ one-dimensional nonlinear solves, but this
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becomes computationally cumbersome when many evaluations of T̃−1(r) are required.
This section shows that once T̃ (θ) has been computed, an approximation F̃ (r) ≈
T̃−1(r) can be computed with standard regression techniques.

Assume we have already constructed T̃ (θ) using K samples {θ(1), θ(2), . . . , θ(K)}.
Pushing each of these samples through T̃ , gives a set of samples on the reference
space {r(1), r(2), . . . , r(K)}, where r(k) = T̃ (θ(k)). Notice that there is a one to one
correspondence between target samples and reference samples. Thus, we can use
these pairs to define a simple least squares problem for an approximate inverse F̃ .
The problem we now need to solve is

F̃ ∗ = argmin
F̃

K∑
k=1

Dθ∑
d=1

(
F̃d(r

(k))− θ(k)
d

)2

. (2.34)

When each dimension of F̃ is parameterized independently (like T̃ in Section 2.3),
then (2.34) can be separated into individual problems for each dimension. This is
similar to our separation of (2.20) into the Dθ problems defined by (2.21).

Each of these Dθ least squares problems will take the form

F̃ ∗d = argmin
F̃d

K∑
k=1

(
F̃d(r

(k))− θ(k)
d

)2

. (2.35)

This is a classic least squares problem that can easily be solved by representing F̃d
with a finite basis, constructing a Vandermonde matrix, and solving the system with
a QR decomposition. When polynomials are used to represent T̃d, we use polynomials
of the same order to represent F̃d. However, when radial basis functions are used to
represent T̃d, we also use radial basis functions to describe F̃d, but we choose node
locations and widths using quantiles of the reference random variable r; the samples
{r(1), r(2), . . . , r(K)} are used to estimate the quantiles in (2.28) and (2.29).

2.6 Numerical example

This section provides an initial illustration of sample-based map construction on a
simple two dimensional problem. We will use samples of the target random variable θ
to construct T̃ by solving (2.21) and then find F̃ by solving the regression problem in

(2.35). Each target sample θ(k) is generated first sampling z
(k)
1 and z

(k)
2 from a scalar

standard normal distribution and then evaluating the transformation

θ(k) =

[
θ

(k)
1

θ
(k)
2

]
=

[
1√
2

1√
2

− 1√
2

1√
2

][
z

(k)
1

cos
(
z

(k)
1

)
+ 1

2
z

(k)
2

]
. (2.36)

Notice that this is a 45◦ degree rotation of a “banana” looking density. The trans-
formation gives the target density shown in Figure 2-5(a). We will construct linear,
cubic, and fifth order maps using Hermite polynomials and the three types of multi-
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index sets from Section 2.3.1: J NC
d , J NM

d , J TO
d . Recall that J NC

d yields a diagonal
map, J NM

d yields a lower triangular map without mixed terms, and J TO
d yields a

total order map.
In this example, we generated 10000 samples of the target distribution and then

solved (2.21) to find T̃ . After construction T̃ , we evaluated T̃ at the 10000 target
samples to get target-reference sample pairs; these samples were used in the regression
framework of the previous section to construct the approximate inverse map F̃ (r).
Table 2.1 shows the wall-clock times for these three steps. The times were obtained
running 8 OpenMP threads on a fourth generation Intel core i7 running at 3.5GHz.
In all cases, we were able to construct both T̃ and F̃ in under four seconds.

Interestingly, the time it took to evaluate T̃ at 10000 samples took much longer
than the optimization time. This is a result of our code structure. The optimization
code utilizes the efficient matrix-vector operations mentioned in Section 2.4 as well
as multiple threads for each optimization problem; however, the evaluation function
is optimized for a single fast evaluation (not 10000) and therefore does not exploit
the same structure. We will address this issue in future implementations.

Table 2.1: Timing comparison of polynomial maps. Wall-clock times are shown for
constructing T̃ , evaluating T̃ on each of the 10000 samples, and constructing F̃ using
regression. All times are shown in milliseconds.

Basis Order T̃ Const. (ms) T̃ Eval. (ms) F̃ Regr. (ms)
1 80 750 30
3 170 870 50JNMd

5 300 1000 90
1 100 730 40
3 220 1000 70JNCd

5 370 1250 120
1 90 720 40
3 280 1360 100J TOd
5 660 2730 190

The accuracy of T̃ (θ) is also demonstrated in Table 2.2. We compare the marginal
moments of the map output with the known values of a standard normal distribution.
Because standard Gaussian densities are by definition marginally Gaussian along any
direction, we also compare the moments of r̃m = 1√

2
(T̃1(θ) + T̃2(θ)) to a standard

normal distribution. From the errors, we can see that all of the fifth order maps
correctly capture the marginal moments of r1 and r2. However, the additional mixed
terms in the total order map are needed to adequately capture the skewness and
kurtosis of rm. This can also be seen by comparing Figures 2-5–2-7.

The diagonal maps and separable lower triangular maps defined by J NM
d and

J NC
d can easily capture the marginal distributions of the target distribution π(θ),

but cannot adequately capture the target correlation structure. However, as we see
from the timings in Table 2.1, these types of maps can be slightly more efficient
to evaluate because they involve fewer basis functions. Using fewer basis functions
becomes more important for high dimensional problems, which will become clear in
the next section.
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Table 2.2: Comparison of T̃ (θ) and r using various polynomial maps. Note that
r̃1 = T̃1(θ) is the map induced approximation to r and r̃2 = T̃2(θ) is the map-induced
approximation to r2. We also show the marginal moments of r̃m, which would also
be identical to a standard normal distribution with an exact map T̃ .

Basis Order
Mean Variance Skewness Kurtosis

r̃1 r̃2 r̃m r̃1 r̃2 r̃m r̃1 r̃2 r̃m r̃1 r̃2 r̃m
Truth 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 3.00 3.00 3.00

1 0.00 0.00 0.00 1.00 1.00 0.61 -1.10 -1.10 -0.41 4.27 4.30 3.23
3 0.00 0.00 0.00 1.00 1.00 0.63 -0.02 -0.04 0.48 3.16 3.13 3.89JNMd

5 0.00 0.00 0.00 1.00 1.00 0.63 0.00 0.00 0.49 3.08 3.07 3.63
1 0.00 0.00 0.00 1.00 1.00 1.00 -1.08 -0.92 -0.49 4.23 4.39 3.44
3 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.22 0.35 3.30 3.45 3.31JNCd

5 0.00 0.00 0.00 1.00 1.00 1.00 -0.01 0.18 0.26 3.16 3.39 3.04
1 0.00 0.00 0.00 1.00 1.00 1.00 -1.13 -0.96 -0.50 4.44 4.54 3.49
3 0.00 0.00 0.00 1.00 1.00 1.00 -0.03 0.11 0.07 3.07 3.70 3.10J TOd
5 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.05 0.01 3.11 3.12 2.98
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Figure 2-5: Convergence of diagonal maps defined by J NC
d .

2.7 Constructing high-dimensional maps

When the target random variable θ is high dimensional, parameterizing the map with
total-order limited polynomials or arbitrary radial basis functions becomes intractable
because the number of unknowns in the expansions (2.23) or (2.24) becomes too large
to practically solve the optimization problem in (2.21). The obvious solution is not
to use total order polynomials or arbitrary radial basis functions, but to only use a
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Figure 2-6: Convergence of nonlinear separable maps defined by J NM
d .

θ1

θ2

(a) True Target

r1

r2

(b) True Reference

θ1

θ2

(c) Linear Target

r1

r2

(d) Linear Reference

θ1

θ2

(e) Cubic Target

r1

r2

(f) Cubic Reference

θ1

θ2

(g) Fifth Target

r1

r2

(h) Fifth Reference

Figure 2-7: Convergence of total order maps maps defined by J TO
d .

relatively small number of basis functions. In terms of multivariate polynomials, the
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obvious choice is to remove any mixed terms, such as θ1θ2 or θ2
1θ2, from the expansion.

A sparser alternative would be to remove cross terms altogether. In this case, each
output of the map T̃i(θ) would depend only on θi. Similarly, one dimensional radial
basis functions can be used to ensure T̃i(θ) depends only on θi.

When mixed terms are removed, the maximum number of unknowns in T̃i(θ) will
grow linearly in the dimension. Moreover, when all cross terms are removed or one
dimensional radial basis functions are used, the number of unknowns in T̃i(θ) will
be constant with the dimension. In this latter case, the map will also be diagonal.
Unfortunately, by reducing the number of terms in the expansion, we simultaneously
reduce the expressive power of the map, which will cause T̃ (θ) to be an inadequate
approximation to the exact map T (θ). Composing multiple simple maps is one way
to overcome this inadequacy. With the ultimate goal of constructing maps in high
dimensions, the remainder of this section will introduce and analyze several ways of
constructing complicated maps through composition.

2.7.1 Compositional map overview

Even in high dimensions, we can use the tools of Section 2.2, a small set of basis
functions, and samples {θ(1), θ(2), . . . , θ(K)} from the target density π(θ) to construct
an initial approximate map T̃ 1(θ). However, being an approximation, the output of
this map will only approximately satisfy the equality constraint

T̃ 1(θ)
i.d.
≈ r. (2.37)

If this approximation is insufficient, we can again use the standard tools of Section 2.2
to construct another map T̃ 2, from the output of T̃ 1 to the reference Gaussian. This
second map is constructed using samples {r̃1,(1), r̃1,(2), . . . , r̃1,(K)}, which are outputs
of layer 1 defined by r̃1,(k) = T̃ (θ(k)). Figure 2-8 illustrates this concept. The first layer
of the map does not adequately capture all the target structure. However, when the
output of the first layer is again transformed with the second layer, the composition
produces a transformed measure that is much closer to the desired Gaussian reference
distribution. In essence, the second layer corrected for the inadequacies of the first
layer.

Once T̃ 2 has been constructed, the composed map is expressed by

(T̃ 2 ◦ T̃ 1)(θ) = T̃ 2(T̃ 1(θ)) = r̃2 i.d.
≈ r. (2.38)

Notice that T̃ 1 and T̃ 2 do not necessarily need to be lower triangular as long as they
are invertible transformations. The basic idea here is that T̃ 2 will correct for the
error remaining after an application of T̃ 1. We can even repeat this layering process
N times to obtain a compositional map of the form

(T̃N ◦ T̃N−1 ◦ · · · ◦ T̃ 2 ◦ T̃ 1)(θ) = r̃N
i.d.
≈ r. (2.39)

Layer i of this composition will be constructed using the tools of Section 2.2 and

48



θ1

θ 2
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r̃1
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π̃2(r̃1)

r̃2
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π̃2(r̃2) ≈ p(r̃2)

T̃ 1(θ) T̃ 2(r̃1)

Figure 2-8: The goal of map composition is to introduce new layers that correct for
errors that stem from using simple map parameterizations. The density on the left
is the target distribution, the density in the middle is the density after transforming
θ with T̃ 1, and the right density is the effect of transforming the target distribution
with (T̃ 2 ◦ T̃ 1)(θ).

samples {r̃i−1,(1), r̃i−1,(2), . . . , r̃i−1,(K)} defined by

r̃i,(k) = (T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 2 ◦ T̃ 1)(θ(k)). (2.40)

Importantly, because of the composition, each map T̃ i in (2.39) can be a rough
approximation constructed from a small number of basis functions. Moreover, under
some mild conditions on the choice of basis functions and the map construction, each
layer in (2.39) will decrease the overall error of the composed map. In next section
will further discuss this error analysis.

2.7.2 Error of composed maps

Here we theoretically study the error and convergence of the compositional map. An
important quantity in this study will be the map-induced density π̃i, that approxi-
mates the target density π using the first i layers of the map. Using the compositional
form of the map, this approximate density is given by

π̃i(θ) = p
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)
) ∣∣∣det

[
∂
(
T̃ j ◦ T̃ j−1 ◦ · · · ◦ T̃ 1

)
(θ)
]∣∣∣

= p
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)
) i∏
j=1

∣∣∣det
[
∂T̃

j
(

(T̃ j−1 ◦ T̃ j−2 ◦ · · · ◦ T̃ 1)(θ)
)]∣∣∣ ,

(2.41)

where |det(·)| is the absolute determinant and ∂T̃
j
(·) is the Jacobian matrix of T̃ j.

Notice that (2.41) is simply a multilayer version of the standard change of variable
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formula in (2.6). Indeed, when only one layer is present, the two expressions in (2.41)
and (2.6) are identical.

Our algorithm constructs one map at a time - first T̃ 1(θ), then T̃ 2(r̃1), etc. During
this process, samples of r̃i−1 are used in the optimization problem (2.21) to find T̃ i.
Thus, each incrementally constructed map attempts to minimize DKL(π̃i−1‖˜̃πi−1)
where ˜̃πi−1 is the incremental pull-back measure defined by

˜̃πi−1(r̃i−1) = p(T̃ i(r̃i−1))
∣∣∣det(∂T̃

i
(r̃i−1))

∣∣∣ . (2.42)

However, we ultimately want to find a map T̃ i that minimizes DKL(π‖π̃i). Fortu-
nately, we can show the minimizer of DKL(π̃i−1‖˜̃πi−1) is equivalent to the minimizer
of DKL(π‖π̃i) when previous maps {T̃ 1, T̃ 2, . . . , T̃ i−1} are fixed. Mathematically, we
show this by simplifying the optimizations to remove terms that do not depend on
T̃ i. First, consider the minimizer of DKL(π̃i−1‖˜̃πi−1), which is also the minimizer of
the following simplifications of DKL(π̃i−1‖˜̃πi−1)

argmin
T̃ i

DKL(π̃i−1‖˜̃πi−1) = argmin
T̃ i

Eπ̃i−1

[
log π̃i−1(r̃i−1)− log ˜̃πi−1(r̃i−1)

]
= argmin

T̃ i
Eπ̃i−1

[
− log ˜̃πi−1(r̃i−1)

]
= argmin

T̃ i
Eπ̃i−1

[
− log p(T̃ i(r̃i−1))− log

∣∣∣det(∂T̃
i
(r̃i−1))

∣∣∣]
= argmin

T̃ i
Eπ
[
− log p

(
(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)

)
− log

∣∣∣det
[
∂T̃

i
(

(T̃ i−1 ◦ T̃ i−2 ◦ · · · ◦ T̃ 1)(θ)
)∣∣∣]] . (2.43)

Similarly, we can look at the minimization of DKL(π‖π̃i) and remove any terms that
do not depend no T̃ i. These simplifications yield the minimizer

argmin
T̃ i

DKL(π‖π̃i) = argmin
T̃ i

Eπ
[
log π(θ)− log π̃i(θ)

]
= argmin

T̃ i
Eπ
[
− log p

(
(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)

)
−

i∑
j=1

log
∣∣∣det

[
∂T̃

j
((T̃ j−1 ◦ T̃ j−2 ◦ · · · ◦ T̃ 1)(θ))

∣∣∣] ]
= argmin

T̃ i
Eπ
[
− log p

(
(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)

)
− log

∣∣∣det
[
∂T̃

i
(

(T̃ i−1 ◦ T̃ i−2 ◦ · · · ◦ T̃ 1)(θ)
)∣∣∣] ].

= argmin
T̃ i

DKL(π̃i−1‖˜̃πi−1). (2.44)

From (2.43) and (2.44), we can see that constructing T̃ i incrementally by minimizing
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(2.43) is equivalent to a greedy procedure applied to the overall KL divergence in
(2.44) – we are minimizing the right thing. However, does this greedy approach
ensure DKL(π‖π̃i) decreases with each new layer? As we show below, the answer is
“yes,” when the optimization is performed in a properly defined function space.

We now derive sufficient conditions on T̃ i to ensure the KL divergence DKL(π‖π̃i)
decreases or remains the same with each new layer. Mathematically, these sufficient
conditions will place constraints on T̃ i to ensure that for all i,

DKL(π‖π̃i+1) ≤ DKL(π‖π̃i). (2.45)

By writing out the KL divergences explicitly and simplifying, we obtain the condition

Eπ
[
− log

(
p
(

(T̃ i+1 ◦ T̃ i ◦ · · · ◦ T̃ 1)(θ)
))
− log

∣∣∣det
(
∂T̃

i+1
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)
))∣∣∣]

≤ Eπ
[
− log

(
p
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ)
))]

. (2.46)

Notice that we no longer have the determinant sum on the left hand side of this
inequality and there are no determinant terms on the right hand side. The extra
determinant terms appeared on both sides of the inequality and were removed during
simplifications. The left hand side of this expression is also equivalent to the objective
function we minimize to find the map T̃ i+1 in (2.21). We should also point out that
right hand side of (2.46) is equivalent to left hand side of (2.46) when T̃ i+1(r̃i) is the
identity map, so T̃ i+1(r̃i) = r̃i. This observation is important for us to show that
each layer of the map will yield a better approximation to the target distribution.

Let T i+1 be a function space containing all possible maps T̃ i+1(r̃i). In practice,
T i+1 is the span of the basis functions used in either (2.23) or (2.24) to describe the
map. When the space of maps T i+1 includes the identity, it is possible for the left
hand side of the inequality in (2.46) to be equal to the right hand side. Thus, because
T̃ i+1 minimizes the KL cost over T i+1 by construction (see (2.7)), the left hand side
of (2.46) will always be less than or equal to the right hand side. Equality will only
occur when the identity map is optimal.

We construct the map using Monte Carlo approximations to (2.46), not the exact
expectation used in (2.46). In the Monte Carlo case, the decreasing error condition
in (2.46) becomes

K∑
k=1

− log
(
p
(

(T̃ i+1 ◦ T̃ i ◦ · · · ◦ T̃ 1)(θ(k))
))
− log

∣∣∣det
(
∂T̃

i+1
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ(k))
))∣∣∣

≤
K∑
k=1

− log
(
p
(

(T̃ i ◦ T̃ i−1 ◦ · · · ◦ T̃ 1)(θ(k))
))

, (2.47)

where K is the number of samples used in the Monte Carlo integration. As in (2.46),
this condition will hold assuming T i+1 contains the identity. Notice however, that
for the Monte Carlo condition in (2.47) to hold, the same samples must be used to
construct each layer of the map.
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2.7.3 Monitoring convergence

Ideally, we would like to continue to add layers until we observe the KL divergence
DKL(π‖π̃i) drop below some tolerance. Unfortunately, we cannot use the KL diver-
gence as a stopping criteria directly because computing DKL(π‖π̃i) requires density
evaluations of the target density π(θ) and we assume that only samples of π(θ) are
available. The sample mean, covariance, and other moments could be used; however,
simply matching a few moments does not necessarily indicate that π̃i is close to π,

or analogously, that the output of the map is close to Gaussian, i.e., that r̃i
i.d.
≈ r.

Nonlinear dependencies may exist that are not captured by the moments. Marginal
quantiles are an easily computed alternative that provide a more sensitive estimate
of the map error.

Our ultimate goal is to construct a compositional map whose output is jointly
Gaussian. By definition, r is jointly Gaussian if and only if aT r has a normal distri-
bution for any vector a ∈ RDθ with unit norm. Thus, for an inexact map with output
r̃i, an indication of the error along the a-direction is the difference between quantiles
of aT r̃i and the known standard normal quantiles of aT r. Moreover, quantiles can be
compared in many directions to get a more accurate measure of the “non-Gaussianity”
in r̃i.

Assume we have Nq probabilities {p1, p2, . . . , pNq} evenly spaced over (0, 1). The
quantiles of a standard normal distribution at these levels are given by

Qj =
√

2 erf−1(2pj − 1). (2.48)

Now, assume we have Na directions defined by {a1, a2, .., aNa}, where ai ∈ RDθ and
‖ai‖ = 1. Using the Nq quantiles and Na directions, we can define the error eq of the
samples {r̃i,(1), r̃i,(2), . . . , r̃i,(K)} as

eq(r̃
i,(1), r̃i,(2), . . . , r̃i,(K)) =

Na∑
d=1

Nq∑
j=1

[
Q̂j

(
aTd r̃

i,(1), aTd r̃
i,(2), . . . , aTd r̃

i,(K)
)
−Qj

]2

,

(2.49)
where Q̂j(·) is a sample estimate of the quantile with probability pj and aTd r̃

i,(k) is the
projection of the kth sample of r̃i onto the dth direction used in the error estimate.
We will use this error estimate as both a stopping criteria and an indication of how
to rotate the coordinates when constructing each layer of the map.

2.7.4 Choosing rotations

In Section 2.2, our formulation makes extensive use of lower triangular maps to help
reduce the computational complexity of map construction. While we know an exact
lower triangular matrix exists, it is often advantageous to rotate the coordinates of
the parameter space (i.e., apply a linear transformation to r̃i), before constructing the
lower triangular map. Rotating the coordinates before building the nonlinear map is
especially important when a small number of basis functions parameterize T̃ i and the
map alone is incapable of capturing nonlinear dependencies between all components
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of θ. Introducing a new rotation at each stage of the map can allow each layer to
capture new nonlinear structure. However, without paying special attention to the
transformation, the linear transformation can worsen the map performance and even
prevent the KL divergence from decreasing as we would expect from (2.47).

To see this, let P̃ i : RDθ → RDθ be a lower triangular map in a function space P i.
Here again, P i is the span of the finite number of basis functions used to parameterize
P̃ i. Moreover, let TAi represent possible transformations obtained by composing any
map in P i with an invertible linear transformation Ai ∈ RDθ×Dθ . Thus, elements of

TAi will take the form of T̃A
i
(r̃i−1) = P̃ i(Air̃i−1). Unfortunately, we can no longer

guarantee that TAi contains the identity – just consider the case where Ai is completely
dense and P̃ i is lower triangular. We make sure the map includes the identity by
introducing an orthonormal matrix B(i) ∈ RDx×Dx so that the map takes the form

T̃ i(r̃i−1) = BiP̃ i(Air̃i−1). (2.50)

Note that we require Bi to be orthonormal so that we can build P̃ i by solving (2.21)
and driving the output of P̃ i to a standard normal distribution. A general choice
of Bi would require us to build P̃ i with something other than a standard normal
reference distribution and we would lose all the computational advantages pertaining
to (2.21).

Notice that the completed one-layer map T̃ i lies in the function space T i containing
maps of the form in (2.50). This space is dependent on the choices of Ai and Bi. By
strategically choosing these matrices, we can ensure that T i contains the identity,
implying that each additional layer will decrease the overall map error as in (2.50).

When Ai is also orthonormal, the inverse of Ai is a straightforward choice for Bi.
Qualitatively, this choice will rotate the coordinate system of r̃i−1, apply the nonlinear
map, and then rotate the result back to the original coordinate system. Moreover,
with this choice of Ai and Bi, the nonlinear map P̃ i can be either diagonal or lower
triangular. In either of these cases, T i will contain the identity and each additional
layer in the composed map will decrease the overall error.

In some situations, it may be advantageous to use an arbitrary invertible matrix
for Ai whose columns are not orthogonal. Because Bi needs to be orthonormal, we
can not use the inverse of Ai in this case. However, when P̃ i is lower triangular, we
can still ensure T i contains the identity by using a QL decomposition of Ai to define
Bi. A QL decomposition is similar to the typical QR factorization of an invertible
matrix; however, the QL decomposition yields an orthonormal matrix Q and a lower
triangular matrix L instead of the usual upper triangular R. Assume we have such a
decomposition, given by

Ai = QiLi, (2.51)

where Qi is orthonormal, and Li is lower triangular with positive diagonal coeffi-
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cients.5 We then have
(Ai)−1 = (Li)−1(Qi)T , (2.52)

where (Li)−1 is again a lower triangular matrix with positive diagonal entries. This
identity provides a way to choose Bi in (2.50). When (Li)−1r̃i−1 is in the function
space P i, we can find a map such that P̃ i(r̃i−1) = (Li)−1r̃i−1. With this choice of
nonlinear component, and setting Bi = (QI)T , the map at layer i becomes T̃ i(r̃i−1) =
(Qi)T (Li)−1Air̃i−1 = r̃i−1. Thus, for any invertible Ai, choosing Bi = (Qi)T ensures
the identity map exists in T i. This subsequently implies that the decreasing KL
divergence from (2.46) will hold.

The optimal6 choice of Ai and Bi is problem dependent and may not be known
a priori. However, we have found that reasonable instances of Ai can be computed
by using either random rotations, principal components, or alternating between these
two approaches. Furthermore, regardless of how an initial rotation is constructed,
we will reorder the rows of Ai (and possibly columns of Bi) based on the sorting
technique in 2.3.3 with p = 2. This helps the map7 capture the correlation structure
in the rotated coordinate system defined by Ai.

Principal component rotations

The principal components of a set of samples are the eigenvectors of the empirical
covariance matrix or the left singular vectors of a matrix of samples. Let r̂i be the
sample average of r̃i and define the matrix X as

X =
[
r̃i−1,(1) − r̂i, r̃i−1,(2) − r̂i, . . . , r̃i−1,(K) − r̂i

]
(2.53)

Notice that each column of X contains a single shifted sample. The left singular
vectors of X, defined by U in the singular value decomposition (SVD) X = UΣV T ,
define the principal components of the samples. The matrix U is orthonormal and
defines a rotation of X into linearly uncorrelated samples Y = UTX, i.e., Y Y T = I.
In this way, Ai = UT and Bi = U seem like natural choices. In fact, with this choice
of rotations and a Gaussian π(θ), a linear diagonal P̃ would yield an exact map.
However, as shown in Figure 2-11 and Table 2.3, principal component rotations can
hinder the convergence speed of the map. This is because the principal components
capture linear correlations but do not consider nonlinear correlations and therefore,
once most of the linear correlation in π(θ) has been captured, result in nearly constant
rotations, i.e., Ai ≈ Ai+1. When π(θ) is non-Gaussian, the remaining nonlinear de-
pendencies can be difficult or impossible to capture with the nearly constant principal
components. One way to overcome this is to simply use random rotations. With a

5While classic methods for computing a QL decomposition, such as modified Gram-Schmidt, may
not produce an Li with positive diagonal coefficients, we can always transform such a solution to
one with positive diagonal entries by multiplying appropriate columns of Q and rows of L with −1.

6The optimal choice of each Ai and Bi in a composed map with N layers will minimize the KL
divergence in (2.46).

7Reordering the components is helpful except when the map is diagonal. For a diagonal map,
reordering has no effect on the map performance.
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random Ai, the rotations will continue to change with additional layers and we should
therefore be able to capture more of the nonlinear correlations.

Purely random rotations

A random orthonormal matrix R in RDθ×Dθ dimensions can be constructed by first
generating a matrix of independent standard normal samples and then orthogonaliz-
ing the columns of this Gaussian matrix with a modified Gram-Schmidt procedure.
This approach for generating R is shown in algorithm 2.2. The algorithm produces
matrices whose columns are uniformly distributed on the unit ball in Dθ dimensions.

At each layer in our compositional map, we generate a new R and set Ai = R
and Bi = RT . While the rotations using this random scheme will never get “stuck”
like the principal components, these random rotations do not take advantage of any
information about the samples in X, or the current approximation π̃i(θ). From our
numerical experiments, we have seen that this leads to slow, but eventual convergence.
One possibility for accelerating the convergence is to be more “choosy” about the
random directions by favoring directions with non-Gaussian marginals.

Algorithm 2.2: Procedure for generating random orthonormal matrices uni-
formly spread over a Dθ-dimensional unit ball. This procedure uses a modified
Gram-Schmidt procedure for orthogonalizing the columns of R. See §3.4.1 of
[63] for further discussion of generating random points on a hypersphere.

Input: The dimension Dθ

Output: A random orthonormal matrix R.
1 Generate R ∈ RDθ×Dθ such that Rij ∼ N(0, 1)
2 for i← 1 to Dθ do
3 for j ← 1 to i− 1 do
4 R:,i ← R:,i − (RT

:,iR:,j)R:,j

5 R:,i =
R:,i

‖R:,i‖

6 return R

Choosy random rotations

Our ultimate goal is to create a transformation from the target density π(θ) to an iid
standard normal density. Therefore, an intuitive heuristic for choosing the rotations
Ai and Bi is to focus the map on directions whose marginal distribution is non-
Gaussian. We want to choose Ai such that our samples of y = Air̃i−1 maximize the
quantile error in (2.49) for some pre-specified quantile levels {p1, p2, . . . , pNq}.

Finding the globally optimal rotation is computationally infeasible. As an alter-
native, we randomly generate a set of M orthonormal matrices using algorithm 2.2
and out of these M options, choose the rotation R∗ that has the maximum non-
Gaussianity, as defined by (2.49). We then set Ai = (R∗)T . Algorithm 2.3 illustrates
this procedure. Notice that as the number of random orthonormal matrices M →∞,
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this method becomes a random search global optimizer. Also notice that the purely
random rotations discussed above a special case of these choosy random rotations
when M = 1.

In practice we have found that choosing M between 100 and 1000 seems to work
well. In our tests, values of M below this did not adequately find non-Gaussian direc-
tions. Moreover, values of M larger than this range did not retain enough randomness
and suffered from the same issue as the principal components – the rotations would
become limited to a few directions, limiting the maps ability to capture nonlinear
dependencies.

Algorithm 2.3: Procedure for generating a random orthonormal matrices that
will cluster on “non-Gaussian” directions.

Input: The samples X, and the number of trials M
Output: A random orthonormal matrix R with preference for non-Gaussian

directions.
1 Set e∗q = −1

2 Set m∗ = 0
3 Initialize R∗ = I
4 for m← 1 to M do
5 Generate R using algorithm 2.2
6 Compute Y ′ = RTX
7 Compute quantile error, eq, of Y ′ using (2.49).
8 if eq > e∗q then
9 e∗q = eq

10 m∗ = m
11 R∗ = R

12 return R∗

Hybrid rotation schemes

The principal component method of choosing Ai and the purely random method con-
verge slowly for very different reasons. The principal component approach can get
stuck on only a few rotations and will not be able to capture more nonlinear structure.
On the other hand, the purely random approach will eventually expose all nonlin-
ear correlations, but will converge slowly because it does not take into account any
information about the sample distribution. This disparity indicates that combining
these methods could create a strong hybrid approach. In the upcoming numerical
examples, we demonstrate such a hybrid approach by alternating between a principal
components rotation and a random rotation. The hope is that the random rotation
will prevent the principal components from getting “stuck,” but still better tune the
rotation Ai for the specific correlation found in the samples.
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2.7.5 Relationship to artificial neural networks

Artificial neural networks (also called multi-layer perceptrons) are a class of methods
for regression and classification. Just like our approach, these methods use multi-
ple layers of simple functions to approximate complex functions. Moreover, artificial
neural networks have been well studied in the machine learning community, with
theoretical studies, e.g., [50], [49], [7] showing that artificial neural networks can
approximate very complicated functions to arbitrary accuracy. Artificial neural net-
works have also seen more recent use in “deep learning,” where many layers are used
in a network for unsupervised or semi-supervised learning [6].

Our use of rotations, then one dimensional functions, followed by weighting and
re-rotation, is a simple multilayered network called a feed forward neural network.
In future work, we will exploit this relationship to develop more efficient algorithms
for constructing our compositional maps and to formalize a convergence theory. The
greatest algorithmic improvement will likely come from jointly optimizing over the
rotations and nonlinear functions.

In addition to regression and classification, researchers in the neural network com-
munity have also studied independent component analysis (ICA). The goal of ICA
is similar to our use of transport maps: ICA aims to find a transformation that
splits a random signal into independent components. A classic example of this is
the “cocktail problem,” where the goal is to separate out individual speakers from
the garbled sound of a party. Many algorithms from this community try to find the
most non-Gaussian independent components of a signal by finding a transformation
that minimizes a Kullback-Lebler divergence [24, 14, 21, 53]. While similar to our
approach, our use of transport maps also require Gaussianity of the independent com-
ponents. Nevertheless, ICA provides a wealth of previous work that we may be able
to adapt to our use of transport maps.

2.7.6 Numerical examples: layered maps

To illustrate the compositional map idea, we will use two examples. The first is a
small two dimensional example using samples of a “banana” distribution, while our
second example involves a much larger random field with 64 dimensions.

Banana distribution

In this example, we will build a map for a target distribution π(θ) defined by the
transformation

θ1 = r1

θ2 = r2
1 + r2,
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where r1 and r2 are from a standard normal distribution N(0, 1). The corresponding
target density is given by

π(θ) =
1

2π
exp

[
−0.5

(
θ2

1 + (θ2 − θ2
1)2
)]
. (2.54)

For this example, we use 20, 000 samples of π(θ) during map construction and we
construct compositional maps with N = 6 layers. The goal of this example is to study
the effect of the basis type and rotation type on the map convergence. With this in
mind, we study three types of bases using one dimensional radial basis functions.
First, we will use a completely diagonal map, where each nonlinear map P̃ i in (2.50)
is defined in a similar way to (2.24) by

P̃ i
d(r̃

i−1) = aid,0 + aid,1r̃
i−1
d +

Pd∑
k=1

bd,kφd,k(r̃
i−1
d ), (2.55)

where φd,i(r̃
i−1
d ) is a univariate radial basis function. In Table 2.3, this type of map

is denoted with a D.
The second basis type is linear in its lower triangular components, but still non-

linear along the diagonal. The form of this map is given by

P̃ i
d(r̃

i−1) = aid,0 +
d∑

k=1

aid,kr̃
i−1
k +

Pd∑
j=1

bd,jφd,j(r̃
i−1
d ). (2.56)

The only difference between this expression and the diagonal map in (2.55) are the
additional linear terms in the first sum. This linear lower triangular map is labeled
LL in Table 2.3.

The last type of basis we use in this example also introduces nonlinear terms in
other dimensions. However, one dimensional radial basis functions are still employed,
so the expansion is still separable by dimension. The form of this nonlinear separable
map is

P̃ i
d(r̃

i−1) = aid,0 +
d∑

k=1

aid,kr̃
i−1
k +

d∑
k=1

Pd∑
j=1

bd,j,kφd,j,k(r̃
i−1
k ). (2.57)

This type of map is denoted by LN in Table 2.3. In all these expansions (2.55),
(2.56), and (2.57), the number of radial basis functions is Pd = 31. We use Gaussian
radial basis functions evenly spaced between the 1% and 99% quantiles of the rotated
samples Air̃i.

In addition to the three map forms described above, we also investigate five dif-
ferent rotations types in this example. We will use the completely random rotations,
choosy random rotations, and principal components (labeled SVD in Table 2.3), as
well hybrid rotations based on alternating the principal components with completely
random rotations (labeled by R-SVD) or choosy random rotations (labeled C-SVD).
For the choosy rotations, we set the number of trial rotations to M = 1000 in algo-
rithm 2.3.
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Table 2.3: Convergence of compositional map for different map forms. The quantile
based error from Section 2.7.3 is used with 6 random (but fixed between runs)
directions. Each method was run 20 times. The mean and standard deviation of the
errors computed from the 20 runs are provided here.

Mean Error Error Std. Dev.
Layer 1 2 3 4 5 6 1 2 3 4 5 6

D 0.619 0.467 0.373 0.308 0.274 0.221 0.198 0.192 0.185 0.167 0.164 0.121
LL 0.575 0.470 0.376 0.314 0.243 0.215 0.228 0.219 0.187 0.160 0.109 0.108

R
an

d
.

LN 0.384 0.186 0.111 0.080 0.058 0.045 0.100 0.087 0.086 0.070 0.065 0.051
D 0.431 0.152 0.125 0.072 0.058 0.048 0.102 0.037 0.039 0.012 0.014 0.010
LL 0.393 0.176 0.129 0.067 0.063 0.047 0.076 0.027 0.048 0.014 0.013 0.009

C
h

o
o
sy

LN 0.314 0.219 0.112 0.067 0.049 0.037 0.070 0.053 0.025 0.026 0.014 0.011
D 0.405 0.170 0.142 0.133 0.128 0.126 0.087 0.042 0.025 0.030 0.029 0.030
LL 0.404 0.154 0.135 0.128 0.124 0.115 0.090 0.031 0.024 0.027 0.032 0.030

S
V

D

LN 0.307 0.276 0.275 0.234 0.233 0.233 0.065 0.086 0.082 0.101 0.101 0.101
D 0.774 0.533 0.258 0.259 0.205 0.197 0.156 0.232 0.064 0.074 0.046 0.072
LL 0.404 0.316 0.160 0.139 0.114 0.113 0.103 0.109 0.023 0.043 0.034 0.043

R
-S

V
D

LN 0.322 0.264 0.228 0.155 0.138 0.116 0.048 0.060 0.083 0.055 0.064 0.063
D 0.393 0.184 0.155 0.115 0.071 0.064 0.093 0.029 0.027 0.042 0.012 0.012
LL 0.398 0.178 0.152 0.119 0.072 0.062 0.101 0.028 0.031 0.052 0.018 0.018

C
-S

V
D

LN 0.313 0.211 0.137 0.087 0.078 0.053 0.071 0.048 0.050 0.032 0.034 0.018

Convergence of the composed map can be studied on either the target θ side of
the map, or on the reference r side of the map. More precisely, we can either compare
the map-induced approximation π̃i to the true target density π or we can compare a
map-induced reference density p̃i to the true Gaussian reference density, where p̃i is
defined by the inverse map composition

p̃i(r) = π(F̃ 1 ◦ F̃ 2 ◦ · · · ◦ F̃ i(r))
i∏

j=1

∣∣∣detDF̃ j((F̃ j+1 ◦ F̃ j+2 ◦ · · · ◦ F̃ i)(r))
∣∣∣ , (2.58)

where F̃ i(r) ≈ T̃ i,−1(r) is an approximation to the inverse of T̃ i constructed using
the regression approach from Section 2.5. Both the convergence of πi(θ) to the true
target density and p̃i(r) to the true reference density are shown in Figures 2-9 through
2-13.

For each map form, Figure 2-9 shows the compositional map convergence using
up to 6 layers. Moreover, Figure 2-10 shows the convergence with choosy rotations,
Figure 2-11 shows convergence with principal components, Figure 2-12 shows results
using R-SVD rotations, and Figure 2-13 shows convergence with C-SVD rotations.
The convergence plots come from one run of each approach and should be treated as
typical results. A more thorough error analysis is provided in Table 2.3, where the
average quantile errors over 20 runs are reported.

Looking at Table 2.3, we see slow but steady convergence when using completely
random rotations and stalled convergence when using principal components. On the
other hand, focusing directions on non-Gaussian directions with the choosy random
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Figure 2-9: Typical convergence of layered map using purely random rotations.

approach, or alternating between a random approach and principal components, can
converge quite quickly. This fast convergence can also be seen in Figures 2-10, 2-12,
and 2-13. Remember that the algorithm is random, so the plots in these figures are
just one realization of a possible outcome.

Importantly, the diagonal map has comparable performance to the more sophis-
ticated lower triangular maps when using either choosy or C-SVD rotations. This is
important as we move beyond this simple two dimensional problem to larger dimen-
sional problems – the number of coefficients in one output of the map T̃d, is constant
with the parameter dimensions Dθ with a diagonal map.

Besov random field

In small dimensional problems such as the banana example above, the map compo-
sition method is not necessary. In these low dimensional problems, we can make a
single layered transport map complicated enough to capture all the nonlinear correla-
tions and structure in π(θ). It is only in high dimensional problems that we are really
required to use the multi-layered map. This section gives an example of constructing
a map with a 64 dimensional Besov space prior density.
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Figure 2-10: Typical convergence of layered map using choosy random rotations.

Assume our target random variable θ is actually a discretization of an infinite
dimensional random field. Besov prior distributions are used by [64] and [28] to de-
fine both discretization-invariant and sparsity inducing priors for Bayesian inference.
These prior distributions are more applicable than classic Gaussian smoothness priors
when the target random field contain a few sharp edges and but is otherwise piecewise
regular. Mathematically, a Besov prior is obtained by representing the random field
with a wavelet expansion that has independent Laplace-distributed weights. After
truncating the expansion and discretizing the field, we are left with the following
definition of θ

θi =
L∑
k=1

Nk∑
j=1

cj,kψj,k(xi), (2.59)

where k is the level of the wavelet expansion, L is the number of levels used in
the expansion, j is the index of the wavelet function at level k, Nk is the number of
wavelets at level k, and ψj,k is the jth wavelet at level k of the multi resolution wavelet
expansion. Notice that xi is the ith node in the spatial discretization, implying that
θi is an evaluation of the random field at xi. The coefficients cj,j in the expansion are
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Figure 2-11: Typical convergence of layered map using only principal components.

distributed according to a Laplace distribution defined by the density

q(ci,j) =
1

2b
exp

(
−|ci,j|

bk

)
, (2.60)

where bk controls the width of the density around ci,j = 0. In this example, we
use L = 3 levels in the wavelet expansion and choose bk = 2−2k+4. This choice
of wavelet coefficient will result in a wider distribution on the “coarse” wavelets,
and a tighter distribution on the “fine” wavelets. Combined with our use of Haar
wavelets, this yields the step behavior shown in Figure 2-14(a). Notice that in the
true field realizations there are large steps corresponding to the coarse wavelets while
only smaller fine scale variations are present from the fine wavelets. The locations
of the large jumps in the field are also fixed. With L = 3 layers, we can expect
significant jumps at i ∈ {8, 16, 24, 32, 40, 48, 56} because these are the edges of the
most significant wavelets. This feature is also shown in Figure 2-14(a).

Using 50000 samples of the Besov random field defined by (2.59), we composed
maps using the choosy random rotation algorithm from Section 2.7.4. Figure 2-15
summarizes the map performance. The diagonal (D), lower linear (LL), and lower

62



Exact

π̃i(θ) p̃i(r)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

(a) Diagonal Map

Exact

π̃i(θ) p̃i(r)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

(b) Linear Lower

Exact

π̃i(θ) p̃i(r)

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

(c) Nonlinear Separable

Figure 2-12: Typical convergence of layered map alternating SVD with random rota-
tions.

nonlinear (LN), maps were constructed using 35 layers in the composition and 51 ra-
dial basis functions along the map diagonal at each layer. The diagonal map captures
the mean and standard deviation, of the field, but clearly has trouble capturing the
correlation structure and the coarse and fine behavior exhibited by the true field. In-
troducing the lower triangular linear terms in the LL map allows the map to capture
more of this structure, but the distinct jumps shown in the realizations of the true
field do not seem to be as present in the map-based samples. Looking more closely
at the correlation structure shown in Figure 2-15, we can see why.

Figure 2-15 shows univariate and bivariate marginal distributions between 6 com-
ponents of θ in the middle of the domain for i ∈ {30, 31, 32, 33, 34, 35}. Notice that
in the middle of this segment, we have a boundary between coarse wavelets. This
boundary causes the independence between the sets {θ30, θ31, θ32} and {θ33, θ34, θ35} as
well as the strong correlation (caused by smaller values of the Laplace scale bk) within
these regions. Notice that the diagonal map captures the one dimensional marginal
quite well, but does not seem to capture the strong correlation – this weaker corre-
lation manifests in the more “random” looking realizations in Figure 2-14. On the
other hand, the lower linear map captures more of the strong correlation, but does
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Figure 2-13: Typical convergence of layered map alternating SVD with choosy rota-
tions.

not capture the one dimensional marginals as well. This explains why the lower linear
realizations in Figure 2-14 have more of the large-step behavior we desire.

The diagonal map captures the non-Gaussian marginal behavior but cannot fully
capture the correlation. Introducing the linear lower triangular structure helps cap-
ture the correlation, but mangles the one dimensional marginals. Looking more closely
at the first layer of the inverse map, F̃ 35(r), this mangling makes intuitive sense. Each
component of the map F̃ 35

d (r) is linear in the first d− 1 components of r. This means
that the output of F̃ 35

d (r) is the sum of a Gaussian random variable and a non-
Gaussian random variable defined by radial basis functions in the rd direction. The
additive Gaussian results in the more Gaussian looking marginals in Figure 2-15.

The impact of an additive Gaussian is likely to be an issue anytime a lower linear
type map is used in highly non-Gaussian situations. To overcome this issue, nonlinear
terms in all d − 1 components can be used. This results in a map defined like the
LN map in the banana example. The marginal distributions using such a map are
shown in Figure 2-15(d). Using off-diagonal nonlinear linear terms allow the map to
adequately capture both the non-Gaussian marginals and the correlation. Alterna-
tively, a diagonal map could be used with a more strategic choice of rotation than
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the random choosy rotations used in this example. The next section indicates one
avenue for future work on this topic.

2.7.7 Summary

Constructing maps in high dimensional problems is difficult because obtaining suffi-
cient accuracy with one-layer maps requires representing the map with an exorbitantly
large number basis functions, which makes solving the optimization problem in (2.21)
computationally intractable. In this section we have overcome the dimensionality is-
sue by composing many maps into a sophisticated multilayer function. By introducing
rotations we were able to tackle a large 64 dimensional problem. While the high di-
mensional problem required many layers to adequately describe the target density,
future work investigating the relationship between layered maps and artificial neural
networks will likely be able to reduce the number of necessary layers – especially in
high dimensions.

Efficient map construction (both in low and high dimensional settings) is a fun-
damental tool that we will exploit in every algorithm described in this thesis. Thus,
any improvement in map construction will immediately allow us to tackle larger and
more difficult problems.
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(a) Illustration of the target Besov random field. The mean and standard deviation are
shown as well as two realizations.
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(b) Summary of a diagonal composed map approximation to the Besov field.
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(c) Summary of a linear lower composed map approximation to the Besov field.
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(d) Summary of a nonlinear lower composed map approximation to the Besov field.

Figure 2-14: Comparison of true Besov random field with map approximation.
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(d) Composed map with nonlinear lower triangu-
lar layers

Figure 2-15: Comparison of map-induced joint marginal densities with true joint
marginal densities. Note that the 6 marginal distributions shown here are just a
subset of the full 64 dimensional target random variable θ.
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Chapter 3

Multiscale inference with transport
maps

3.1 Introduction

While deterministic approaches are routinely used for large-scale inverse problems
(e.g., [33, 18, 19]), these approaches cannot capture the impact of ill-posedness, which
can stem from incomplete observations, observational error, or nonlinear physics, on
parameter uncertainty. However, capturing this uncertainty can be critical when
model predictions are to be used in future decision making and design [104, 36, 32,
101]. To capture these uncertainties, a statistical solution to the inverse problem
is required. This work uses the Bayesian approach. In this chapter, the novelty of
our approach stems from our use of a special multiscale structure exhibited in many
Bayesian inference problems.

As described in Chapter 1, there are many approaches for generating posterior
samples. However, most of these approaches suffer in high-dimensional parameter
spaces, especially with expensive forward models. It is therefore not surprising that
much of the current research in this area (including the work in this chapter) focuses
on shrinking the parameter space exposed to the sampler and/or reducing the number
of expensive model evaluations required by the sampler.

To reduce the parameter dimension for spatially distributed parameters, Karhunen-
Loève (KL) expansions have proven quite useful [67, 31, 74]. Unfortunately, to ef-
fectively reduce the parameter dimension, the correlation structure of the field must
be known a priori and the parameter field must be sufficiently smooth. Moreover,
the parameter dimension is only part of the problem. Even with a smaller parameter
space, an intractable number of expensive model evaluations can still be required to
adequately sample the posterior. The direction taken in this work is thus to reduce
both the parameter dimension exposed to the sampler and the computational cost of
the forward model.
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3.1.1 Overview of multiscale samplers

Multiscale inference methods explicitly take advantage of scale separation in the in-
ference problem to reduce the number of expensive model evaluations required to
generate posterior samples. Existing sampling strategies that exploit this scale sep-
aration do so in two ways: (i) by using a sequence of coarse and fine descriptions of
the parameter field itself, or (ii) by using an efficient forward solver that exploits the
scale separation. As examples of first strategy, [105] combines a sequential Monte
Carlo method with a sequence of progressively finer grids to represent the parameter
field. On the other hand, [46] uses parallel chains on both coarse and fine parameter
fields in a reversible-jump MCMC setting. Occasional coarse to fine “swap” propos-
als allow information to be shared between scales. Alternatively, [31] and [29] pursue
the second strategy. These works only consider a single-level discretization of the
parameter field, but use a multiscale forward solver to create a more efficient MCMC
proposal mechanism.

All of the existing multiscale sampling approaches above use the multiscale struc-
ture to accelerate exact sampling of the original fine scale posterior. Regardless of the
approach, this still involves many online evaluations of the computationally expensive
forward model. Our use of multiscale structure is fundamentally different. Instead
of directly solving the full fine-scale problem, we create and solve an approximate
low-dimensional inference problem that captures the intrinsic dimensionality of the
original problem. The solution to this low dimensional coarse problem can then be
“projected”1 to the original high dimensional fine scale parameter space. While exist-
ing multiscale approaches can be likened to multigrid methods in linear algebra, our
approach is more akin to reduced order modeling, where a lower dimensional problem
is solved and a projection is used to create an approximate high dimensional solution.
In our approach, transport maps are used extensively to describe the coarse inference
problem as well as the coarse to fine “projection.”

3.1.2 Multiscale definition

Multiscale is an inherently vague term because many systems have multiple time or
spatial scales of one form or another. Our framework however, has a very specific
requirement that we will use as the definition of a “multiscale” system. Consider two
real valued random variables d and θ corresponding to probability spaces (Xd,Fd, µd)
and (Xθ,Fθ, µθ), where Xd ⊆ RDd , and Xθ ⊆ RDθ . We will say that a system mapping
θ to d is a multiscale system if there is a naturally motivated sufficient statistic ζ such
that d and θ are independent given ζ. Mathematically, this definition can be expressed
as

π(d|ζ, θ) = π(d|ζ). (3.1)

1In the multigrid community, people would usually call this operation a prolongation and not a
“projection”.
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To help ensure that working with the coarse likelihood π(d|ζ) is easier than working
with the fine scale likelihood π(d|θ), ζ should have a smaller dimension than θ

Dζ ≤ Dθ, (3.2)

where Dζ is the dimension of the coarse parameter. Even though this definition of
a multiscale system might seem abstract, many real systems exhibit behavior that
approximately satisfies 3.1. For example, observations d of the pressure in an aquifer
can often be well modeled by an “upscaled” permeability field ζ, instead of a very
high dimensional field described by θ. Given the “upscaled” field ζ, the fine scale field
θ does not introduce additional information that is important to describe the pressure
observations d, which yields the conditional independence in (3.1). Additional exam-
ples can be found in ecology, finance, and other area with simulations that depend
largely on the aggregate behavior of the parameter θ.

In most real systems, such as the subsurface flow example, the multiscale definition
(3.1) is only approximately satisfied. All of the tools developed in this chapter can
still be applied to these approximately multiscale systems, but the resulting posterior
samples will also be approximate. However, this approximation is usually small and
our use of the coarse parameter ζ allows us to tackle very large problems where
directly sampling π(θ|d) is otherwise intractable. An example of such a large problem
is given in Section 3.6.2.

As an example multiscale system, consider a deterministic fine scale model f :
RDθ → RDd , a coarse model f̃ : RDζ → RDd , and an upscaling function g : RDθ →
RDζ . The fine model relates the parameter θ to the data d with an additive Gaussian
error model

d = f(θ) + ε (3.3)

where ε ∼ N(0,Σεε). This additive Gaussian error defines the fine likelihood π(d|θ).
Now, the coarse model and upscaling operator can be combined to approximate the
fine scale model as follows

f(θ) ≈ f̃(g(θ)) = f̃(ζ). (3.4)

Using these expressions with the additive error model allows us to define the joint
likelihood π(d|ζ, θ). Notice however, that only ζ appears in the coarse model (3.4).
This observation allows us to write

π(d|ζ, θ) ≈ π(d|ζ), (3.5)

where the approximation comes from the approximate coarse model in (3.4). When
equality holds in (3.4), the coarse parameter ζ is a sufficient statistic and this sys-
tem will satisfy our multiscale definition in (3.1) exactly, i.e., π(d|ζ, θ) = π(d|ζ) in
(3.5). In practice however, the upscaling operation and coarse model only provide
an approximation to the fine model f(θ). In this setting, ζ is only approximately
a sufficient statistic, which means the approximate equality in (3.4) will remain. In
this setting, our method can only generate approximate posterior samples; however,
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when f̃(g(θ)) is a good approximation to f(θ), the posterior can also be a good ap-
proximation. We will also have to make additional approximations in Section 3.3 to
construct transport maps in high dimensions. With these additional approximations,
the approximation in (3.5) will only be a mild concern when the coarse model f̃(g(θ))
is an adequate approximation to the fine model f(θ).

Section 3.2 will show how the multiscale definition given in (3.1) allows us to
decompose the usual Bayesian inference into two parts: characterizing a coarse pos-
terior on ζ, and “projecting” the coarse posterior to the original fine posterior. After
introducing the general framework, Section 3.3 will show that an appropriate trans-
port map can be used to tackle both the coarse characterization and the coarse to
fine “projection.” Finally, Section 3.5 will demonstrate the efficiency of this multi-
scale approach on two large applications in porous media, where a Multiscale Finite
Element method is used to simultaneously define the coarse parameter ζ and to facil-
itate efficient simulation. Before proceeding however, we would like to point out that
our framework is not inextricably tied to MsFEM or any physical model, researchers
could apply this framework to any problem where a coarse parameter ζ can be defined
such that the conditional independence in (3.1) is a reasonable assumption.

3.2 Multiscale framework

3.2.1 Decoupling the scales with conditional independence

In the usual single scale setting, we combine the prior π(θ) and likelihood π(d|θ) with
Bayes’ rule

π(θ|d) ∝ π(d|θ)π(θ). (3.6)

In the multiscale problem however, the likelihood has additional structure that we will
use to develop an alternative expression of Bayes’ rule involving the coarse parameter
ζ. Without introducing any new ideas, we can use the coarse parameter ζ to rewrite
Bayes’ rule for the joint posterior over (θ, ζ) as

π(θ, ζ|d) ∝ π(d|θ, ζ)π(ζ, θ). (3.7)

Now, we assume the forward model is a multiscale system in the sense of (3.1). Be-
cause of the conditional independence in the multiscale definition, we can completely
describe the forward model output with a set of coarse parameters ζ. With this in
mind, we can simplify the right hand side of (3.7) and obtain

π(θ, ζ|d) ∝ π(d|ζ)π(ζ, θ). (3.8)

We can further expand the joint prior, π(ζ, θ), in this expression to create the following
multiscale form of Bayes’ rule

π(θ, ζ|d) ∝ π(d|ζ)π(ζ)π(θ|ζ). (3.9)
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This simple expression, which stems directly from the multiscale definition, is the
foundation of our multiscale framework. The three densities on the right hand side,
π(d|ζ), π(ζ), and π(θ|ζ), correspond to a coarse likelihood, a coarse prior, and a down-
scaling density. Notice that only downscaling density depends on high dimensional
fine scale parameters θ.

3.2.2 Two stages for multiscale inference

We now take a deeper look at (3.9). Ignoring the downscaling density π(θ|ζ) in (3.9),
we have two remaining terms π(d|ζ) and π(ζ). These two densities form a coarse
posterior density π(ζ|d) ∝ π(d|ζ)π(ζ). Using this coarse posterior, we can break the
sampling of the fine posterior π(θ|d) into two parts, (1) a coarse scale component that
infers ζ directly by sampling π(ζ|d) without any concern for the fine scale parameters,
and (2) a fine-scale component that for each coarse sample of π(ζ|d) will generate one
or more samples of the fine scale posterior, π(θ|d, ζ) = π(θ|ζ). The combination of
these two steps will generate samples of the joint posterior π(θ, ζ|d). Marginalizing out
the coarse parameter (e.g., ignoring the coarse samples), will produce samples of the
fine-scale posterior – our ultimate goal. While this two-step process is conceptually
simple, there are two important issues that need to be considered:

1. Coarse scale sampling requires us to have a prior on the coarse parameter ζ,
but the original inference problem defines a prior on the fine parameter θ.

2. Generating fine scale posterior samples requires us to sample from the condi-
tional density π(θ|ζ), a potentially nontrivial task.

Both of these problems will be addressed with a unique form of optimal transport
map. Section 3.3 will show how this map can be constructed offline, using only
samples of the joint prior density π(θ, ζ) = π(ζ|θ)π(θ).

3.3 Transport maps for multiscale inference

Here we will apply the transport map concepts from Chapter 2 to both describe the
coarse prior distribution π(θ) and the downscaling density π(θ|ζ).

3.3.1 Theoretical framework

For the moment, assume we have used the optimization and regression approaches
from Chapter 2 to construct a transport map F : R(Dθ+Dζ) → R(Dθ+Dζ), from some
joint reference Gaussian random variables (r1, r2) to (ζ, θ), where r1 is Dζ-dimensional
and r2 is Dθ-dimensional. Notice that F maps (r1, r2) to (ζ, θ), while the map T in
Section 2 would map (ζ, θ) to (r1, r2). Enforcing the same type of lower triangular
structure as before, the joint transport map F will take the form[

ζ
θ

]
= F (r1, r2) =

[
F1(r1)
F2(r1, r2)

]
, (3.10)
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where F1 is lower triangular and the r2 portion of F2 is also lower triangular.2 With
respect to our framework, this block triangular structure is like caffeine to a typical
academic: without it, no progress can be made. On the one hand, F1 can be used
to infer r1 instead of ζ, which solves the problem of describing π(ζ). On the other
hand, F2(r1, r2) will enable sampling of π(θ|r1), which serves as a one-to-one proxy
for π(θ|ζ).

Characterizing the coarse prior

Notice that with the coarse map F1, we can easily replace the original coarse likelihood
π(d|ζ) with a likelihood π(d|r1) based on the reference random variable r1. To see
this in the deterministic setting, consider the deterministic coarse model f̃(ζ) from
Section 3.1.2. Composing the coarse model f̃ with coarse map F1 allows us to define
an error model in terms of the reference random variable r1, given by

d = f̃ (F1(r1)) + ε. (3.11)

This error model defines a coarse reference likelihood π(d|r1) and coarse reference prior
π(r1) = N(0, I) instead of their ζ equivalents. Notice that even with a probabilistic
coarse model, the coarse reference likelihood π(d|r1) can easily be defined with F1

and π(d|ζ) using a simple change of variables.
By combining the coarse reference likelihood and prior with the multiscale form of

Bayes’ rule in (3.9), we obtain a form of Bayes’ rule on the coarse reference variable

π(θ, r1|d) ∝ π(d|r1)π(r1)π(θ|r1). (3.12)

Crucially, this expression does not have the prior term, π(ζ), that plagued (3.9)
– we are one step closer to a complete multiscale framework. As before, this coarse
reference posterior can be broken into two parts: (1) the coarse posterior π(d|r1)π(r1),
and (2) the coarse to fine downscaling density π(θ|r1). Sampling the downscaling
density is the topic of the next section.

Sampling the fine scale parameter

We can easily sample the coarse posterior because only the low dimensional coarse
parameters are needed and we can apply standard approaches such as MCMC without
extensive craftiness. Fortunately, we can easily sample π(θ|r1) as well using the second
part of our map F2. To generate a sample of π(θ|r′1), we start by generating a sample
r∗2 ∼ π(r2) and evaluate F2(r′1, r

∗
2). This fine scale sampling is made possible by the

block lower triangle structure in (5.3).
We have now used the transport map F to characterize π(ζ) and π(θ|ζ); however,

we have not discussed the construction of F . This is the topic of the following section.

2To be pedantic, F1 and F2 do not necessarily need to be lower triangular for our method to
work. Only the block triangular structure, where F1 only depends on r1, is important. We use lower
triangular F1 and F2 here to help ensure that the joint map F is monotone and so that we can use
the efficient optimization techniques from Chapter 2.
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3.3.2 Constructing the maps

For the moment, forget about the high dimensionality of θ and possibly of ζ – those
issues will be addressed in the examples below. Ignoring the dimensionality, we can
construct an approximation to F in the same way as Chapter 2: (1) build a map
T̃ from (ζ, θ) to (r1, r2) by solving the optimization problem in (2.21), and (2) use
regression to construct an approximation F̃ of F . Solving the optimization problem
in (2.21) requires samples of the joint prior π(ζ, θ) = π(ζ|θ)π(θ), which can easily
be generated by sampling the fine scale prior π(θ) and then sampling the upscaling
density π(ζ|θ). Moreover, when the upscaling is deterministic, generating a sample
of π(ζ|θ(k)) only requires running the fine to coarse model at θ(k).

Once the joint prior samples are generated, we use the optimization and regres-
sion approaches introduced in Section 2 to define F̃ . We then split F̃ into the two
components, F̃1 and F̃2, we need in the multiscale framework to define the coarse
prior and enable fine scale sampling. Importantly, it is always possible to split a
lower triangular map F̃ into F̃1 and F̃2. Algorithm 3.1 shows a high level outline of
the entire inference framework.

3.3.3 Choosing the number of fine scale samples

After sampling the coarse posterior, we have samples {r(1)
1 , r

(2)
1 , ..., r

(N)
1 } of π(r1|d).

Our next step is then to fill in the fine scale parameters θ by sampling π(θ|r(i)
1 ) for

each coarse sample. But how many fine scale samples should we generate for each
coarse sample? We could simply generate one fine sample, or we could generate 100
fine samples. With more samples, we lower the variance of our Monte Carlo estimates,
but at the same time increase the computational cost of the sampling. The remainder
of this section analyses this tradeoff in an attempt to find the “optimal” number of
fine samples for each coarse sample.

Assume we have N correlated samples of the the coarse posterior π(r1|d) that are
collected in the set r1 as

r1 =
{
r

(1)
1 , r

(2)
1 , ..., r

(N)
1

}
. (3.13)

Now, for each coarse sample, assume we generate M samples of π(θ|r1). Thus, we
will produce NM fine scale samples. We collect these samples in the set r2 given by

r2 =
{
r

(1,1)
2 , r

(1,2)
2 , ..., r

(1,M)
2 , r

(2,1)
2 , ..., r

(2,M)
2 , r

(3,1)
2 , ..., r

(N,M)
1

}
. (3.14)

Now, let θ̂ be a Monte Carlo estimator of the posterior mean. This estimator is given
by

θ̂(r1, r2) =
1

NM

N∑
i=1

M∑
j=1

T2

(
r

(i)
1 , r

(i,j)
2

)
. (3.15)

Notice that θ̂(r1, r2) is an unbiased estimator of the posterior mean – the posterior
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Algorithm 3.1: Overview of the entire multiscale inference framework.

Input: A prior density π(θ), an upscaling distribution π(ζ|θ), and a way to
sample the coarse posterior π(ζ|d).

Output: Samples of the fine scale posterior π(θ|d)

// Generate prior samples

1 for k ← 1 to K do
2 Sample θ(k) from π(θ) Sample ζ(k) from π

(
ζ|θ(k)

)
// Construct T̃, the map from (ζ, θ) to (r1, r2).

3 for i← 1 to Dζ +Dθ do

4 Solve (2.21) to get T̃i

// Build F̃, the map from (r1, r2) to (ζ, θ), using regression.

5 for k ← 1 to K do

6

(
r

(k)
1 , r

(k)
2

)
= T̃

(
ζ(k), θ(k)

)
7 Solve (2.34) to get F̃1 and F̃2

// Coarse scale posterior sampling.

8 Generate samples {r(1)
1 , r

(2)
1 , ..., r

(N)
1 } of π(r1|d) using MCMC.

// Fine scale posterior sampling.

9 for i← 1 to N do
10 for j ← 1 to M do

11 Sample r
(i,j)
2 from iid Gaussian

12 θ(iM+j) ← F̃2

(
r

(i)
1 , r

(i,j)
2

)
13 return Posterior samples

{
θ(1), θ(2), ..., θ(NM)

}
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induced by the maps F1 and F2. Thus, we are not considering the error in the
maps here, simply the best way to explore the map-induced approximation to π(θ|d).
Mathematically, our goal is to find the value of M that balances minimizing the
variance of the Monte Carlo estimator θ̂ and the computational expense of sampling.
The basic idea is that beyond some critical M , there will be a diminishing reward
for generating more fine scale samples because most of the estimator variance stems
from the lack of coarse samples. To see this, we can use the law of total variance.

We start with the identity

Var
r1,r2

[
θ̂(r1, r2)

]
= Var

r1

[
E
r2

{
θ̂(r1, r2)|r1

}]
+ E

r1

[
Var
r2

{
θ̂(r1, r2)|r1

}]
. (3.16)

Now, define f1(r1) = E
r2

{
T2

(
r

(i)
1 , r

(i,j)
2

)}
and f2(r1) = Var

r2

{
T2

(
r

(i)
1 , r

(i,j)
2

)}
. Notice

that these quantities involve expectations over the collection of samples, not over
the random variables r1 and r2. Also, f1(r1) and f2(r1) are functions of the random
variable r1 that do not depend on the samples r2. Using these quantities and some
algebra, we can rewrite (3.16) as

Var
r1,r2

[
θ̂(r1, r2)

]
= Var

r1

[
1

N

N∑
i=1

f1(r1)

]
+ E

r1

[
1

N2M

N∑
i=1

f2(r1)

]

=
1

N2

N∑
i=1

Var
r1

[f1(r1)] +
1

N2M

N∑
i=1

E
r1

[f2(r1)] . (3.17)

Observe that Var
r1

[f1(r1)] and E
r1

[f2(r1)] are constants, which allow us to express the

estimator variance with the simple expression

Var
r1,r2

[
θ̂(r1, r2)

]
=
C1

N
+

C2

NM
, (3.18)

where C1 = Var
r1

[f1(r1)] and C2 = E
r1

[f2(r1)] are constants depending on the form

of π(θ|r1) and the samples of π(r1|d). Importantly, C1 captures the inter-sample
correlation of the MCMC chain used to generate the coarse posterior samples r1.

The expression in (3.18) is quite intuitive – some of the estimator variance is
dependent only on the number of coarse samples and some of the variance is deter-
mined by the number of fine samples generated for each coarse sample. Interestingly,
no matter how large M becomes, the estimator variance will never go to zero because
the first term in the variance only depends on the number of coarse samples N . Still,
coarse and fine samples have different computational costs, and there is clearly a
tradeoff between obtaining more coarse samples and obtaining more fine samples. To
help choose an “optimal” tradeoff, we need to incorporate the computational time it
takes to sample π(r1|d) and the time it takes to generate a fine scale sample from
π(θ|r1).

Let t1 be the average run time for one coarse MCMC step on π(r1|d) and let t2
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be the average time required to generate one sample of π(θ|r1) using F2(r1, r2). The
total sampling time is then given by

ttot = t1N + t2NM. (3.19)

Using a fixed total time, our goal now is to minimize the estimator variance from (3.18)
by choosing N and M . To do this, we first solve for the optimal value of N by solving
(3.19) for M , substituting the result into the variance from (3.18), and finding the N
that minimizes the result. After some simplification, we find the optimal number of
coarse samples to be

N =
ttot
(
C1t1 −

√
C1C2t1t2

)
C1t21 − C2t1t2

. (3.20)

Using this expression in the total time (3.19) constraint, we obtain

M =
ttot − t1N
t2N

, (3.21)

which is the optimal number of fine samples for each coarse sample. While useful,
these expressions require knowledge of the total run time, a quantity that will change
depending on how many MCMC steps are taken. However, by combining (3.20) and
(3.21), we can obtain an expression for M that is independent of ttot and N . This
expression is given by

M =
t1
t2

[
C1t1 − C2t2(

C1t1 −
√
C1C2t1t2

) − 1

]
. (3.22)

While C1 and C2 are often not known exactly, this expression provides a guideline for
choosing M . Moreover, as we show in Section3.6.1, multiple runs of the multiscale
algorithm can be used to estimate the values of C1 and C2 using regression.

Figure 3-1 shows the qualitative behavior of the optimal M in (3.22) for a fixed
C1 and C2 but varying t1 and t2. As we would expect, when fine samples are less
expensive than coarse samples, i.e., t2 < t1, it is usually advantageous to produce
more than one fine sample per coarse sample. Moreover, the advantage diminishes as
coarse and fine sampling times get close, t2 → t1. It is not always advantageous to
sample more than one fine sample when t2 < t1 because N is in the denominator of
both terms in (3.18), implying that we get more “bang for our buck” when generating
coarse samples.

3.4 A proof-of-concept example

Here we give an initial example of our multiscale framework on a simple example
with two fine scale parameters. The upscaling is deterministic and represents the
harmonic mean of a lognormal random variable – a common upscaling operation in
porous media.

Consider a two dimensional fine scale parameter, θ, and a scalar coarse parameter.
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Figure 3-1: Illustration of optimal M for various t1 and t2. Note that C1 = 1 and
C2 = 0.7 are fixed in this illustration.

The fine to coarse model in this example is defined by

ζ =
1

exp(−θ1) + exp(−θ2)
. (3.23)

Also, the fine scale prior is a zero mean correlated Gaussian with density given by

π(θ) = N

([
0
0

]
,

[
2 0.6

0.6 2

])
. (3.24)

The final component of the inference problem is the coarse error model. For this
problem, the scalar data is related to the coarse parameter through the nonlinear
model

d = ζ3 − 2 + ε, (3.25)

where ε ∼ N(0, σ2
ε ).

In the solution of this problem, a map constructed from multivariate Hermite
polynomials was used. A Hermite expansion was used here because this type of
expansion has optimal convergence properties when the map input is an uncorrelated
Gaussian random variable [108]. While the map T̃ (d, θ), does not have a Gaussian
input, the inverse map F̃ (r1, r2), does have Gaussian input. In addition to choosing
the type of polynomial, we also need to decide on which polynomial terms should be
included in the expansion. This boils down to choosing an appropriate set of multi
indices in (2.23). In this two dimensional example, we will limit the total order of
the multi index to be less than or equal to P . This choice allows the maps to reflect
strong nonlinearities in any variable or combination of variables; however, with more
flexibility comes more degrees of freedom, making both the optimization problem in
(2.21) and the regression problem in (2.34) more difficult. In this small dimensional
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problem, the increased difficulty is manageable, but in larger applications, like those
discussed below, a more strategic choice of map truncation will be required.

Figure 3-2 compares the true posterior density with posteriors obtained using
third, fifth, and seventh order maps. We first use MCMC to sample the coarse
posterior π(r1|d = −1.8) and then use the coarse to fine map F2(r1, r2) to generate
approximate conditional samples of π(θ|d). As the map order is increased, the map-
based approximate posterior density converges to the true posterior. Note that a small
amount of the posterior differences may be relics of the kernel density estimation
process used for plotting. However, in this example, the coarse parameter ζ is a
sufficient statistic, which means that (3.1) is satisfied exactly and any significant
error in Figure 3-2 is caused by inadequate parameterizations of the maps.

For this problem 50, 000 samples were used to construct the maps and a value of
d = −1.8 was used to define the posterior.

3.5 Application: simple groundwater flow

To illustrate the accuracy and performance of our multiscale approach we will con-
sider an example inverse problem from subsurface hydrology. The goal is to describe
subsurface structure by characterizing a spatially distributed conductivity field using
limited observations of hydraulic head. An elliptic equation, commonly called the
pressure equation, will serve as a simple steady state model of groundwater flow in a
confined aquifer. The model is given by

−∇ · (κ(x)∇h(x)) = f(x), (3.26)

where x is a spatial location in one or two spatial dimensions (depending on the test
case below), κ(x) is the permeability field3 field we want to characterize, f(x) contains
well or recharge terms, and h(x) is the hydraulic head solution that we can measure
at several locations throughout the domain. See [13] for a thorough derivation of this
model and a comprehensive discussion of flow in porous media. From a hydrology
standpoint, this steady state model is quite simple; however, in an inference context,
elliptic problems provide many interesting challenges: the parameter space is a high
dimensional random field, elliptic operators are smoothing operators that yield ill-
posed inverse problems, and solving the system in (3.26) on very fine meshes can
become computationally expensive.

The elliptic model in (3.26) acts as a nonlinear lowpass filter, removing high
frequency features of κ(x) from h(x). This means that some features of κ(x) can not
be estimated even if h(x) was known exactly. Variational methods such as Multiscale
Finite Element Methods (MsFEM) [51, 1], Multiscale Finite Volume Methods [57],
Variational Multiscale Methods [52, 60], Heterogeneous Multiscale Methods [30], and
Subgrid Upscaling [8] take advantage of the smoothing to create a small, easy to

3While we will talk of κ(x) as the permeability, we are working in two dimensions and our use
of κ(x) is more in line with the usual definition of transmissivity. At any rate, κ(x) is a strictly
positive spatially varying field.
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Figure 3-2: Convergence of the multiscale posterior to the true posterior as the total
polynomial order is increased. In all cases, 50, 000 samples of π(ζ, θ) were used to
build the maps.
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solve, coarse problem. The common idea behind all of these strategies is to implicitly
coarsen the elliptic operator to allow for more efficient solution while simultaneously
maintaing the accuracy of the solution. In this application, MsFEM will be used to
solve (3.26) and simultaneously define the coarse parameter ζ used in our multiscale
framework.

3.5.1 Defining the coarse parameter with the multiscale fi-
nite element method (MsFEM)

The formulation here closely follows the introduction given by [51] and we only provide
enough details to understand our use of MsFEM in the multiscale inference setting.
Readers may consult [51] or other MsFEM-specific texts for further details of MsFEM
implementation and theory. Alternatively, more general information on finite element
methods can be found in [97].

Let Ω be the spatial domain of interest, where the pressure equation is to be
solved and consider a coarse triangulation Th of Ω into finite elements. While classic
finite elements may use simple basis functions defined by polynomial nodal basis
functions, the multiscale finite element method (MsFEM) uses an additional fine
mesh to construct special basis functions for the coarse solve. These special basis
functions come from local fine-scale solves of the pressure equation. Figure 3-3 shows
one quarter of a typical nodal MsFEM basis function. The bulges in the basis function
come from variations in the fine-scale permeability field κ(x).

x1

x2

φj(x)

Figure 3-3: Example of one quarter of a nodal MsFEM basis function. The function
has a maximum height of 1 and comes from the solution to a homogeneous elliptic
problem over the coarse element. In this figure, a triangular fine-scale mesh was used
inside a quadrilateral coarse mesh.

82



Let C be one coarse quadrilateral element in the coarse triangulation Th. Such
an element is one shown in Figure 3-3. Furthermore, assume that node i of the
triangulation is at the bottom left corner of element C. Over the element C, the
MsFEM basis function φi(x) satisfies a homogeneous version of the pressure equation
given by

−∇ · (κ(x)∇φi) = 0 x ∈ C (3.27)

φi = φ0
i x ∈ ∂C, (3.28)

where φ0
i are boundary conditions chosen so that φi = 1 at the bottom left corner of

C, zero on the right and top edges of C, and decreasing from 1 to 0 along the bottom
and left boundaries. While imposing linear boundary conditions with sometime like
φ0
i = 1− x1 are possible. As [51] and [57] are clear to point out, this choice does not

accurately reflect the impact of the spatially varying κ(x) on can lead to significant
errors in the MsFEM solution. With this in mind, we follow [57] and solve a 1D
analog to (3.27) along the boundaries to compute φ0

i . Readers can consult [57] for
more details on this approach, or [51] for an alternative approach to defining φ0

i that
is based on enlarging the coarse element C.

Regardless of how φ0
i is computed, similar choices of boundary conditions are used

to define MsFEM basis function centered at other corners of C. Usually solutions of
(3.27) are found with standard Galerkin finite element methods.

Once local solves of (3.27) have been performed on each coarse element to con-
struct all MsFEM basis functions, the MsFEM basis function are coupled into a global
coarse solve to approximate the solution to the pressure equation in (3.26). Let ph be
the approximate hydraulic head solution. MsFEM methods try to find coefficients p̃i
on each of the MsFEM basis function φi such that

ph =
∑
i

p̃iφi. (3.29)

The weights are the solution to the linear system

Acp̃ = b (3.30)

where Ac is the coarse stiffness matrix and b is a vector of discretized source terms.
These quantities come from a Galerkin projection of the solution onto the MsFEM
basis, see [51] for a more rigorous treatment of this topic. The form for each entry
aij in Ac is ultimately given by

aij =
∑
C∈Th

eij,C (3.31)

where each eij,C will be referred to as an elemental integral and is defined by

eij,C =

∫
C

κ(x)∇φj(x) · ∇φi(x)dx (3.32)
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These elemental integrals completely describe the coarse stiffness matrix, which in
turn completely describes the solution coefficients p̃i. The elemental integrals can
therefore be used to define the coarse parameter ζ in the multiscale inference frame-
work. The next section will show this in detail. Importantly, because each MsFEM
basis function φj was computed using fine-scale solves of the local elliptic equation in
(3.27), nearly all of the fine-scale physics are embedded in each eij,C and the solution
of the coarse system will be a good approximation to a global fine-scale solution.

Note that the coarse system Ac is the same size of a standard Galerkin finite
element discretization on the coarse scale, but has comparable accuracy to a global
fine-scale solution because the MsFEM basis functions were used. Solving the small
coarse system for p̃ is inexpensive in itself, but many local solves of (3.27) are still
required to find the multiscale basis functions φi and subsequently build the coarse
stiffness matrix Ac. Fortunately, the local solves are easily parallelized, and in the
inference setting can be performed offline – before any data is observed.

3.5.2 Multiscale framework applied to MsFEM

Recall that our interest in MsFEM is to accelerate inference for the fine-scale conduc-
tivity field, κ(x). MsFEM methods assume the elemental integrals are sufficient to
describe the pressure, h(x), which is equivalent to the conditional independence as-
sumption in (3.1). The elemental integrals can therefore be used to define the coarse
parameters, ζ, in the multiscale inference framework. The exact relationship between
the elemental integrals, eijk, and the coarse parameters will depend on the spatial
dimension (1D or 2D in our case) and will be discussed below. However, in all cases,
the fine-scale parameter will be the log-permeability

θ = log κ. (3.33)

The large dimension of θ makes this problem interesting, but at the same time
makes construction of the transport map, F , much more difficult. For example, a
cubic total order map in 110 dimensions will have 234136 polynomial coefficients!
Clearly, such a general form for the map is infeasible and a more strategic choice of
basis is required. The set of polynomial terms, defined through a set of multi indices,
will be tuned to a specific definition of ζ. Thus, different multi-index sets will be used
for the 1D and 2D problems. The particular forms for the 1D and 2D multi indices
are described independently below.

While the multi-layered maps in Chapter 2 are one approach for constructing
maps in general high-dimensional problems, we focus here on techniques that exploit
specific spatial structure from the PDE model.

Strategies for building map in one spatial dimension

In one spatial dimension, MsFEM produces one elemental integral per coarse element.
Thus, when 10 coarse elements are used, the coarse dimension is one tenth of the fine
dimension, i.e., Dζ = Dθ/10. In our example, Dθ = 100, so the dimension of the
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coarse parameter is Dζ = 10. Fortunately, a third order total-order limited map is
feasible in 10 dimensions and no tricks need to be used to define F̃1. However, the
coarse to fine map, F̃2, is from R110 to R100, which cannot be directly attacked with
a general total order map and a more problem-specific form of F̃2 is necessary.

In this application, the prior on θ is Gaussian. This means that θ, r1, and r2 are
all marginally Gaussian random variables. While this does not mean that θ, r1 and r2

are jointly Gaussian, it does indicate that a linear map may characterize much of the
joint structure between these random variables and localized nonlinear terms in the
map may be able to adequately characterize the non-Gaussian features of the joint
distribution. To mathematically define such a map, consider the vector of reference
random variables

r = [r1, r2]T = [r11, r12, ..., r1K , r21, r22, ..., r2N ]T . (3.34)

The definition of F̃2 will start with linear components and then enrich the linear
multi-index with choice nonlinear terms. Consider the expansion used to define F̃2,d

– the output of F̃2 corresponding to θd. The set of linear multi indices used in F̃2,d is
given by

J L
d = {j : ‖j‖1 ≤ 1, ji = 0∀i > d+Dζ}, (3.35)

where j ∈ NDζ+Dθ is a multi-index over both r1 and r2. The condition that ji = 0∀i >
d+Dζ is needed to ensure the map is lower triangular. Furthermore, the d+Dζ term
takes into account of the Dζ dimensional r1 input.

To introduce some nonlinear structure on top of this linear set without using total
order limited polynomials everywhere, we will take advantage of the spatial locality
in the MsFEM upscaling. Each component of θ represents the log-permeability over
one cell in the finite element discretization. Thus, each component of θ lies within
one coarse element, and directly impacts only one component of ζ. Specifically,
component d of the fine-scale field, θd, is related to ζρ(d), where ρ(d) is the coarse
element containing the dth fine element, i.e.,

ρ(d) =

⌊
d

Dζ

⌋
+ 1. (3.36)

In the expansion for F̃2,d, we will strategically introduce nonlinear terms in r1,ρ(d)

and r2,d. These nonlinear terms are introduced to help capture spatially localized
nonlinear dependencies. Combining these terms with the linear multi-index set, yields

J N
d = J L

d ∪
{

j :

{
jd ≤ P d ∈ {ρ(d), d+Dζ}
jd = 0 d /∈ {ρ(d), d+Dζ}

}
. (3.37)

This multi-index set has taken advantage of locality in the MsFEM upscaling to
dramatically reduce the degrees of freedom in the transport map. The set J N

d allows
F̃2 to capture more nonlinear correlation structure; however, in some instances it may
be feasible to simply use the linear map J L

d . In this linear setting, a more efficient
method for constructing F̃2 exists.
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Special case: linear F2

We now consider the special case when all the local terms in (3.37) are linear, i.e.,
P = 1. In this case, the map from (r1, r2) to θ, F̃2, is completely linear. While we
could still use the optimization and regression approach from Chapter 2, when the
prior π(θ) is Gaussian, we can construct F̃2 much more efficiently using an approach
based on cross covariances.

To see this, first assume that we construct F̃1 using the optimization and re-
gression approach. During the regression part of that procedure, we push samples
{ζ(1), ζ(2), ..., ζ(K)} through the inverse of F̃−1

1 (ζ) = T1(ζ), to obtain corresponding
samples of r1 defined by

r
(k)
1 = T1

(
ζ(k)
)
. (3.38)

Furthermore, because ζ(k) ∼ π(ζ|θ(k)), each reference sample r
(k)
1 , is matched with

a prior sample, θ(k), from π(θ). We know r1 and θ are marginally Gaussian, so
if we make the further assumption that they are jointly Gaussian (or can be well-
approximated by a jointly distributed Gaussian random variable), then we can use
the sample cross covariance of r1 and θ, denoted by Σrθ, to construct F̃2. Under this
jointly Gaussian assumption, we can write the the conditional distribution of θ given
r1 as

π(θ|r1) = N
(
θ̄ + ΣT

rθr1,Σθθ − ΣT
rθΣrθ

)
, (3.39)

where θ̄ is the prior mean of θ and Σθθ is the prior covariance. We should point out
that this use of the sample covariance to define a Gaussian conditional distribution is
very similar to use of sample covariances in the ensemble Kalman filter (EnKF) [34].
Moreover, this expression for π(θ|r1) implies that F̃2 can be defined as

θ = F2(r1, r2) = θ̄ + ΣT
rθr1 +

(
Σθθ − ΣT

rθΣrθ

)1/2
r2, (3.40)

where (·)1/2 is a matrix square root (the Cholesky square root was used in our im-
plementation). From numerical experiments, we have observed that this method of
constructing a linear F̃2 is much more efficient than performing the optimization and
regression from Chapter 2. Just as importantly, in our applications, this linear map
seems to give the same posterior accuracy as a linear map produced via optimization.
The accuracy and efficiency tables in the next section will illustrate the performance
of this cross covariance approach.

Strategies for building the maps in two spatial dimensions

In two spatial dimensions, there are 10 elemental integrals on each coarse element.
While this may be significantly smaller than the number of fine-scale elements in each
coarse element, the number of coarse quantities Dζ still becomes too large for us to
tackle it with a total order limited map. Just as we used problem structure to define
F̃2 in the one dimensional setting, we will again use structure in the two dimensional
problem to define a more tractable form for the coarse map F̃1. In particular, we will
restrict our focus to problems with stationary prior distributions and combine this
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stationarity with the inherent locality of MsFEM to derive an expressive nonlinear
coarse map F̃1. For convenience of notation below, let V = Dζ/10 be the number of
coarse elements in our 2D discretization.

As in the one-dimensional derivation above, we will again combine r1 and r2 into
a single vector, but now the expression

r = [r1, r2]T = [r11, r12, ..., r1V , r21, r22, ..., r2Dθ ]
T (3.41)

will be defined blockwise. That is, r1d contains the 10 components of r1 corresponding
to coarse element d. Similarly, we use a block definition of ζ given by ζ = [ζ1, ζ2, ..., ζV ].
Now assume we have a spatially stationary prior on θ. In this case, we will also obtain
a stationary prior on ζ, which implies that each marginal distribution of ζd is the same,
i.e.,

ζi
i.d.
= ζj ∀i, j ∈ {1, 2, ..., V }. (3.42)

We will exploit this structure to build the coarse map F̃1. First, consider a marginal
map, F̃1,m : R10 → R10, that pushes a 10 dimensional standard normal random
variable to any one of the marginal densities, π(ζd). Notice that the m subscript refers
to the fact that F̃1,m is to the marginal distribution of ζd. Given a 10 dimensional

standard normal random variable rm, we have ζd
i.d.
= F̃1,m(rm) for any coarse element

d ∈ {1, 2, ..., V }. Notice that this map is 10 dimensional regardless of how many
coarse elements are used.

The marginal map F̃1,m captures nonlinear correlations within each coarse element.
Now, assume we have constructed F̃1,m as well as its inverse T̃1,m(ζi) = F̃−1

1,m(ζi) using
the optimization and regression approach from Chapter 2. Using V repetitions of
T̃1,m, one for each coarse element, we can define an intermediate Dζ dimensional
random variable r1,m as follows

r1,m =
[
T̃1,m(ζ1), T̃1,m(ζ2), ..., T̃1,m(ζV )

]T
(3.43)

Notice that each block of r1,m is marginally IID Gaussian, but the entire variable, r1,m

may have nonlinear correlations and will not necessarily be jointly Gaussian. Since
our goal is to build a map F̃1 from the IID Gaussian random variable r1 to ζ, we need
to remove the inter-block correlations present in r1,m. For computational efficiency,
we will only consider linear correlations and we will use a lower triangular Cholesky
decomposition L, of the r1,m covariance

Cov [r1,m] = LLT . (3.44)

By dividing the lower triangular Cholesky factor, L, into blocks corresponding to the
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coarse elements, we obtain

L =


L11 0 0 · · · 0
L21 L22 0 · · · 0
...

. . .
...

L(V−1)1 L(V−1)2 · · · L(V−1)(V−1) 0
LV 1 LV 2 · · · LV (V−1) LV V

 , (3.45)

where each diagonal entry is a 10× 10 lower triangular matrix. Notice that applying
L−1 to r1,m will remove linear correlations from r1,m, leading to

r1 ≈ L−1r1,m

⇒ Lr1 ≈ r1,m (3.46)

Combining L with the local nonlinear map, F̃1,m, we obtain a complete coarse map

ζ
i.d.
=


T1 (L11r11)

F̃1,m (L21r11 + L22r12)
...

F̃1,m

(
LDζ1r11 + LDζ2r12 + ...+ LDζDζr1Dζ

)
 . (3.47)

Crucially, constructing this map only requires building a single 10 dimensional non-
linear map. As mentioned in our 1D map strategy, total order limited polynomial
expansions can be applied to maps of this size. In the 2D example below, we construct
F̃1 with (3.47), but construct F̃2 using the same cross covariance approach described
above for the 1D problem. The samples of r1 used in the covariance are computed
using the nonlinear inverse map T̃1,m and the inverse Cholesky factor L−1.

3.6 Numerical results

3.6.1 One spatial dimension

Here we apply our multiscale framework and the previous section’s problem-specific
map structure to our first “large-scale” inference problem. The goal of this section is
to analyze the efficiency and accuracy of our approach by comparing the multiscale
method with a standard MCMC approach. The inverse problem is to infer a spatially
distributed one dimensional log conductivity field using MsFEM as the forward model.
While our multiscale approach can handle much larger problems (as demonstrated
in the 2D section below), the problem size is restricted in this section to enable
comparison with fine-scale MCMC.

This example aims to sample the posterior distribution π(θ|d) where θ = log κ(x)
is the log conductivity field depending on the spatial position x ∈ [0, 1], and the data
d is a set of pressure observations. The prior on θ uses an exponential covariance
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kernel with the form

Cov (θ(x1), θ(x2)) = σ2
θ exp

[
−|x1 − x2|

L

]
. (3.48)

We set the correlation length be L = 0.1 and the prior variance be σ2
θ = 1.0. An

exponential kernel was chosen for two reasons, (i) this class of covariance kernel
yields rough fields that are often found in practice but difficult to handle with typical
dimension reduction techniques such as Karhunen-Loève decompositions, and (ii)
MsFEM is most accurate for problems with strong scale separation, which is the
case for problems with these rough fields. We use 10 coarse elements and 10 fine
elements per coarse element. This means that θ is a 100 dimensional random variable.
Moreover, the data is 11 dimensional, coming from observation at all 11 nodes in the
coarse mesh (10 coarse cells implies 11 coarse nodes). Dirichlet boundary conditions
are used with p(0) = 1 and p(1) = 0. To generate the data, a realization of the prior
log-conductivity (shown in Figure 3-5) was used with a full fine-scale FEM forward
solver to produce a representative pressure field. The pressure field was then down
sampled and combined with additive IID Gaussian noise to obtain the data. The
noise variance is 1× 10−4.

Benchmark results were obtained using MCMC on the full 100 dimensional fine-
scale space with MsFEM as the forward model. We used two variants of MCMC in our
tests: the delayed rejection Adaptive-Metropolis (DRAM) MCMC algorithm [41] and
a preconditioned Metropolis-adjusted Langevin Algorithm (PreMALA) [86]. DRAM
uses a Gaussian random walk proposal with a covariance that is adapted based on
the sample covariance. The DRAM algorithm was tuned to have an acceptance rate
of 35%. Two stages were used for DR part of DRAM, but the second stage was
turned off after 7e4 MCMC steps. While the PreMALA proposal is not adaptive, we
set the proposal covariance to the inverse Hessian at the posterior MAP point. The
PreMALA algorithm also uses Gradient information to shift the proposal towards high
density regions of the posterior. For the single-scale posterior here, finite differences
were used to compute the Hessian, which may have hindered PreMALA performance
in Table 3.2. Also, for both PreMALA and DRAM, 5e6 steps were used in the chain,
1e5 of which were used as a burn in period after starting the chain from the MAP
point. The DRAM samples are used for the accuracy comparison in Table 3.1.

Sampling the coarse posterior π(r1|d) was also performed with PreMALA. Again
the Hessian at the MAP point was used; however, PreMALA was found to be more
efficient than DRAM for exploring this coarse posterior. The algorithm was tuned to
have an acceptance rate of around 55%.

When the multiscale definition in (3.1) is completely satisfied and exact trans-
port maps are used, posterior samples produced by our multiscale framework will
be samples from π(θ|d). However, as described in the preceding sections, various
assumptions and approximations are necessary to efficiently compute the transport
maps. This means that, in this application, our multiscale method only approxi-
mately samples π(θ|d). Table 3.1 and Figure 3-4 show that this approximation is
reasonable and that no significant errors were made in the construction of F̃1 and F̃2.
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However, as shown in Figure 3-4, there is an obvious negative bias in the results near
x = 0.3. This is likely caused by the approximation of F2 on parameters near that
point. A coarse element boundary exists at x = 0.3 and there is large dip in θ over
the element boundary. Such large dips are not in the high density regions of the prior
and restricting F2 to only have local nonlinearities may be preventing the map from
adequately capturing the tail behavior necessary to exactly characterize the posterior.
With a more expressive coarse to fine map F2, this bias would decrease. However,
in all other locations, the true MCMC posterior and the multiscale posterior are in
good agreement.

Table 3.1: Estimate of bias in quantile estimates for the multiscale inference frame-
work. Index refers to a particular fine element where the quantile was computed. Ea
is the average error (i.e., bias) between the MCMC estimate and multiscale estimate
of the a-percent quantile.

F̃1 order F̃2 order x E05 E25 E50 E75 E95

1

1

0.1 1.11e-02 4.72e-02 5.92e-02 5.67e-02 3.35e-02
0.3 -3.58e-01 -3.05e-01 -2.83e-01 -2.75e-01 -2.83e-01
0.5 -1.28e-01 -1.40e-01 -1.62e-01 -1.95e-01 -2.60e-01
0.9 1.86e-02 6.46e-02 7.85e-02 7.92e-02 5.02e-02

3

0.1 2.16e-01 1.26e-01 5.42e-02 -2.58e-02 -1.53e-01
0.3 -1.49e-01 -2.21e-01 -2.80e-01 -3.44e-01 -4.42e-01
0.5 7.50e-02 -5.98e-02 -1.61e-01 -2.67e-01 -4.23e-01
0.9 2.45e-01 1.54e-01 7.91e-02 -4.53e-03 -1.35e-01

3

1

0.1 -9.24e-04 3.60e-02 4.77e-02 4.76e-02 2.28e-02
0.3 -3.60e-01 -3.05e-01 -2.84e-01 -2.73e-01 -2.79e-01
0.5 -1.00e-01 -1.12e-01 -1.34e-01 -1.69e-01 -2.34e-01
0.9 2.17e-03 4.84e-02 6.26e-02 6.31e-02 3.53e-02

3

0.1 2.15e-01 1.22e-01 4.17e-02 -4.46e-02 -1.90e-01
0.3 -4.11e-02 -9.15e-02 -1.32e-01 -1.78e-01 -2.54e-01
0.5 1.06e-01 -3.52e-02 -1.39e-01 -2.49e-01 -4.15e-01
0.9 2.42e-01 1.30e-01 4.74e-02 -3.97e-02 -1.79e-01

Posterior expectations such as quantiles only tell part of the story. Another impor-
tant feature of the posterior is the correlation structure of the posterior realizations.
As shown in Figure 3-5, our multiscale approach correctly produces posterior samples
with the same rough structure as the prior.

Now consider the efficiency of the multiscale method. The effective sample size
(ESS) is one measure of the information contained in a set of posterior samples. The
ESS represents the number of effectively independent samples contained in the set.
In an MCMC context, we can easily compute this quantity for a chain at equilibrium
[107]. However, a more fundamental definition of ESS using the variance of a Monte
Carlo estimator will be used here. Assume we have a Monte Carlo estimator θ̂i for
the mean of θi. The ESS for such an estimator is given by the ratio of the random
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(a) 95% Region of multiscale quantile estimator (shaded blue) using cross-covariance map
and “Gold Standard” MCMC quantile.
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(b) 95% Region of multiscale quantile estimator (shaded red) using local polynomial map and
“Gold Standard” MCMC quantile.

Figure 3-4: Comparison of multiscale estimate of posterior quantiles and a fine-scale
MCMC approach. The MCMC chain was run 4.9 million steps and the quantiles here
are taken as the “true” quantiles in our analysis. Note that the vertical grid lines
correspond to coarse element boundaries. A quantitative summary of these plots is
given in Table 3.1.
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Figure 3-5: Comparison of posterior realizations with true log conductivity. Clearly,
the posterior samples maintain the same rough correlation structure as the true log
conductivity. As in Figure 3-4, the vertical grid lines correspond to coarse element
boundaries.

variable variance and the estimator variance

ESSi =
Var(θi)

Var(θ̂i)
, (3.49)

where ESSi is the effective sample size for dimension i. This expression for ESS is more
difficult to compute than the methods in [107] because evaluating Var(θ̂i) requires

many samples of the Monte Carlo estimator (i.e., running the inference procedure
many times); however, this approach is less susceptible to errors stemming from
autocorrelation integration and does not require us to use samples from an MCMC
scheme; we can instead use samples from our multiscale scheme. The effective sample
size can be computed for each dimension of the chain so a range of effective sample
sizes is obtained. Unless otherwise noted, the ESS values reported here will refer to
the minimum effective sample size over all dimensions.

Table 3.2 shows the efficiency of our multiscale approach compared to two hand
tuned fine-scale MCMC samplers. Comparing the DRAM MCMC with the multiscale
results, we can see that even when a nonlinear coarse to fine map F̃2 is used, proper
tuning of the method can speed up the number of effectively independent samples
generated per second by a factor of 2 with one fine sample per coarse sample, M = 1.
Moreover, when a linear F̃2 is employed, we can see a speed up of 4.5 times when 5 fine
samples are generated for each coarse sample M = 5. These results indicate that as
long as minor approximations to the posterior are acceptable, even when direct single
scale approaches could be applied, there is a clear advantage of using our multiscale
approach.
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Table 3.2: Comparison of posterior sampling efficiency between DRAM MCMC and
variants of our multiscale framework. The key column is ESS/ton, where the high
numbers indicate our method generates more effectively independent samples per
second. Note that even with a more efficient MCMC sampler, it is unlikely that the
MCMC sampler will be able to outperform the efficiency of our multiscale approach
with linear F̃2.

Method N M ton (sec) Min ESS Max ESS Min ESS/ton
MCMC-DRAM 4900000 NA 2252.63 6340 11379 2.8
MCMC-PreMALA 4900000 NA 2773.47 274 729 0.1

Cross Covariance 500000 1 287.31 2987 20244 10.4
Cross Covariance 500000 5 314.17 3971 14597 12.6

Local Cubic 450000 1 937.41 5408 23679 5.8
Local Cubic 450000 5 3555.05 5294 18759 1.5

Using the timing and ESS data from Table 3.2 for M = 1 and M = 5, we can
also compute the optimal number of fine samples to generate for each coarse sample.
To use the optimal expression in (3.22), we first use a simple least squares approach
to compute the unknown coefficients C1 and C2. For the linear case, we obtain
C1 = 22.7867 and C2 = 10.2019, which yields an optimal value of M = 4. For the
local cubic case, we obtain C1 = 11.6076 and C2 = 3.3135 which yields an optimal
value of M = 1. Clearly, it is worth generating additional fine-scale samples for
the inexpensive linear map, but for the slightly more expensive cubic map it is not
worthwhile (in terms of time) to generate more fine-scale samples. The time would
be better spent generating coarse samples. This can also be seen in Table 3.2 directly.
For the linear cross covariance map, the ESS/ton is larger for M = 5 than M = 1,
while the opposite is true for the local cubic map.

These values for M are dependent on the cost of each coarse model evaluation.
In this 1d problem, the coarse model is incredibly cheap to evaluate, on par with
the cost of evaluating the cubic map. However, for problems with expensive model
evaluations or with poor coarse MCMC mixing, this will not be the case, and larger
values of M will be optimal.

3.6.2 Two spatial dimensions

The relatively small dimension of θ in the 1D problem above allowed us to compare
our multiscale approach with an MCMC gold-standard. However, we expect our
multiscale inference approach to yield even larger performance increases on large-
scale problems where direct use of MCMC may not be feasible at all. Here we will
again infer a log conductivity field using MsFEM as a forward solver; however, this
example will have two spatial dimensions. The 2D grid is defined by an 8×8 mesh of
coarse elements over [0, 1]× [0, 1], with 13× 13 fine elements in each coarse element.
The log-conductivity is defined as piecewise constant on each fine element, resulting
in a 10816 dimensional inference problem! The zero mean prior is again defined by an
exponential kernel with correlation length 0.1. In two dimensions, this kernel takes
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the form

Cov (θ(x1), θ(x2)) = σ2
θ exp

[
−‖x1 − x2‖2

L

]
, (3.50)

where ‖ · ‖2 is the usual Euclidean norm, σ2
θ = 1.0, and L = 0.1. Notice that is an

isotropic kernel, but is not separable.
Synthetic data are generated by a full fine-scale simulation using a standard

Galerkin FEM and iid Gaussian noise is added to the pressure at each of the coarse
nodes. The noise variance is 1e− 6. For boundary conditions, an increasing Dirichlet
condition is used at y = 0 while a decreasing Dirichlet condition is used at y = 1.
Homogeneous (i.e., no flow) boundaries are used for x = 0 and x = 1. Specifically
the top and bottom Dirichlet conditions are given by:

p(x, y = 0) = x (3.51)

p(x, y = 1) = 1− x (3.52)

Since we cannot apply any other sampling method to this large problem directly,
our confidence in the posterior accuracy stems directly from the accuracy of transport
maps F̃1 and F̃2. From the one dimensions results, we know that linear F̃2 derived
from the cross covariance of r1 and θ performs quite well and it is reasonable to
assume the same performance in the 2d case. In addition to the accuracy of F̃2, a
qualitative verification of the coarse map is given in Figure 3-6. The figure shows
the true prior density of the coarse parameters over one coarse element as well as
the density defined by the coarse map, F̃1 in (3.47). From this figure, we see that
the coarse map well represents the coarse prior. In terms of computational effort, the
map was constructed using 85000 prior samples and multivariate Hermite polynomials
limited to a total order of 7. Taking advantage of 16 compute nodes, each employing
4 threads on a cluster with 3.6GHz intel Xeon E5-1620 processors, the prior sampling,
F̃1 construction, and F̃2 construction took under an hour for this problem.

With confidence in the transport maps, we can move on to posterior sampling.
The PreMALA MCMC algorithm with a scaled inverse MAP Hessian as the proposal
covariance was again used to sample the coarse posterior. The coarse MCMC chain
was run for 2e5 steps to generate the coarse samples. It is relatively simple to compute
gradients of the coarse posterior using adjoint methods, which allows us to use the
Langevin approach. Moreover, incorporating derivative information helps us tackle
the still relatively large dimension of the coarse posterior. The Hessian of the coarse
posterior at the maximum a posteriori (MAP) point was used as the preconditioner.
Even though the coarse sampling problem still has 384 parameters, the coarse map F̃1

captures much of the problem structure and the coarse MCMC chain mixes remark-
ably well, achieving a near optimal acceptance rate of 60%. Ten independent parallel
chains were run and completed the coarse sampling in 49 minutes. After coarse sam-
pling with MCMC, the coarse samples were combined with independent samples of
r2 through F̃2 to generate posterior samples of the fine-scale variable θ. This coarse
to fine sampling took 61 minutes. Figure 3-7 shows the posterior sample mean and
variance as well as two posterior samples. A single fine sample was generated for each
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(a) True coarse density.
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(b) Map-induced coarse density.

Figure 3-6: Comparison of the true coarse prior density and the coarse prior density
induced by F̃1. In this case, a seventh order Hermite polynomial expansion was used
to parameterize F̃1. The first coarse parameter on each coarse cell, corresponding to
ζ1, is the most difficult for the map to capture because of the lognormal shape. The
color scales, contour levels, and axis bounds are the same for both plots.

coarse sample. Notice that the fine-scale realizations have the same rough structure
as the true log(κ) field. This is an important feature of our work that is not present
in many methods based on a priori dimension reduction, such as the use of truncated
KL expansions.

3.7 Discussion

We have developed a method for utilizing optimal transport maps for efficiently solv-
ing Bayesian inference problems exhibiting the multiscale structure defined in (3.1).
Our use of optimal transport maps enabled us to decouple the original inference
problem into a manageable coarse sampling problem (sampling π(r1|d)) and a coarse
to fine “projection” of the posterior (evaluating T2 with posterior r1 samples). By
utilizing locality and stationary, we were able to build these transport maps despite
the large dimension of spatially distributed parameters in our examples. While not
exact, our method does produce samples that well-approximate the true posterior.
Moreover, as illustrated in the 2d example, this approach can be applied to problems
that are intractable when using standard sampling methods.

Tackling a Bayesian inference problem as large as the 2d example above would
take several days if not weeks with any typical sampler. However, our use of transport
maps to decouple the problem has allowed us to efficiently solve the problem in only
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a few hours. Part of this dramatic time reduction stems from the inherit parallelism
in our approach. All the prior sampling, much of the optimization used to build the
transport maps, and all of the post-MCMC F̃2 evaluations can be parallelized. This
is contrast to nearly all samplers based on MCMC, as MCMC is an inherently serial
process. While we use some algorithm level parallelism utilizing MPI over multiple
CPU’s, more sophisticated parallel architectures could also be exploited in future
applications of this work. One possibility is to use general purpose GPU computing
to accelerate the fine to coarse model evaluations, and the coarse to fine evaluations
of F̃2. This has the potential to dramatically accelerate the sampling.

In the two porous media examples described above, the posterior samples gen-
erated by our multiscale method are approximate. However, the accuracy of this
approximation can be controlled by the representation of the maps F̃1 and F̃2. In
example 2, we restricted ourselves to a linear F̃2 because one of our major concerns
was computational run time. However, in applications where more exact posterior
sampling is required, a higher polynomial order or alternative functional represen-
tation could be employed. In the same vein, future development of adaptive map-
construction techniques could automatically find the problem structure (locality and
stationarity) that we exploited in our examples. Simultaneous use of problem struc-
ture and the layered maps from Chapter 2 is one potentially exciting area. However,
our multiscale framework is not tied to a specific approach for constructing transport
maps and will benefit from any future research in that area.
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(b) Posterior mean using multiscale approach.
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(e) Posterior Realization

Figure 3-7: Application of multiscale inference framework to 10404 dimensional prob-
lem using MsFEM and 360 dimensional coarse problem.
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Chapter 4

Transport map accelerated MCMC

The ultimate goal of Bayesian inference and uncertainty quantification in general, is
to answer questions like: what is the expected global temperature rise over the next ten
years? or how much will energy production vary in Wyoming? As mathematicians
and engineers, we express these questions in terms of a quantity of interest, Q, which
is defined by an integral over the Dθ-dimensional random variable θ. Recall that X ⊆
RD is the sample space containing all possible values of θ and µθ is the distribution
of θ. We assume that µθ admits a continuous density, which allows us to write the
quantity of interest as

Q =

∫
h(θ)πn(θ)dθ. (4.1)

Here, πn(θ) is the probability density related to µθ and h(θ) is an application-specific
function.

Unfortunately, computing expectations such as (4.1) is analytically intractable
in realistic situations. A general and robust solution is then to use Monte Carlo
integration to approximate (4.1) with a finite set of samples {θ(1), θ(2), ..., θ(N)} taken
from πn(θ). The Monte-Carlo approximation is given by

Q ≈ 1

N

N∑
i=1

h(θ(i)). (4.2)

The Monte Carlo approach is easy to apply when independent samples of πn(θ) are
efficiently obtained; however, our primary interest is in Bayesian inference problems,
where the target density πn(θ) can be constructed from sophisticated physical models,
which makes direct sampling impossible. We therefore need more advanced methods
for generating samples of πn(θ), such as Markov chain Monte Carlo (MCMC).

Using the thorough discussion of transport maps from Chapter 2, the remaining
sections of this chapter will first expand on Chapter 1 with a more thorough overview
of MCMC (Section 4.1.1), then formulate our new class of adaptive map-based MCMC
algorithms (Sections 4.1 and 4.2), describe the relationship between our approach
and differential geometric MCMC methods (Section 4.3), briefly discuss convergence
(Section 4.4), and finally, compare the performance of map-based MCMC algorithms
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against existing methods on a range of test problems (Section 4.5).

4.1 Transport-map accelerated MCMC

Unlike the direct use of an approximate map T̃ (θ), MCMC methods provide a mech-
anism for generating exact samples of the target distribution π [83]. These methods
work by constructing a Markov a chain with correlated states {θ(1), θ(2), ..., θ(K)} such
that the stationary distribution of the chain corresponds to the density πn(θ), and
that the chain states themselves can be used in a Monte Carlo approximation similar
to (4.2). One of the most general ways of defining such a chain is the Metropolis-
Hastings rule.

4.1.1 The Metropolis-Hastings Rule

In the Metropolis-Hastings setting, generating a new state θ(n+1) from the current
state θ(n) in a Markov chain is achieved with a two step process. First, a sample
θ′ is drawn from some proposal distribution qθ(θ

′|θ(n)). Then, an accept-reject stage
is performed: θ(n+1) is set to θ′ with probability α(θ′, θ(n)) and is set to θ(n) with
probability 1−α(θ′, θ(n)), where the acceptance probability α(θ′, θ(n)) is given by the
well-known Metropolis-Hastings rule [45, 76]

α
(
θ′, θ(n)

)
= min

{
1,

π(θ′)qθ(θ
(n)|θ′)

π(θ(n))qθ(θ′|θ(n))

}
. (4.3)

Notice that the choice of proposal distribution qθ controls the correlation between
states in the MCMC chain through both the acceptance rate and the step size. Since
the correlation in the Markov chain can dramatically alter the accuracy of a Monte
Carlo approximate based on the samples, it is important to to use a proposal distri-
bution that proposes large steps with a high probability of acceptance.

Classic examples of proposals include a Gaussian density with mean θ and fixed co-
variance (i.e., “Random-Walk Metropolis” (RWM)), a Gaussian density with mean θ+
d for a drift d based on the gradient of log π (i.e., “Metropolis-Adjusted Langevin Al-
gorithm” (MALA)), and a mechanism based on Hamiltonian Dynamics (i.e., “Hamil-
tonian Monte Carlo” (HMC)). The mixing and convergence properties of these pro-
posals have been extensively studied, see [84] and [55] for RWM, [88] and [9] for
MALA, and [80] for HMC. A nice discussion of optimal scaling results for both RWM
and MALA proposals can also be found in [89].

Notice that all of these proposals have parameters that need to be tuned, e.g.,
the Gaussian proposal covariance or the number of integration steps to use in HMC.
While MCMC theory provides a guideline for optimally tuning these parameters,
effectively sampling a particular target density πn usually involves hand tuning the
parameters, which can be a painfully tricky task. Adaptive strategies try to overcome
this issue by learning the proposal parameters as the MCMC chain progresses.

In the RWM and MALA proposals, the previous states can be used to obtain
sample estimates of the target covariance and the proposal covariance can then be
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set to a scaled version of sample covariance. In the RWM case, this idea leads to
the “Adaptive Metropolis” (AM) algorithm first proposed in [42]. For the MALA
case, this type of covariance adaptation is discussed in [9]. By matching the proposal
covariance to the target covariance, the proposals can take much larger steps and still
stay within high density regions of the parameter space. This helps these methods
automatically find an adequate proposal.

A chain constructed with an adaptive proposal is not strictly Markov, but as
shown in [4] and reviewed in [5], the adaptive chain can still be ergodic under some

surprisingly mild conditions on the sequence of proposal distributions q
(n)
θ . More on

the convergence properties of adaptive MCMC will be discussed in Section 4.4, where
we show the ergodicity of our own adaptive approach.

4.1.2 Combining maps and MCMC

Assume for this section that we are given a previously constructed approximate map
T̃ (θ). Unfortunately, using an approximate map means that pushing samples of the
reference density p(r) through T̃−1 will yield inexact samples of the target density
π(θ). However, as shown in Figure 2-1, even an approximate map can still capture
much of the target distribution’s structure. This feature of T̃ can be exploited by
combining the map with either a local or independent Metropolis-Hastrings proposal
distribution on the reference space, denoted by qr(r

′|r), to create an efficient proposal
density on the target space, denoted by qθ(θ

′|θ). When the map is fixed, this process
can be viewed in two ways: (1) the canonical reference proposal qr(r

′|r) is applied
to a map-induced approximate reference density p̃(r), or (2) the map-induced target
proposal qθ(θ

′|θ) is applied to the original target density π(θ). The details below will
generally follow this second map-induced proposal view, but readers may find the
first idea of transforming the target density intuitively useful.

Algorithm details

Let qr(r
′|r) be a standard MCMC proposal on the reference space. Note that this pro-

posal could be any valid MCMC proposal such as the typical random walk proposal,
Langevin proposal, Gaussian independence proposal, or even a delayed rejection pro-
posal. Using the transport map, this reference-space proposal induces a target-space
proposal density defined by

qθ(θ
′|θ) = qr

(
T̃ (θ′)|T̃ (θ)

) ∣∣∣det
(
∂T̃ (θ′)

)∣∣∣ (4.4)

This expression provides an easy way of evaluating the target proposal. However, in
an MCMC context, we need to be able to both evaluate the proposal density and
sample from the proposal. Fortunately, sampling the target proposal qθ(θ

′|θ) only
involves the three steps outlined below,

1. Use the current target state θc to compute the current reference state, rc = T̃ (θc)

2. Draw a sample r′ from the reference proposal, r′ ∼ qr(r
′|rc).

101



r

θ

T̃ (θ)
π(θ)

θc

rc

3

r′

qr(r
′|r)4

θ′ 5

Figure 4-1: Illustration of Metropolis-Hastings proposal process in transport-map
accelerated MCMC. Here, the reference proposal r′ is accepted. The gray circled
numbers on each arrow correspond the the line number in algorithm 4.1.

3. Evaluate the inverse map at r′ to obtain a sample of the target proposal qθ:
θ′ = T̃−1(r′).

These steps are also outlined as steps 3-5 in Algorithm 4.1 and Figure 4-1. Using
this proposal process in a standard Metropolis-Hastings MCMC algorithm yields the
method in Algorithm 4.1. Notice that Algorithm 4.1 is fundamentally equivalent to
the standard Metropolis-Hastings algorithm.

We also need to point out that evaluating the inverse map T̃−1(r) only involves
D one dimensional nonlinear solves. This is a result of the map’s lower triangular
structure. These one dimensional problems can be solved efficiently with a simple
Newton method or, in the presence of a polynomial map, with a bisection solver
based on Sturm sequences [106].

Handling derivative-based proposals

An important feature of our approach is that the map-induced proposal qθ(θ
′|θ) only

requires derivative information from the target density π(θ) when the reference pro-
posal qr(r

′|r) requires derivative information. For example, if qr(r|rc) requires gra-
dient information, then our approach will require gradient information from π(θ).
However, when qr(r|rc) only requires density evaluations, our method will only re-
quire density evaluations. Another important feature of Algorithm 4.1 is that we
do not require π(θ) to take any particular form (e.g., π(θ) does not need to be a
Bayesian posterior, have a Gaussian prior, etc..). The ability to work on arbitrary
densities where derivative information may or may not be present distinguishes us
from some other recent MCMC approaches such as the Geodesic MCMC introduced
in [39], the no u-turn sampler in [47], the discretization invariant approaches of [26],
or the randomize-then-optimize algorithm of [12]. While our approach can perform
quite well without derivative information, we can still accommodate proposals that
require such higher order information.
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Algorithm 4.1: MCMC algorithm with fixed map.

Input: A starting point θ0, A preconstructed transport map T̃ (θ) and a valid
reference proposal qr(r|rc)

Output: Samples of the target distribution,
{
θ(1), θ(2), ..., θ(N)

}
1 Set the current state to the starting point θc = θ0

2 for k ← 1 to N do

3 Compute the reference state, rc = T̃ (θc)
4 Sample the reference proposal, r′ ∼ qr(r|rc)
5 Compute the target proposal, θ′ = T̃−1(r′)
6 Calculate the acceptance probability given by

α = min

{
1,
π(T̃−1(r′))

π(T̃−1(r))

qr (r|r′)
qr (r′|r)

det[∂rT̃
−1(r′)]

det[∂rT̃−1(r)]

}
(4.5)

Set θc to θ′ with probability α

7 Store the sample, θ(k) = θc

8 return Target samples
{
θ(1), θ(2), ..., θ(N)

}
Here we show that a simple application of the chain rule allows us propagate

target density derivatives through the transport map, which then enables us to use
reference proposals that exploit derivative information. From the acceptance ratio
in Algorithm 4.1, we see that the reference proposal qr is targeting the map-induced
density p̃ defined by

p̃(r) = π(T̃−1(r))
∣∣∣det(∂T̃

−1
(r))

∣∣∣ . (4.6)

By taking advantage of the map’s lower triangular structure, we can write the log of
this density as

log p̃(r) = log π(T̃−1(r)) +
D∑
d=1

log
∂T̃−1

d

∂rd
. (4.7)

We will use the chain rule to get the gradient of this expression. First, we make the
substitution θ = T̃−1(r) and then take the gradient with respect to θ. This leads to

∇θ log p̃(T̃ (θ)) = ∇θ log π(θ)−
D∑
d=1

(
∂T̃d
∂θd

)−1

Hd(θ), (4.8)

where Hi is a row vector containing second derivative information coming from the de-

terminant term Hd(θ) =
[

∂2T̃d
∂θ1θd

∂2T̃d
∂θ2θd

... ∂2T̃d
∂θDθd

]
. Now, accounting for our change

of variables, we have an expression for the reference gradient given by

∇r log p̃(r) =

(
∇θ log π(θ)−

D∑
d=1

(
∂T̃d
∂θd

)−1

Hd(θ)

)
(DθT̃ (θ))−1. (4.9)
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Note that this expression is only valid when θ = T̃−1(r). This expression can now be
used by any gradient-based reference proposal.

The lower triangular structure not only allows us to expand the determinant
and derive (4.9), but also allows us to easily apply the inverse Jacobian (DθT (θ))−1

through forward substitution. Furthermore, computing the Jacobian DθT̃ (θ) or the
second derivatives in Hd(θ) is trivial when polynomials or other well-studied basis
functions are used to parameterize the map.

4.2 Adaptive transport-map MCMC

With a sufficiently accurate map, Algorithm 4.1 provides a way to efficiently generate
samples of the target density π(θ). However, to construct the transport map used
in the algorithm, we need to already have samples of π(θ). This is a classic chicken
and the egg problem – we need the map to generate the samples, but we need the
samples to construct the map. We will overcome this dilemma with an adaptive
MCMC approach that builds T̃ as the MCMC iteration progresses.

4.2.1 Adaptive algorithm overview

In our adaptive MCMC scheme, we initialize the sampler with an existing map T̃0 and
update the map every NU steps using all of the previous states in the MCMC chain.
This is conceptually similar to the usual adaptive Metropolis algorithm from [42].
However, in [42], the previous states are only used to update the covariance matrix
of a Gaussian proposal but in our case, the previous states are used to construct a
nonlinear transport map that yields a more sophisticated non-Gaussian proposal.

The simplest version of our adaptive algorithm would find the coefficients for each
dimension of the map γd by solving (2.21) directly. However, when the number of
existing samples k is small, or there is a lot of correlation in the chain, the Monte
Carlo sum in (2.21) will poorly approximate the true integral and lead to transport
maps that do not capture the structure of π(θ). To overcome this issue, we use a
regularization term on the map coefficients γd. Our goal for introducing this term,
call it g(γd), is to help ensure the map does not collapse onto one region of the target
space. Such a collapse would make it difficult for the chain to efficiently explore the
entire support of π. To build a map with the regulation, we use the following modified
objective:

minimize
γd

g(γd) +
k∑
i=1

[
0.5T̃ 2

d (θ(i); γd)− log
∂T̃d(θ; γd)

∂θd

∣∣∣∣∣
θ(i)

]

subject to
∂T̃d(θ; γd)

∂θd

∣∣∣∣∣
θ(i)

≥ dmin ∀i ∈ {1, 2, ..., k}
(4.10)

In practice, we choose g(γd) to prevent the map from “getting too far” from the
identity map. However, if additional problem structure is known, such as a the
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covariance of θ, this could also be incorporated into the regularization. In the identity
regularization case, we use a simple quadratic regularization function centered at the
coefficients of the identity map. Let γI be coefficients of the identity map, then
our choice of g(γd) takes the form g(γd) = kR‖γd − γI‖2 where kR is a user-defined
regularization parameter that needs to be tuned for each target density. In practice,
we have found most small values of kR to yield similar performance and we usually
set kR = 10−4.

Algorithm 4.2 shows how we use the regularized objective in (4.10) for our adaptive
MCMC framework. Notice that the only difference between the adaptive approach
in Algorithm 4.2 and the fixed-map approach in Algorithm 4.1 is the map update on
lines 10-14 of Algorithm 4.2.

Algorithm 4.2: MCMC algorithm with adaptive map.

Input: A starting point θ0, An initial vector of transport map parameters γ(0)

and a valid reference proposal qr(r
′|r)

Output: Samples of the target distribution,
{
θ(1), θ(2), ..., θ(N)

}
1 Set the current state to the starting point θc = θ0

2 Set the current map parameters γ(1) = γ(0)

3 for k ← 1 to N do

4 Compute the reference state, rc = T̃ (θc; γ
(k))

5 Sample the reference proposal, r′ ∼ qr(r|rc)
6 Compute the target proposal, θ′ = T̃−1(r′; γ(k))
7 Calculate the acceptance probability given by

α = min

{
1,
π(T̃−1(r′; γ(k)))

π(T̃−1(r; γ(k)))

qr (r|r′)
qr (r′|r)

det[∂rT̃
−1(r′; γ(k))]

det[∂rT̃−1(r; γ(k))]

}

8 Set θc to θ′ with probability α

9 Store the sample, θ(k) = θc
10 if (k mod NU) ≡ 0 then
11 for d← 1 to D do

12 Update γ
(k+1)
d by solving (4.10)

13 else
14 γ(k + 1) = γ(k)

15 return Target samples
{
θ(1), θ(2), ..., θ(N)

}

4.2.2 Complexity of map update

At first glance, updating the map every NU steps may seem computationally in-
tractable. Fortunately, the form of the map optimization problem in (4.10) allows
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for efficient updates. When NU is small relative to the current number of steps k,
the map objective function in (4.10) changes little between updates and the previous
map coefficients provide a good initial guess for the new optimization problem. This
means that the new optimal coefficients can be found in only a few Newton iterations,
sometimes only one or two. Moreover, when a polynomial expansion like (2.23) is used
to parameterize the map, we can simply add a new row to the matrices in (2.33) at
each iteration, which helps prevent duplicate polynomial evaluations. Combining this
caching with efficient matrix-vector products makes evaluating (4.10) very efficient.
As the timing results show in Section 4.5, by using these computational innovations,
the advantage of using the map to define qθ greatly outweighs the additional cost of
updating the map.

4.2.3 Monitoring map convergence

As the map in Algorithm 4.2 is adapted, the best choice of reference proposal qr(r|r′)
changes as well. As more samples of π(θ) are generated by Algorithm 4.2, p̃(r) be-
comes closer to the reference Gaussian density p(r). Thus, a small random walk pro-
posal may be the most appropriate at early iterations, but a larger, perhaps position-
independent, proposal may be advantageous after the map has captured more of the
target density structure. By monitoring how well the map characterizes π (measured
by the difference between p̃ and an IID Gaussian density), we can tune the refer-
ence proposal qr, e.g., we can shift from a random walk proposal to an independent
Gaussian.

A useful indicator of map accuracy is the variance σM defined by

σM = Var
θ

[
log π(θ)− log p

(
T̃ (θ)

)
− log

∣∣∣det(∂T̃ (θ))
∣∣∣]. (4.11)

This value was extensively used in [79] to monitor map convergence. Notice that
σM = 0 implies

π(θ)

p
(
T̃ (θ)

) ∣∣∣det(∂T̃ (θ))
∣∣∣ = 1

When this occurs, the map has captured all of the structure in π(θ) and p̃(r) = p(r)
is an IID Gaussian. We will use σM to define an adaptive mixture proposal discussed
in the next section. While not discussed in this paper, we want to acknowledge that
σM could be be used to tune other types of proposal as well, e.g., to adapt proposal
variances or set weights in a Crank-Nicholson proposal [25].

4.2.4 Choice of reference proposal

Until now, we have left the choice of reference proposal qr(r
′|r) to the reader’s imagi-

nation. Indeed, any non-adaptive choice of this proposal, including both independent
proposals and random walk proposals, could be used within our framework. Figure
4-2 shows some typical proposals on both the reference space and the target space.
In this section, we provide brief descriptions of a few reference proposals that we use
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in our results. We acknowledge that this list is not exhaustive but feel that these
algorithms shed sufficient light on the strengths and weaknesses of our algorithm.

(a) Local proposal
qr(r

′|r) on reference
space.

(b) Local proposal
mapped to target space.

(c) Independent
proposal qr(r

′) on
reference space.

(d) Independent proposal
mapped to target space.

Figure 4-2: Proposal types in reference space and target space. The black lines show
the target distributions (Gaussian on the r space and “banana” shaped on the θ
space) while the colored contours illustrate the proposal densities. When the map is
adequate, the local and independence proposals will have the same behavior as the
target density.

Metropolis-Adjusted Langevin: The Langevin diffusion is a continuous time
stochastic differential equation of the form

dθ(t) = ∇θ log π(θ(t))dt/2 + db(t),

where db(t) is a D-dimensional Brownian motion term. If solved exactly, the solution
to the Langevin diffusion is the target density π(θ) [87]. However, an exact solution
is infeasible and a first order Euler discretization is often used as a proposal in the
Metropolis-Hastings rule. With this discretization, the proposal density is given by

qMALA(r′|r) = N

(
r +

1

2
Σ∇ log p̃(r),Σ

)
, (4.12)

for some covariance matrix Σ. In this work, we set the covariance to be a scaled
identity: Σ = σ2

MALAI. For general MALA use, better choices of Σ exist to capture
the structure of π. However, in our case, T̃ will capture the problem structure.
Note that to evaluate the drift term in this proposal, we need to evaluate ∇ log p̃(r),
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which involves computing the gradient of the target density and following the steps
in Section 8.

Delayed rejection: In [77], a proposal mechanism called delayed rejection (DR)
was developed that allows several proposals to be tried during each MCMC step. This
multiple-stage proposal allows us to try a large proposal at the first stage, followed
by smaller proposals that are more likely to produce accepted moves. We use this
feature to define qr(r

′|r) in two ways.
Our first use of DR uses an IID Gaussian distribution with zero mean and unit

variance as the first stage proposal. If a proposed point from this first stage is re-
jected, the second stage uses a small Gaussian random walk proposal. Our motivation
for these global-then-local stages is based on the evolving nature of p̃(r). After many
MCMC steps, this density may become almost Gaussian, in which case the indepen-
dent proposal in the first stage could generate nearly independent samples. On the
other hand, we need many samples to build a good map and an independent Gaus-
sian proposal will be inefficient during the early steps of the MCMC chain. This is
where the random walk second stage comes into play. Even when the first stage of
the proposal is rejected, the second stage will ensure our sampler continues to explore
the target space. As T̃ (θ) begins to capture the structure in π(θ), the first stage of
the proposal will be accepted more often and the chain will mix better.

Our second use of DR involves two stages of symmetric random walk proposals.
In the first stage, we use a larger proposal while in the second stage we again use a
small proposal. Our motivation is the same as the before, the larger proposal should
target a more “Gaussian looking” p̃(r), while the smaller proposal will ensure the
chain explores the target space even when T̃ does not capture any of the structure in
π(θ).

Gaussian mixtures: An alternative to using the independent proposal within
the delayed rejection framework is to use the same independent Gaussian proposal as
one component in a Gaussian-mixture proposal. The other component, like delayed
rejection, is a small random walk. A sample from the independent Gaussian is used
with a probability w, and a sample from the random walk proposal is used with
probability (1 − w). Our key to making this method efficient is that we choose
the weight w based on the map’s performance, i.e., how well the the map captures
the target density π. Let σ̂

(k)
M be a Monte Carlo approximation of σM at step k of

the MCMC iteration. We choose the mixture weight based on the following simple
function

w =
wmax

1 + wscaleσ̂
(k)
M

, (4.13)

where wmax ∈ [0, 1] and wscale ∈ [0,∞) are tunable parameters. Notice that w →
wmax as σ̂

(k)
M → 0. When the chain is mixing well and σ̂

(k)
M is a good estimate of

σ
(k)
M , this means that w → wmax as the map captures more of the structure in π.

However, the Monte Carlo estimate of σ̂
(k)
M can also give an erroneous impression of

map convergence when the chain is not mixing properly. We have practically overcome
this issue by always choosing wmax < 1 (e.g., 0.9) and by setting NU so that at least
a few steps are likely to be accepted between map updates.
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4.3 Relationship to geodesic MCMC

A class of differential geometric MCMC approaches was introduced by [39]. These
differential geometric approaches use a position specific metric to define a Riemannian
manifold on which to perform MCMC. At each point, the manifold captures some
of the local correlation structure of the target distribution and allows the proposal
to locally adapt to the target. In the original work, [39] used the expected Fisher
information metric to define the manifold. However, as the authors are quick to point
out, alternative metrics can also be used. In fact, the map in our approach can be
used to define such a metric. Interestly, our numerical experiments also suggest that
moving along geodesics on this map-induced manifold is equivalent to moving linearly
in the reference space. Recall that geodesics are the shortest paths on a manifold.

To derive the map-induced metric, consider the approximate map T̃ (θ). Now,

let J−1(r) = ∂T̃
−1

(r) be the Jacobian matrix of the inverse map evaluated at r and
J(θ) = ∂T̃ (θ) be the Jacobian matrix of the forward map T̃ (θ) evaluated at θ. A
small change δθ from θ in the target space corresponds to a small change δr = J(θ)δθ
in the reference space. The inner product δrT δr can then be written in term of θ as

δrT δr = δθT
(
J(θ)TJ(θ)

)
δθ. (4.14)

This inner product defines a position-dependent metric defined by the matrix

GM(θ) = J(θ)TJ(θ). (4.15)

Since |det J | ≥ dmin by our monotonicty constraint, the metric GM is guaranteed
to be symmetric and positive definite. This metric defines a manifold on the target
space much like the expected Fisher information metric used in [39].

Not only does the map define a metric, but from our observations it seems that
evaluating the map is equivalent to moving along a geodesic on the manifold. For illus-
tration, consider a simple “banana” shaped density defined by the following quadratic
transformation [

θ1

θ2

]
= T−1(r) =

[
r1

r2 − 2(r2
1 + 1)

]
,

where r1 and r2 are (as usual) IID Gaussian random variables. Figure 4-3 shows a
comparison of Geodesic paths computed using (4.15) and linear paths on the reference
space pushed through the map. Let wg(t) be the geodesic path, parameterized by
t ∈ [0, 1], between w(0) and w(1) and wm(t) be the another path between the same
two points defined by

wm(t) = T̃−1
(
T̃ (w(0)) + t

[
T̃ (w(1))− T̃ (w(0))

])
. (4.16)

Figure 4-3 compares wm(t) and wg(t) for 15 different values of w(1) and w(0) = [0, 0]T .
In this simple example, the mapped paths from (4.16) and the geodesic paths look
identical, which seems to imply that our transport maps are also time one geodesic
flows on a Riemannian manifold defined by GM(θ). A more theoretical analysis of
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(a) Geodesic paths, wg(t), constructed on the
manifold defined by GM (θ) in (4.15).
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(b) Map paths, wm(t), constructed using (4.16).

Figure 4-3: Comparison of 15 different geodesic paths and mapped paths. Paths are
shown in black. The Geodesic paths were constructed by integrating a Hamiltonian
system describing the geodesic. An initial momentum p was used and a leap frog
integrator was used until some finishing time tf . On the other hand, the map paths
are evaluations of T̃−1(tp) ∀t ∈ (0, tf ) for the same 15 initial momentums p used
for the Geodesic plot. Colored contours of the target density π(θ) are shown in the
background.

this observation could provide a rigorous connection between our map-based MCMC,
geodesic MCMC, and Riemannian geometry.

4.4 Convergence analysis

Without some care, general adaptive proposal mechanisms can break the ergodicity of
an MCMC chain. Thus, this section investigates conditions on our adaptive approach
that ensure our algorithm yields an appropriate ergodic chain. We first build some
intuition by analyzing the fixed-map algorithm and then proceed with a a high level
description of our adaptive algorithm’s convergence. A more detailed step-by-step
convergence proof for the adaptive algorithm can be found in appendix A.

4.4.1 The need for bounded derivatives

Using the map-induced proposal in Algorithm 4.1 seems like a perfectly reasonable
combination of transport maps and MCMC. But how does the transport map effect
the convergence properties of the MCMC chain? To illustrate the importance of
this question, consider a random walk proposal on the reference space qr(r

′|r) =
N(r, σ2I) with some pre-defined variance σ2. Now, assume the target density is a
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standard normal distribution: π(θ) = N(0, I). The RWM algorithm is known to
be geometrically ergodic for any density satisfying the following two conditions (see
theorem 4.3 of [55] for details)

lim sup
‖θ‖→∞

θ

‖θ‖
· ∇ log π(θ) = −∞, (4.17)

and

lim
‖θ‖→∞

θ

‖θ‖
· ∇ log π(θ)

‖∇ log π(θ)‖
< 0. (4.18)

The first condition implies the target density is super exponentially light. A little al-
gebra easily shows that our example Gaussian density satisfies these conditions. How-
ever, in Algorithm 4.1, instead of applying the RWM proposal to π directly, we instead

apply the RWM proposal to a map-induced density p̃(r) = π(T̃−1(r))
∣∣∣det(∂T̃

−1
(r))

∣∣∣.
Without applying the derivative upper bound correction in (2.15), we can show

that even when π is Gaussian, any nonlinear monotone polynomial map results in a
density p̃(r) that is no longer super exponentially light. For example, assume T̃ has
a maximum odd polynomial order of M > 1. Then the following expression holds:

lim sup
‖r‖→∞

r

‖r‖
· ∇ log p̃(r) = lim sup

‖r‖→∞

1

‖r‖

D∑
d=1

rd

(
∂T̃−1

∂rd

)−1
∂2T̃−1

∂r2
d

(4.19)

= lim sup
‖r‖→∞

D

‖r‖

(
1

M
− 1

)
= 0 (4.20)

Clearly, the map-induced density is not super-exponentially light. We have there-
fore jeopardized the geometric ergodicity of our sampler on a simple Gaussian target!
We obviously need additional restrictions on the map to ensure we retain convergence
properties. The fact that polynomial maps have unbounded derivatives and thus do
not satisfy (2.13) is the problem that led to our loss of geometric ergodicity in (4.20).
The unbounded derivatives of T̃ imply that T̃−1 has zero derivatives as ‖r‖ → ∞,
which leads to (4.20). More intuitively, without the upper bound, polynomial maps
move too much weight to the tails of p̃. In Section 4.4 we will show that even when
the map is adapted as the MCMC chain progresses, the upper and lower deriva-
tive bounds ensure the ergodicity of both Algorithm 4.1 and the upcoming adaptive
approach.

4.4.2 Convergence of adaptive algorithm

Our goal in this section is to show that the adaptive Algorithm 4.2 will produce
samples that can be used in the Monte Carlo approximation of our quantity of interest
as in (4.2). To have this property, we need to show that Algorithm 4.2 is ergodic for
the target density π(θ).

For the upcoming analysis, we assume that the target density is finite, continu-
ous, and is super exponentially light. Note that some densities which are not super-
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exponentially light can be transformed to super-exponentially light densities using
the techniques from [58]. We also assume the reference proposal qr(r

′|r) is a Gaus-
sian density with bounded mean (note that RWM proposals and truncated MALA
proposals fall into this category). Furthermore, we define Γ as the space of the map
parameters γ such that T̃γ satisfies the bi-Lipschitz condition given by (2.12) and
(2.13).

The map at iteration k of the MCMC chain is defined by the coefficients γ(k). Let
Pγ(k) be the transition kernel of the chain at iteration k which is constructed from

the map T̃ (θ; γ(k)), the target proposal in (4.4), and the Metropolis-Hastings kernel
given by

PMH(θ,A) =

∫
A
α(θ′, θ)q(θ′|θ) + (1− r(θ)) δθ(θ′)dθ′, (4.21)

where r(θ) =
∫
α(θ′, θ)q(θ′|θ)dθ′. Now, following [85] and [11] we can show the ergod-

icity of our adaptive algorithm by showing diminishing adaptation and containment.
Diminishing adaptation is defined by

Definition 1 (Diminishing adaptation). Diminishing adaptation is the property that
for any starting point x(0), and initial set of map parameters γ(0), the following holds:

lim
k→∞

sup
x∈RD

∥∥Pγ(k)(x, ·)− Pγ(k+1)(x, ·)
∥∥
TV

= 0 (4.22)

where ‖ · ‖TV is the total variation norm.

Furthermore, by theorem 3 of [85], our adaptive MCMC algorithm will satisfy
containment if it satisfies the simultaneous strongly aperiodic geometric ergodicity
(SSAGE) condition given below by

Definition 2 (SSAGE). Simultaneous strongly aperiodic geometric ergodicity (SSAGE)
is the condition that there is a measurable set C ∈ B(RD), a drift function V : RD →
[1,∞), and three scalars δ > 0, λ < 1, and b < ∞ such that supx∈C V (x) < ∞ and
the following two conditions hold:

1. (Minorization) For each vector of map parameters γ ∈ Γ, there is a probability
measure νγ(·) defined on C ⊂ RD with Pγ(x, ·) ≥ δνγ(·) for all x ∈ C.

2. (Simultaneous drift)
∫
RD V (x)Pγ(x, dx) ≤ λV (x) + bIC(x) for all γ ∈ Γ and

x ∈ RD.

The following three lemmas will establish diminishing adaptation and SSAGE.
For the following, define C = B(0, RC) as a ball with some radius RC > 0 and let
V (x) = kvπ

−α(x) for some α ∈ (0, 1) and kv = supx π
α(x). Also, assume π(x) > 0 for

all x ∈ C. For this choice of V (x) and our assumption that π(x) > 0 for x ∈ C, we
have that supx∈C V (x) <∞.

Because the reference proposal is a Gaussian with bounded mean, we can find two
scalars k1 and k2 as well as two zero mean Gaussian densities g1 and g2, such that
the reference proposal is bounded like

k1g1(r′ − r) ≤ qr(r
′|r) ≤ k2g2(r′ − r). (4.23)
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Furthermore, the bounds on the norms in (2.12) and (2.13) imply that the target
density can also bounded as

kLgL(θ′ − θ) ≤ qθ(θ
′|θ) ≤ kUgU(θ′ − θ), (4.24)

where kL = k1d
D
min, kU = k2d

D
max, gL(x) = g1(dmaxx), and gU(x) = g2(dminx). These

upper and lower bounds on the proposal density are key to the proofs below. In
fact, with these bounds, the proofs of lemma 2 and lemma 3 given below, are nearly
identical to the proofs of proposition 2.1 in [9].

Lemma 1 (Diminishing adaptation). Assume the map parameters γ are restricted
to a compact space Γ. Then, the sequence of transition kernels defined by the update
step in lines 10-14 of Algorithm 4.2 satisfies the diminishing adaptation condition.

Lemma 1. When the MCMC chain is not at an adapt step, γ(k+1) = γ(k). Thus, to
show diminishing adaptation, we need to show that

lim
k→∞

sup
x∈RD

∥∥Pγ(k)(x, ·)− Pγ(k+NU )(x, ·)
∥∥
TV

= 0

Because the map is continuous in γ (consider (2.23)), diminishing adaptation is equiv-
alent to

lim
k→∞

∥∥γ(k) − γ(k+NU )
∥∥ = 0

Recall that γ(k) is the minimizer of (4.10), which is based on a Monte Carlo ap-
proximation to KL divergence. As the number of samples grows, this Monte Carlo
expectation will converge to the KL divergence. Moreover, by proposition 2.2 of [48],
the minimizer of the KL divergence, γ, will also converge. Thus, as the number of
samples goes to infinity,

∥∥γ(k) − γ(k+NU )
∥∥ goes to 0 and the diminishing adaptation

condition is satisfied.

Lemma 2 (Minorization). There is a scalar δ and a set of probability measures νγ
defined on C such that Pγ(x, ·) ≥ δνγ(·) for all x ∈ C and γ ∈ Γ.

Lemma 2. Let τ be the minimum acceptance rate over all x, y ∈ C and over all
map-induced proposals defined by

τ = inf
γ

inf
x,y∈C

min

{
1,
π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)

}
.

Notice that τ > 0 because

π(y)qθ,γ(x|y) ≥ π(y)kLgL(x− y) > 0 ∀x, y ∈ C.

Now, using the Metropolis-Hastings kernel in (4.21) and the lower bound in (4.24),
we have

Pγ(x, dy) ≥ τkLgL(x− y)dy.

Define the new probability density gL2(y) = infx∈C gL(x−y)∫
RD infx∈C gL(x−y)dy

. Because gL is a

Gaussian density and thus nonzero over C, gL2(y) is a valid probability density.
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Define the scalar kL2 = kL
∫
RD infx∈C gL(x − y)dy and set δ = τkL2. Notice that

Pγ(x, dy) ≥ τkL2gL(y)dy. Now define the measure

νγ(A) = ν(A) =

∫
A∩C gL2(z)dz∫
C
gL2(z)dz

This is a nontrivial probability measure defined over C. Furthermore, we have
Pγ(x, ·) ≥ δν(·) and the minorization condition is satisfied.

Lemma 3 (Drift). For all points x ∈ RD and all feasible map parameters γ ∈ Γ,
there are scalars λ and b such that

∫
RD V (x)Pγ(x, dx) ≤ λV (x) + bIC(x)

Lemma 3. Using the bounds in (4.24), we can follow the proof of Lemma 6.2 in [9]
to show that the following two conditions hold:

sup
x∈RD

sup
γ∈Γ

∫
RD V (y)Pγ(x, dy)

V (x)
<∞

and

lim sup
‖x‖→∞

sup
γ∈Γ

∫
RD V (y)Pγ(x, dy)

V (x)
< 1.

Appendix A verifies these conditions in more detail. With these two conditions in
hand, lemma 3.5 of [55] gives the existence of λ and b needed to satisfy the drift
condition.

Theorem 1 (Ergodicity of adaptive map MCMC). A theoretical version of Algorithm
4.2, where γ lies in a compact space and T̃γ is guaranteed to satisfy (2.12) and (2.13)
everywhere, is ergodic for the target distribution π(θ).

Theorem 1. Lemmas 2 and 3 ensure that SSAGE is satisfied, which subsequently en-
sures containment. The diminishing adaptation from lemma 1 combined with SSAGE
implies ergodicity by theorem 3 of [85].

4.5 Numerical examples

To illustrate the effectiveness of our adaptive Algorithm 4.2, we will compare the
algorithm against several existing MCMC methods including DRAM [41] , simplified
Manifold MALA [39], adaptive truncated MALA [9], and the No-U-Turn Sampler [47].
Table 4.1 provides a summary of these algorithms and the acronyms we will use in
the results. Notice also that Algorithm 4.2 defines an adaptive framework that is not
restricted to a particular reference proposal qr. Thus, for a full comparison, we will
include several reference proposal mechanisms including a basic random walk, delayed
rejection, a Gaussian mixture proposal, and a MALA proposal. These proposals are
summarized in Table 4.2. As all algorithms have their strengths and weaknesses, we
will illustrate our approach on three examples with varying characteristics.
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Table 4.1: Summary of standard MCMC samplers used in the results. The table
shows the acronym used for the method in this paper, the name of the algorithm, if
the method requires derivative information, and if the method is adaptive.

Acronym Method ∂π
∂θ

? Adapts?
DRAM Delayed rejection adaptive Metropolis

[41]
No Yes

sMMALA Simplified Manifold MALA
[39]

Yes No

AMALA Adaptive MALA
[9]

Yes Yes

NUTS No-U-Turn Sampler
[47]

Yes Yes

Table 4.2: Summary of map-accelerated MCMC samplers used in the results. The
table shows the acronym used for the method in this paper, a brief description of the
reference proposal qr(r

′|r), and if the method requires derivative information. See
Section 4.2.4 for more details on each proposal mechanism.

Acronym Reference proposal ∂π
∂θ

?
TM+RW Isotropic Gaussian random walk. No
TM+DRG Delayed rejection. First stage is independence pro-

posal and second stage is random walk..
No

TM+DRL Delayed rejection. First stage is random walk with
large variance and second stage is random walk
with small variance.

No

TM+MIX Mixture of independence proposal and random
walk. Weights are controlled by (4.13).

No

TM+LA Metropolis-Adjusted Langevin (MALA) Yes
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The first test problem is a 25 parameter logistic regression using the German credit
dataset. This problem is also used as an example in [39] and [47]. The second test is
sampling a Bayesian posterior for a simple two-parameter Biochemical Oxygen De-
mand model. Finally, the third example is sampling a posterior for an 8 dimensional
predator-prey dynamical system. The following sub-sections give detailed descrip-
tions of these problems and performance comparisons on each problem.

An effective MCMC algorithm minimizes the correlation between states in the
MCMC chain. Thus, a standard measure for MCMC performance is the integrated
autocorrelation time of the chain, see [107] for details on accurately computing this
quantity. A shorter autocorrelation time implies the states in the chain are less
correlated and thus that the MCMC sampler is more effective. Let τd be the integrated
autocorrelation time for dimension d. Using the autocorrelation, another commonly
reported statistic of the MCMC chain is the effective sample size, which is given by

ESSd =
N

1 + 2τd
, (4.25)

whereN is the number of steps in the chain after a burn-in period. The ESS represents
the number of effectively independent samples produced by the chain. Our results
report the minimum ESSd, which corresponds to the maximum τd over the dimensions,
and is an indication of the “worst case” performance.

4.5.1 German credit logistic regression

Consider a binary response variable t ∈ {0, 1} that depends on D − 1 predictor
variables {x1, x2, ..., xD−1}. A simple model of the binary response is provided by the
logistic function. In this model, the probability that t = 1 is given by the following
parameterized model

P(t = 1|θ) =
1

1 + exp
[
−
(
θ1 +

∑D
i=2 θixi−1

)] , (4.26)

where θ = {θ1, θ2, ..., θD} are model parameters. As always, P(t = 0|θ) = 1 − P(t =
1|θ). The goal of this logistic regression problem is to infer the parameters given N
joint observations of the predictor variable x and the response variable t. Following
[39] and [47], a simple Gaussian prior is employed here, π(θ) = N(0, aI) with a = 100.
The observations of x and t come from the German credit dataset, which is available
from the UCI database [10]. In this dataset, there are 24 predictor variables and
1000 observations. Thus, the inference problem has 25 dimensions. All 24 predictor
variables were normalized to have zero mean and unit variance.

For this problem, each sampler was run for 75,000 steps, of which 5,000 were
treated as burn-in. All algorithms were extensively tuned to minimize τmax. More-
over, each MCMC algorithm was independently run 30 times starting from the MAP
point. The 30 independent replicates were used in the MATLAB code distributed
by [107] to estimate the integration autocorrelation time, as well as the variance in
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Table 4.3: Performance of MCMC samplers on German credit logistic regression
problem. For this 25 dimensional problem, the maximum correlation time, τmax, and
corresponding minimum effective sample size, ESS, is displayed in this table. The
number of gradient evaluations and density evaluations were combined to evaluated
ESS/eval.

Method τmax στ ESS ESS/sec ESS/eval
DRAM 43.6 5.005 803 21.6 0.0065
sMMALA 4.9 0.222 7121 4.0 0.0474
AMALA 8.2 0.468 4244 153.6 0.0282
NUTS 1.0 0.023 34008 181.6 0.0311
TM+DRG 1.7 0.047 21108 76.3 0.2058
TM+DRL 47.9 5.718 731 2.4 0.0053
TM+RW 56.2 7.160 623 2.3 0.0083
TM+MIX 5.3 0.247 6634 17.7 0.0882
TM+LA 3.3 0.125 10602 8.9 0.0706

the estimate of this time. The maximum integrated autocorrelation times and corre-
sponding minimum effective sample sizes are shown in Table 4.3. In the table, στ is
the variance of the τmax estimator. The NUTS and sMMALA results for this dataset
match those given by [39] and [47] respectively, indicating that we have properly
tuned those algorithms. We would like to point out that all of the comparisons were
performed using efficient implementations from the MUQ c++ library[81]. In the
case of NUTS, MUQ links to the STAN library [96].

In this problem, the posterior is very close to Gaussian, and we found it sufficient
to use a linear map in the transport map proposal process, meaning that all proposals
are Gaussian. However, the results in Table 4.3 still show the top transport map pro-
posal (TM+DRG) to have a nearly identical autocorrelation time to the top standard
proposal (NUTS), even though TM+DRG does not use any derivative information.

Recall that the autocorrelation (labeled τmax in Table 4.3 measures the correlation
between states in the MCMC chain. A lower autocorrelation indicates there is more
information in the chain, which then implies that any Monte-Carlo approximations
based on the MCMC result will be more accurate. The effective sample size (ESS) is
inversely proportional to the autocorrelation and measures the number of “effectively
independent” samples in the MCMC chain. Larger ESS values imply there is more
information in the chain.

From Table 4.3, we see that NUTS yields a higher raw ESS, but when the ESS
is normalized by the number of density evaluations, the ESS/eval of TM+DRG is
much higher. This is because TM+DRG requires at most 2 density evaluations per
MCMC step, while NUTS requires many more evaluations. In fact, we have an ESS
per evaluation that is almost an order of magnitude larger than NUTS. This is in
large part due to the independent first stage of our TM+DRG proposal.

Also, notice that the performance of TM+DRL is essentially the same as DRAM,
and the performance of TM+LA is very similar to AMALA. In this case, learning
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Table 4.4: Performance of MCMC samplers on the BOD problem. Like the other
examples, the maximum correlation time, τmax, and corresponding minimum effective
sample size, ESS, is displayed in this table.

Method τmax στ ESS ESS/sec ESS/eval
DRAM 46.1 5.413 759 127.3 0.0058
sMMALA 83.5 12.514 419 1.1 0.0028
AMALA 35.1 3.682 997 209.0 0.0066
NUTS 13.9 0.984 2517 57.0 0.0014
TM+DRG 2.3 0.073 15397 1467.7 0.1614
TM+DRL 5.0 0.230 6957 487.3 0.0570
TM+RW 4.9 0.221 7157 882.4 0.0953
TM+MIX 2.6 0.090 13422 1495.4 0.1786
TM+LA 793.1 271.538 44 3.3 0.0003

the fully linear map is equivalent to using the sample covariance in the proposal.
Hence, TM+DRL boils down to DRAM, and TM+LA is equivalent to AMALA.
Fundamentally though, by learning the map instead of the sample covariance, we can
apply the same global independent proposals to more difficult problems exhibiting
more non-Gaussian behavior.

4.5.2 Biochemical oxygen demand model

In water quality monitoring, the biochemical oxygen demand (BOD) test is often
used to investigate the consumption of dissolved oxygen in a water column. See
[99] for an example. To learn about the asymptotic behavior of the biochemical
oxygen demand, the simple exponential model B(t) = θ0(1−exp(−θ1t)) is often fit to
observations of B(t) at early times (t ≤ 5). Assume we have N observations available,
{B(t1), B(t2), ..., B(tN)}. From these observations, we form an inference problem for
the model coefficients θ1 and θ2. In our example, we use 20 observations evenly spread
over [1, 5] with the following additive error model B(ti) = θ0(1−exp(−θ1ti))+e where
e ∼ N(0, σ2

B) with σ2
B = 2e− 4.

Our synthetic “data,” denoted by {Bd(t1), Bd(t2), ..., Bd(t20)}, comes from sam-
pling e and evaluating B(ti) with θ0 = 1 and θ1 = 0.1. Using a uniform prior (over
R2), we have the target density given by

log π(θ0, θ1) = −2πσ2
B − 0.5

∑
[θ0(1− exp(−θ1ti))−Bd(ti)]

2 (4.27)

Like the logistic regression posterior, it is easy to obtain any derivative information
about this density, which allows us to again compare many different sampling ap-
proaches – both derivative free and derivative based.

Each chain was run for 75,000 steps with 5,000 burn in steps. The methods were
also independently run 30 times starting at the MAP point to generate the results in
Table 4.4. We also show typical trace plots and autocorrelation plots in Figures 4-5
and 4-6.
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While the logistic regression posterior was nearly Gaussian and a linear map suf-
ficed, a third order polynomial map was used in this example. The additional nonlin-
ear terms help the map capture the changing posterior correlation structure shown in
Figure 4-4(a). The narrow curving posterior shown in 4-4(a) is incredibly difficult for
standard samplers to explore. Methods like DRAM and AMALA may capture the
global covariance structure, but that is not enough to efficiently sample the posterior.
Other methods like sMMALA and NUTS use derivative information to capture more
local structure, but do not have a representation of the global correlation structure.
This prevents those methods from efficiently taking very large jumps through the
parameter space. Our transport map proposals on the other hand, use a polynomial
map to characterize the global correlation structure and are capable of capturing the
non-Gaussian structure shown in Figure 4-4(a).

The map is actually capable of transforming the very narrow BOD posterior into
the easily sampled density shown in Figure 4-4(b). This allows methods with global
independence proposals (TM+DRG and TM+MIX) to efficiently “jump” across the
entire parameter space, yielding the much shorter integrated autocorrelation times
shown in 4.4. Specifically, in terms of ESS per evaluation, the best transport map
method (TM+DRG) is about 30 times more efficient than the best standard approach
(DRAM).

Another interesting result in Table 4.4 is the incorrigible performance of TM+LA.
In this example, with its tight changing correlation, the basic MALA algorithm was
not able to sufficiently explore the space on its own. This prevented the adaptive
scheme from constructing an adequate map and resulted in the poor performance
shown here. Consider again to the chicken-and-egg problem – where we need to
samples to construct the map, but need the map to efficiently generate samples.
From the TM+LA results, it should be clear that we need to have a pretty good
representation of an egg before we can produce a chicken.

4.5.3 Predator prey system

The previous two examples have posteriors with analytic derivatives that are easy
to evaluate. However, many realistic inference problems may be based on com-
plicated forward models where derivative information is expensive to compute or
even unavailable. This example takes a step in that direction with an ODE model
of a predator prey system. The parameters in this system are given by the ini-
tial populations and 6 other scalar parameters governing the system dynamics, θ =
{P (0), Q(0), r,K, s, a, u, v}. These coefficients are part of the following ODE model

dP

dt
= rP

(
1− P

K

)
− s PQ

a+ P

dQ

dt
= u

PQ

a+ P
− vQ

In this model, r represents the prey growth rate, K is the prey carrying capac-
ity, s is the predation rate, a represents how much food the predator can pro-
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Figure 4-4: The narrow high density region and changing correlation structure on
the left is difficult for existing adaptive strategies to capture. However, at the end of
the adaptive MCMC run, the reference proposal is effective sampling the much less
correlated density on the right.

cess (i.e., eat and digest), u is the predator growth rate, and v is the predator
death rate. See [90] for details. The inference problem is to infer the 8 model
parameters given 5 noisy observations of the prey and predator populations, d =
{Pd(t1), Pd(t2), ..., Pd(t5), Qd(t1), Qd(t2), ..., Qd(t5)}, where {t1, t2, ..., t5} are regularly
space on [0, 1] and Pd(t), Qd(t) are solutions of (4.28) along with some additive Gaus-
sian noise defined by

Pd(ti) = Q(ti) + ei, (4.28)

where ei ∼ N(0, 10). This error model yields a likelihood function π(d|θ). We gener-
ated the data using the “true” parameters, given by

θtrue = [P (0), Q(0), r,K, s, a, u, v]T

= [50, 5, 0.6, 100, 1.2, 25, 0.5, 0.3]T . (4.29)

The prior for this problem is uniform over parameter combinations that yield
stable cyclic solutions. This feature can be recast to conditions on the parameters
by looking at the fixed points of (4.28) and the Jacobian of (4.28). The fixed point,
denoted by [Pf , Qf ], must satisfy Pf > 0 and Qf > 0. Also, to ensure the solution
is cyclic, the Jacobian of the right hand side of (4.28) must have eigenvalues with
positive real components when evaluated at [Pf , Qf ] [98].

Let λ1(θ) and λ2(θ) be the eigenvalues of Jacobian matrix at the fixed point. The
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Figure 4-5: Typical traces of the MCMC chains on the two dimensional BOD problem.
The blue lines show the values of θ1 and the green lines show the values of θ2. Trace
plots that look more like white noise indicate less correlation in the MCMC chain
and that the chain is mixing better. Notice that transport map accelerated meth-
ods, especially TM+DRG and TM+MIX, have better mixing than the best standard
method (NUTS).
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Figure 4-6: Autocorrelation plots for each MCMC method. The blue line shows the
autocorrelation of the MCMC chain in the θ1 component while the green line is the
autocorrelation in the θ2 component of the chain. Faster decay indicates that the
chain “forgets” its previous states more quickly and has better mixing. Like Figure
4-5, better mixing can be found in the transport map accelerated methods, especially
TM+DRG and TM+MIX, where the autocorrelation decays much faster than the
best standard method (NUTS).
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Table 4.5: Performance of MCMC samplers on predator-prey parameter inference
problem. For this 8 dimensional problem, the maximum correlation time and corre-
sponding minimum effective sample size is displayed provided.

Method τmax στ ess ess/sec ess/eval
DRAM 1057.1 394.4 33 4.3e-01 1.8e-04
TM+DRG 12.4 0.8 2815 5.2e+00 2.7e-02
TM+DRL 145.2 27.1 241 4.7e-01 1.6e-03
TM+RWM 54.4 6.8 644 1.3e+00 7.3e-03
TM+MIX 17.6 1.4 1992 3.8e+00 2.3e-02

prior over θ for this problem is then given by:

π(θ) ∝
{

1 Pf (θ) > 0 ∧ Qf (θ) > 0 ∧ Re(λ1) > 0 ∧ Re(λ2) > 0
0 otherwise

Combining the prior and likelihood yields the usual form of the posterior density
π(θ|d) ∝ π(d|θ)π(θ).

Our goal in this example is to sample the posterior, which is plotted in Figure
4-7. Notice that the posterior, while not as narrow as the BOD posterior, is non-
Gaussian and various marginal distributions have the changing correlation structure
that is difficult for standard methods to capture. Also, posterior evaluations require
integrating the ODE in (4.28), making the posterior evaluations more expensive to
evaluate than the German credit and BOD examples. Moreover, we treat the ODE
integration here as a black box and do not have efficient access to the derivative
information needed by NUTS, AMALA, and sMMALA. A performance comparison
of the derivative-free samplers can be found in Table 4.5. Figure 4-8 also contains
typical trace plots and autocorrelation plots.

The results are based on MCMC chains with 120,000 steps including 50,000 burn
in steps. The transport map algorithms used multivariate polynomials with total
order 3. The algorithms were started at the MAP point and 30 repetitions were used
to generate the summary in Table 4.5.

As in the previous examples, the map-accelerated approaches that utilize some
form of independence proposal have a dramatically shorter integrated autocorrelation
time. In terms of raw ESS, TM+DRG is about 85 times more efficient than DRAM
and in terms of ESS/eval, TM+DRG is about 150 times more efficient than DRAM.
This means that more independent first stage proposals are accepted in TM+DRG
than local first stage proposals in DRAM. Even when normalized by run time, the
ESS/sec of TM+DRG is still over 10 times the level of DRAM. For readers with
sampling problems even more computationally expensive than this one, ESS/eval is
the result to consider. In this comparison, DRAM would require 150 times more
evaluations to produce the same ESS as TM+DRG. For a computationally expensive
sampling problem, especially one that exhibits a changing correlation structure, this
result shows that our approach could reduce required MCMC runtime by days.
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Figure 4-7: Posterior distribution for the predator prey inference example.
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Figure 4-8: Illustration of MCMC performance on the 8 parameter predator prey ex-
ample. The left columns shows a segment of the MCMC chain. Each color corresponds
to a different dimension of the chain. The right column shows typical autocorrelations
for each dimension. Both the trace plot and the autocorrelation plot are taken from
one run of the algorithm. Notice that the transport map chains look more like white
noise, especially the TM+DRG and TM+MIX methods that utilize an independence
proposal. This indicates the transport map methods are mixing better than DRAM.
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4.6 Conclusions

We have introduced a new framework for adaptive MCMC that uses approximate
transport maps to capture non stationary correlation structure. This method stands
apart from many recently proposed approaches in that we do not require derivative
information. In fact, the generally most efficient of our tested approaches (TM+DRG)
requires nothing other than evaluations of the target density. While our examples
focused on inference problems, we feel it is important to point out that no particular
form of the the target density π is required. The efficiency of our framework is a result
of two things: (1) capturing nonlinear global problem structure and (2) when possible,
exploiting this global knowledge with independence proposals. The first component
comes from our use of transport maps and the second component comes from our
choice of reference proposal distributions (primarily TM+DRG and TM+MIX).

There is an additional cost to our framework from updating the transport map,
which may become a factor for simple problems (like our logistic regression example).
For these types of problems, existing methods such as NUTS or AMALA may provide
the most efficient sampling strategy. However, as shown in our BOD example, our
methods can be more efficient on strongly correlated problem, even when the target
density is inexpensive to evaluate. It is also important to point out that our imple-
mentation1 does not take advantage of any parallelism even though there are many
levels of parallelism that could be taken advantage of when updating the map.

In this work, we used a polynomial basis to represent the transport map. However,
future users are not restricted to this choice. In fact, the optimization problem for the
map coefficients in (4.10) will be unchanged for any representation of the map that
is linear in the coefficients. This includes other choices such as radial basis functions.
Polynomials were used here primarily for their global smoothness properties, their
properties are well understood, and they have long been used in the uncertainty
quantification community (e.g., [74] and [66]). Even if using polynomials, choosing
the basis for a specific problem (instead of the total order limited polynomials used
here) is likely to decrease the computational cost of constructing the map or increase
the descriptive power of the map. In either case, users are likely to see increased
performance.

We should also note that extending this work to higher dimensional problems
will require a more frugal choice of polynomial basis. Here we used total order lim-
ited polynomials. In high dimensional applications, more approximate maps, such
as those discussed in Section 2.7 should be employed. On such high dimensional
problems, combining these more approximate maps with proposal mechanisms that
exploit derivative information (such as HMC or MMALA) is also likely to improve
convergence. When the target density is expensive to evaluate, any parameteriza-
tion of the transport map will help capture some of the target structure and yield
improved sampling.

In conclusion, combining inexact transport maps with standard proposal mecha-

1Our implementation is freely available in MUQ, which can be downloaded at https://

bitbucket.org/mituq/muq
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nism provides a novel new framework for adaptive (or standard) MCMC that can lead
to significant performance improvements. We believe this new framework is valuable
tool to consider as the statistical community continues to invent and tackle ever more
challenging sampling problems.
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Chapter 5

Transport maps for fast
approximate conditional sampling

Algorithms for Bayesian inference typically start with Bayes’ rule written as

π(θ|d) =
π(d|θ)π(θ)

π(d)
, (5.1)

where d and θ are real-valued random variables with corresponding joint probability
space (X ,B(X ), µd,θ) with X ⊆ R(Dd+Dθ). Let Dd and Dθ be the dimensions of d and
θ respectively. We assume that the distribution µd,θ admits a continuous joint density
π(d, θ) with respect to Lebesgue measure. Notice that the continuity of π(d, θ) implies
that the posterior changes smoothly with the data d; this is a key requirement for
the method discussed in this chapter.

This chapter is motivated by two challenges of working with Bayes’ rule in the typ-
ical form given by (5.1). First, algorithms based solely on evaluations of the posterior
in (5.1) cannot be applied until a particular value of the data d has been observed.
This precludes full exploration of Bayesian posteriors in time-critical applications.
We on the other hand, would like to develop algorithms for near real-time Bayesian
inference. Our desired algorithms should also allow for practical tradeoffs between ac-
curacy and computational cost. Second, with the exception of approximate Bayesian
computation (ABC) approaches, most algorithms for sampling the posterior distribu-
tion require evaluations of the likelihood π(d|θ). In many other situations, only joint
samples of (d, θ) are available; we would still like to perform inference in this settting,
i.e., in the absence of a prescribed likelihood function.

In this chapter, we use transport maps to develop an approximate approach to
inference that does not require likelihood evaluations and can utilize offline compu-
tation to ensure a posterior can be obtained quickly after observing the data d. We
use samples of the joint distribution π(d, θ) to construct a transport map that allows
for future approximate sampling of π(θ|d). The map can be constructed before any
particular value of d is known, making our method well suited for time-critical appli-
cations, or for preconditioning exact inference strategies such as the map-accelerated
MCMC in Chapter 4.
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First, Section 5.1 will introduce our approach and then Section 5.2 will provide a
small illustrative example. After that, Section 5.3 will outline how the layered maps
of Section 2.7 can be used in this setting. Finally, we will apply our approach to
an inference problem based on the biochemical oxygen demand model in Section 5.4.
Some conclusions and future research directions will be presented in Section 5.5.

5.1 A new starting point: the joint distribution

Representing the relationship between parameters θ and observations d with the con-
ditional density in Bayes’ rule (5.1) is intuitive because it clearly distinguishes prior
information in π(θ) from the forward models (e.g., ODES, PDES, etc...) and obser-
vations embedded in π(d|θ). However, in this section, we will find it more useful to
work with the joint density π(d, θ). This joint density collects the information con-
tained in all possible posterior distributions, which can be seen from the law of total
probability

π(d, θ) = π(d|θ)π(θ). (5.2)

Moreover, in many cases, samples from the joint distribution can be easily generated.
For well studied canonical prior distributions (a Gaussian distribution for instance),
a sample of the joint prior π(d, θ) can easily be generated by first generating a sample
θ′ from the parameter prior π(θ) and then generating a sample d′ from the likelihood
π(d|θ′). Notice that to sample π(d, θ), we do not need to have observed any particular
value of d; we simply sample the prior distribution. It is only in evaluating the
likelihood function that a particular value of the data d is required. This idea of
sampling the likelihood instead of evaluating the likelihood is critical to our approach;
this idea is also used throughout the likelihood-free methods of approximate Bayesian
computation [27, 70].

Notice that the joint density π(d, θ) contains all the information in π(θ|d) for
any value of d. Indeed, the conditional density π(θ|d) is simply a “slice” of the joint
density. This concept is illustrated in Figure 5-1. The left of the figure shows the joint
density as well as the value of d that we condition on to obtain the conditional density
shown on the right. The values of π(d, θ) along the line d = 0 are unnormalized values
of π(θ|d). Our goal in this work is to minimize the time it takes to characterize π(θ|d)
after a particular value of d has been observed. We call the post-observation runtime
of our algorithm the online time. Our idea is to use extensive offline computation
(before d is observed) to characterize π(d, θ), so that the online time required to
sample π(θ|d) is minimized. The key challenge is characterizing the joint distribution
in a way that makes sampling the conditional distribution trivial for any d. As we
show below, transport maps provide a way of describing π(d, θ) that suits our needs.

As in previous chapters, consider a reference random variable r ∼ N(0, I) that
is decomposed into two components, rd and rθ. Naturally, rd is a Dd dimensional
random variable, and rθ is a Dθ dimensional random variable. Also, assume we have
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Figure 5-1: Illustration of extracting a conditional density from the joint density.

a block lower triangular map of the form[
d
θ

]
i.d.
=

[
Fd(rd)
Fθ(rd, rθ)

]
. (5.3)

Even though F is a map to the joint distribution of d and θ, a map to θ|d can easily
be constructed by splitting the reference random variables and taking advantage of
the block triangular structure in (5.3). First, the inverse of Fd(rd), expressed as
Td(d) = F−1

d (d), allows us to find the reference variable rd from the data d through

rd = Td(d). (5.4)

We can now generate samples of the posterior random variable θ|d by fixing rd =
Td(d), sampling rθ, and evaluating Fθ. Mathematically, we have constructed the
following transport map for the posterior random variable

θ|d i.d.
= Fθ (Td(d), rθ) . (5.5)

It is intuitive to view this composition of Fθ and Td as a single map parameterized
by the data. With this intuition, setting d to a particular value in (5.5) is like
selecting a particular transport map from a parameterized family of maps. When Td
and Fθ are exact, the composed map (5.5) is also an exact map for the posterior. In
practice however, only approximations T̃d and F̃θ are available. Fortunately, these
approximations can still allow us to very quickly generate approximate samples of
the posterior. This can be extremely valuable when extensive offline computing is
possible but extensive online computational restrictions exist. Application areas that
could benefit from this include mobile and embedded systems as well as dynamic data
assimilation and robust control. Imagine performing near real-time inference for a
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nonlinear and non-Gaussian problem on your cell phone!

5.2 An illustrative example

As a simple illustration of using (5.5) to sample a posterior distribution, consider a
simple one dimensional inference problem with the prior

π(θ) = N(0, 1), (5.6)

and a forward model given by

d = (0.6θ − 1.0)3 + ε, (5.7)

where the additive error is Gaussian with variance 0.2, i.e., ε ∼ N(0, 0.2). Sampling
the joint density π(d, θ) simply involves generating samples of ε and θ, and then
evaluating the forward model in (5.7) to obtain d. We can trivially generate prior
samples of ε and θ because they are both normally distributed. The left part of Figure
5-1 shows the joint distribution for this small example.

Once we have a large number of samples, 60000 in this case, we choose an appro-
priate basis to represent T̃ and F̃ , and then solve the optimization problem in (2.21)
to obtain the approximate maps T̃d and T̃θ. As in Section 2.5, we use regression to
obtain the inverse map F̃θ.

Now, assume that we observe d = 0. Our approximate map to the posterior
random variable is given by

(θ|d = 0)
i.d.
≈ F̃θ

(
T̃d(0), rθ

)
. (5.8)

Figure 5-2 shows approximate posterior densities based on third and seventh order
Hermite polynomial maps. Because this problem only contains two dimensions, we
were able to use a set of total order limited multi-indices to parameterize both F̃θ
and T̃d.

This example is unique in that we can analytically compute the exact posterior
density. This exact density is shown in black in Figure 5-2. Clearly, the seventh order
polynomial map does a superb job of capturing the posterior structure and the third
order polynomial captures most of the posterior structure. Unfortunately though, our
use a total order polynomial truncation in this example cannot be sustained when
either the data d or parameters θ are high dimensional. In the total order setting, the
number of parameters grows exponentially and in high dimensions there are simply
too many coefficients in (2.23) to optimize due to both memory and time restrictions.
To overcome overfitting issues, we need a large number of samples; however, with
a large number of samples and many coefficients, the matrices used in Section 2.4
become too large to fit in memory. While future implementations could overcome
this point, even after construction, the large expansions needed for high dimensional
total order maps will be computationally expensive to evaluate.

However, a blocked version of the compositional maps in Section 2.7 is a possible
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Figure 5-2: Convergence of approximate conditional density.

alternative for tackling such high dimensional problems. The next section describes
how the compositional map can be adapted to maintain the block lower triangular
form in (5.3). After discussing block layered maps, Section 5.4 will apply both total
order polynomial maps and layered radial basis function maps to an inference problem
based on the biochemical oxygen demand model.

5.3 Layered construction of block lower triangular

maps

To build an approximate map to the posterior distribution, as in (5.5), we need the
block lower triangular form of the map in (5.3). Unfortunately, in the layered map
context, general choices of the rotations Ai and Bi in (2.50) could possibly destroy the
block triangular form. The composed map will only exhibit a block lower triangular
form when the linear operations Ai and Bi, as well as the map P̃ i, are themselves
block lower triangular.

5.3.1 Layered block formulation

Let Ai ∈ R(Dd+Dθ)×(Dd+Dθ) and Bi ∈ R(Dd+Dθ)×(Dd+Dθ) be rotations of the joint (d, θ)
random variable. To ensure the composed map in (2.39) is block lower triangular, Ai

and Bi must take the form

Ai =

[
Aidd 0
Aiθd Aiθθ

]
(5.9)

Bi =

[
Bi
dd 0
0 Bi

θθ

]
, (5.10)
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where Aidd, B
i
dd ∈ RDd×Dd , Aiθd ∈ RDθ×Dd , and Aiθθ, B

i
θθ ∈ RDθ×Dθ . Notice that the

lower left block of Bi must be 0 for Bi to be orthonormal; Bi
θθ and Bi

dd must also be
orthonormal. To ensure Ai is invertible, Aidd and Aiθ,θ must both be invertible.

Now, following the form for one layer in the composed map (see (2.50)), let
P̃ i : R(Dd+Dθ) → R(Dd+Dθ) be a lower triangular map consisting of the following
two components

P̃ i(d, θ) =

[
P̃ i
d(d)

P̃ i
θ(d, θ)

]
. (5.11)

Combining this nonlinear transformation with the linear transformations Ai and Bi

yields the following form for one layer of the composed block lower triangular map,

T̃ i(d, θ) =

[
Bi
ddP̃

i
d(A

i
ddd)

Bi
θθP̃

i
θ(A

i
ddd,A

i
θdd+ Aiθθθ)

]
. (5.12)

The approximate inverse of T̃ i, denoted by F̃ i, can also be broken into two com-
ponents as follows

F̃ i(rd, rθ) =

[
F̃ i
d(rd)

F̃ i
θ(rd, rθ)

]
, (5.13)

where
F̃ i
d(rd) = [Aidd]

−1(P̃ i
d)
−1
(
BiT
ddrd

)
, (5.14)

and F̃ i
θ is the “inverse” of T̃ iθ for a fixed value of d. More precisely, for any d ∈ Xd F̃ i

θ

satisfies
T̃ iθ

(
d, F̃ i

θ

(
T̃ id(d), rθ

))
= rθ. (5.15)

This definition of F̃ i
d and F̃ i

θ may seem convoluted, but constructing the joint map
F̃ i in this block-layered setting is no different than the standard regression approach
introduced in Section 2.5.

To see this connection, we need to define intermediate random variables r̃id and r̃iθ
that are approximations to rd and rθ after the first i layers of the composed map. In
this block composed map, r̃id is given by

r̃id =

{
d i = 0

Bi
ddP̃

i
d(A

i
ddr̃

i−1
d ) i > 0

. (5.16)

Similarly, the θ component r̃iθ is defined by

r̃iθ =

{
θ i = 0

Bi
θθP̃

i
θ(A

i
ddr̃

i−1
d , Aiθdr̃

i−1
d + [Aiθθ]

−1r̃i−1
θ ) i > 0

. (5.17)

Figure 5-3 shows a graphical interpretation of these quantities.
Now, assume we have already constructed T̃ i and thus have Ai, Bi, and P̃ i(r̃i−1) =[

P̃ i
d(r̃

i−1
d ), P̃ i

θ(r̃
i−1
d , r̃i−1

θ )
]T

from (5.12). Just like the standard layered map in Section
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Figure 5-3: Illustration of block composed map evaluation.

2.7, the inverse map F̃ i(r̃i) will take the form

F̃ i(r̃i) = r̃i−1 = [Ai]−1(P̃ i)−1
(
BiT r̃i

)
=

[
Aidd 0
Aiθd Aiθθ

]−1

(P̃ i)−1

([
Bi
dd 0
0 Bi

θθ

]T [
r̃id
r̃iθ

])
. (5.18)

Now, to construct the nonlinear inverse (P̃ i)−1 using the regression techniques of
Section 2.5, we need samples of the input and output of (P̃ i)−1. Fortunately, these
samples can easily be obtained using Ai and P̃ i from the already computed forward
map T̃ i. More precisely, the inputs to (P̃ i)−1 are given by P̃ i(Air̃i−1) and the outputs
are Air̃i−1.

Using these input-output samples, the intermediate inverse map (P̃ i)−1 can easily
be constructed using regression. Critically, because the resulting map (P̃ i)−1 will be
lower triangular, the tools from Section 2.5 can be used directly without consideration
of the block structure needed here. The blocked choices of Ai and Bi defined above
allow us to simply use the first Dd outputs of (P̃ i)−1 as (P̃ i

d)
−1, and the last Dθ

outputs as (P̃ i
θ)
−1. With these definitions, one complete layer of the inverse map is

given by

F̃ i(r̃i) =

[
F̃ i
d(r̃

i
d)

F̃ i
θ(r̃

i
d, r̃

i
θ)

]
=

[
[Aidd]

−1(P̃ i
d)
−1
(
BiT
dd r̃

i
d

)
[Aiθθ]

−1
[
(P̃ i

θ)
−1
(
BiT
dd r̃

i
d, B

iT
θθ r̃

i
θ

)
− AiθdF̃ i

d(r̃
i
d)
] ] , (5.19)

where the appearance of F̃ i
d(r̃

i
d) in the definition of F̃ i

θ(r̃
i
d, r̃

i
θ) stems from using block-
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wise forward substitution to evaluate [Ai]−1.
Notice that in (5.19) and in Figure 5-3, information never flows from the θ compo-

nents of the map to the d components. This means that given d, we can compute each
r̃id without knowing the target random variable θ. As discussed in the next section,
this separability is critical to constructing a layered equivalent to the conditional map

F̃θ

(
T̃d(d), rθ

)
defined in (5.8).

5.3.2 Defining a compositional inference map

Our goal is to sample θ|d using a combination of the maps F̃ i
d, F̃

i
θ , and T̃ id. We will

not directly require T̃ iθ to sample the posterior random variable θ|d.1 Recall from

section 5.1 that we can view the map F̃θ

(
T̃d(d), rθ

)
, as a map from RDθ → RDθ

that is parameterized by the data d. A similar view can be taken with the layered
map. Each layer F̃ i

θ can also be viewed as a map from RDθ → RDθ , but one that is
parameterized by the intermediate variable r̃id. This can be seen graphically in Figure
5-3(b).

For a fixed d, we construct the layered map to θ|d by first evaluating each layer
of T̃ id to obtain the values of {r̃1

d, r̃
2
d, ..., r̃

N
d }, where N is the total number of layers in

the compositional map. Graphically, this process is simply moving from left to right
across the top nodes in Figure 5-3(a). Once these values have been obtained, we can
generate approximate samples of θ|d by sampling rθ ∼ N(0, I) and then moving from
right to left along the bottom nodes in Figure 5-3(b). Mathematically, this simply
involves evaluating the composition

θ|d
i.d.
≈ F̃ 1

θ (r̃1
d, F̃

2
θ (r̃2

d, ... F̃
N−1
θ (r̃N−1

d , F̃N
θ (r̃Nd , rθ)) ... )), (5.20)

where each intermediate variable r̃id is fixed.

5.3.3 Choosing block rotations

In Section 2.7.4 we introduced five different methods for computing the rotations Ai

and and Bi. These methods were based on completely random rotations, random
rotations targeting non-Gaussian directions, principal components, and alternating
random rotations with the principal components. Unfortunately, these rotations can-
not be used directly in the block-lower triangular case because Ai and Bi must also
respect the block lower triangular form in (5.10).

While the construction of block triangular layered maps in Section 5.3.1 is com-
pletely general, it did not specify how to select the matrices Ai and Bi. In the present
work, we take a basic approach for constructing Ai and Bi. We first set Aiθd = 0 and
then use any one of the techniques from Section 2.7.4 to independently construct Aidd
and Aiθθ. The post-transformation rotations are then simply defined by Bi

dd = AiTdd,
and Bi

θθ = AiTθθ . These choices for Ai and Bi ensure that both the block structure

1Note that T̃ iθ still needs to be constructed. This map is not required to sample the posterior,

but it is required to find the pairs of r̃i and r̃i−1 that we need to construct F̃ iθ .
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in (5.10) is satisfied and that the space of all possible maps at layer i contains the
identity map. This is needed to show that the layered map has a non-increasing error.

While this choice of rotations is simple, using block diagonal matrices for Ai and
Bi can hinder the ability of the layered map to adequately characterize the posterior
π(θ|d).

The correlation structure between θ and d needs to be adequately captured for any
pair of forward and inverse maps T̃ (d, θ) and F̃ (rd, rθ), to adequately characterize the
posterior π(θ|d). However, by setting Aiθd = 0 in the layered map, we have prevented
Ai from rotating the coordinates in many directions. Unfortunately, this restriction
does not allow the map to fully explore all of the joint dependencies between the
parameters and data. The results below suggest that this is a significant limiter
to the layered map’s accuracy. Future work will need to explore alternative choices
where Aiθd 6= 0.

5.4 Application to biochemical oxygen demand in-

ference

Here we will again consider the biochemical oxygen demand (BOD) model introduced
in Section 4.5.2. Recall the simple exponential BOD model defined by B(t) = a(1−
exp(−bt)) + e, where e ∼ N(0, 10−3) is an additive error. In this example we use 5
observations of B(t) at t = {1, 2, 3, 4, 5}. Our goal is to infer the scalars a and b. For
the illustrative purposes of this example, we also assume that a and b have uniform
priors:

a ∼ U(0.4, 1.2) (5.21)

b ∼ U(0.01, 0.31). (5.22)

The target random variables θ1 ∼ N(0, 1) and θ2 ∼ N(0, 1) are chosen to be indepen-
dent standard normal random variables that are related to the parameters a and b
through the CDF of a standard normal distribution. Mathematically, this relationship
is expressed as

a
i.d.
=

[
0.4 + 0.4

(
1 + erf

(
θ1√

2

))]
(5.23)

b
i.d.
=

[
0.01 + 0.15

(
1 + erf

(
θ2√

2

))]
. (5.24)

We chose to use these transformations instead of inferring a and b directly for two
reasons: (i) this choice ensures that a > 0 and b > 0 for any map, and (ii) using a
polynomial map to approximate the error function erf adds an unnecessary level of
complexity to this example.

In this example, d is a vector-valued random variable defined by

d = [B(t = 1; θ1, θ2), B(t = 2; θ1, θ2), B(t = 3; θ1, θ2), B(t = 4; θ1, θ2), B(t = 5; θ1, θ2)]T .
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We use joint samples of d and θ to construct the transport maps T̃ (d, θ), and F̃ (rd, rθ).
Below, we compare the use of either 5000 or 50000 samples to construct the map.

After generating the samples, a fixed noisy realization of the data is generated
using “true” parameter values θ1 = 0.7 and θ2 = 0.3 to define the inference prob-
lem. We test both the accuracy of our approach and the efficiency of our approach
against an adaptive Metropolis MCMC scheme [42]. The MCMC result is used as
a gold-standard “truth” in our accuracy comparisons below. While more efficient
MCMC algorithms exist and were applied to a similar BOD problem in Chapter 4,
the adaptive Metropolis algorithm is well known and provides a good qualitative feel
for the speed of our approach relative to a well-used standard method.

Table 5.1: Accuracy of offline inference maps on BOD problem. All polynomial maps
used a Hermite basis.

Map Type
Training Mean Variance Skewness Kurtosis
Samples θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

MCMC “Truth” 0.075 0.875 0.190 0.397 1.935 0.681 8.537 3.437

Linear
5000 0.199 0.717 0.692 0.365 -0.005 0.010 2.992 3.050

50000 0.204 0.718 0.669 0.348 0.016 -0.006 3.019 3.001
5000 0.066 0.865 0.304 0.537 0.909 0.718 4.042 3.282

Cubic
50000 0.040 0.870 0.293 0.471 0.830 0.574 3.813 3.069

Fifth Order
5000 0.027 0.888 0.200 0.447 1.428 0.840 5.662 3.584

50000 0.018 0.907 0.213 0.478 1.461 0.843 6.390 3.606
5000 0.090 0.908 0.180 0.490 2.968 0.707 29.589 16.303

Seventh Order
50000 0.034 0.902 0.206 0.457 1.628 0.872 7.568 3.876

Layered R-SVD
5000 0.001 0.813 0.534 0.256 0.353 1.201 4.296 5.951

50000 0.167 0.690 0.580 0.235 0.497 1.116 4.317 5.279
5000 0.226 0.640 0.537 0.191 0.660 1.002 4.653 4.982

Layered Choosy
50000 0.081 0.851 0.558 0.260 0.648 0.795 4.351 4.320

5.4.1 Accuracy

Table 5.1 compares the accuracy of our map-based approach with the MCMC sam-
pler. The adaptive Metropolis sampler was tuned to have an acceptance rate of 26%.
Moreover, the chain was run for 6e6 steps, 2e4 of which were used as a burn-in. After
constructing T̃ and F̃ , the maps were used to generate 3e4 approximate samples of
π(θ|d). The moments calculated from those samples are compared to the MCMC
gold-standard in Table 5.1. Kernel density estimates of the approximate posterior
densities are also illustrated in Figures 5-4 and 5-5. For the layered maps, 5 layers
were constructed and each layer was defined by the nonlinear lower triangular ex-
pansion in (2.26) using 15 radial basis functions in each direction. The comparison
considers layered maps with choosy random rotations, or with principal components
interleaved with random rotations (R-SVD).

From the accuracy table, we can see that with a cubic parameterization of T̃ and
F̃ , the posterior map captures the posterior mean and variance, but cannot capture
higher moments. However, the seventh order maps are quite accurate. From Table
5.1, we see that when constructed from 50,000 samples, the seventh order map even
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Figure 5-4: Approximate BOD posterior densities constructed with 5000 samples.
Contour levels and color scales are constant for all figures.

captures the posterior kurtosis quite well. Figure 5-7 shows the seventh order posterior
distribution. The plot looks nearly identical to the MCMC gold-standard. However,
the timing results given below show that even with this comparable accuracy, our use
of maps results in much faster posterior sampling.

Like the cubic map, the layered maps have a hard time representing the posterior.
Looking at the joint distributions in Figures 5-6 and 5-7, we can see that the layered
maps capture the d marginal π(d) (top 5 rows of each plot), but have trouble capturing
the θ components (bottom 2 rows of each plot). This is particularly obvious when
looking at the the θ1-θ2 joint marginal, which should be an uncorrelated Gaussian
density. This is likely a result of setting the off-diagonal transformation Aiθd = 0 in
(5.10). While computationally convenient, this choice of rotation does not allow the
transformation Ai to span all directions in the joint (d, θ) space.
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Figure 5-5: Approximate BOD posterior densities constructed with 50000 samples.
Contour levels and color scales are constant for all figures.

5.4.2 Timing

From Table 5.1 and Figures 5-4 and 5-5, we see that our map-based approach can
accurately characterize the posterior. However, our goal is to decrease the online
computational cost of sampling the posterior compared to MCMC. In Table 5.2,
we show various timings of the map-based approach. These times are compared to
the gold-standard adaptive Metropolis MCMC scheme. The online time shows how
long each method takes to generate 30000 independent samples of the posterior. For
MCMC, we use the average amount of time it takes to generate a chain with an
effective sample size (ESS) of 30000.

The polynomial transport maps are clearly more efficient than the adaptive Metropo-
lis MCMC sampler. In fact, even if a much more advanced MCMC sampler were used
(see Chapter 4), this conditional map approach would still outperform the MCMC
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Table 5.2: Efficiency of offline inference maps on BOD problem. The online time is
the time required after observing d to generate the equivalent of 30000 independent
samples. Again, all polynomial maps were constructed from Hermite polynomials.

Map Type
Training Offline time (sec)

Online time (sec)
Samples Rotation T̃ construction F̃ regression

MCMC “Truth” NA 591.17

Linear
5000 NA 0.46 0.18 2.60

50000 NA 4.55 1.65 2.32
5000 NA 4.13 1.36 3.54

Cubic
50000 NA 40.69 18.04 3.58

Fifth Order
5000 NA 22.82 8.40 5.80

50000 NA 334.25 103.47 6.15
5000 NA 145.00 40.46 8.60

Seventh Order
50000 NA 1070.67 432.95 8.83

Layered R-SVD
5000 0.03 67.27 52.26 315.45

50000 0.14 463.81 521.54 315.28
5000 181.23 60.05 50.38 315.65

Layered Choosy
50000 352.91 491.28 500.17 306.90

sampler (in terms of ESS) because we are generating independent samples. However,
we must stress that the samples from our approach are still only approximate poste-
rior samples. The approximation can be quite good (as shown in Table 5.1), but we
provide no accuracy guarantee. That said, one of the approximate maps constructed
here could easily be used as a good proposal mechanism in either an MCMC setting
or importance sampling framework. A map constructed using the offline techniques
in this chapter could provide an excellent initial map in the adaptive map-accelerated
MCMC scheme of Chapter 4. Exploring this combination is left to future work.

5.5 Discussion

The efficient online sampling demonstrated on the BOD example is possible because
we characterized the joint distribution of (d, θ) before any data was observed. Block
lower triangular transport maps provide an efficient way of describing the joint dis-
tribution that also allow for efficient posterior sampling of π(θ|d). One view of our
approach is that we are constructing a family of maps for all posterior distributions
– the family is parameterized by the data. With this view, a natural question is,
“How can we construct maps to all posteriors without enumerating all possible obser-
vations?” The answer is that we have implicitly assumed that the posterior density
exists and changes smoothly with the data. In some sense, this smoothness is what
allows us to “interpolate” between posterior distributions.

From the BOD example, we see that for small dimensional problems, direct use
of total-order polynomials allows us to accurately characterize the posterior. While
layered maps have a lot of promise for extending this work to high dimensional prob-
lems, more research into the choice of the off-diagonal transformation Aiθd is required
to make these methods practical. Regardless, our approach can produce good ap-
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proximations to the posterior density in almost two orders of magnitude less online
time than adaptive Metropolis MCMC. On top of that, our approach is much more
scalable to large parallel architectures than standard sampling methods. In addi-
tion to parallelizing the map construction, the maps could be replicated and used
on multiple nodes or GPUs for massively parallel sampling. Each posterior sample
could in principle be generated in parallel without any forward model evaluations.
This lightweight massively parallel computation is ripe for a GPU implementation.
In fact, we are not aware of another method for posterior sampling that scales in this
manner. Fast approximate using these techniques may open of a range of exciting
possibilities, including online system identification, fast Bayesian inference on mobile
devices, and near real-time Bayesian experimental design.
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Figure 5-6: Approximate BOD joint densities constructed with 5000 samples.
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Figure 5-7: Approximate BOD joint densities constructed with 50000 samples.
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Chapter 6

MUQ: A software framework for
uncertainty quantification

Algorithm developers are continually creating new, more efficient, techniques for
Markov chain Monte Carlo (MCMC), nonlinear programming, and other problems
throughout computational science and engineering. Unfortunately though, outside
the realm of commercial software packages (e.g., CPLEX, GUROBI), there is often
a long lag time between when a new algorithm is developed and when, if at all, it is
broadly applied by users. This poses a problem for both algorithmic developers and
algorithm users. Users can obviously benefit from faster, more efficient, algorithms
coming from the developer community. On the other side, algorithmic developers are
likely to produce more efficient tools when focusing on specific user problems. So the
question is: How can we create a stronger link between algorithmic research and appli-
cations by minimizing the lag time between algorithm development and widespread
algorithm use? As an initial attempt at tackling this problem in the uncertainty
quantification community, we have developed the MIT Uncertainty Quantification
software library, nicknamed MUQ.

MUQ has two target audiences: (1) people who need to use uncertainty quantifi-
cation tools to analyze a model, solve an inverse problem, or perform some of data
analysis and (2) people that wish to develop new uncertainty quantification tools that
will be useful to a variety of users. Our goal is to create a software framework that
is easy for both users and developers to work with and expand.

Users need to be able to easily implement new models, developers need to be able
to easily implement new algorithms, and both groups need an expressive and easy to
use model-algorithm interface. In Section 6.1 we outline our approach for constructing
models, then in Section 6.2 we show how MUQ facilitates the easy development and
testing of new MCMC algorithms, and finally in Section 6.3, we provide some high
level conclusions and general trends to consider in future work.

145



6.1 Structured modeling

In the context of this work, we use the term “model” to describe a function taking
M model parameters as input and having N outputs. In our setting, a model is a
numerical approximation to some physical or stochastic process. It is important to
point that here, a model does not necessarily refer to a mathematical description
of the physical process, but rather a numerical approximation to the mathematical
description. Let f : RM → RN be a numerical model of some physical process.
For example, f could be a subsurface flow model that takes a permeability field as
input and produces predictions of pressure at N locations. In a more complicated
situation, f may include several coupled PDE models – perhaps the output of a
subsurface flow model is fed as the input to a contaminant transport model. At any
rate, to be used by optimization algorithms or MCMC methods, the model f needs to
be implemented (i.e. coded up) with an input-output interface that the optimization
and MCMC algorithms can interpret. Moreover, if any algorithm requires additional
structure (e.g., block definitions of the input parameters or derivative information),
this information also needs to be incorporated into the model-algorithm interface.

6.1.1 Existing algorithm-model interfaces

There are many options for how to define models in a way that algorithms can un-
derstand. On a high level, the main variation between these options is in how much
flexibility should be given to the person or group implementing the model. Flexi-
bility can include the constraints on the model complexity, any requirements on the
programming language used to implement the model, and even if the model has to
return derivative information such as Jacobian matrices or adjoint gradients. The
most flexible interfaces, such as that used by the DAKOTA package from Sandia[2],
only require that the implementation takes an input vector and returns an output
vector. Additional flexibility is provided in DAKOTA by performing model evalua-
tions using file i/o and system calls. While this type of “black-box” approach gives
users the most flexibility in defining their models, it makes it difficult for algorithms
to extract model structure and can also make it difficult for users to implement a
model because everything in the model needs to be written from scratch.

On the opposite end of the flexibility spectrum from DAKOTA are algebraic mod-
eling systems such as GAMS [94] or AMPL [35] in the optimization community, and
STAN [96] or BUGS [69] in the MCMC community. These tools define a new domain
specific modeling language. To define a model in these frameworks, a user defines an
input file that describes model parameters and any algebraic relationships between
them. This type of model specification is usually quite easy to specify and requires
almost no programming experience. Moreover, because all operations are explic-
itly given defined in the input file, the optimization or MCMC software can extract
any information it needs, e.g. sensitivities, linearities, etc... Unfortunately though,
requiring the model to be implemented in such an algebraic modeling language re-
stricts the type of model that can be implemented (e.g., no PDE based systems) and
also prevents users from employing “black-box” models or legacy code.
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One of our visions for MUQ is to provide a modeling framework that lies between
the extremes of DAKOTA and algebraic modeling systems. We want to provide
enough flexibility to use black-box models or existing code, but simultaneously expose
some model structure to the algorithms. We also acknowledge that modeling is in
itself an iterative process and the modeling framework should allow for models to
be incrementally constructed, tested, and adapted. With these goals in mind, we
adopted a graph-based framework for constructing models. In this setting, the full
model f is separated into many smaller components that are defined on nodes of the
graph. While somewhat similar to the way BUGS internally handles models, our
framework is much more flexible and allows non-algebraic or black-box simulations
to be included in the graph.

6.1.2 MUQ’s modeling framework

To give a feel for our modeling framework, consider an implementation of a simple
elliptic PDE with a lognormal permeability field. The physical model is defined by

−∇ · (κ∇p) = f, (6.1)

where κ is an input to the model representing the permeability field, p is the output
of the model representing the pressure field, and f is and input to the model that
characterizes a recharge term. Now, assume the permeability κ is parameterized
through some other parameter (perhaps log-permeability) θ1 and f depends on two
other parameters (perhaps rainfall and temperature) θ2 and θ3. Graphically, this
relationship is shown in Figure 6-1. Figure 6-1 also shows an observation h(p) that
could represent a limited number of borehole pressure observations.

Log-permeability
θ1

Rainfall
θ2

Temperature
θ3

Permeability
κ(θ1)

Recharge term
f(θ2, θ3)

Pressure
p(κ, f)

Observations
h(p)

Figure 6-1: Illustration of graphical modeling approach. MUQ uses graphs like this
to define models, compute derivatives with the chain rule, and extract additional
problem structure.
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Drawing the graph in Figure 6-1 is a common way for users to represent infor-
mation flow through a model. MUQ uses a similar internal representation of models.
In MUQ, each node of the graph represents a model component. These components
may require the solution of a PDE (as in the pressure node of Figure 6-1), a system
call to some black-box simulator, or the component could perform some simple task
like adding a scalar to the input vector. While each model component can contain a
variety of operations, the large scale model structure is captured by the graph. This
enables us to automatically propagate sensitives through the model (via the chain
rule) or extract other problem structure such as model linearity. While DAKOTA
treats models as “black-boxes” and algebraic systems ensure the model is an entirely
known “white-box,” our graph-based modeling framework provides an intermediate
“gray-box.” By sacrificing some of the ease-of-use of algebraic systems, we have gained
the full flexibility of file i/o based frameworks. Importantly though, we have not lost
the ability to extract problem structure and pass this information on to algorithms.

Our graph-based models make extracting problem structure possible for algo-
rithms, but this approach can also be useful from a modeler’s perspective. Our
framework allows nodes on the graph (i.e. model components) to easily be swapped
for new model components. For example, a node containing a computationally ex-
pensive PDE simulation can be swapped for a more efficient polynomial chaos ap-
proximation. After the swap, the graph topology remains the same but the model
will now be faster to evaluate. Swapping nodes also allows modelers to try different
physics or model traits and ultimately to find the combination of nodes that they
believe matches reality. Using MUQ in this setting is similar to using Legos. There
are many pieces available, and modelers can slowly build up very sophisticated mod-
els by combining the right pieces. Each time a piece is changed, only one line of
code will need to change. Adding new pieces into the graph also only requires one or
two additional lines of code. Thus, it is easy for modelers to incrementally build up
the model. Moreover, MUQ provides some python bindings that allow this all to be
completed without recompiling.

6.2 Implementing Markov chain Monte Carlo

As we mentioned earlier, our goal for MUQ is to provide both a modeling frame-
work and to facilitate easy algorithmic development. MUQ has many tools ranging
from optimization to polynomial chaos to regression, but here we will focus on the
structure of MUQ’s MCMC stack. Just like decomposing a model into its main com-
ponents facilitates easy model development, decomposing an MCMC algorithm into
its fundamental components enables more efficient algorithm development.

The two main components of a general MCMC algorithm are the states of the
chain and the transition kernel. For most Metropolis-Hastings style MCMC algo-
rithms, the kernel can also be separated into the proposal and the accept-reject step
of the Metropolis-Hastings rule. The MCMC algorithms in MUQ also follow this
decomposition. We use objects (i.e., purely virtual c++ classes) to define abstract in-
terfaces for the chain, the kernel, and the proposal. The chain can call any available
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kernel with the current location, and the kernel returns a new point in the parameter
space as the next state in the chain. If the kernel is based on the Metropolis-Hastings
rule, it will in turn call a proposal to get a proposed point, which is then accepted
or rejected. The proposal knows nothing about the Metropolis-Hastings kernel and
the Metropolis-Hastings kernel knows nothing about the chain. It is this complete
decomposition that makes our MCMC implementation so extensible. For example,
MUQ currently has 5 different proposals that we designed for use with the Metropolis-
Hastings kernel. However, after implementing a new delayed rejection kernel, we were
able to use any combination of the same 5 proposals to define variations of delayed
rejection MCMC. In MUQ, changing the type of proposal simply involves changing
a parameter flag, which encourages users to try many different algorithms and find
the one that works the best for their problem. In fact, the only difference between
running delayed rejection with an adaptive-Metropolis proposal, and running delayed
rejection with a combination of MALA and a random walk, is a single string. This
flexibility allowed us to define all of the algorithms used for comparison in Chapter 4
by changing one or two parameters.

The decomposition between the three MCMC components also prevents develop-
ers from having to “reinvent the wheel” every time a new algorithm comes out. If
someone comes up with a new proposal mechanism, we need only write a new pro-
posal class with the same interface as the other proposals. The bookkeeping of the
chain and the accept/reject step of the kernel remain the same and no new code is
required outside of the proposal. This type of easy implementation is not present
in other MCMC packages that we are aware of and I believe our unique approach
will enable algorithm developers to easily construct new algorithms that can immedi-
ately be used by modelers and other MUQ users. Moreover, because very little code
changes with the additional algorithms, fewer bugs are likely to be introduced, saving
valuable time for both developers and users.

6.3 Conclusions

By providing easy to use extensible interfaces for modelers, users, and algorithm
developers, MUQ aims to reduce the lag time between algorithm improvements and
widespread use. We believe that our code structure will enable this and will also
allow researchers on both ends of the spectrum to focus on the problems that interest
them, without having to worry about the messy bookkeeping and interfacing required
to link advanced algorithms with complicated models.

While we only gave a high level overview of our modeling framework and MCMC
implementation, MUQ has tools for many other areas in statistics and uncertainty
quantification, including transport map construction, stochastic optimization, regres-
sion, polynomial chaos, random fields, Monte Carlo, and hierarchical matrices. These
components currently range in maturity and ease of use, but we are constantly striving
to improve MUQ’s capabilities to help users efficiently “MUQ around” in uncertainty
quantification.

MUQ is an open source library distributed at https://bitbucket.org/mituq/
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muq under a BSD license.
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Chapter 7

Conclusions and future work

Mathematically, Bayes’ rule is an unassuming expression for combining multiple types
of data. However, as we have shown, characterizing the Bayesian posterior can be a
difficult computational task, often requiring an intractable number of expensive model
evaluations. This thesis addresses this issue with new exact and approximate posterior
sampling strategies, all of which rely on the efficient construction of transport maps.

Map construction

A fundamental tool used throughout this thesis is the construction of transport maps
from samples. In Chapter 2 we introduced a map-construction techniques based on
the solution of convex optimization problems. This technique can efficiently construct
a single lower triangular map with good accuracy for low to moderate dimensional
problems. However, the computational cost of accurately characterizing a large di-
mensional distribution can become intractable. Fortunately, the approximation qual-
ity of the map can be balanced against computational cost by strategically choosing
the terms in the map parameterization. More approximate diagonal and separable
maps are more efficient to construct in high dimensional spaces, but can yield crude
approximations when used alone.

To overcome this issue, we introduced another map-construction technique based
on the composition of simple maps interleaved with parameter space rotations. This
layered approach has the potential to scale to very high dimensional problems. After
studying the convergence of this approach on a small banana shaped distribution, we
demonstrated its efficacy by characterizing a large Besov random field. In both the
banana and Besov examples, random rotations that favor non-Gaussian directions or
alternating between principal components and completely random rotations yielded
the best approximation in the fewest number of layers.

Approximate sampling

Recall our first thesis objective:

• To create a framework for approximate Bayesian inference that uses prior sam-
ples and extensive offline computation to enable fast Bayesian inference in the
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context of nonlinear inverse problems with computationally intensive forward
models.

We have developed two approximate methods aimed at this goal: the mutliscale
approach of Chapter 3, and the conditional map approach introduced in Chapter 5.

Our multiscale approach is applicable to large dimensional problems that exhibit
multiple spatial or temporal scales. By describing the multiscale nature of the system
as a conditional independence assumption, we were able to separate the posterior
sampling problem into two stages: (i) sampling a small coarse scale posterior dis-
tribution, and (ii) generating fine scale posterior samples for each coarse posterior
sample. Both of these stages are facilitated by a block lower triangular transport
map that is constructed offline from joint prior samples of the fine and coarse vari-
ables. Using MsFEM to define a set of coarse parameters, we found good agreement
between our multiscale method and a gold-standard MCMC method on a 100 dimen-
sional problem. We then successfully applied our approach to a problem from porous
media with more than 10000 spatially-distribution parameters. Such a large problem
is intractable for existing MCMC methods, but our approach was able to generate
approximate posterior samples in only a few hours.

Our second approximate approach, constructing the conditional map, was intro-
duced in Chapter 5. This method uses joint samples of the data-parameter distribu-
tion to construct a block lower triangular map that can subsequently be used for near
real-time posterior sampling. This approach is unique in that it requires no informa-
tion other than the joint prior samples and can therefore perform almost all necessary
computations before any particular data are observed. Because this method does not
require any likelihood evaluations (only samples), it can be viewed as an approxi-
mate Bayesian computation (ABC) method. However, most ABC methods cannot
exploit as much offline computation. Our results show that our conditional map can
achieve good posterior accuracy and generate posterior samples in about two orders
of magnitude less time than a standard MCMC method. We anticipate that further
development of the layered block lower triangular map will extend this approach to
higher dimensional problems. A theoretical analysis relating the accuracy of the joint
map to the accuracy of the posterior conditional map will also be a useful guide for
future development.

Exact sampling

While our first thesis objective was focused on approximate methods, our second
objective was to produce an efficient but exact sampling method. Recall the exact
thesis objective:

• To rigorously formulate a computationally efficient, broadly applicable, and sta-
tistically exact sampling scheme for non-Gaussian Bayesian inference problems:
in particular, a scheme that targets posterior distributions with varying local
correlation structures while requiring no derivative information.

Clearly, our adaptive MCMC technique from Chapter 4 completes this objective. We
developed a provably ergodic MCMC scheme that can sample posterior distributions,
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but can also be applied to more general probability densities. Transport maps again
played a key roll in this algorithm. In the MCMC context, we used a transport map to
capture posterior structure and subsequently define an efficient Metropolis-Hastings
proposal mechanism. The algorithm adaptively constructs the transport map from
previous MCMC states and requires no additional derivative information. Our results
show multiple order-of-magnitude efficiency improvements over existing state-of-the-
art MCMC samplers, even over samplers that exploit derivative information. This
impressive performance stems from our unique combination of transport maps and
independence proposals.

Our current implementation of this MCMC scheme use a single lower triangular
map; however, the layered transport maps of Section 2.7 provide a natural path to
extending this MCMC method to higher dimensions. Additionally, future applica-
tions may find posterior gradient or Hessian information useful for both guiding the
reference space proposal, and for developing better approximations to the expectation
in (2.9) using the sensitivity enhanced Monte Carlo methods of [38].

Smoothness extensions

The transport map formulations in Chapter 2 (and subsequently all the algorithms
reviewed above) do not allow target distributions with point masses. Unfortunately,
such distributions commonly arise in real geophysical applications (e.g., snow depth
is zero during the summer but will have some positive distribution in the winter).
Developing approaches for handling point masses in the sample-based construction
of Chapter 2 could open up many new applications such as Bayesian system iden-
tification of river systems, or even real-time full waveform inversion from acoustic
data.

Closing remarks

The utility of transport maps in our algorithms should be clear from the results given
in Chapters 3, 4, and 5. However, we believe that our unique approach to constructing
transport maps from samples is a more fundamentally useful tool that can be applied
to many additional areas in statistics and uncertainty quantification. This means that
future work building upon the ideas of Chapter 2 will impact many disciplines. To
this end, our future work will focus on both developing a scalable parallel transport
map implementation (via CUDA and MPI), and tackling larger dimensional problems
by building upon the layered map ideas outlined in Section 2.7.
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Appendix A

Detailed MCMC convergence
analysis

Section 4.4 provides a high level overview of the convergence properties for our map-
accelerated MCMC algorithm. In this appendix, we elaborate on the descriptions of
Section 4.4 with a more technical analysis. In particular, we elaborate on the proof
of Theorem 1. Much of the analysis in this chapter follows the proof of Lemma 6.1
in [9].

A.1 Setting the stage: bounding the target pro-

posal

To goal of this section is to find two zero mean Gaussian densities that bound the
map-induced target density qθ. We assume throughout this appendix that the target
density π(θ) is finite, continuous, and super exponentially light (see (4.17)). We also
assume the reference proposal density qr(r

′|r) is a Gaussian random walk with a
location bounded drift term m(r) and fixed covariance Σ. Such a proposal takes the
form

qr(r
′|r) = N(r +m(r),Σ). (A.1)

For this proposal, we can follow [9] and show that there are two zero mean Gaussian
densities g1 and g2 as well as two scalars k1 and k2 such that 0 < k1 < k2 <∞ and

k1g1(r′ − r) ≤ qr(r
′|r) ≤ k2g2(r′ − r). (A.2)
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Now, we will use (A.2) to bound the target space proposal qθ. The following steps
yield an upper bound

qθ(θ
′|θ) = qr(T̃ (θ′)|T̃ (θ))|∂T̃ (θ′)| (A.3)

≤ qr(T̃ (θ′)|T̃ (θ))dDmax (A.4)

≤ k2g2(T̃ (θ′)− T̃ (θ))dDmax (A.5)

≤
(
k2d

D
max

)
g2 (dmin (θ′ − θ)) (A.6)

= kUgU (θ′ − θ) , (A.7)

where gU is another zero mean Gaussian. The step from (A.4) to (A.5) is a con-
sequence of (A.2). While the step from (A.5) to (A.6) stems from the lower norm
bound in (2.12) and because g2 is a Gaussian with zero mean, which implies that
g2(x1) > g2(x2) when ‖x1‖ < ‖x2‖. Notice that kU does not depend on the particular
coefficients of the map T̃ , it only depends on the lower bound in (2.12). A similar
process can be used to obtain the following lower bound

qθ(θ
′|θ) = qr(T̃ (θ′)|T̃ (θ))|∂T̃ (θ′)|

≥ qr(T̃ (θ′)|T̃ (θ))dDmin
≥ k1g1(T̃ (θ′)− T̃ (θ))dDmin
≥

(
k1d

D
min

)
g1 (dmax (θ′ − θ))

= kLgL (θ′ − θ) . (A.8)

The bounds given in (A.7) and (A.8) are a fundamental component of the convergence
proofs below. In fact, with these bounds in place, we can following the proof of Lemma
6.2 in [9] almost exactly.

A.2 SSAGE

To show that our adaptive scheme is ergodic, we need to show two things:

1. Diminishing adaptation

2. Containment

As we described in Section 4.4, the diminishing adaptation condition is easy to show
for our approach under some mild continuity constraints. However, containment
is more difficult to check. Directly assessing containment is difficult, but a more
easily verifiable condition is Simultaneous Strongly Aperiodic Geometric Ergodicity
(SSAGE). Importantly, [85] prove that SSAGE implies containment (also see [11]
for a nice overview of containment in adaptive MCMC). SSAGE is similar to the
usual minorization and drift conditions for non-adaptive MCMC, but applies to all
proposals simultaneously. Recall that Xθ is the set of all possible values for θ and γ
are the coefficients defining the map T̃ (θ) = T̃γ(θ). The formal definition of SSAGE
is then
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Definition 3 (SSAGE). SSAGE is the condition that there is a set C ∈ B(Xθ), a
function V : Xθ → [1,∞) with supx∈C V (x) < ∞, as well as three scalars δ > 0,
λ < 1, and b <∞ such that the following two conditions hold:

• (Minorization) For each γ, there exists a measure νγ(·) on C with Pγ(x,A) ≥
δνγ(A) for all x ∈ C and A ∈ B(RD).

• (Drift)
∫
RD V (x)Pγ(x, dx) ≤ λV (x) + bIC(x) for all γ and x

The following sections show that our adaptive approach satisfies these two con-
ditions. Th map T̃γ(θ) induces a target space proposal that is combined with the
Metropolis-Hastings rule to obtain a transition kernel denoted by Pγ(θ, ·). Note that
γ will be used as a subscript throughout the following text to indicate a dependence
on a particular choice of map. In many cases our goal will be to construct results
that do not depend on γ.

For the following analysis, assume π(x) > 0 for all finite x and let V (x) =
cV π

−α(x), where cV is chosen so that minV (x) = 1. Also, choose the set C to be a
ball with radius RC > 0, i.e., C = B(0, RC). Clearly, because we assume π(x) > 0,
we immediately obtain supx∈C V (x) <∞.

A.3 Minorization

Our goal in this section is to find two things: (i) a scalar δ that does not depend on
γ and (ii) a nontrivial measure νγ(·) such that the following minorization condition
holds

Pγ(x, ·) ≥ δνγ(·). (A.9)

To define δ, we refer to the form of the Metropolis-Hastings transition kernel given
by

Pγ(x, dy) = αγ(x, y)qθ,γ(y|x)dy + rγ(x)δx(dy),

where

rγ(x) = 1−
∫
αγ(x, y)qθ,γ(y|x)dy,

and α is the Metropolis-Hastings acceptance rate. The acceptance rate is defined by

αγ(x, y) = min

{
1,
π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
.

}
Let τ be the minimum acceptance rate over all x, y ∈ C and over all of the map-
induced proposal densities. In other words, τ is defined by

τ = inf
γ

inf
x,y∈C

min

{
1,
π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)

}
. (A.10)
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Notice that lower bound in (A.8) ensures we always have a positive acceptance rate
τ > 0 because

π(y)qθ,γ(x|y) ≥ π(y)kLgL(x− y) > 0 ∀x, y ∈ C.

Now, this minimum acceptance rate can be substituted back into the transition kernel
to obtain

Pγ(x, dy) = αγ(x, y)qθ,γ(y|x)dy + rγ(x)δx(dy)

≥ τqθ,γ(y|x)dy + r(x)δx(dy). (A.11)

Again using our lower bound on qθ,γ(y|x) from (A.8), we have

Pγ(x, dy) ≥ τkLgL(x− y)dy + rγ(x)δx(dy)

≥ τkLgL(x− y)dy. (A.12)

Thus, for x ∈ C, we have a lower bound on Pγ(x, dy) that does not depend on the
map parameters γ. Now, we need to remove the dependence of the right hand side
on x. Since gL is a Gaussian density, infz∈C gL(z − y) > 0 and we can defined a new
density gL2 that is not dependent on x. Mathematically, gL2 takes the form

gL2(y) =
infx∈C gL(x− y)∫

y∈RD infx∈C gL(x− y)dy
.

Using this expression yields

Pγ(x, dy) ≥ τkL2gL2(y)dy, (A.13)

where kL2 = kL
∫
y∈RD infx∈C gL(x− y)dy. It may now be tempting to directly use the

right hand side of this expression to define the minimization measure ν. However,
this expression is only valid for x ∈ C and dy ⊂ C and we need the minorization
measure to be defined for all measurable sets in RD. Thus an alternative expression
of ν is required. Fortunately, Rosenthal provides a nice example in [93] that can be
adapted to this situation. First, set δ = τkL2 and define

ν(A) =

∫
A∩C gL2(y)dy∫
C
gL2(y)dy

(A.14)

This expression defines a nontrivial measure and allows us to create a lower bound
using (A.13) but on sets outside of C. Combining this expression with (A.13), we
obtain

Pγ(x,A) ≥ δν(A) (A.15)

This provides the minimization component of the SSAGE condition. The next section
discusses the more intricate drift component.
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A.4 Drift

This section is shows that our adaptive algorithm satisfies the drift condition in the
SSAGE definition. From the proof of Lemma 6.2 in [9], which resembles the proofs
in [55], the following two conditions are equivalent to the SSAGE drift condition

sup
x

sup
γ

∫
RD V (y)Pγ(x, dy)

V (x)
<∞, (A.16)

and

lim sup
‖x‖→∞

sup
γ

∫
RD V (y)Pγ(x, dy)

V (x)
< 1. (A.17)

We will therefore satisfy the drift condition by satisfying both of these conditions.

First, we will show a bound on
∫
RD V (y)Pγ(x,dy)

V (x)
that ensures (A.16) is satisfied. The

forthcoming simplifications will break the parameter space Xθ into multiple regions.
The regions are based on the set of guaranteed acceptance, which is given by

Aγ(x) =
{
y ∈ RD | π(y)qθ,γ(x|y) ≥ π(x)qθ,γ(y|x)

}
, (A.18)

and the set of possible rejection, simply defined by

Rγ(x) = Aγ(x)C (A.19)

Now, recall our choice of drift function: V (x) = cV π
−α(x) for α ∈ (0, 1). Plugging
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this function into the argument of (A.16) and simplifying yields∫
RD V (y)Pγ(x, dy)

V (x)
=

∫
RD π

−α(y)Pγ(x, dy)

π−α(x)
(A.20)

=

∫
RD

π−α(y)

π−α(x)
Pγ(x, dy)

=

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
Rγ(x)

π−α(y)

π−α(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

(
1− π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)

)
qθ,γ(y|x)dy

=

∫
Rγ(x)

qθ,γ(y|x)dy +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

(
π−α(y)

π−α(x)
− 1

)
π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy

≤ Qθ,γ(θ, Rγ(x)) +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

π−α(y)

π−α(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy

≤ 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

π−α(y)

π−α(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy (A.21)

Within the region of possible rejection Rγ(x), the acceptance rates are all in [0, 1),
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which allows us to further bound (A.20) using (A.21) and the following algebra∫
RD V (y)Pγ(x, dy)

V (x)
≤ 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

π−α(y)

π−α(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy

≤ 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
Rγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

< 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
Rγ(x)

q−αθ,γ (y|x)

q−αθ,γ (x|y)
qθ,γ(y|x)dy

= 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
Rγ(x)

q1−α
θ,γ (y|x)qαθ,γ(x|y)dy

≤ 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

(kUgU(y − x))1−α (kUgU(x− y))α dy

= 1 +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy + k2

U

∫
Rγ(x)

gU(y − x)dy

= 1 + CR +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy, (A.22)

where the expression in (A.22) is a consequence of the density upper bound in (A.7).
Now consider region of guaranteed acceptance Aγ(x). A similar application of (A.7)
over this region yields∫

RD V (y)Pγ(x, dy)

V (x)
≤ 1 + CR +

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

= 1 + CR +

∫
Aγ(x)

πα(x)

πα(y)
qθ,γ(y|x)dy

≤ 1 + CR +

∫
Aγ(x)

qαθ,γ(x|y)

qαθ,γ(y|x)
qθ,γ(y|x)dy

= 1 + CR +

∫
Aγ(x)

qαθ,γ(x|y)q1−α
θ,γ (y|x)dy

≤ 1 + CR + k2
U

∫
Aγ(x)

gU(x− y)dy

= 1 + CR + CA

< ∞. (A.23)

Thus,
∫
RD V (y)Pγ(x,dy)

V (x)
is finite for all x and γ and we have satisfied (A.16). However,
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we still need to show (A.17), i.e., that

lim sup
‖x‖→∞

sup
γ

∫
RD V (y)Pγ(x, dy)

V (x)
< 1. (A.24)

To show this, we will first show that this ratio is less than rejection rate, i.e., that

lim sup
‖x‖→∞

sup
γ

∫
RD V (y)Pγ(x, dy)

V (x)
< lim sup
‖x‖→∞

sup
γ

∫
Rγ(x)

qθ,γ(y|x)dy, (A.25)

and then we will show that there is a strictly positive probability of accepting the
proposal, which is mathematically stated as∫

Rγ(x)

qθ,γ(y|x)dy < 1. (A.26)

Part 1
Our goal in this section is to show (A.25). As we have done before, the left hand side
of (A.25) can be broken in the Aγ(x) portion and the Rγ(x) portion to obtain∫
RD V (y)Pγ(x, dy)

V (x)
=

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
Rγ(x)

π−α(y)

π−α(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy

+

∫
Rγ(x)

(
1− π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)

)
qθ,γ(y|x)dy. (A.27)

To show that this expression is less than the rejection rate
∫
Rγ(x)

qθ,γ(y|x)dy as ‖x‖ →
∞, we will show that the first two integrals (A.27) go to zero as ‖x‖ → ∞ and that
the last integral is bounded by

∫
Rγ(x)

qθ,γ(y|x)dy. During this derivation, it will prove

useful to further decompose Aγ(x) and Rγ(x) into subsets. This decomposition will
be based on a ball of radius R around x, B(x,R), where R implicitly depends on
some tolerance ε > 0 through the requirement that∫

B(x,R)

gU(y − x)dy ≥ 1− ε. (A.28)

In addition to this ball, the decomposition of Aγ(x) and Rγ(x) will also be based on
the sets Cπ(x) and Cπ(x)(u) defined by

Cπ(x) = {y ∈ RD : π(y) = π(x)}, (A.29)

and for u > 0,

Cπ(x)(u) = {y + sn(y) : y ∈ Cπ(x),−u ≤ s ≤ u}. (A.30)

You can think of Cπ(x) as a single contour of the target density and Cπ(x)(u) as
a narrow region surrounding that contour. Now, we can define the following non-
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overlapping subsets of Aγ(x) and Rγ(x)

A1(x) = Aγ(x) ∩B(x,R)c

A2(x) = Aγ(x) ∩B(x,R) ∩ Cπ(x)(u)

A3(x) = Aγ(x) ∩B(x,R) ∩ Cπ(x)(u)c

R1(x) = Rγ(x) ∩B(x,R)c

R2(x) = Rγ(x) ∩B(x,R) ∩ Cπ(x)(u)

R3(x) = Rγ(x) ∩B(x,R) ∩ Cπ(x)(u)c. (A.31)

Note that Aγ(x) = A1(x)∪A2(x)∪A3(x) and Rγ(x) = R1(x)∪R2(x)∪R3(x). Using
this new subsets, reconsider the Aγ(x) component of (A.27). We can rewrite the
integral from (A.27) as∫

Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy =

∫
A1(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy +

∫
A2(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

+

∫
A3(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy. (A.32)

Recall that we are trying to make show that this integral goes to zero as ‖x‖ → ∞,
so that we can subsequently bound (A.17). Thus, our momentary goal is to show
that each of the integrals in (A.32) goes to zero as ‖x‖ → ∞. Recall the bound used
in (A.22), which is repeated here

π−α(y)

π−α(x)
qθ,γ(y|x) ≤ k2

UgU(x− y).

Applying this bound to the first two integrals in (A.32) yields∫
A1(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy ≤ k2

U

∫
A1(x)

gU(x− y)dy∫
A2(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy ≤ k2

U

∫
A2(x)

gU(x− y)dy. (A.33)

A result from [55] will allow us to bound the right hand sides of (A.33) and (A.33)
by first bounding the size of A1(x) and A2(x).

In the proof of theorem 4.1 from [55], the authors show that for a large radius r1

and ‖x‖ ≥ r1, the Lebesgue measure of Cπ(x)(u) ∩B(x,R) is bounded by:

λ
(
Cπ(x)(u) ∩B(x,R)

)
≤ u

R

(
‖x‖+R

‖x‖ −R

)D−1

λ
(
Cπ(x)(u) ∩B(x, 3R)

)
(A.34)

where D is the dimension of x and λ is the Lebesgue measure. Notice that as ‖x‖ →
∞, the right hand size of this expression becomes u/R. Thus, by using the absolute
continuity of the Gaussian density gU(y − x) with respect to Lebesgue measure, we
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can use the expression in (A.34) to find a width u and a larger radius r2 > r1 such
that for any ε > 0 ∫

Cπ(x)(u)∩B(x,R)

gU(y − x)dy ≤ ε for ‖x‖ ≥ r2. (A.35)

By applying (A.35) to (A.33) and (A.28) to (A.33) we obtain the upper bounds∫
A1(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy ≤ k2

2ε∫
A2(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy ≤ k2

2ε. (A.36)

Applying these expressions to (A.32), shows that as ‖x‖ → ∞, we can choose a
contour width u such that

lim
‖x‖→∞

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy = lim

‖x‖→∞

∫
A3(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy

This takes care of the A1(x) and A2(x) portions of (A.32). However, we still need to

show that the A3(x) portion goes to zero, i.e., lim
‖x‖→∞

∫
Aγ(x)

π−α(y)
π−α(x)

qθ,γ(y|x)dy = 0. To

show this, we will simply show that the size of the set A3(x) goes to zero as ‖x‖ → ∞.
This will require the super-exponential characteristic of the target density π(θ).

Continuing to follow the proof of lemma 6.2 from [9], for any r > 0 and a > 0,
define

dr(a) = sup
‖x‖≥r

π
(
x+ a x

‖x‖

)
π(x)

As [9] points out, dr(a) → 0 as r → ∞ because the target density π(θ) is super-
exponential. For a particular r3 <∞, this convergence provides the following bound
(taken from [9])∫

A3(x)

π−α(y)

π−α(x)
qθ,γ(y|x) ≤ dr3(δ) for all ‖x‖ ≥ r3 +R. (A.37)

Now, combining (A.36), (A.36), and (A.37), we can finally show

lim
‖x‖→∞

∫
Aγ(x)

π−α(y)

π−α(x)
qθ,γ(y|x)dy = 0. (A.38)

Moreover, the same reasoning that got us from (A.32) to (A.38) can be used over the
possible rejection region to show that

lim
‖x‖→∞

∫
Rγ(x)

π(y)qθ,γ(x|y)

π(x)qθ,γ(y|x)
qθ,γ(y|x)dy = 0. (A.39)
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Looking back at (A.27), we can see their is only one remaining part of that integral.
This remaining part is given by

lim
‖x‖→∞

∫
RD V (y)Pγ(x, dy)

V (x)
= lim
‖x‖→∞

∫
Rγ(x)

qθ,γ(y|x)dy. (A.40)

Thus, we have satisfied the first part in (A.25). The section below will take this result
and will verify (A.17) by showing that this term is bounded by 1.

Part 2
Our goal in this section is to show that lim‖x‖→∞

∫
Rγ(x)

qθ,γ(y|x)dy < 1. Notice that

this is equivalent to having a nonzero acceptance probability at the point x. To
verify this condition for our adaptive MCMC scheme, we will show that there is a
measurable set in the guaranteed acceptance region W (x) ⊂ Aγ(x). Because W (x) is
in the guaranteed acceptance region, any y proposed in W (x) will be accepted with
probability 1. Also notice that W (x) does not depend on the map coefficients γ.

For a small ball of radius R around x, the following condition holds

inf
y∈B(x,R)

inf
γ

qθ,γ(x|y)

qθ,γ(y|x)
≥ inf

y∈B(x,R)

kLgL(x− y)

kUgU(y − x)
(A.41)

≥ c0, (A.42)

for some c0 > 0. The expression in (A.41) is a result of gL and gU both having zero
mean and positive variance. Now, the fact that π(x) is super exponentially light
means that for u ∈ (0, R), there is a radius r4 such that when ‖x‖ > r4, we have

π

(
x− u x

‖x‖

)
≥ π(x)

c0

This means that the acceptance probability for x1 = x − u x
‖x‖ is 1 for any map

coefficients γ. Mathematically, we have

π(x1)

π(x)

qθ,γ(x|x1)

qθ,γ(x1|x)
≥ π(x1)

π(x)
c0 ≥ 1.

By our definition of the acceptance region Aγ(x), this means that x1 ∈ Aγ(x). The
single point x1 has zero measure, so its existence does not mean that the rejection
rate in (A.40) will be less that 1. We need to further show that there is a measurable
set W (x) around x1. To show this, we will first give a definition of W (x) and will
then verify that W (x) ⊂ Aγ(x). For a scalar ε arbitrarily small, let W (x) be defined
as

W (x) =

{
x1 − aζ, 0 < a < R− u, ζ ∈ SD−1,

∥∥∥∥ζ − x1

‖x1‖

∥∥∥∥ < ε

2

}
,

where SD−1 is the unit sphere in RD dimensions. Without the
∥∥∥ζ − x1

‖x1‖

∥∥∥ < ε
2

restric-
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tion, W (x) would simply be B(x1, R− u) \ {x1}. However, this additional restriction
forces the vector ζ to point in the same direction as x, which means W (x) is a cone
of points closer to the origin than x1. Now, from the final paragraph of the proof
of Lemma 6.2 in [9], we know the curvature condition from (4.18) ensures that the
target density is larger in W (x) than x1. Since x1 was accepted, this means that
everything in W (x) will also be accepted and that W (x) ⊆ Aγ(x). This also implies
that

lim
‖x‖→∞

∫
Rγ(x)

qθ,γ(y|x)dy = lim
‖x‖→∞

(
1−

∫
Aγ(x)

qθ,γ(y|x)dy

)

≤ lim
‖x‖→∞

(
1−

∫
W(x)

qθ,γ(y|x)dy

)
≤ 1. (A.43)

Notice that this expression guarantees (A.26), which subsequently verifies (A.17).
Furthermore (A.16) is verified by (A.23) so we have satisfied the drift con-
dition! Combining this with our proof that the minorization condition holds, we
have verified that when using a Gaussian reference proposal with bounded mean, the
SSAGE condition is satisfied for our adaptive map-accelerated MCMC scheme. This
subsequently implies the containment condition and ultimately the ergodicity of our
adaptive approach!
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