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ABSTRACT

Application of modern electronic control technology to aircraft
turbine engines requires new methods of designing highly reliable con-

trol systems for stressful environments. A way to reduce the number of

redundant components needed is to implement within the microcomputer

controllers advanced analytical techniques for detecting, identifying,
and accommodating failures. One promising analytical technique is the

failure detection filter. The results reported in this dissertation
demonstrate that detection filter theory, a linear theory introduced

about 10 years ago, can be easily adapted for application to advanced-

technology turbofan engines. A suitably simple approach to modeling the

nonlinear dynamics of such engines was devised for use in the design of

a detection filter for the F100 military engine. This filter was tested

on a nonlinear dynamic simulation of that engine, and it proved able to
produce readily detectable and identifiable failure signatures for

fifteen different sensors, actuators, and internal engine components.
The malfunctions that were simulated were biases and scale factor

changes; the magnitudes of these malfunctions ranged from 2 to 20

percent of the normal operating ranges of the components that were

failed. The testing encompassed various power levels from idle to

intermediate, both steady and transient, at sea-level-static inlet con-

ditions. The results demonstrate that the detection filter is a viable

technique that can be useful in the development of a fault-tolerant

engine controller.
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Chapter I

INTRODUCTION

Aircraft turbofan engines now under development will be built with elec-

tronic controllers that will increase engine performance and efficiency,

but the use of sophisticated control laws will make these engines vul-

nerable to failures of the many sensors, actuators, and electronic

components in the control system. Because of this vulnerability, the

controllers are being designed as best as possible to be fault

tolerant--that is, to be able to sustain one or several component mal-

functions without loss of capacity to perform essential functions. A

complex system such as a turbine engine is made fault tolerant by

installing duplicates of critical components, by providing back-up modes

of operation for use when nonredundant components fail, and by incorpo-

rating in the system various means for automatically detecting and iden-

tifying malfunctions so that appropriate compensation can be selected.

This thesis concerns adaptation of the detection filter, an analytical

method of detecting and identifying failures, for use with microcomputer

controllers on advanced-technology turbofan engines.

1.1 EVOLUTION OF FAULT-TOLERANT ELECTRONIC ENGINE CONTROLS

Analytical work on new control laws for use with microcomputer engine

controllers began in earnest in the early 1970's (e.g. [51, [6], [341,

and [51]). In 1975, at the culmination of the Integrated Propulsion

Control System (IPCS) Program [101 (27], an electronic inlet/engine con-

troller was flight-tested in an F-111E aircraft [111. At about the same

time, several investigators tested early approaches to fault-tolerant

-13-
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control [181 [23] [49]. They used simple steady-state engine models for

diagnosis of sensor failures and for estimation of replacement values
0

for failed measurements; because of the simplicity of the models, only

failures with large magnitude could be properly identified.

In the mid-1970's, the Navy initiated the Full-Authority Digital

Electronic Control (FADEC) Program. This involved separate projects at

General Electric [2] and at Pratt and Whitney Aircraft [3] to develop a

flight-worthy, engine-mounted controller capable of regulating the num-

erous actuators on an envisioned variable cycle engine. (Such an engine

might have as many as fifteen control inputs.) The Pratt and Whitney

FADEC incorporated numerical maps of the steady-state operating points

of the engine for identification of sensor failures and for subsequent

measurement synthesis. This controller was successfully operated on a

prototype F401 engine in an altitude chamber at NASA's Lewis Research

Center in 1979. The General Electric FADEC is the first controller to

include a dynamic model of the engine for use in failure detection and

identification [421. Both FADEC controllers also have some provision

for accommodation of actuator faults.

Concurrent with the FADEC program, an effort was underway to apply

multivariable (state-space) control theory to the design of a new con-

trol law for the Pratt and Whitney F100 turbofan. Part of this effort

was the work by Hackney, Miller, and Small [21] and by Adams, DeHoff,

and Hall [1] [14] on developing simplified dynamic engine models. The

resulting control law--programmed on a laboratory minicomputer--was

tested on a hybrid simulation of the F100 engine [45] and then was used

by Lehtinen, DeHoff, and Hackney [29] to run an F100 in an altitude

chamber. Rock and DeHoff [371 are continuing the analytical work on

engine models and on control system synthesis.

A symposium on propulsion controls was held at the Lewis Research

Center in May, 1979 [331. The symposium highlighted the requirements

for reliable engine systems, particularly for fault-tolerant capabili-

ties throughout the control system--in the microcomputers, the actua-

-14-
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tors, and the sensors. The need for accurate, yet simple, dynamic

engine models was emphasized.

Recently, Behbehani [9] completed an investigation of identifying

sensor failures by an analytical procedure known as the generalized

likelihood ratio (GLR) technique. He tested the method on sensor fail-

ures induced in a simulation of the NASA Quiet, Clean, Short-Haul, Effi-

cient Engine (QCSHEE).

Two government-financed programs on control system reliablity are

currently in progress. The Sensor Failure Detection System Program,

contracted by NASA to Pratt and Whitney and to Systems Control, Inc.,

involves investigation of several.advanced detection and identification

techniques, including GLR, banks of Kalman filters, and failure-sensi-

tive filters. The best ones will be tested on a simulation of the F100

[28]. The Full-Authority, Fault-Tolerant Electronic Engine Control

(FAFTEEC) Program, contracted to Pratt and Whitney's Government Products

Division and to Draper Laboratory, Inc., by the Air Force Aero-Propul-

sion Lab, is aimed more generally at the design of reliable microproces-

sor controllers. The reliablity required for each component and the

number of redundant components needed are being investigated [31]. The

research presented in this thesis is part of the FAFTEEC program and

complements the work in the Sensor Failure Detection Program.

1.2 THE DETECTION FILTER

The simplest method of failure detection is comparison of the perfor-

mance of two similar components; a discrepancy signals a failure. Iden-

tification of which of the two has failed is made by comparing each to a

third component. This voting procedure is simple, but the redundant

components may be costly, heavy, or bulky. The advent of microcomputers

makes feasible other methods of failure detection and identification

[52], many that substitute computer calculation of the expected behavior

of the components in a system for one or more levels of redundancy.

1Detection filters are not being investigated in that program.
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Among them is the failure detection filter, a technique for simultane-

ously monitoring many diverse components, including sensors, actuators,

and dynamic elements of the system.

The detection filter incorporates a linear, dynamic model of the

system and compares the system's performance to the model's predictions.

Figure 1.1 is a block diagram of this arrangement. The model receives

the same control inputs as the system; thus the outputs of the model

normally match those of the system. But when a component fails, whether

it be a sensor, an actuator, or a dynamic component, the match breaks

down, signaling a failure.

Reference models are commonly used in failure detection; what

distinguishes the detection filter from other techniques is its manner

of identifying which component has failed. The filter residuals, which

are the differences between the model's predictions and the system's

measurements, are fed back to the model's input in a manner that forces

the model to respond to particular mismatches in such a way that just

one residual or a specific combination of residuals appears. The

particular residual or combination of residuals corresponds to the

component that has failed. In other words, the residuals are filtered

back through the model in a such way that when one of the components

monitored by the detection filter fails, the vector that the residuals

form in the residual space--the vector space comprising all possible

residuals--is fixed in direction. This is illustrated in Figure 1.2.

The direction of the residual vector corresponds to the failed

component, although sometimes not uniquely. In most circumstances the

direction is independent of the manner of failure; thus, when designing

a detection filter, one is not required to hypothesize numerous failure

modes. This and the unidirectional characteristic of the residual

vector constitute important advantages of the detection filter

technique.

The structure of the detection filter is similar to that of the

Kalman filter and other linear filters and observers. The feedback gain

-16-
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matrices are markedly different, however. For example, the Kalman

filter uses the modeled relationships among the system components to

relate noisy measurements to one another in order to optimize its

estimate of the state of the system; the detection filter uses the

modeled relationships to decouple the predictions of the measurements

from each other so that when a failure causes a residual, that residual

does not propagate through the filter. The Kalman filter will also

produce a residual when a component malfunctions, but this residual

usually will not be fixed in direction. Furthermore, as optimal state

estimators, Kalman filters suppress all residuals, regardless of their

cause. Detection filters, on the other hand, are not designed to atten-

uate residuals much, and they highlight residuals produced by failures

by holding these residuals fixed in direction.

A detection filter can also be used as a state estimator, but the

requirements for failure detection prevent it from being made an optimal

one. On the whole, though, this combination of functions yields a useful

property: following a failure, those estimates not involved in the uni-

directional failure signature remain accurate. Furthermore, if appro-

priate compensation is made following failure identification, the detection

filter resumes normal operation. For example, disconnecting a failed

sensor will eliminate the failure signature; then the filter's estimate

of what the lost measurement ought to be can be substituted for that

measurement.

The concept of the detection filter was devised by Beard [4]; his

work presents the theory covering linear, deterministic, time-invariant,

continuous systems. Jones [23] reformulated the theory in vector space

notation (Beard used matrix algebra) and extended the development to both

sampled-data and stochastic systems. He showed that the theory developed

by Beard is not, except in special circumstances, strictly valid for sampled-

data systems, but that when the sampling rate is sufficiently rapid, satis-

factory detection filters can be constructed using that theory. Vander Velde

[471 and Gerard [19] have applied the deterministic theory to designing a

detection filter for a computer-controlled guideway vehicle. They presented
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a design procedure condensed from Beard's and Jones's theses and, as well,

a computer program that implements it.

0

1.3 OUTLINE OF THIS STUDY

Chapter 2 presents the salient aspects of detection filter theory and a

comprehensive method for designing the filters. Some of the material is

similar to the discussion by Vander Velde and Gerard; much of it has

been condensed directly from Jones's work and reorganized for applica-

tion. Several procedural aids derived from experience with the F100

problem have been added, and a few comments on what parts of the theory

appear to be most useful in practice have been included. In Chapter 3

the design steps are applied to an example that is an analogy to a gas

turbine engine. A more readily implemented approach to detection filter

design is presented in Chapter 4. This approach results from the find-

ing that designing a filter for the F100 does not require the generality

of the full design procedure. It also appears that the F100 problem may

be typical of many applications, so the less complex procedure described

here may be adaptable to a variety of systems.

For whatever applications it applies to, including the F100, the

simpler procedure is complete and does not require reference to any part

of the detailed procedure and theory in Section 2.4 or to the demonstra-

tion of it in Chapter 3.

In addition to the simpler design method, Chapter 4 also describes

the technique needed to implement detection filters in digital compu-

ters, and further, a procedure for analyzing the filter residuals and

identifying failures. Chapters 5 and 6 describe the design of a filter {

for the F100 and the testing of it on an F100 nonlinear dynamic simula-

tion provided by Pratt and Whitney Aircraft. First a low-order linear

model is obtained for sea-level-static conditions and maximum power

without afterburning. A filter is designed that monitors the six engine

sensors, the inlet sensors, the actuator position sensors, the fuel sys-

tem, and the high-pressure rotor. It is then tested on simulated fail-

ures at the full-power point and during transients from that point. In
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Chapter 6 the linear model is refined, models for other power points are

derived, and they are linked together to extend the range of validity of

the filter. Results of tests on failures induced during large tran-

sients are presented. Chapter 7 summarizes this investigation and draws

conclusions from the results obtained.
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Chapter II

DETECTION FILTER THEORY

Detection filter theory is cast in the mathematics of matrices and vec-

tor spaces--the tools of state-variable control theory. This chapter

presents the theoretical basis of detection filters and the procedure

used to design them. The development begins with the formulation of

reference models; then there follows a brief example that illustrates

the concept on which the operation of detection filters is based. The

development continues with descriptions of the various failure models

encompassed by the theory, and concludes with a comprehensive method for

designing the filters.

2.1 The Structure of Detection Filters

Any system to be monitored by a detection filter must be representable

by a linear, time-invariant model with observable dynamics. For now, we

shall consider only systems with continuous measurements and inputs.

We represent the system by these linear equations:

k(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (2-1)

The vector x comprises the state variables; u is the vector of control

inputs; and y is the vector of measurements. The dimension of x is n,

of u is 1, and of y is m. The triplet of invariant matrices {A,B,C}

characterizes the system. This representation is incorporated as a
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reference model within the detection filter in the manner shown in Fig-

ure 2.1. The state equations of the detection filter are

0
x t) = Ax(t) + Bu(t) + D[Y(t)-_(t)]

A(t) = CA(t) (2-2)

A A
with x as the state of the reference model, and y the predicted measure-

ment vector.

The residual vector is the vector composed of the differences

between the measurements and the model's predictions of the

measurements:

r(t) = Y(t) - A(t) (2-3)

The elements of r are the observed quantities used for failure detection

and identification. We define another vector, q, to represent the

model's prediction of the state:

(t) = x(t) - A(t) (2-4)

Using Equations (2-1) through (2-4), we can determine the behavior of

the residual r. Differentiating (2-4) yields

j(t) = x(t) - X(t) (2-5)

and substituting (2-1) and (2-2) into (2-5) gives us

= [Ax + Bul - [Ax + Bu + D(y-j)]

= A(x-A) - D(1- 
0

A)= A(x-x) - DC(x-x)

[A-DC](x)

Finally, [A-DC(t)

(2-6)
r(t) = Cq(t)
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Figure 2.1. Diagram of a detection filter.
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0

Provided that A, B, and C accurately represent the system when it is

functioning normally, (2-6) is always valid in the absence of failures.
0

Proper choice of the feedback matrix D is the object of detection

filter design. One requirement is that [A-DC] be such that any

deviation q introduced by incorrect initial conditions or by spurious

noise will die out, allowing x(t) to track x(t). Another is that when

any one of a number of selected components of the system fails, a

residual appears that has a specific, time-invariant direction in the

residual space. An optional requirement is that the residuals caused by

sensor failure be confined to unique planes in the residual space. The

prominent features of'detection filter theory are the proofs that these

requirements are compatible and that the directions of the residuals

from the various components are independent of the manners in which

failures occur.

2.2 EXAMPLE: AN AIR-DRIVEN TURBINE

Although the way detection filters operate is mostly straightforward,

their mathematical formulation is abstract. For this reason, the basic

idea is presented here first through a simple example. Consider the

air-driven turbine shown in Figure 2.2. This simple system consists of

a constant-pressure air supply, a pressure regulator, and a small,

high-speed turbine. The pressure regulator and the turbine are modeled

as linear, first-order mechanisms, as indicated in the block diagram in

Figure 2.3. With K and Kt representing the gains of the regulator

and the turbine, and T and Tt their time constants, the transfer

function of this second-order system is

N~)K KN(s) - p K t (2-7)
u(s) T ps + -it s + T

p t

1This statement does not apply generally to simultaneous failures,
though in many circumstances detection filters provide adequate

information for identifying the separate components involved should two

or more components fail at once.
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Figure 2.2. Turbine driven by compressed air.
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where N denotes the speed of the turbine, and u the control input to the

pressure regulator. The total pressure, P, downstream of the regulator

is equal to K times u when the system is in equilibrium.

From Figure 2.2, we see that the dynamics of P and N are described

by

P = 1/T (K pu - P) (2-8)

N = 1/Tt (Kt-P - N) (2-9)

Defining [P,N] as the state vector, we can express (2-8) and (2-9) in a

single matrix equation:

-1/T 0 P K /T

=+ U (2-10)

K Kt /1t 1 N 0

The measurement equation is

[21 [ 0(2-11)NoO 1 N

The subscript 0 indicates an output of a sensor; here the two sensor

outputs are the measurements of P and N.

With (2-10) we now construct a linear filter of the form (2-2):

P -I/T 0 P Kp/ d1  d1 2  PO-PO

+ u + (2-12)
AA A

N j LK t /t -1/ - -N 0 - d2l d22 LNO-N0j

As yet, the d's are unspecified. The residual vector produced by the

filter is
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[ Alr p P O ~ P O( 
2 13PA: = AI(2-13)

r No - NO]

This linear filter will be a detection filter if d1 j, d 12 , d21

are chosen such that:

1. The filter is always stable;

2. In the event of a malfunction of the pressure regulator, a
A A

discrepancy appears between P0 and PO but not between No and

No, regardless of how the speed of the turbine may vary (we

assume for the time being that the pressure transducer and the

tachometer are reliable);

3. In the event of turbine malfunction--for example, a quick

decrease in efficiency caused by damage to some of the turbine
A

blades--a discrepancy between N0 and N0 appears, but not
A

between P0 and P0.

We shall see that condition (1) sets a lower limit on each of di1 and

d22, and that conditions (2) and (3) prescribe fixed values for d1 2 and

d21 .

For this example we can ascertain D by inspection. Let Tr and T2

be two constants we can specify at will. Suppose we choose D in Equa-

tion (2-12) as follows:

d1  d 12  1/Tp + l/Ti 0

D = (2-14)

d2l d22 t t /t + 1/T2

A block diagram of this filter is shown in Figure 2.4. After

simplification, this diagram reduces to the one in Figure 2.5. From

Figure 2.5 it is clear that as long as PO is reliable and the turbine is
A

functioning normally, No will not deviate from No, regardless of what
A

happens in the pressure regulator. Likewise, since neither N0 nor No
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A A
has any effect on P, PO will not deviate from PO if the turbine

malfunctions.

Let us now see what effect Ti and T 2 have on the stability of the

filter. Substituting D from (2-14) into (2-12), we find that the

behavior of the filter is described by

A A A
P = -1/T P + K /T *u + (-l/T + 1/Ti)(P0-P0)

A A A A A
N = K t P l/t*N + K t /'(Pt0 P0 ) + (-l/Tt + 1/t2)(NO-NO)

A A A A
Since PO = P and No = N, these equations reduce to

A A
P = -1/TI-P + K /T *u + (-l/T + 1/T1 )PO

A (2-15)
N = Kt tPO - 1/T2*N + (-l/t + 1/t 2 )N 0

The residuals rp and rN behave according to

S1/T(P A)
PO) (P ) = ~ = -l/Tl-r

. AA.) (2-16)

rN (NON 0 ) = (N - N) = -l/T2 (N - = -l/T2-rN

Thus T1 and T2 are the time constants associated with the time responses

of rp and rN. They must, therefore, be positive for the filter to be

stable. Their sizes dictate the decay rates of transient residuals and

regulate the magnitudes of steady-state residuals caused by malfunctions

or any other mismatches between the reference model and the system.

For this example, Equations (2-16) are the equivalent of (2-6).

Indeed, -1/T 1 and -1/T 2 are the eigenvalues of [A-DC]. Furthermore, any

state vector along either the P-axis or the N-axis is an eigenvector of

[A-DC]. In other words, the residual rp created by a regulator failure

will not propagate through the model and make rN nonzero, and

conversely, the rN caused by a turbine malfunction will not affect rp.
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Let us now consider what happens if the pressure transducer fails.
AFrom Figure 2.4, it is apparent that PO will immediately deviate from PO

and that the erroneous PO signal will cause N0 to deviate from No, thus

creating a residual vector that could wander throughout the plane

spanned by the PO and N0 axes. In this example, this plane is the

entire residual space, but even if the dimension of this example were

greater, the residual caused by a transducer failure could be made to

stay within a single plane. The simplest way to do this would be to

assign the same value to Ti,T 2 ,*-- T n

This example illustrates the design of a detection filter for a

single-input, single-output system. A filter for a complex system like

a turbofan engine cannot be designed so easily; to cope with multiple

inputs and outputs and with cross-coupled state variables, we must use

the analytical methods prescribed by detection filter theory.

2.3 FAILURE MODELS

In the event of a failure, {A,B,C} and Equation (2-1) no longer model

the system correctly, and y(t) will deviate from y(t). By assuming suit-

able models for failures of the various system components, we can deter-

mine the ensuing behaviour of the residual r(t). Three general classes

of failures will be considered: actuator failures, dynamics changes,

and sensor failures.

2.3.1 Actuator Failures

Actuator failures can usually be modeled by changes, sometimes time-

varying, in the B matrix. The set of system matrices would then be

{A, B+AB(t), C1. Since each column of B gives the response of the system

to the corresponding element of the input vector u(t), AB(t) for a fail-

ure of an input to the system can frequently be written as2

2Actuator failures involving changes in actuator dynamics can often be
modeled more easily by the dynamics change model described in the next
subsection.

-
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AB(t) = [ 0 : --- : 0 : b. : 0 :---: 0 1 k(t) (2-17)

where k(t) is a time-varying scalar and bi is the column of B cor-

responding to the input ui that is altered by the failure.

With the addition of the term from (2-17), the state equation (2-1)

becomes

= Ax(t) + Bu(t) + b. k(t)-u.(t) (2-18)

The failure does not alter the reference model (2-2), so the difference

between the state and the prediction of the state behaves according to

(t) = [A-DCIR(t) + b.k(t)-u.(t) (2-19)

The vector bi will be called the event vector associated with the i'th

actuator. It will not usually be necessary to know k(t)-ui(t) to iden-

tify the failed component, so let us designate this term by n(t), a name

which will be used repeatedly for the scalar time function that multi-

plies the event vector. We have, then,

j(t) = [A-DC]a(t) + b n(t)

(2-20)

r(t) = Cq(t)

As an example of an actuator failure, suppose the i'th actuator

freezes at its zero position, producing no output at all; then n(t) is

-ui(t), and (2-18) becomes

c(t) = Ax(t) + Bu(t) - b.u. (t)
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The D matrix would be chosen to constrain the response of q(t) in (2-20)

so that r(t) is fixed in direction.

2.3.2 Dynamics Changes

Many changes in the system's dynamics can also be modeled by a single

event vector times some scalar function of time. First is a simple

state-independent alteration of the derivatives of the state variables,

modeled by

k(t) = Ax(t) + Bu(t) + fn(t) (2-21)

with f an invariant event vector that tells which elements of k(t) are

altered, and by what relative amounts.

Second, a state-independent change in only one of the state deriva-

tives can be modeled by changes, possibly time-varying, in the corres-

ponding row of A. The event vector is the appropriate unit vector e,

and

n

n(t) = Aa. .(t)x.(t) (2-22)
j=1 I

where the Aaij(t)'s are the variations in the elements of the i'th row

of A. The failure model is

(t)= Ax(t) + Bu(t) + e.n(t) (2-23)

A simple example of such a malfunction is a change in the time constant

of a hydraulic actuator that has essentially first-order behavior. If

xi is the state variable associated with the actuator, the only nonzero

element of the i'th row of A is aii, and the failure model is

x(t) = Ax(t) + Bu(t) + e.Aa..(t)x.(t) (2-24)
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Third, when several, or all, of the state derivatives that are dri-

ven by any one state variable, say the j'th, are altered in a fixed

ratio, the malfunction can be modeled by a nonvarying change in the j'th

column of A. This change can be described by the event vector

f = 1 e~Aa.. (2-25)

The failure model becomes

(t)= Ax(t) + Bu(t) + fx-(t) (2-26)

Malfunctions describable in this manner could occur in systems in which

the output of one component drives several other components--identical

mechanical elements functioning in parallel, for example.

All the failure models presented thus far have the form

x() = Ax(t) + Bu(t) + fn(t)
(2-27)

Y(t) = Cx(t)

We shall call this the input failure model. It is so named because we

shall use it most frequently for malfunctions of the input devices of a

system and because the anomalies in dynamic behavior that fit the model

are those that can be written as extraneous linear inputs to the system.

The residuals generated by failures of the form (2-27) behave according

to

j(t) = [A-DC]q(t) + fn(t)
(2-28)

r(t) = Ca(t)

Detection filter theory shows that for any f it is possible to find

a D such that r(t) assumes a fixed direction in response to fn(t), what-

ever n(t) is. Furthermore, for a set of event vectors ff,f2,***f 1)

often a D can be found such that each f is projected to a unique, fixed
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residual direction. The conditions that the vectors of a set must

satisfy to make this possible are important results in detection filter

theory.

2.3.3 Sensor Failures

Sensor failures are modeled in one of two ways, depending on the way the

sensors themselves are represented in the reference model. Accordingly,

sensors are separated into two groups. The first contains sensors whose

outputs are included in the state vector x, explicitly or implicitly.

There may not be any such sensors. The second group contains all other

sensors.

The outputs of sensors in the first group have some effect on the

derivative of the state vector. They may, but need not, be state vari-

ables themselves. Two relatively common circumstances in which a sensor 0

would be modeled this way are 1) when the dynamics of the sensor are

significant and must be included in the reference model, and 2) when the

designer of a detection filter wishes to include failures of the feed-

back control system within the coverage of the detection filter. In the

latter case, the feedback law--including any dynamics it may have--must

be represented in the A matrix, so the measurements involved must either

be state variables or be implicit in certain elements of A.

The failures of sensors in the first group we model as changes in

A, just as changes in the dynamics of the systems are modeled. There-

fore, these sensors fit the input failure model, and an event vector

exists for each of them.

Failures of sensors in the second group must be modeled differently

and, as a consequence, must be treated differently in the detection fil-

ter. Since these sensors are not modeled in the state equation, only in

the measurement equation, their failures must be represented by changes

in the latter. The changes are simple, though, because all possible

failures of any of these sensors can be modeled by one term composed of

the appropriate unit vector times a time-varying scalar. For instance,

failures of the j'th sensor are modeled by
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x(t) = Ax(t) + Bu(t)
(2-29)

y(t) = Cx(t) + e.n(t)

Here, ej is the j'th unit vector in the residual space, and n(t) is

again an arbitrary time function. Since the failure term appears in the

measurement equation, we call (2-29) the measurement failure model.

In contrast to the other failures that we have described, those

modeled by the measurement failure model produce a residual vector that

cannot be held fixed in direction. It can, however, always be con-

strained to a plane that is uniquely associated with the failed sensor.

The measurement vector L(t) is fed into the reference model through the

term D[y(t)-y(t)], so a failure of the j'th sensor, for example, alters

the model by the amount

d.n(t) = De.n(t) (2-30)
-] -J

where d is the j'th column of D. Consequently, the equations for the

residuals become

q(t) = [A-DC]q(t) - d.n(t)

(2-31)
r(t) = Cj(t) + e.n(t)

It is possible to choose D such that the contribution to r(t) induced by

d-n(t) is unidirectional, but the direction usually will not be eg.

Therefore, most of the time a detection filter can only be made to con-

strain the residual generated by such a sensor failure to the plane

spanned by ej and Cd-. Although this behavior is not as easy to identify

as a unidirectional signature, it does make the failure signature of the

sensor distinctly different from that of the component that the sensor

is monitoring. Sensor failures can therefore be distinguished from

failures of other parts of the system. A filter can be designed, for
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example, such that failures of position sensors on actuators have planar

signatures and failures of the actuators themselves have unidirectional

signatures.

Note that, in apparent contradiction to the statements in the above

paragraph, the failure described by (2-31) would always produce a resid-

ual vector constrained to the direction ej if d- were set equal to zero.-=j

This means the measurement yj(t) would not be fed into the filter at

all. But in the design of detection filters we are concerned not only

with constraining residual vectors to identifiable regions of the resid-

ual space, either lines or planes, but also with specifying the eigen-

values of [A-DC]. Making dj equal to zero relinquishes control of what

would otherwise be an eigenvalue that could be freely set at the most

useful value. Nonetheless, in some circumstances this may be a desir-

able option.

The next section presents the fundamentals of detection filter

theory and the details of the remainder of the design procedure. Not

all of this theory, however, is essential to the design of a detection

filter for the F100 engine. The necessary background for that task is

condensed in Chapter 4. The presentation there does not presuppose an

understanding of Section 2.4 or of Chapter 3.

2.4 DETECTION FILTER DESIGN

The design procedure begins with specification of a model of the system.

To provide a proper basis for much of the design process, this model

must be in the form of Equation (2-1). When the system is nonlinear and

a linear model of it is not sufficiently accurate throughout the needed

range of operation of the filter, one can treat the system as piecewise

linear and vary the model accordingly--this is the approach taken in

Chapter 6 with the F100 engine. The specification of a linear model

involves choosing an appropriate state vector x and determining an accu-

rate set of system matrices {A,B,C}. Choices should be made with the

intention of creating the simplest model that will accurately estimate
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all of the state variables that would be affected by the anticipated

failures. Also, the model must be observable. 3

2.4.1 Sets of Event Vectors

Once the model is established, one must find the event vector for each

component that is to be monitored. This is done as described above in

Section 2.3, though sometimes one more step is required. If the event

vector f for any component is such that

Cf = 0

then that vector must be multiplied by the matrix A repeatedly until the

result is nonzero--until the smallest p is found for which

CAf * 0

Then A'f becomes the f for the component in question, superseding the

original.

Occasionally, several components will have the same event vector.

Failures of these components will not be distinguishable on the basis of

residual direction alone, for when D is chosen so the corresponding f

yields a unidirectional residual, a failure of any of these components

would generate a residual in the same direction. As an aid in describ-

ing this situation mathematically, we define the event space of an event

3A system is observable if the behavior of every part of the system
affects the measured outputs of the system, either directly or indi-
rectly. Formally, {A,B,C} is observable if and only if the rank of the
matrix

C
CA

CAn-l

equals n, the dimension of x. Jones discussed the consequences of
using an unobservable model.
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vector f as the vector space comprising every vector whose residual

would lie solely along Cf when the detection filter makes the residual

from f lie solely along Cf. We denote an event space by /. Its dimen-

sion is termed the event order of f and is written as V. Every event

vector has an event space, even event vectors uniquely associated with

single components. Such vectors have one-dimensional event spaces con-

taining only the event vector and scalar multiples thereof. We shall

determine a set of basis vectors for each event space and then use these

sets to calculate the gain matrix D.

As with any type of filter or state observer, designing suitable

dynamics into a detection filter is crucial to successful implementa-

tion. The dynamics of a detection filter are characterized by the poles

of the filter, which are the eigenvalues of [A-DC]. Thus, to be able to

give a filter the dynamics we desire, we would like sufficient freedom

in the specification of D that we can alter at will every eigenvalue of

[A-DC]. The number of elements of D left unspecified by the require-

ments for failure identification depends on the number of event vectors

and on the relationships among them. 40

The directions of the event vectors determine, first, whether a

detection filter is possible for those vectors together, and, second,

whether the dynamics of the filter will be freely adjustable. There may

be more event vectors than can be included in the design of a single

filter. The first restriction on the vectors is that the vectors

CfJCf2,Cf3,--- must be linearly independent. When several vectors

fi,---fr meet this condition, we say they are output separable. This

guarantees that 1) the gain matrix D can be chosen so that each fi will

yield a residual solely along its projection Cfj in the residual space,

and 2) there will be Vi freely alterable eigenvalues of [A-DC] associ-

ated with f. and its event space.

Any vectors that are set aside during the assembly of a set of out-

put separable vectors can sometimes be reincluded in the design later in

the procedure. With favorable conditions, this can be done merely by

assigning the same value to two or more eigenvalues. When one of these
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vectors is given a unidirectional residual, we say it is output station-

ary with fi,---f; when several vectors are given unidirectional resid-

uals, in unique directions, we call them mutually output stationary with

A minor constraint on eigenvalue assignment is that whenever a com-

plex eigenvalue is associated with a particular event space, its complex

conjugate must be also. With this constraint understood, we shall say

the eigenvalues of [A-DC] are assignable when the set of event vectors

selected allows free choice of each of these eigenvalues. (We shall not

consider any equality constraints introduced by the option of output

stationarity as making the eigenvalues involved "unassignable.")

When might some eigenvalues not be assignable? If the number s of

output separable vectors equals the rank of C--the number of independent

sensors--then the number of unassignable eigenvalues equals the differ-

ence between the dimension of the model and the sum of the event orders.

When there is no difference, the eigenvalues are all assignable. If s

is less than the rank of C, then determining if any eigenvalues are

unassignable is not always so straightforward. For any particular

choice for the model, the set of event vectors chosen determines whether

all the eigenvalues will be assignable and, if not, what the unassign-

able values are. We shall describe any set of output separable vectors

that leaves all the eigenvalues freely assignable as nonrestrictive. It

is desirable to choose a set that is nonrestrictive, but unassignable

eigenvalues, as long as they are negative, do not necessarily impair the

performance of the filter.

With one particular class of systems, all possible sets of output

separable vectors are nonrestrictive. This occurs whenever the number

of independent measurements is the maximum possible, equal to the number

of state variables needed to model the system. We shall call a system

like this fully measured. As the example of the air-driven turbine in

Section 2.2 illustrates, the design of detection filters for fully-mea-

sured systems is straightforward.
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2.4.2 Outline of the Design Procedure

This outline lists the sequence of steps in the design method; the sub-

sections that follow describe the calculations required.

1. Analyze the system and determine the matrices {A,B,C} for a

reference model of the form

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

2. Determine an event vector f for each component to be moni-

tored; when necessary, multiply the vector by A successively

until an alternate vector is obtained for which Cf is nonzero.

3. Test the collection of event vectors to see if they are output

separable. If not, either delete one or more vectors from the

set so the remaining ones are output separable, or arrange the

event vectors appropriately into two or more sets. In the

latter case, a separate detection filter may be required for

each set, pending the results of Step (7). 0

Choose one set of output separable vectors, {fj,---fs}, and

continue.

4. Determine the event order V of each f, and compute basis vec-

tors for each event space. When an event space is one-dimen-

sional--which may frequently be the case--the only basis vec-

tor is the event vector itself.

5. Determine whether {f,---f } is nonrestrictive. When

s = rank[C], there will be n- vi unassignable eigenvalues. If

there are none, then {f, } is nonrestrictive; otherwise,

the set is restrictive, and one of the following options must

be chosen:

a) Accept all the unassignable eigenvalues.

b) Try a different set of output separable vectors.
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c) Install more sensors in the system.

d) Delete from the set sufficiently many vectors to eliminate

any unacceptable eigenvalues.

e) Expand the reference model with additional state variables

so {fi, -- f } becomes nonrestrictive. This is always pos-

sible (the proof is given by Jones).

f) Separate {fl,**f} into nonrestrictive subsets; design a

detection filter for each subset.

Let {fi,***ft}, denote the set selected in this step; whether

or not it is nonrestrictive.

6. For the set {fi,-**t}, derive the equations that D must

satisfy. These equations are based on the sets of basis vec-

tors assembled in Step (4) and contain as parameters the

assignable eigenvalues of [A-DC].

7. Look for event vectors that can be made output stationary with

, These will be vectors that are not output separable

with fi, **ft and that can be made to have fixed residual

directions which are linear combinations of the directions

Cf, ---Cfi.

When the system is fully measured (i.e., when rank[C] = n),

all the eigenvalues of [A-DC] can be made equal, which makes

all vectors output stationary and makes D independent of

f i 00 if

8. Assign the free eigenvalues of [A-DC]. Frequently, the best

approach will be to assign the same value to all them, for

this is the simplest approach and this maximizes the number of

output stationary vectors. The value chosen should usually be

somewhat more negative than the important eigenvalues of A.

This completes the specification of the feedback matrix D.
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2.4.3 Output Separable Event Vectors

Several event vectors f1 ,-..f* are output separable if and only if the

vectors Cfj,---Cfi are linearly independent. The requirement for linear

independence of the CfI's restricts the number of event vectors in a set

of output separable vectors to the number of independent measurements

available--in other words, s must be less than or equal to the rank of

C. When a detection filter is designed to give each f in {f1 ,---f.} a

unidirectional residual, the directions of the residuals will be the

directions of Cfl,o--C-s, respectively.

Although linear independence of Cfl,---Cf guarantees the existence

of a detection filter for fi,---fs, a. stronger condition is needed if

the filter is to be workable in practice. Suppose that the independence

condition is met, but that Cf, and Cf-, say, lie nearly in the same

direction--that is, they are barely independent. Then in order for the

detection filter to distinguish between them, it must weight heavily

those residuals that would most show the slight differences between Cf.

and Cfj. In other words, the matrix D, which multiplies the residual

vector, must have some large elements. If the reference model is accu-

rate, then this presents no problem; but most often the reference model

is approximate, and the modeling inaccuracies are accentuated by the

large gains in D. Obviously, the less accurate the model is, the more

difficult is the task of distinguishing between failures whose signa-

tures point in similar directions. A filter designed to do so will be

overly sensitive to modeling errors.

Thus the degree of output separability is important. One should

design the reference model and choose the event vectors so the failure

directions are as well-separated as possible. There is a simple measure

of their separation that is useful in this task. Suppose there are m

independent measurements, and suppose m output separable event vectors

are chosen, the maximum number possible. Form Cf ,...C1, and normalize

them so they are each of length one. The absolute value of the determi-

nant of the m x m matrix with the normalized Cf's as its columns will be
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between zero and one [36]. When the Cf's are orthogonal, the value will

be one, and when one or more is nearly a linear combination of the others,

the value will be nearly zero. It appears that for the detection

filter to perform well, this determinant should be two-tenths or more in

absolute value.

2.4.4 Event Spaces

As previously defined, the event space f is composed of the vectors

representing all conceivable failures, single or multiple, real or fic-

titious, that would induce a unidirectional residual along Cf, given

that the detection filter is designed to monitor for the failure repre-

sented by f. In essence, f is the event vector for any failure modeled

by a vector in the event space of f.

The mathematical definition of event space is

/ / + A

where / is the one-dimensional vector space containing all scalar mul-

tiples of f, including f, and / is the largest vector subspace (of the

n-dimensional state space) for which

i) C/ contains only the zero vector.

ii) X/0 belongs to /.

The symbols A and C designate the linear operators corresponding to the

matrices A and C.

An event space / is completely described by any set of vectors that

forms a basis for it. The number of vectors required equals the dimen-

sion of /, which was named the event order V. A particular set of basis

vectors is used in computing the feedback matrix D; that set is

{g, Ag, --- , Av- g} (2-34)

where g is a vector called the event generator of /. This vector is

found by solving
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Cg = 0

CAg - 0

- (2-35)

CA v- 2 g = 0

CAV-1 g Cf

subject to the constraint that f be expressible as a linear combination

of the vectors in (2-34):

v-2 v-i
f =al + a2Ag + --- + a 1A g + % A g (2-36)

This last equation is merely a statement that f is in its own event

space. The a's are arbitrary scalars--it is only necessary that g be

such that a set of a's exists for which (2-36) is satisfied. Comparing

(2-36) with (2-35), we see that av must always equal one, so whenever V

equals one, g is simply f.

Equations (2-35) and (2-36) depend on the value of v, but there is

no explicit equation that gives that value. A formal procedure for

finding V was developed by Beard and is presented below, but that proce-

dure is involved and is not usually needed. Most often V equals one,

and seldom does it exceed two or three. The reason for this is that the

reference model is usually constructed with as few state variables and

as many measurements as possible, which tends to minimize the event ord-

ers. Usually as many event vectors as there are measurements are

selected, and from the definition of event spaces it follows that the

sum of the event orders will never exceed the order of the reference

model. As a result, one can often determine each V by careful examina-

tion of the reference model. Alternatively, one can use Equations

(2-35) themselves to find v:

-0
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If there exists no g for which

Cg = 0

CAg = Cf

then V = 1 and g = f. If such a g exists, then v > 2. If
then there exists no g for which

Cg = 0

CAg = 0

CA2g = Cf

then V = 2. If such a g exists, then V > 3, and one more
equation from (2-35) must be tried.

When V is known, if (2-35) specifies I completely, then (2-36) will

be satisfied automatically. This is usual; rarely does (2-35) leave any

freedom in the specification of any of the elements of g. When it does,

(2-36) eliminates the freedom and yields a unique solution for g.

The method presented by Beard for determining v proceeds in the

following manner. First form the matrix

A' = A - D'C (2-37)

with D' arbitrarily chosen to zero out as many columns of A' as pos-

sible. This makes the ensuing calculations easier, with no loss in gener-

ality. Then calculate

C' = C - Cf[(Cf) T(Cf)I1(Cf)TC (2-38)

K = A' - A'f[(Cf) (Cf)]1(Cf)TC (2-39)

C'
C'K

M = C'K 2 (2-40)

C'K n-l
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The event space of f is the null space of M; that is, / is the largest

subspace that satisfies

M/=

where ff is the linear operator corresponding to M. The event order V is

the dimension of the null space of M and is given by

v = n - rank[M

The rank of M can usually be determined by inspection; if not, one

should resort to a numerical technique such as the orthogonal reduction

procedure to find both / and V from M.

2.4.5 Restrictive Sets

By definition, {fi,---f } is nonrestrictive if after D is constrained to

make the residual associated with each f unidirectional, there remains

sufficient freedom in the construction of D that the eigenvalues of

(A-DC] can be specified at will, except for the constraint that both

members of any complex pair of eigenvalues be assignei together to the

same event space. One way of determining if a set is nonrestrictive is

to skip to Step (6) and calculate the elements of D. With low-order

systems, this approach is effective. Usually any unassignable eigen-

values become readily apparent, and should they be unacceptable, the

filter is easily redesigned.

Another approach is to determine beforehand whether any unassign- 0

able eigenvalues exist, and, if so, what they are. These eigenvalues

depend on A and {fi,...f } only, so this can be done prior to calcula-

ting D. To do this we first find the dimension v' of what is called the

group event space 0 of {f1 ,...f}. That space is defined in the same

way as each /is, with Fand J0 in place of I and /0. The procedure for

4This procedure is described by Beard [41, Jones [241, and Gerard [201.
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finding V' is the same as the formal one for finding an event order.

Form the n x s matrix F by inserting f1 ,... f as its columns:

F = [fi : f 2 : * f ] (2-41)

Then form the nm x s matrix M' in the same manner M in (2-40) was

formed, but with f replaced by F. The group event space is the null

space of M', and the group event order v' is given by

V' = n - rank[M']

The number of unassignable eigenvalues is

=O V, -

When the number of event vectors equals the number of independent mea-

surements--that is, when s equals the rank of C--then V' equals the

state dimension n.

When there are unassignable eigenvalues, they are associated with a

subspace of ;of dimension V0 . This subspace, designated as R, is that

part of Fthat is not contained in any of the event spaces of f, ... t-
By comparing 5rwith the event spaces, one can find a set of basis vec-

tors forW. Then with those vectors, one can calculate the unassignable

eigenvalues. Let R be the n x V0 matrix with those vectors as its

columns, and let the basis vectors of all the event spaces (from (2-34))

be collected as the columns of a matrix G. Then the unassignable eigen-

values of [A-DC] are the eigenvalues of the V 0 x V0 matrix 11 that is

part of the solution of

AR = [R : GI (2-42)
0

This equation is just a statement that A? is in , which follows from

the definition of 2.
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2.4.6 Augmenting the State Space

It is always possible to make unassignable eigenvalues assignable by

adding one or more dummy variables to the state vector. This increases

the dimension of the A matrix, which, at the cost of increased

computational complexity, allows one to freely specify part of A. The

object is to choose the new elements of A to enlarge the dimensions of

the appropriate event spaces so that the sum of the event orders equals

the group event order. Several additional state variables may be

required to make up each deficit of one in the sum of the event orders.

Each additional variable enlarges the group order by one and usually

only a single event order by one. Eventually the next new variable will

increase two event orders by one, thereby decreasing the deficit by one.

The form of the augmented A, B, and C matrices is:

A W
A' = (2-43)

0Q

B
B' = (2-44)

0

C' = [C 0] (2-45)

Many different choices of W and Q will eliminate an unassignable eigen-

value; which one is best for a given application may well be determined

by what else the designer might wish to accomplish with the

expanded A matrix. Jones presented an explicit procedure for obtaining

a suitable [W,Q] pair from the solution [1I,0] of (2-42). Alternatively,

one can approach the problem as follows: Start by making Q a diagonal

matrix with arbitrary dimension and arbitrary diagonal elements. Then

use Equations (2-35) and (2-36) to specify the conditions W must satisfy
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to enlarge the appropriate event spaces. The necessary dimension of Q

will become apparent, and generally there will be some freedom in the

choice of its elements.

2.4.7 Calculating the Gain Matrix D

The expression that specifies D is derived from the event generators

that were determined in Step (4). To each event generator we assign a

set of numbers, real or complex,5 which we wish to be eigenvalues of

[A-DCI. We write the set as {X1, --- XV1, where, as before, V is the

event order. With each set we then form a polynomial T in the complex

variable s, as follows:

V v-1
T(s) = (s-X.) = s + p s + *- + P2s + P1 (2-46)

j=1 J

The X's, then, are the roots of the characteristic equation formed by

setting T(s) equal to zero. That they will also be poles of the detec-

tion filter we shall ensure by using T(s) in the calculation of D.

For each f we wish to specify appropriate conditions on D so we

attain two objectives--first that the residual created by any of the

failures represented by f is unidirectional along Cf, and second that

the numbers Xi,--- Xv are roots of the equation

Det [(A-DC) - sIl = 0 (2-47)

Regarding the first condition, recall from (2-6) that following a

malfunction representable by the input failure model, the residual vec-

tor behaves according to

(t) = [A-DC](t) + fn(t) (2-48a)

r(t) = CI(t) (2-48b)

5Both members of a complex pair must be included in the same set.
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We must choose D such that the q(t) induced by f, according to (2-48a),

always stays within /, because only the vectors within /will when prop-

agated by the filter yield an r(t) that lies solely along Cf.

The region of the state space that the a(t) generated by f will

propagate into is the subspace spanned by 6

{f, [A-DC]f, [A-DC]2f, [A-DC]3f, e-- } (2-49)

The elements of D are chosen so that (2-49) spans only the event space

of f, no less, nor no more. The first V vectors in .(2-49),

{f, [A-DC]f, [A-DC] f, -- [A-DC V- 1f}, (2-50)

will form a basis for /, and the remaining vectors in (2-49), being mem-

bers of /, will be linear combinations of these first ones. Recall that

6For those unfamiliar with the use of vector spaces in control theory,
consider writing (2-48a) as

di = [A-DC]-dt + n(t)-f-dt

From this, one can form a progression that approximates the response of
to an impulse in n(t)*f at t = 0:

dal = no-f-dt

d%2 = [A-DC]n 0f-dt

dR3 = [A-DC][nof +(A-DC)n 0f];dt
= [A-DC]n0f-dt + [A-DC] nof-dt

dS - [A-DC]n0f-dt + [A-DC]2 nofdt + [A-DC]3 n0.f-dt

7This ensures that the dimension of the space spanned by (2-49) will be
v, thereby guaranteeing just enough control over [A-DC] for one to spec-
ify each of the v eigenvalues in {?q,.--- 1.
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in the section on event spaces we established another basis for f,
namely

{g, Ag, AAg *,o A (2-51)

Using (2-35) we rewrite this basis as

2 v-i
{g, [A-DC]g, [A-DC] , --- [A-DC] g} (2-52)

This does not change the basis vectors; (2-51) and (2-52) are identical

sets. For our first condition to be upheld, just as [A-DC]vf must be a

linear combination of the vectors in (2-50), so must [A-DC]vg be a

linear combination of the vectors in (2-52), since g belongs to/.

Expressing this statement as an equation, we have

[A-DC]vg = aig + U 2 [A-DC]l + --- + av[A-DC] V- 1g (2-53)

where the a's may be any scalars whatever.

To achieve our second objective, we now require that the

set {-a1,...-av} be equal to the set of polynomial coefficients

{Pi, P2,''Pv} from (2-46); that is,. we require D to satisfy

-[A-DC Vg = PIg + P2 [A-DC]g + *o + px[A-DC] g (2-54)

A result in linear algebra known as the Cayley-Hamilton Theorem ensures

that X1 ,s--- will then be roots of (2-47). This theorem states that

every square matrix satisfies its own characteristic equation. That

equation for an n x n matrix M is

T(s) = sn + p sn-I + ... P2s + PI = 0 (2-55)
n

so the theorem says

T(M) = Mn + p Mn-I + *.. p2M + PI = 0 (2-56)
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In calculating D, we specify a set of polynomials {Tl(s), --- Tt(s)} cor-

responding to the set of event vectors (f , t}, and then we require

for each Ti in turn that

T.(A-DC) = 0 (2-57)

Thus we have

TO(A-DC)0-i(A-DC)- e-- Tt(A-DC) = 0 (2-58)

where TO(A-DC) is a polynomial whose roots are the unassignable eigen-

values of [A-DC] (if there are any) and if t is less than the rank of C,

the eigenvalues of [A-DC] that can yet be assigned by exercising the

remaining freedom in the choice of D that would exist in this case.

Equation (2-58) is a statement of the Cayley-Hamilton Theorem for

[A-DC]: we have set the conditions on D so that the characteristic

equation of [A-DC], (2-47), is factorable into the form

TO(s)-e(s)- -- Yt(s) = 0 (2-59)

Equation (2-57) applied to each Ti, i=1,2,...t, yields the equa-

tions that are to be solved for D. To obtain a more detailed version of

(2-57), we write it in the form of (2-56),

[A-DC] + pV[A-DC]I + --- + p2 [A-DC] + pi = 0 (2-60)

multiply by g, expand the powers, and then use (2-35) to obtain

Ag - DCf = -pig - p2Ag *- - pV A V g (2-61)

Note that whenever the event order of f is one, (2-61) reduces to

[A-DC]f = Xf (2-62)
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Hence, in that case the condition on D is that f be an eigenvector of

[A-DC] and X be the corresponding eigenvalue.

In summary, to solve for D, assign to every event vector in

{f>''' -t} a set of numbers {X1 , -.- Xvi}, then calculate the coefficients

of the polynomial Ti(s) by using

T(s) = H (s-X.) = P1 + P2s + *- + psv-i + s (2-63)
j=1

and write the equation

DCf = + p2Ag+ *-- + pVAV- g + A g (2-64)

After values for the X's have been assigned, simultaneously solve all of

the equations (2-64) for D. When the number of event vectors equals the

number of independent measurements, this specifies every element of D.

2.4.8 D for Sensor Failures

We derived Equation (2-64) for failures representable by the input fail-

ure model, but it can usually be used also with the measurement failure

model. It may, however, become nonlinear. If one wishes failures of the

j'th sensor to yield a residual that is constrained to the plane spanned

by e and Cdi, then d must be made an event vector of the detection

filter. But d is not known beforehand as are the f's. In three situa-

tions that occur frequently, this difficulty can be overcome.

First, if one of the other event vectors, say fl, is such that Cf,

equals ej, then d- is fully specified by (2-64) applied only to f,

irrespective of what the other f's are. That will be so when fi is

associated with an actuator whose position is measured by the j'th sen-

sor. In that case, DCfj is simply D times e-, which is d-. Thus d- can

easily be found and then inserted into (2-64) as an event vector itself.
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Second, if from the structure of the reference model one can deter-

mine the likely event order of d-, then it may be possible to write

(2-64) as a nonlinear equation that can be solved numerically. For

example, if the event order of d- can only be one, then

g = f =d

and with d- substituted for f, (2-64) becomes

DCd. = pid. + Ad.
-J -J -J

This nonlinear equation must be solved simultaneously with the equations

obtained with the other event vectors. Most likely, the solution will

require use of a computer algorithm that solves systems of nonlinear

equations.

Third, one can sometimes make d- output stationary with the f's,

thereby avoiding the problems attendent with making d- be one of the

f's. This is the preferred solution, particularly since it may be pos-

sible to make several, perhaps all, of the columns of D output station-

ary at once by assigning the same value to many, or all, of the assign-

able eigenvalues of [A-DC]. The next section describes the procedure for

making vectors output stationary.

2.4.9 Output Stationarity

In Step (5), the set {fi, --- t} was assembled either as a nonrestrictive

group of event vectors or as a restrictive one that yields acceptable

eigenvalues; it may be both possible and desirable to add to this set

one or more events that are not output separable with fl,-- -t. As men-

tioned before, to do this we must make the additional vectors mutually

output stationary with {fi,---ft}. For that to be possible, these vec-

tors must meet the requirements set out below. Whether it is desirable

or not depends on the constraints that will be incurred. Some of the
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freedom in eigenvalue selection is sacrificed when making a vector out-

put stationary, because at least two sets of eigenvalues, say

{X,---Xvi} and {fX,-XVj}, must be set equal to one another (or par-

tially so if one is larger than the other). Also, when vj is unequal to

vi, the unmatched eigenvalues become unassignable.

First we determine which of the additional event vectors taken one

at a time can be made output stationary. The condition a vector h must

satisfy if it is to produce a unidirectional residual from a filter

designed for {fl,... t} is that [A-DC]h be contained in the event

space A of h, that is, that

[A-DC]h c A (2-65)

The event space of h is found the same way the event spaces / of the

f's are found, and (2-65) is the same condition that when applied to all

the f's specifies what D must be, except for the choice of eigenvalues

for [A-DC]. This choice can sometimes be made so (2-65) is satisfied.

For example, suppose that the event orders of h, fl, and f2 are all

equal to one and that h is a combination of f, and f2:

h = cifi + a2 f2  (2-66)

Then

[A-DC]fl = Xjfj

(2-67)

[A-DC]f = X2 2
and

[A-DC]h = [A-DC][aifi +'a 2 f2]

= aiXifj + a2X2 f2 (2-68)
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The one-dimensional event space of h consists of all scalar multiples of

h, so [A-DC]h will lie in that space if and only if X1 and X2 are equal..

Then (2-68) becomes

[A-DC]h = aiAfi + a2Xf 2

= X(alfl + a2f2 )

= Xh (2-69)

In general, to determine if any particular vector h can be made

output stationary, proceed as follows: Write the vector Ch as a linear

combination of Cfi, ... Cft, and collect in a set I the indices of the f's

needed in this linear combination. Then write

h = a.f. + ( (2-70)
iEI

where E satisfies CE = 0, and none of the a's are zero. Thus,

[A-DC]h = a.[A-DC]f. + AE (2-71)
i- I -I -

Equations (2-70) and (2-71) present three possibilities:

1. The vector is zero or is contained in the union8 of

the /'s:iSI. Then the definition of an event space implies

that C is entirely within the union of the /'s:ieI. We know,

too, that A must lie in that union. Furthermore, the freedom

to choose the eigenvalues of [A-DC] can be used to make the

right-hand side of (2-71) lie anywhere at all in that union,

which means that (2-65) can be satisfied. If all the event

orders vi:ieI are equal, then (2-65) is satisfied whenever all

8The union of several vector spaces is the space spanned by the collec-
tion of the basis vectors of those spaces.
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the sets of eigenvalues {Xi,*. Av.}:icI are equal. (It is not

necessary that the X's within each set be equal.) If the Vi's

are not equal, then Equations (2-70) and (2-71) force some of

the X's to take specific values. Let Vmin specify the small-

est of the vi's; then in each set {X, oXvi} :isI, v-v min of

the X's will be so specified. The remaining portions of the

sets are constrained only to be equal, as before.

2. The vector is not in the union of the If's:iEI, but AE is in

the union of A with that union. This can occur only if

{f,*** ft} is a restrictive set. Once again (2-65) can be

satisfied, and if A is either entirely in A or entirely in

the union of the /'s:ieI, it can be satisfied the same way as

in (1) above. Otherwise, Equations (2-63), (2-64), and (2-71)

must be used together to find which values of the X's will

make h output stationary--simply making the sets equal will

not do so.

3. The vector A does not lie in the union of I and

the / 's:iCI. No choice of the X's can make h output station-

ary.

Mutual output stationarity of several event vectors hj,e--hv is

assured, in the two simplest cases, whenever 1) there is no overlap in

the sets {fj:iEsi},"- {fi:icIv} used in the linear combinations making
up h, --- hv, or 2) the sets are identical. If, on the other hand, some

of the indicial sets I are intersecting but not identical, stationarity

of those additional vectors so related depends on whether or not two of

the sets make the same eigenvalue unassignable and require different

values for it.

2.4.10 Eigenvalue Assignment

Except for the constraint on complex pairs and the equality requirements

introduced by any output stationary vectors, the designer has considera-

ble freedom in choosing the assignable eigenvalues of (A-DC]. Using it
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effectively demands awareness of the various factors that influence the

performance of the filter. To begin with, the eigenvalues should be

negative--or have negative real parts--else the state of the reference

model will eventually diverge from the state of the actual system.

Large negative values make the model track the measurements closely, and

they minimize the size of the residuals caused by malfunctions or by

modeling errors. On the other hand, small negative values make tran-

sient residuals die out slowly, and they allow steady residuals produced

by malfunctions to sustain large magnitudes. Residuals due to high-fre-

quency measurement noise are relatively little affected by the choice of

eigenvalues; consequently, the more negative the eigenvalues are, the

smaller the signal-to-noise ratio in the residuals is.

In most circumstances, the eigenvalues ought to be somewhat more

negative than the corresponding eigenvalues of the system itself. This

gives a good compromise between response rate and signal-to-noise ratio.

Much of the time, the most practical approach is to choose the same

value for all the assignable eigenvalues.

2.5 SUMMARY

The method of detection filter design developed in this chapter com-

prises procedures for designating the event vectors of failures, for

determining whether a set of output separable vectors is nonrestrictive, 0

for testing vectors for output stationarity, and for calculating the

gain matrix. Attention was restricted to continuous linear systems.

Chapter 3 illustrates this material with a simple example. The

first part of Chapter 4 describes the few modifications that make the

design procedure applicable to sampled-data systems. Such systems can-

not be monitored exactly, but when the sampling rate is sufficiently

high, the deviations from ideal operation are slight. The second and

third parts of the chapter present a less general, but more concise,

design procedure and a method of processing the residuals for failure

diagnosis.
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Chapter III

AN EXAMPLE: A STEAM TURBINE

The theory presented in Chapter 2 becomes straightforward when applied

to a simple, low-order system. In particular, the physical justifica-

tion for the definitions of output separable vectors, nonrestrictive

sets, and output stationary vectors become apparent. To illustrate each

of the aspects of detection filters, we shall design detection filters

for four versions of the steam turbine engine described below. The

first version is a fully-measured system similar to the air turbine dis-

cussed near the beginning of Chapter 2. The design of a detection filter

for it demonstrates how to find event vectors, how to calculate the

feedback matrix D, and how to make an event vector output stationary.

The three other versions are not fully measured, and the construction of

detection filters for them shows several circumstances in which an

eigenvalue of a filter is unassignable.

The important difference between this example and the one in Sec-

tion 2.2 is that in this one there are three state variables rather than

two. This makes visible several aspects of detection filter design that

do not appear with a second-order system. It should be noted that this

chapter is intended to illustrate the design procedure--diagnosis of

failures is described in Chapter 4 and in the subsequent treatment of

the F100 engine.

3.1 THE REFERENCE MODEL

The steam turbine engine of this example is shown schematically in Fig-

ure 3.1. The engine is modeled as a third-order system comprising a

fuel valve, a boiler, and a turbine. Figure 3.2 shows the block dia-
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Figure 3.1. A steam turbine engine.
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Tf = Positioning time constant of valve spool

Tb = Thermal time constant of boiler

Tt = Acceleration time constant of turbine

u = Reference input

Wf = Fuel flow rate

T = Steam temperature

N = Turbine speed

K = Control loop proportional gain

Kf = Scale factor: voltage to flow rate

Kb = Scale factor: flow rate to temperature

Kt = Scale factor: temperature to speed

Figure 3.2. Block diagram of the steam turbine.
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gram. The model is a linearization about a steady-state operating

point; the dynamics of the major components--the valve, the boiler, and

the turbine--are modeled by first-order lags. In this linear model,

steady-state values of fuel flow, temperature, and speed are propor-

tional to each other. As shown in the diagram, there are three sensors

in the system: a flow meter, a thermocouple, and a tachometer. The

tachometer is used in a feedback loop, while the flow meter and the

thermocouple just monitor the system. None of the sensors is considered

to have any significant dynamics of its own.

To form a convenient state-variable model of the system, we choose

the three variables to be the fuel flow Wf, the temperature T, and the

measurement N0 of the turbine speed N. (Here again, the subscript 0

denotes the output of a sensor.) The differential equations describing

the dynamics of the system as modeled in the diagram in Figure 3.2 are:

d[W]
dt = 1/.[K .K .(u-N0) - Wf] (3-1)
dt p f 0 f

d[T = 1/T [K OW - TI (3-2)
dt b b f

d[NO] = 1/T .[K .T - No] (3-3)
dt t t

Writing (3-1) to (3-3) in the form

Ax + Bu

gives us

W -1/T 0 -K K f/T Wf K K/Tf

d
dt T = Kb b Tb 0 T + 0 u

No 0 K /-t -1/T No 0
- -- t t t

(3-4)
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Each of the state variables is sensed directly, so the system is fully

measured, and the measurement equation is

Wfo 1

To = 0

No [0

0 0 W f

1 0 T

0 1 No

To make this example easy to work with, we assume the system is a

somewhat sluggish one, with parameters as listed in Table 3.1.

Accordingly, we obtain the following as the A, B, and C matrices:

-10

A =20

0

0 -5

-1 0

.2 -2

5

B =0

0

C = 0

0

0 0

1 0

0 1

(3-6)

The characteristic equation is

Det [sI-A] = 0

which expands to
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TABLE 3.1

Parameters for the steam turbine example.

T = 0.1 sec K = 0.25

Tb = 1.0 sec Kb = 20.0

Tt = 0.5 sec Kt = 0.10

K = 2.0
p

(3-7)



(s+10)(s+1)(s+2) - 20 = 0

The poles of the syster--the eigenvalues of A--are

= -10.26

(3-9)

S2,3 = -1.37 1.42i

3.2 A DETECTION FILTER FOR A FULLY-MEASURED SYSTEM

The first step in designing a detection filter is ascertaining the types

of malfunctions that could occur. Several failures that the steam tur-

bine system would be susceptible to are listed in Table 3.2, categorized

TABLE 3.2

Examples of failures.

Actuators

Dynamic
components

Sensors

i) Fuel valve

i) Boiler

ii) Turbine

i) Flow meter

ii) Thermocouple

iii) Tachometer

- Biased output
- Hardover failure
- Change in Kf

- Change in Tf

- Plugged fuel nozzle
- Flame out of part

or all of burner
- Steam leak

- Broken turbine blade

- Loss of vane(s) in

turbine nozzle

- Failed bearing
- Change in torque

- Biased output
- Zero or saturation
- Change in scale factor

- Erratic output
- Excessive noise

01
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according to component type. The possible failures are listed for

illustration only; we shall be concerned just with identifying failed

components, not with determining the particular mode of failure.

Any of the failures listed for the valve, the boiler, or the tur-

bine can be represented mathematically by the input failure model

(2-27). The failure is expressed by the product of an event vector f,

which is time-invariant, and a scalar function n(t):

(t)= Ax(t) + Bu(t) + fn(t) (2-27)

The event vector for malfunctions of the fuel valve is easily determined

by considering the effects of a particular malfunction. Suppose the

fuel flow began to vary from the rate appropriate for the given input u;

then the time behavior of the flow rate would no longer be represented

by (3-1), but by

Wf(t) = 1/Tf {Kp-Kf.[u(t)-N(t)] - W f(t)} + AN (t) (3-10)

where A~f(t) is a function describing the dynamics of whatever is caus-

ing the deviation in the fuel flow. The state equation describing the

system becomes

W W 1

d
dt T = A T + B u + 0 AW (t) (3-11)

N0  N0  0

Comparing (3-11) with (2-27) we see that the event vector ff for such a

time-varying bias in the fuel valve is

_ =I
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and that the time-varying function is

n(t) = 0f (t) (3-13)

For each of the valve failures listed in Table 3.2, the event vector is

fg. The scalar n(t) is different for each, but that is unimportant in

the design of the filter.

Any change in boiler performance will cause the steam temperature

to deviate from its normal value, without changing the fuel flow or the

relation between turbine speed and temperature. We model such a mal-

function by adding a term to Equation (3-2), so the event vector associ-

ated with the boiler is

fg [01
Similarly, any problem in the turbine that changes the shaft speed

while the steam temperature remains the same can be modeled by adding a

term to Equation (3-3). The event vector associated with the turbine is

0
f =0

One turbine failure listed in Table 3.2, the loss of one or more

vanes in the turbine nozzle, cannot be represented by t because it

causes a temperature change as well as a speed change. Consideration of

this circumstance will be deferred until last.

Of the various sensor failures possible in this example, only those

of the speed sensor produce a residual that can be constrained to a sin-

gle line; signatures of the other two can only be constrained to two-di-

mensional planes. The residual direction for tachometer failures is the

same as that for turbine failures, and consequently, on the basis of

residual direction alone, failures of the two cannot be distinguished.
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We are now at the point of determining the event space and the

event generator of each of the event vectors. Knowing the dimension

of the event spaces, we will be able to discern immediately whether

the event vectors are nonrestrictive. Recall that the event space of

an event vector f consists of all the state vectors that yield a uni-

directional residual along Cf. Our steam turbine is a fully-measured

system, so the event space of each of the event vectors consists sim-

ply of the event vector and scalar multiples of it. In other words,

there are no regions of the state space that are not directly observed

by the sensors, and hence there is no possibility that any of the event

spaces could have a dimension greater than one. For the same reason,

none of the three eigenvalues of [A-DO] is unassignable; thus the set

{If, fb, t} is nonrestrictive. Also, the event orders Vd, vb, and vt

all equal one.

Let Xf, Xb, and Xt denote the eigenvalues of [A-DC], with Xf the

one associated with ff, and so on. As given by (2-46), the polynomial

we associate with an event vector is

V ~ V V-1H (s-X.) s + pV s + -*- + p (2-46)

j=1

Applying (2-46) three times, with v equal to one each time, we have

(s-Xf) = S + Pif

(s- b) = s + Plb (3-16)

(s-X ) = s + pit

These yield the identities

Pif ~ f

Plb b (3-17)

Pit t
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For simplicity, let us suppose that the flow meter never fails.

Then the only planar residuals will be those induced by failures of the

thermocouple. Although identification of these residuals requires addi-

tional detection logic, that failure signature is distinguishable from

the unidirectional signature of boiler failures. The failure model for

the thermocouple is the measurement failure model of Equation (2-29):

xdt) = Ax(t) + bu(t)

(3-14)

Y(t) = x(t) + 1 n(t)
0

From (2-31), we find that the behavior of the residual r is described by

d 12
(t) = [A-DC]j(t) - d2 2 n(t)

[d32]
(3-15)

r(t) = (t) + I n(t)[0
The residual produced by any failure of the temperature sensor will be

constrained to the plane spanned by [0,1,0] and [d 12 ,d 2 2 ,d 3 2] if the

feedback matrix D is chosen such that the vector [d 12 ,d 2 2 ,d 3 2], the sec-

ond column of D, is an event vector with unidirectional residual. We

shall defer further consideration of this until the last step of the

design, by which time most of the elements of D will be specified.

We thus have three event vectors that we wish to con-

sider: f, fhb, and !t. The next objective is to determine a D matrix

that causes each of these vectors to yield a unidirectional residual.

The vectors Cff, Cfj, and Cft are linearly independent, so

ff, fb, and t are output separable, and we are assured that a single

detection filter can detect the failures with which each of them is

associated.

S
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The equation that D must satisfy for each f is (2-64):

v-i V
DCf = p 1 g.+ P2Ag + + p A g + A g (2-64)

__ V

(Recall that g is the event generator of the event space of f.) In this

example, the g's are equal to the f's, because each of the event spaces

is one-dimensional. Applying (2-64) to each f, we obtain

DCf = -Xf + Af

DCfb = -bf + Afb

DCf = -Xf + Af
-t t-t -

Rearrangement yields

[A-DC]ff = X-f

[A-DC]f = X (3-18)

[A-DC]f = Xtft

We find, then, that in this case the criterion for the selection of D is

that each of the event vectors be an eigenvector of [A-DC].

Using A and C from (3-6) to solve (3-18) for D in terms of the X's,

we easily find

D10-X f 0 -5

D = 20 -1-X b .0 (3-19 )

0 .2 -2-X t
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Then
X f 0 0

[A-DCI = 0 Xb 0 (3-20)

0 0 Xt

Because the steam turbine system is fully measured, the D matrix of

(3-19) is similar in structure to the D matrix obtained for the air tur-

bine in Chapter 2 (see Equation (2-13)). The off-diagonal elements are

fixed at the values that decouple the state variables of the filter, and

the X's contained in the main diagonal elements become the poles of the

filter. They determine the rates at which the components of r,

A
r = Wfo Wfo

A
rb = To To (3-21)

A

r t = No- No

settle out to steady-state values. The poles also affect the magnitudes

of the steady-state values: the more negative the X's are, the smaller

the steady-state values are.

Now that D has been specified except for Xf, Xb, and Xt (or, equi-

valently, d1i, d2 2 , and d3 3 ), we resume consideration of the two fail-

ures left in abeyance earlier: malfunction of the thermocouple and

burn-out of a nozzle vane. It was noted then that [dl 2 ,d 2 2 ,d 3 2 ] is the

event vector that yields the second failure vector for a thermocouple

failure (the first is [0,1,0]), and in the meantime this column of D has

been constrained to be

0

.2

-74-



The failure vector for this is a linear combination of Cfb and Cft'

Therefore, since D has been selected such that no residual vector along

either Cfb or Cft propagates into a vector along the other failure

direction, Cff, and since the initial residual produced by the failure,

1 n(t),[0

lies along Cfb, the net time-varying residual vector produced by the

failure is constrained to the plane spanned by Cfb and Cft, that is, by

[0,1,0] and [0,0,1]. In this case, nothing further needs to be done to

D to make failures of the thermocouple identifiable. They will be char-

acterized by a residual appearing along Cfb, followed immediately by one

along Cft.

Burn-out of one or more vanes in the turbine nozzle is an example

of a failure whose event vector can be made output stationary with the

event vectors upon which the design of the detection filter is based.

First, we must determine what this event vector is. Loss of a nozzle

vane increases the nozzle area, allowing the steam flow to increase.

This in turn results in a decrease in the steam temperature. These two

effects have counteracting influences on the turbine speed, but because

the fluid-dynamic efficiency of the flow also decreases, the turbine

tends to slow down. Suppose if there were no feedback of the turbine

speed (and thus no change in fuel flow rate) the system would settle

into a new equilibrium with the temperature decreased by 4 percent and

the speed decreased by 2 percent. Equations (3-2) and (3-3) would

change to

T = 1/Tb' [Kb -Wf - T] - /Tb-[ .04 KbW f] (3-23)

NO = 1/Tt t-T - N0 ] + l/tt.[.02 K tK bW f] (3-24)
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The corresponding state equation is

-1/T f 0f

Kb/Tb /b

0

p f f

0

Kt t t

W f

T

N 0

+

K K /t
p f I

0

0

u +1

0

-.04Kb /b W f

.02KtKb 
b

(3-25)

So the event vector for this failure is

0

f k -. 04 K b/T b

.02 KtKb/ t

0

=k -. 8

.o8

(3-26)

where k is an arbitrary constant. Choosing k = 100/8, we have

0
f =-10

-vI ]
We see that v is a linear combination of b and ft

f = -10 f + f
-v -b -t

Therefore, v satisfies the conditions set forth in Chapter 2 for output

stationarity. If Ab is set equal to Xt, v will produce a residual vec-

tor that is unidirectional along

0
Cf = -10
-v [l

0

]
To verify that this is correct, we apply Equation (2-64) to v, using D

from (3-19) with Xb ~ At:

6
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DCf =? -X f + Af
- It-v -v

[A-DC]f =? X f
-v t-

x f 0 0

0 xt 0

0 x

: 7
-10

0

-lox t

lxt

=?9 St

0

-10

1

0

IOXt

lt

Thus the assertion is correct.

In summary, with D given by

D =

10-X f 0 -5

20 -1-xt 0

0 .2 -2-Xt

each f in {ff, fj, f b >v} produces a unidirectional residual. A fail-

ure in any of the corresponding components would be identified by a

residual lying solely along the appropriate failure direction. For this

example, the X's should probably be between -5 and -20, unless the mea-

surements are exceptionally free of noise, in which case they could be

more negative.

3.3 THREE STATE VARIABLES, TWO SENSORS

Removing the fuel flow meter makes the steam turbine system less than

fully measured and complicates the design of a detection filter for it.

The state equation of the system remains the same, but the measurement

equation changes to
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TOf

T (3-29)

The dimension of D changes, and the state equation of the filter becomes

A A
W -10 0 -5 Wf 5 d11  d 12 A

A A TO-T 0
= 20 -1 0 T + 0 u + d 2 1 d 2 2

A

A A NO-No
N 0  0 .2 -2 N 0  0 d 3 1 d 3 2

(3-30)

Suppose we are concerned about the same malfunctions as before. This

time not more than two of the event vectors at a time will be output

separable. Let us choose the pair {fb'ft}' The vectors Cf and Cf

are easily verified as nonzero and linearly independent and hence, as

output separable.

The impact of fb on the design of the detection filter will be dif-

ferent than before, as the event space of 1b is no longer one-dimen-

sional. Noting that Cff equals zero and that CAff is proportional to

Cfb, we conclude that the event vector ff is in the event space of b

The event order of fb is two. Malfunctions of the fuel valve cannot now

be distinguished from malfunctions of the boiler by monitoring only the

direction of the residual vector.

To find the event generator gb for the event space of Lb' we

use (2-35) to obtain

Cgb 0

f (3-31)
-b -b
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The solution is

-. 05

A b =0 0
(3-32)

Let Xi and A2 denote the two eigenvalues of [A-DC] that will now be

associated with fb, and let X3 be the eigenvalue associated with t (the

event order of t is still one). Applying Equation (2-46) to each of fh

and t, we obtain the two polynomials

(s-X1 )(s-X2 ) = s + P2 bs + PIt

(3-33)
(s-A 3 ) = s + Pit

From (2-64), the two vector equations that determine D are

DCf = + A
--b P I b9- P 2bA- b -a~b

(3-34)
DCf = ptt + Aft

The solution for D is

D =

Then

.05A 1i 2 + .5(X1l+ 2) + 5

-(I+2)- 11

.2

-5

0

-(2+A 3 )

(3-35)

-10 -.05A1 A2 - .5(A 1 +X2 ) - 5

10 + (A1+A2 )

0

0

0
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Note that unless either Xi or X2 equals -10, b is not an eigenvec-

tor of [A-DC]. The feedback matrix D has been so specified, however, 0

that any vector that can be written as a linear combination of &b and ff is

is projected by [A-DC] into a vector that is also a linear combination

of Eb and b. All such vectors when projected by C into the residual

space lie on CfJ, which is on the To-axis. The reason [A-DC]fb has a

component along gb is that the residual (TO-TO) is multiplied by the

gain

di = .05 X1X2 + .5 (Xi + X2 ) + 5

A
and is fed back to update Wf.

The fourth event vector, v, can again be made output stationary,

but doing so makes one of the eigenvalues of [A-DC] unassignable. This

happens because the event orders of b and it are no longer equal. For

f to satisfy the relation (3-27),

DCf = -X 3f + Af (3-37)
-v -v -v

it is necessary that

.05XiX2 + .5(X1+X2 ) + 5 = 0 (3-38)

and

-(+2)- 11 = -X 3 - 1 (3-39)

Consequently, if v is to be output stationary, we must set A equal to

-10, in addition to making A2 and A3 equal. Thus by including the loss

of a nozzle vane in the set of identifiable failures, we force A to

take on the value that makes d1i zero, eliminating the feedback of

(T0-T0) to Wf. This prevents the residual (TO-TO) from causing a change

in itself that would alter the ratio between it and (N0-N 0).
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3.4 A RESTRICTIVE SET OF EVENT VECTORS

For this part of the example, we take the steam turbine system as origi-

nally described and now use the fuel flow measurement in a feedback loop

around the fuel metering valve, as shown in Figure 3.3. For ease of

calculation, we assign a gain of one to this loop. The system dynamics

are little changed, and if the valve, sensor, and feedback loop are con-

sidered a single unit, then the task of failure detection and identifi-

cation is the same as before. But by separately modeling the sensor and

the valve, we can design a detection filter that produces unique unidi-

rectional residuals in reponse both to valve failures and to sensor

failures.

To do this, we include the sensor's measurement Wf0 in the state

vector and add the sensor's dynamics to the reference model. Suppose

the sensor has a first-order response and is ten times faster than the

valve; then the state equation and the output equation become

W -10 -2.5 0 -5 Wf 5

d Wfo 100 -100 0 0 WfQ 0
- + u

T 20 0 -1 0 T 0

N 0 0 .2 -2 N 0
(3-40a)

Wfo 0 1 0 0 f

TO 0 0 1 0 f (3-40b)

No 0 0 0 T

L - N
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Figure 3.3. The steam turbine system with a fuel control loop.
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The event vectors for the valve and the sensor are

fO
f = 0 f =[ 1 (3-41)

0 0
L0 j .0

The residual induced by any failure of the sensor will be unidirectional

along

Cf = 0
0

For the valve's event vector, we have Cf = 0, so ff must be replaced by

any scalar multiple of Afl. That vector is

-10
100
20

0-

As the replacement for ff, we choose

-.5

f 5
-f

The failure vector for f is

5
Cf = 1

-f 0-

We now have five event vectors:

0~ . 0 0 ~ 0~
f = f [5 f = 0 = 0 f = 0

s 0 f 1 - 1 0 -V -10

-0 L- 0 -L0- 1 -1L 1

The three output separable vectors fs, f, and f form a reasonable set

on which to base the design of the detection filter. The remaining two,
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ff and v, satisfy the conditions for mutual output stationarity; we can

accommodate them when we assign the eigenvalues of the filter.

The set {fsi' ft, t} is a restrictive one--there will be an

eigenvalue of [A-DC] that cannot be altered. Three of the four

directions in the state space are spanned by Ifs, fb t}; it is the

fourth direction, el = [1,0,0,0], with which that eigenvalue will be

associated. The difficulty is that any vector kel along this direction

is projected by A into a linear combination of el, f, and b, not just

of either el and fs or el and f,:

40
[11 -101

Akio = k -10 = k[-10el + 100f + 20f
0 100-s

.. _ J 0 _J

Therefore, el is not in the event space of either f or fh, and both

their event orders equal one. The event order of t is also one; thus

the sum of the three of them is one less than the dimension of the state

space. Consequently, there will be one unassignable eigenvalue.

With XI, X1, and X3 denoting the assignable eigenvalues, Equations

(2-63) and (2-64) yield

[A-DC]f = )qf

(A-DC]fb = X2f (3-42)

[A-DC]ft = A3t

The solution for D is

-2.5 0 -5
D = -100-X1 0 0 (3-43)

0 -1-X2 0
0 .2 -2-X3,
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and

-10 0 0 0 1
[A-DC] = 100 Xi 0 0 (3-44)

20 0 X2 0
0 0 0 X3

The unassignable eigenvalue is -10, the eigenvalue associated with the

time response of the fuel valve.1 This value is acceptable--it guarantees

that the portion of the filter representing the valve will be stable.

The two remaining event vectors, ff and v, can both be made output

stationary. As before, to do so with Sv, simply set X 3 = X2 . And with

ff, we have

f = 5f + f - .5el
- -s -b -

Because Aei is a linear combination of f., fh, and f!, It satisfies the

conditions for output stationarity. Thus with all three assignable

eigenvalues given the same value, all five vectors in the set

{fs, If> !b, ft> !v} generate unidirectional residuals.

3.5 AVOIDING AN UNASSIGNABLE EIGENVALUE

Previously, no matter which three vectors were chosen for the output

separable set and which two were subsequently made output stationary, in

the end the feedback matrix D would always be the same and one eigen-

value would be -10. If this is unacceptable, we could choose our set of

output separable vectors specifically to avoid the unassignable eigen-

value and then refrain from making either of the two remaining event

vectors output stationary. We would have to leave them for a second

detection filter or for some other detection device.

With systems in which the state variables are cross-coupled, not just
cascaded, an unassignable eigenvalue will not necessarily be an
eigenvalue of the system.
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For example, one subset of fs' if fb, t t} that is nonrestrictive

is {ff, ff, 4}. The event space of f is two-dimensional--it is the

plane spanned by ff and el--consequently the sum of the event orders of

f,, f, and t is four, and there can be no unassignable eigenvalues.

The solution for D is, with X 0 , X1, X2, and X 3 denoting the eigen-

values,

-2.5 .05X0X2 + .5(X0+X2) + 5 -5

-100-Al 5[-(10+X0 ) + X1 - X21 0
1) - (3-45)

0 -(10+XO) - (1+X 2) 0

0 .2 -(2+X 3 )

Then

-10 0 -[.05X 0X2 + .5(XO+X 2 ) + 5 0

100 X1  -5[-(10+X0 ) + X1 - 1] 0
[A-DC] =

20 0 (10+X 0 ) + X2 0

0 0 0 A3
(3-46)

A A A
The temperature residual, TO-To, is now fed back to Wf and WfQ.

A way of avoiding the unassignable eigenvalue while keeping four

event vectors instead of only three is to add another variable to the

state vector. With this example, a simple way to do this is to add a

duplicate of Wf. This creates a model in which Wf*, the new variable,

is the input to Wfo and Wf is the input to T. The state equation for

this model is

-86-

S



W -10 0 -2.5 0 -5 Wf 5

f 0 -10 -2.5 0 -5 W * 5

Wfo = 0 100 -100 0 0 Wfc + 0 u

T 20 0 0 -1 0 T 0

NO 0 0 0 .2 -2 NO 0
(3-48)

The five event vectors are:

0 -.5- ~0- ~0- 0-

0 0 0 0 0
f = I f = 5 b= 0 f = 0 f = 0

0 1 1 -t 0 -v -10

0 0 0 1 1

We find this time that the event orders of fs and fb are both two;

consequently, {f-ssfhbst} is now a nonrestrictive set. The previously

unassignable eigenvalue has been displaced by two assignable ones. Mak-

ing It output stationary poses no difficulty; simply assign the same two

values to the pairs of eigenvalues associated with fS and fhb. On the

other hand, making v output stationary requires not only setting the

eigenvalue associated with It equal to one of those of fb, but also

allowing the other eigenvalue of f-b to revert to -10.

Taken together, the various parts of this example illustrate that

there are many ways to design a detection filter for a given system.

The number of measurements used and the way the reference model is con-

structed strongly influence the design of the filter.
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Chapter IV

METHODS FOR APPLICATION

Thus far the discussion of detection filters has been in the context of

systems with continuously measured outputs, but the potential applica-

tions are mostly in systems with digital electronic controllers that

only take measurements periodically. The following section presents the

extension of the material in Chapter 2 needed to fit a~detection filter

into this context. Then Section 4.2 presents a special case of detec-

tion filter design that draws sparingly from the general theory in Chap-

ter 2, but which describes in concise form all that is necessary for

designing a detection filter for the F100 engine. The third section

describes a technique for interpreting the residuals produced by a

detection filter.

4.1 SAMPLED-DATA SYSTEMS

To design a detection filter that is implementable on a microcomputer,

we must first formulate the system model in a manner compatible with

digital computation. The resulting model is said to be in sampled-data

or discrete-time form. The procedure for designing a detection filter

for such a model is identical to that used with a continuous-time model.

For some types of failures there will be no degradation in performance

of the filter, but for others, particularly those that involve changes

in the dynamics of the system, the discontinuity in the measurements

prevents the filter from keeping failure-induced residuals exactly uni-

directional. But when the time interval between measurement samples is

small, the deviations in the residuals will be small as well.
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4.1.1 Discrete-Time Models

Discrete-time models are readily calculated from continuous-time ones.

The form of the continuous-time models we are concerned with is

(t) = Ax(t) + Bu(t) (4-la)

Y(t) = Cx(t) (4-lb)

In a discrete-time model, the differential equation is replaced by a

difference equation. If we define 2.k, u--k, and yk as the state, the

input, and the measurement vectors at the sampling times tk = k-At,

k=0,1,2,3,*** (with At constant), and if we assume that u(t) changes

only at the times tk, then the discrete-time model derived from (4-1)

has the following form:

- =k+l - + k (4-2a)

k+1 = Cxk+1  
(4-2b)

The n x n matrix 0 is called the state transition matrix, and r, the

input transfer matrix.

We obtain 1 and r from the solution of (4-la). As we shall prove,

that solution is 1

t

x(t) = exp(A-t) x(O) + f exp(A(t-T)) Bu(T) dT (4-3)

0

x(0) = xO , given. (4-4)

1The exponential of any square matrix M is defined as

exp(M) = 1+ M + + 1 + . 1
2 9M +
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The proof follows from substituting (4-3) into (4-la): The derivative

of (4-3) is

(t) = [exp(A-t) x(O)] + f d[exp(A-(t-T)) Bu(T) dT]
+ xdt x t -

+ [exp(A-(t-T)) Bu(T) IT..t

(4-5)

Since A is constant, we have

d [exp(A-t)] = A exp(A-t)

and hence,

t

(t) = A {exp(A-t) x(O) + f exp(A-(t-T)) Bu(T) dT}
0

+ exp(0)-Bu(t) (4-6)

The expression in brackets is x(t), so (4-6) is equivalent to (4-la).

Thus x(t) as given in (4-3) is the solution to (4-la). We now define

P(t) and F(t) as follows:

(4-7)

(4-8)

The n x n matrix T(t) is defined by

t

T(t) = f D(t-T) dT

0
(4-9)

Now, noting that B is constant and that u(T) is constant over each sam-

pling interval, we substitute Equations (4-7) to (4-9) into (4-3) and

set
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t = At = tk+l - tk

6
x0 = xk

D= O(At)

r = F(At)

to obtain Equation (4-2a).

There are several methods for calculating 0 and r. Frequently in

applications where a detection filter is to be used, the sampling inter-

val At will be relatively small, and when that is so, the most efficient

way to find 0 is to calculate it directly from the definition of the

matrix exponential:

S12 2 1 n nS I + AAt+-AAt + 2t + + -AAt + **. (4-10)
2 n

With small At, the number of terms required for acceptable accuracy is

reasonable.2 Alternatively, one may obtain an explicit closed-form solu-

tion by using Sylvester's Expansion Formula.3 A third method is numeri-

cal integration of the derivative of Equation (4-7):

G(t) = A (t) (4-11)

Integrating from t = 0 to t = At, with 0(0) = I, yields 0. 4

The matrix F also can be computed by direct numerical integration

or by series expansion, but when A is invertible, a closed-form solution

20
2 An eighth-order model of the F100 engine required from four to six
terms, depending on the size of At, for an accuracy of four to five
decimal places.

0
3 See, for instance, Schultz and Melsa [391, p.14 1 .

4In contrast to the other two methods, this technique is valid even when
A is not constant. In that case, depends explicitly on both the ini-
tial and final times, not just the difference between them.

0
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for r exists. Considering first the solution by integration, we combine

(4-8) and (4-9) and differentiate the result to obtain

r(t) = i(t) B (4-12)

Simultaneous integration of (4-12) and (4-11), beginning with F(O) = 0,

yields r(t).

Alternatively, by series expansion,

1 AAt2 1 n n-ir [lAt + tA + + (n+ 7)IA At + --- ] B

Supposing now that (D can be easily determined by series

expansion and that A is nonsingular, we can obtain from (4-9) and (4-11)

an explicit relation for T. (The F100 model fits these conditions.)

The integral of (4-11) from t = 0 to t = At is

At

0

At
>(T') dT' = f A G(T') dT'

0

At
D(At) - D(0) = A f WT') di'

0
(4-13)

where T' is the dummy variable of integration. If we define

T At - T'

then since dT' = -dT and D(O) = I, we can write (4-13) as

0
-A f O(At-T) dT = - I

At
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Swapping the limits of integration and multiplying by A- gives

At

j 4(At-T) dT = A-1 [ - I]
0

Using (4-9), we get

T = A~1 [ - 11

From (4-8), r follows immediately as the product of T and B:

F = A [4) - I]B

4.1.2 Detection Filter Design

A detection filter for (4-3) will have the form

A A A
Kk+=1 1)k + Pu + D(yk -

A A
Y-k+l C-k+l

The state difference vector

before:

and the residual vector are defined as

r= -k

(4-17)

(4-18)

Just as in the continuous-time case, we seek a feedback matrix D that

will constrain r to a line or to a plane when any one of a number of

specified components and sensors fails. Clearly, this D will not be the

same as the one that would be used if the filter were implemented with

continuous measurements.
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In Chapter 2, many different types of failures were demonstrated to

be describable by what was called the input failure model,

(t) = Ax(t) + Bu(t) + n(t)f (4-19)

The discrete-time form of this is found by the same procedure used to

derive (4-3) from (4-1):

At

k+ = + Fu + [f O(At-T)-n(tk+T)-dT]f (4-20)
0

Whenever n(t) can be considered invariant over each sampling interval,

(4-20) reduces to

-k + F14 + nk (4-21)

where

'= Tf (4-22)

When (4-21) is valid, the theory in Chapter 2 is fully applicable, with

A and f replaced by 0 and f'; and the procedure for calculating D is

unchanged. When n(t) is not piecewise constant and (4-21) is not

strictly valid, a filter does not exist that can keep r exactly unidi-

rectional for arbitrary n(t).

Subtracting (4-16) from (4-20), we see that the dynamics of S and r

are described by

At

qk+ m [- DC]q + [f O(At-T)-n(tk+T)-dT)f

0 (4-23)

-Ek+l C~qk+l
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When n(t) is piecewise constant, these equations become

9
=[ - DC]q + nkf'

(4-24)

lk+1 Cqk+ I

The reason there is no choice of D which makes (4-23) a detection filter

is that the vector

At
[f D(At-T)-n(tk+T)-dT]f
0

is not fixed in direction, even though f is fixed. When the direction

of this vector changes, so too will the direction of r, regardless of

what D is.

So in designing detection filters for discrete-time implementation,

we can only design for failures for which n(t) either is piecewise con-

stant or can be reasonably approximated as such. Failures that are

likely to be piecewise constant are incorrect transmissions of an ele-

ment of u. These are easily modeled with f' equal to the appropriate

column of r and with n equal to the deviation in the element of u.

Some state-independent changes in dynamics can also be modeled exactly

with n(t) piecewise constant. But most changes in dynamics, particu-

larly those involving changes in the A matrix, cannot be. Approximating

n(t) as piecewise constant is reasonable whenever its change during each

sampling interval is small. In practice, this may frequently be the

case, for At is usually set so the digital controller functions well,

which most often means At is small relative to the dominant response

times of the system.

Sensor failures modeled by the measurement failure model (2-30)

constitute a group of failures for which n(t) is always piecewise con-

stant. Failures of this type are described by
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+1= + F (4-25a)

-k+1 = CL+ 1 + nk.-j (4-25b)

Unlike malfunctions that affect the system directly, erroneous measure-

ments only have influence at the sampling times, so in (4-25b) nk is

inherently a discrete variable, not a continuous one.

The response of the filter (4-16) to a failure modeled by (4-25) is

given by

A AA4+1 , + 1 + DC[4-x I + njd.
= + r.4 =k

(4-26)
A A

4-k+1 Cxk+1 + nk+l-j

where d. is again the j'th column of D. The unit vector e. and the vec-

tor d. are both fixed and are both uniquely associated with the j'th
-j

sensor; therefore, just as with a continuous-time filter, D can be cho-

sen so that when the sensor fails, the residual will stay within the

plane defined by eL and d.. Furthermore, as will be shown in Sec-
-j-J

tion 4.3, if nk is increasing or is steady, r will stay within just one

segment of that plane.

4.1.3 Summary

The discrete-time model is

=+1 + Pu

(4-2)

-k+l =C

with (D and r given by

( = I + AAt + 2t + 1. nAn + o-o (4-10)
2 n

r- = A_'1 D - I]B (4-15)
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(If A is not invertible, use Equation (4-12).)

The discrete-time detection filter is

A A A
= +x + ru + D[ -

2i -k -k -

A A

Xk+1 = C k+1

(4-16)

4

The event vectors are computed from the continuous-time ones by using

f' = A 1 [0 - If (4-27)

(This relation follows from (4-14) and (4-22).) The discrete-time event

generators g' and the event spaces ' are found by applying the proce-

dures given in Chapter 2, with 0 and f' in place of A and f.

The feedback matrix D is then the solution of the following equa-

tions obtained from (2-64):

D~f =v 1-1 v1
DC-1 'I= i' + I 2®' + *. + p V 1 + 1'

1

V V
DCf' = pml4 n + 2 + + pmv m g + M mg

m

48

(4-28)

a

Here, m is the number of independent measurements (it is assumed that

there are m event vectors, so that D is fully specified). The eigen-

values ' assigned to [0-DC] are related to the continuous-time X's by

X' = exp(X.At)

In the next section a simpler version of (4-28) is derived.
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4.2 A CONCISE APPROACH TO DETECTION FILTER DESIGN

For the F100 engine a single detection filter is sufficient to cover

failures of all sensors and actuators and of several engine components.

When the reference model is constructed in the proper form, the design

of the filter is straightforward and uncomplicated. Just one filter is

needed because the system is well measured--the engine's controller

requires direct measurement of all of the state variables associated

with the important dynamics of the engine. Therefore, the reference

model in the filter has nearly as many measurements as state variables.

This circumstance allows a considerable simplification in the procedure

for designing the filter.

Since complex systems frequently do require many measurements for

good control, the design method for the F100 detection filter may be

widely applicable. For this reason, the method is detailed in this sec-

tion in general terms; d rect application to the F100 is deferred to

Chapter 5.

4.2.1 Refining the Model

We assume that a discrete-time model has been constructed as specified

in Section 4.1. Also, we require that the measurements be independent,

that is, that the rows of C be linearly independent. We have, then, a

model in the form of (4-2):

~k~l= ox + ru
k+ -k -k

(4-2)

Xk+l = Ck+1

It is desirable to simplify this model by transforming the state

vector so that y equals the first m state variables. That is, we would

like C to be [I:01, where I is the m x m identity matrix and 0 repre-

sents an m x (n-m) matrix of zeros. Provided the measurements are inde-

pendent, this tranformation can always be accomplished. Let T denote
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the transformation matrix--it must be square and nonsingular--and let x'

be the new state vector. The transformation has the form

x = Tx (4-30a)

When substituted into (4-2),

-k+ 1

this gives us

ST(T_ 
2~ + TFu

-=k

= CT~ 1

If we let

C
T = (4-31)

with W any (n-m) x m matrix that makes all the rows of T linearly inde-

pendent, then

CT = [I:0]

as desired. Accordingly, we define three new matrices C', F', and C':

V' = T (T~ I

I, ' = TF (4-32)

C' = CT~ = [I:01

4
Equations (4-30b) then become

+1
-+ u

I C ' I
Xk+ = C +1

a
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Let us now partition x', and F' into sections of dimension m
and n-m:

X1' (m)
x'

x2' (n-m)

ED i 12'
=' = (4-34)

'21 '22'

With this partitioning, we have

. ~ Xl' 1 (4-35)

The remainder of the state vector, x2', is composed of arbitrary combi-

nations of the original state variables, combinations that result from

the W used in (4-31).

The choice for W can be used to simplify the model further. The

submatrices D21' and D22' depend only on W and D; C has no effect on

them. If the rows of W are chosen to be certain rows of the inverse of

the matrix whose columns are the eigenvectors of the original 0, then

021' will be all zeros and D22' will be diagonal. 5 That this is true can

be seen by considering the.transformation defined by a T matrix consist-

ing of the entire inverse of the eigenvector matrix. This would trans-

form (4-2) into

5This statement might not be strictly valid if D has repeated eigen-
values and does not have a full complement of n distinct eigenvectors;
but in practice, very few systems need be modeled with such a 0 matrix.
In the event that this is the case, however, 021' can still be made
zero, and 02 2' can at least be made nearly diagonal, in what is called
Jordan form. This is discussed in Hildebrand [22] and in Kwakernaak
and Sivan [26].
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+1 Az + '"u

(4-36)

-k+1 = C1-Ek+1

where A is a diagonal matrix comprising the eigenvalues of D. Appropri-

ate rows of the inverse eigenvector matrix to use for W are those cor- }

responding to the modes of the system that least involve the state vari-

ables that Y most depends on. In other words, they are the n-m rows

that are least like the rows of C.

Let these rows be denoted w1, --- -m; then

wli

x2' = Wx = . x (4-37)

w0

-n-m

This makes x2' consist of n-m of the variables in z. One or more of the

w. 's could be complex, in which case x2' would not be real. To avoid

this, when one of the w 's is complex we require the other member of the

complex pair also be one of the w.'s. Supposing that such a pair is wj
and Wj+1, we replace these rows of W with

w' 1/2 (w. + w. ) = Re(w.)
-j -J -j+1 J

(4-38)
-. -1/2i(w. - w. ) = Im(w.)

-j+1 -J -j+1

When this is done with each complex pair, all elements of x2' and 4)22'

will be real. The structure of 022' will now be block diagonal, with

the real parts of the eigenvalues as the diagonal elements and the imag-

inary parts as the immediately adjacent elements.
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In summary, with T given by (4-31) and W chosen as just described,

we have

'D 1' i D12'
= [::(4-39)

L0 (D22 J

where 02' is diagonal or block diagonal. An obvious benefit of this

simplification is a reduction in the computation required in running the

model. Another benefit, one that will not be apparent until the conclu-

sion of the next subsection, is that a filter based on (4-39) can have

all sensor failures included in the set of failures it is designed for,

without increased complexity.

4.2.2 Detection Filter Design

We assume that a model of the system has been prepared with the state

vector chosen so that y equals x1 ', as described above. For the moment,

however, we do not specify any particular choice of variables for x2 -

For notational convenience, the primes are now dropped, and the model is

written as

+ P u
-k

(4-40)

.Zk+1 [1I: 0 ] x-k+1

With the state vector partitioned appropriately, (4-40) becomes

X1 Oil 'D12 X1 rl
= + u(4-41)

_2 k+l (D[2 D2] x2 k [2

=k+I -k+l (4-42)
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As stated in Section 4.1, the filter will have the form

A A A
+ Y + rt + D( -

(4-43)
A [,OA

4-k+1 [I:0]x-k+1

The dynamic behavior of the state difference vector q and of the

residual vector r is given by the difference between (4-40) and (4-43):

k+ [0 - DC]q (4-44a)

4+1 [I: 0 Igk+l (4-44b)

In (4-44a), C is written in place of [I:0] to shorten the notation. The

principal task in making the filter (4-42) be a detection filter is

developing an expression that specifies D appropriately. First, the

event vectors must be determined for the components the filter is to

monitor.

Detection filters can only be constructed for failures that can be

modeled in (4-40) by a single additive vector of fixed direction. (The

magnitude of the vector may vary in any manner whatever.) This restric-

tion does not usually inhibit the use of detection filters; most actua-

tor and sensor failures, and many failures of other system components as

well, can be characterized in this manner. Sections 2.3 and 4.1

together describe how to determine the event vectors characteristic of

various failures. In determining an expression for the feedback matrix

D, the failures we shall consider first are those described by the input

failure model, (4-21). As shown in (4-24), they affect r through an

additive term in (4-44a):

S[k+ [ DC + nk -

(4-45)

+1 = k+1

-104-

0



The prime on the f' in (4-24) has been dropped; f now denotes a dis-

crete-time event vector. After the event vectors have been identified,

we choose from them m vectors--as many as there are measurements in

y--whose failure directions, [I:0]fi, are linearly independent and are

as well separated as possible.6 These vectors are made the columns of an

n x m matrix F:

F = [fl : f2 : : fm] (4-46)

Then F is partitioned in the same manner x is:

F1 1 1 12 f lm (M)

F == : : goo : (4-47)
F2 21 f2 2  2m (n-m)

The columns of the square matrix F, are the failure directions (I:Of-.
These were required to be independent so that F, would be invertible.

The function of a detection filter is the generation of a continu-

ing sequence of residual vectors in which the failure signature of any

component whose event vector is one of f1 , n. fm is a sequence of vectors

all lying in a single, specific direction. That direction is the direc-

tion of the column of F1 that is associated with the particular compo-

nent. The feedback matrix D can be obtained by working directly from

6 One consequence of this condition, though not the primary one, is that
any vector whose product with [I:0] is zero is excluded from considera-
tion. With sampled-data systems such vectors are rare. Even if a sys-
tem has a failure that would with a continuous-time reference model
have an event vector with this property, when the model and the vector
are integrated to their discrete-time equivalents, the vector always
acquires components directly affecting x1 (and y). (This is true
because we only consider models that are completely observable.) On
the other hand, these components of the vector may be so small the
event vector is effectively excluded anyway. Also, some sampled-data
systems might possibly have failures unique to themselves that have
event vectors with no direct projection to y. If necessary, any vector
for which [I:0]f is zero can in fact be included, but doing so requires
the procedures given in Chapter 2.
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this statement of the desired behavior of the filter. Suppose the i'th

component--the component with event vector f.--fails at the k'th sam-

pling time after a period of normal operation during which the filter

residual has been zero. Then, according to (4-45), the residual at time

k+i is nklli, regardless of what D is. But _k+1 equals nk,, so for

r also to be in the direction of fl., D must be suitably chosen. For
-k+1 -

our purposes here, the best choice--sometimes the only choice--is the

one that makes f. an eigenvector of [L-DC]:

- DClf. = i.f. (4-48)

The eigenvalue X. may be any number between zero and one, this being the

range of values for which the filter would be stable and well-behaved.

If (4-48) is satisfied, not only r k, but all subsequent r's will lie

in the direction of fl.. Consequently, (4-48) is the condition on D for

the filter to be a detection filter for the i'th component.

Similarly, for each of the other m-i components of concern, choose

D to satisfy (4-48). Collected together, all the resulting vector equa-

tions form a single matrix equation:

[0 - DCIF = FA (4-49)

The matrix A is an m x m diagonal matrix of the X.'s. Equation (4-49)
1

represents mn linear equations in the mn elements of D. Because CF

equals F 1 , we obtain

DF 1  = -FA + OF (4-50)

Since Fi is nonsingular, a unique solution for D exists.

By proceeding a few steps further, we can gain some insight into the

nature of a detection filter. Partition D as we have previously parti-

tioned D and F:
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Di (i)

D = (4-51)
D2j (n-m)

Then rewrite (4-50) as

Di F, ID 1 i '12 F1
F1  = - A + (4-52)

D 2  F2  [D21 '22  F2

From (4-52), we obtain two equations, one each for Di and D2 :

D1 = -FjAFj 1 + Oli + $12F2F~~ (4-53a)

D2 = -F2AFI + D21 + cD 2 2 F 2 F 1- (4-53b)

An important simplification results from assigning the same value to all

the X 's. This gives

A =

and Equations (4-53) become

Di = D11 - XI + 012F2Fl1 (4-54a)

D2 = 021 + (02 2-XI)F 2Fj
1  (4-54b)

A block diagram of a filter constructed with D 1 and D 2 as given by

(4-54) is shown in Figure 4.1. A noteworthy feature of this filter is

that because r contains -y (which is -x1 ), the terms 0 11r and D2 1r in
A A

the outer loop cancel 4hlixj and 021xl in the inner loop and replace them

with Oliy and (21Y.. In effect, the reference model operates with 2l

replaced by xj: the measured values of the real state variables drive

the dynamics of the model's state variables. In Figure 4.2, the block

diagram of Figure 4.1 is redrawn to show the result of this

cancellation. Except for the terms containing F 2F , this decouples
A

the variables in xji.
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Figure 4.1. A discrete-time detection filter with partitioned state vector.
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Figure 4.2. Detection filter with cancelled terms.
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The filter designed for the air-turbine example in Section 2.2 is
A

similar. There the system is fully measured, and x, is the entire state

vector. Each dynamic section of the reference model is decoupled from

the others, which prevents the residual created by a failure in one

section of the system from affecting any but the corresponding section

of the model. The other sections of the model, driven by the

measurements from the system, respond to the failure exactly the same as

the unfailed parts of the system do. Here, the concept is similar, but

the unmeasured state variables complicate the decoupling. The

1 -1
additional terms I'12F 2F 1 r and [02 2-XI]F 2F 1 r are necessary to

-16
complete it. Each of the m elements of the vector FlI r corresponds to

one of the components the filter is designed for. When a single

component fails, only one element of Fl 1 r becomes nonzero; the

magnitude of the element indicates the severity of the failure. Through

the matrices 012F2 and [0 2 2-XI]F2, this information about the failure is

introduced into the model to make the model respond to the failure just

as the real system does. The failure signature is thereby prevented

from coupling into the other elements of F 1 r.

The term XI in DI does not contribute to the decoupling; it is a

diagonal matrix and only feeds each element of r back to the
A

corresponding element of x1 . The value selected for X becomes m of the

eigenvalues of [0-DC], and as such it strongly influences the behavior

of the filter. It should be between zero and one, otherwise the filter

will be oscillatory or unstable. Within this range, the smaller X is,

the smaller is any residual caused by a failure or some other persistent

disturbance, and the sooner the residual decays to zero if the

disturbance vanishes. High-frequency sensor noise enters the residual

with relatively little attentuation, so X must not be so near zero that

any important failure signatures are attenuated so much they become

masked by the noise. We have no general way to determine what value of

X is best for a given application, but experience so far shows that good

performance is obtained when X is chosen to make the filter somewhat
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faster than the important modes of the real system. This strikes a

reasonable balance between the signal-to-noise ratio and the decay rate

of the effects of momentary disturbances. An additional consideration

when the filter is implemented in a sampled-data system is that X should

not be so small that the time constant of the filter is nearly as small

as the measurement sampling interval.

The remaining n-M eigenvalues of [0-DCI also affect the performance

of the filter. Unfortunately, there is no guarantee that these will be

such that the filter is stable. They depend on both 0 and F, but not on

A. If necessary, one can alter them by replacing some of the columns of

F with other event vectors or by changing the system model so the

failures can be modeled differently.9 It is always possible to stabilize

an unstable filter, but that requires excluding certain event vectors

from F. For instance, if the event vectors can be chosen such that F 2

is all zeros, then the remaining eigenvalues will be the eigenvalues of

'22- These are likely to be suitable, but if they are not, one can

alter them by changing the choice of variables in x 2 - When, for

example, the variables are chosen to make 021 zero and 022 diagonal, the

eigenvalues are the same as some of the ones of the real system, and

should the system itself have unstable modes, they probably would be

included in 011, not 022, this because unstable modes must be stabilized

by the controller, and that frequently requires measurement of the state

variables responsible for the instability.

Sensor failures that are modeled by the measurement failure model,

(4-25), are different than the failures for which (4-54) was developed.

To accommodate them in the design of the filter, we introduce the concept

7This guideline is the same as that frequently used with linear
observers [30].

8To calculate these eigenvalues, one need not work from [D-DC] directly.
Using (2-4j) one can show that they are the eigenvalues of

[022-F2FI ].

A third--and more complicated--alternative is augmentation of the
reference model, as described in Section 2.4.6.
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called output stationarity. Although we shall use it specifically for

sensor failures, it is generally applicable to other failures too. An

event vector is, by definition, output stationary with the event vectors

in F if its failure signature is unidirectional just as the signatures

of those vectors are. Suppose h is an event vector to be tested for

output stationarity. Looking back at (4-48), we see that a failure of

the component for which h is the event vector will create residual

vectors lying along Ch if

[( - DC]h = Xh (4-55)

This equation will be true when h is a linear combination of f1 , **fm'

the columns of F. To prove this, write

m0
h = a.f. (4-56)

and then expand [$-DC~h:

m
- DClh = [- DC] i f

i=1

m
= 1 a.[D - DC]f

i=l -

m

i=1

- h

Thus, when we use (4-54) to determine a detection filter for fl,*** f,

the filter is also a detection filter for all linear combinations of

fl,*** fm--any such event vector will be output stationary.

When discussing sensor failures in Section 4.1, we noted that the

residual created by a failure of sensor j will lie in the plane defined

by e. and d1 . (the j'th column of DI) if the filter is a detection
-J -1J
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filter for d . This will be true whenever d. is output stationary, that

is, whenever (4-55) is satisfied with h equal to d . Normally, d would

be output stationary only by coincidence, but one can in fact design a

filter in a way which guarantees that d., and every other column of D as

well, will be output stationary. This requires choosing the reference

model and the event vectors so that all the elements of (21 and F 2 are

either zero or negligibly small. Then (4-54) reduces to

D, 0= i - XI
(4-57)

D2 = 0

This removes the explicit dependence on the event vectors, so with this

filter, any vector in the xj partition of the state space--any vector f

with all zero elements in f2--has a unidirectional residual. And since

D 2 is zero, all the d.'s fit that description. The failure signature of

each sensor will lie solely in a plane uniquely associated with the

sensor.

This property is a useful one--a filter designed directly from

(4-57) would be suitable for any application where sensor failures are

the most important consideration or where none of the important actuator

or component failures have event vectors with significant f2 components.

The only additional consideration is simply that D21 be zero, which can

be achieved by the method advocated in Section 4.2.1. Figure 4.3

illustrates the relatively simple structure of this type of detection

filter.

4.2.3 Summary

With the reference model constructed in the form

x.1 1Di I (12 X1~ (m) r IL~] lE 1k+ L u1
X_ k+1 - 21 022 x2- k (n-m) _F2. (4-41)

-k+1 k+1 (4-42)
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and m event vectors collected into
F1

F =

-F2_

(with F1 nonsingular), the solution for D is

D1= 011 - XI + '12F2F1j

D 2 = 021 + (022 - XI)F 2Fj 1

If one does not wish to assign the same value X to m of the eigenvalues

of [0-DC], the form of the solution given in (4-53) can be used.

If the filter is to cover sensor failures, design the reference

model so 021 is zero and use D as given by

D1 = 011 - XI
(4-57)

D2 = 0

Equation (4-57) is the expression used to design the detection filter

for the F100.

4.3 FAILURE IDENTIFICATION

The failure signatures produced by detection filters are amenable to

simple diagnostic techniques. As with any type of detection system

using a reference model, appearance of a residual with a magnitude

greater than some threshold signals a failure. Various statistical

tests, many of which involve summation of successive residuals, can be

used to minimize the number of false detections caused by measurement

noise and modeling errors. But the special property of detection fil-

ters is not their ability to detect failures, rather it is generation of

easily recognized failure signatures that are unique for each of many

different components.

These signatures are, of course, the unidirectional residuals of

input failures and the planar residuals of measurement failures. After
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a filter has been designed, there remains the task of implementing some

procedure for analyzing the filter residuals. The technique described 0

here was developed for the filters used on the simulation of the F100

engine. With those filters, the number of failure directions and

failure planes is considerably greater than the number of measurements.

This means the residual vector cannot be resolved uniquely into compo-

nents along each of the directions of concern, as it could be if the

number of directions equalled the number of measurements. This results

from using (4-57) to design the filter, because that creates two dis-

tinct directions for each sensor while also giving most of the other

components specific failure directions.

At first, this situation may seem undesirable, but actually it is

not, for this allows use of a single filter and a single identification

algorithm. It is then easy to predict how one failure will affect the

identification logic for each of the other possible failures. Should

the identification task be divided among several filters, determining

what effect any particular failure would have on the filters that were

not designed for it would be more difficult. Consequently, a single

failure might well generate indications of several. When a single iden-

tification procedure is used, simple precautions can prevent that.

Also, it is readily apparent from the relative closeness of failure

directions which failures are particularly difficult to discriminate

between, so one can foretell which failure signatures are likely to be

ambiguous.

4.3.1 Unidrectional Signatures

We shall first develop the identification procedure for unidirectional

signatures. That procedure will then be extended to cover the more com-

plicated planar signatures. The information available from a detection

filter can be separated essentially into three pieces:

1. The magnitude of the residual vector.

2. The direction of the residual vector.

3. The directions of each of the possible failure signatures.
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The first two are computed each sampling interval; the third is computed

and stored when the filter is designed. Only the first is required for

failure detection. Identification requires all the information. The

identification procedure presented here works best when only one failure

occurs at a time. It is designed, however, so that should simultaneous

failures occur, proper identification is possible, though not certain.

In general, such an approach covers all of the more probable situations

without becoming unduly complex.

Figure 4.4 shows a two-dimensional residual space with three fail-

ure directions. The system has two sensors (1 and 2), and there are

three components (a, b, and c) to be monitored. The unit basis vectors

of the space are el and 2. The vectors va' b' c are the failure vec-

tors Cfa, ' b, and Cf normalized to length one. A large bias in com-

ponent a, coupled with some modeling error, might produce a residual

such as indicated by r. After the magnitude of r (to be written as jrj)

is computed, the cosines of the angles Oa' 0 b and 6C between r and the

three failure directions can be found by taking the dot products of the

v's with r and using the relation

rv = r v cose = frcose (4-58)

In Figure 4.4 the residual shown is closest to v a, and cosO ais the closest

either to 1 or to -1. We would like a single number that measures

both the severity of the failure and the likelihood the failure is actu-

ally in component a. We could use the dot product r va directly, but

cosO is a broadly peaked function and is thus not very selective of

residual direction. A better measure--and one that is still easily cal-

culated--is cosN6alri, where N is some positive even integer. Let us

denote this measure as FSa--the "failure signal" for component a:

FS = s cos N6Ir (4-59)a a al-

The symbol sa denotes the sign of FSa and is equal to the sign of cosOa-

Thus we attribute to the direction v the fraction of Ir specified by
-a
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the weighting function cosNoa. The value of N is a design parameter

that determines the selectivity of this process. Larger values prevent

identification of any component as failed unless the residual vector is

very near a failure direction, which reduces the likelihood of making a

false identification and increases the likelihood of missing a failure.

COSNO is graphed in Figure 4.5 for several values of N.

We do not wish to ignore the possibility of simultaneous failures

or of unidentifiable failures, so we also compute failure signals for

the other failure directions--otherwise we would be unaware of the

relative closeness of r to the other failure directions. We begin the

calculation of FSb and FSc just as FSa was calculated, namely, with

FSb = sbcosbN bl

FS = s cOSN rc scc ~cLr

But by this measure alone, even when r lies exactly along vy--indicating

with virtual certainty that component a, and it alone has failed--there

will be an indication, albeit a smaller one, that component b has

failed. So, after the closest v is found, it is desirable to weight the

projections of r onto the other v's in a way that reflects the knowledge

of how close r is to that first v. A weighting that does this is

N1 - cos 6
a Ni

FS = sb N cosb Irl (4-60)

1 - cos b

1 - cosNg
a N 6 1FS s - cosN c r- (4-61)

COS

If r lies along v , then FS = Iri, and FS and FS are both zero.
-- e a i-i b c

Conversely, if r lies near the bisector of v and v, then FS = FSb.
-a -b' a
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Figure 4.4.

Ya

r
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Figure 4.5. Plots of cosN 0 for several values of N.
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a

Thus, simultaneous failures of components a and b of comparable effects

will produce equally large FS's for a and b. Should a and b fail

simultaneously, with comparable type and size of malfunction, then FSa

and FSb will be roughly equal. (This measure is not, however, complex

enough to make FSa and FSb proportional to the magnitudes of the

respective failures, whatever the relative magnitudes of those

concurrent failures are.)

4.3.2 Planar Signatures

To test for a sensor failure that produces a residual constrained to a

plane, we calculate a measure of the proximity of r to the expected pla-

nar signature. As demonstrated in Sections 2.4 and 4.2, a failure of

the j'th sensor yields a residual that lies in the plane spanned by ej

and Cdj. A closer analysis of the behavior of that residual reveals,

moreover, that in most circumstances the residual stays within just a

segment of that plane. This allows the identification algorithm to be

more selective; a residual lying in the plane but not in the appropriate

segment need not be construed as an indication of a sensor failure.

This is especially useful if one or more other failure directions lie

near the plane.

Consider the behavior of r when the output of sensor j suddenly

becomes biased as shown in Figure 4.6. Initially, the residual is

r = Ay.e. (4-62)

It then moves across the plane along the trajectory described by

k+1 = [(D - DC]q - Ay d

(4-63)

k+l Cq+l + 1,ye
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This result is the difference between (4-2) and (4-26), per the

definitions of q and r. The rate r moves is determined by the value

assigned to X in (4-57) when the filter is designed. Eventually, it

settles to a specific vector, which is found by setting k+1 equal to

= [ - DCII 5 - Ay.d.

or

= -Ay.[I - @ + DCF 1d. (4-64)

The filter is stable, so a solution for s exists. The steady-state

residual is then

r = -Ay.C[I - ( + DC]I d. + Ay.e. (4-65)
-s s -1 -J J1-J

Let v. denote the vector [e. - C[I- -+DC]~ d.] normalized to length one.

As shown in Figure 4.7, after the onset of the bias, the trajectory of r

is from e. to v.. Thus a positive bias is evidenced by residuals lying
-J -J

solely in the plane segment between e. and v., counter-clockwise from e.

as drawn in the figure. Similarly, a negative bias produces residuals

bounded by -e. and -v..

The residuals caused by any sensor failure characterized by Ay.

steadily increasing or steadily decreasing will also be constrained in

the same manner. Only a fluctuating sensor output can drive r outside

that region of the plane. Even so, if the fluctuations are relatively

fast and have zero mean value, the residual will tend to stay along the

e. axis. Overall, a procedure that identifies sensor failures by

looking just between e . and v., and between -e . and -v., should work

well.

The relation for rss given in (4-65) can be simplified when the

filter is designed from Equation (4-57). Specifically, when

-121-



4

yj

t 0TIME

Figure 4.6. Bias suddenly appearing in the output of the j'th sensor.
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Figure 4.7. Trajectory of the residual vector caused by the biased-sensor.

1

-122--

a



1 l1 D1 2
= I (4-66)
L0  22

C = [1: 01 (4-67)

D = (4-68)
0

we have

[I - D + DC]~ ( (-A )I -012 j

0 I-[22_

(1-X) I (1-X)- 112[I~ 221

0 [I-D221 ]
and (4-69)

d. = ~- (4-70)
-J 0

where $. is the j'th column of 011. Substitution of these results into
-J

(4-65) yields

e. -

r = ~ -73 Ay. (4-71)
-ss X

Thus the vector vI becomes simply [e- ] normalized to length one.

The next step is calculation of the cosine of the angle between r

and the closer of the two plane segments bounded by e. and v . Let r'

be the orthogonal projection of r onto the whole plane spanned by e and

v . Figure 4.8a shows a situation in which r* lies between e. and v.

We can write r' as a linear combination of and v

r = ace. + f v. (4-72)
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Taking the dot products of r* with e. and v., we obtain
- -J -

r 0-e. = ae.-e. + 3v.-e. (4-73)
-- J -] -J -j -]

r 0 v. = ae .-v. + v. -v. (4-74)
- -J -i -i -J -j

We have that

ee = vv = 1

and it can be shown that

r *e = r-e

(4-75)
r*v. = rv.

Now, let

r. = r-e
J - j

(4-76)
v. v.e.

Then, solving for a and 3 yields

r. - (r-v.)v.
a = 2 ) (4-79)

(1 - .

r-v - rv
J 

= (4-80)

v2(1 - v.)

The magnitude of r* is given by

rI= [(ae. + nv.) - (ae. + v.)I1/2

= [t2 + 2 + 2a~v]1/2 (4-81)

Let us consider separately the three configurations of r*, e., and v.
-J -J

sketched in Figure 4.8:

a) Figure 4.8a and its complement (the direction of ro
reversed)--the sign of a is the same as the sign of 3. Define
a scalar number r as
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r = Iri = (a2 + 2 + 2a~v.)1/2
p I-I

The sign chosen for rp is the sign of a and .

b) Figure 4.8b and its complement--the signs of a and are

opposite, and 6 > . Define rp by

r = rv

c) Figure 4.8c and its complement--the signs of a and a are

opposite, and 0 _< la Define r by

r = re =r

In sum, the definition of r is

2 2 1/2(a2 + + 2a~v.) , sign(a) = sign(a)

r (a+rev } sign(a) * sign() Jal (4-82)

r- e <a

This number can be thought of as the "dot product" of r with the plane

segment [e. v.1 (this notation means the segments between ej and vi and

between -e and -v that r would traverse). We shall use it in the same

manner we used the dot product of r with the vector failure directions.

The cosine of the angle 0. between r and [e,v ] is calculated from

r = [ricose . (4-83)

To find which failure direction r is closest to, we look among all the

cosO's from both (4-58) and (4-83) for the one closest to 1. Then the

failure signals are calculated exactly as before, for both the vector

directions and the plane segments. Continuing the example of Sec-

tion 4.3.1, suppose Gi were the smallest of Oa, eb, Oc, G1, and 02. The

failure signals for [el,v1] and v would be
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FS, = si Cos N0a Ir (4-84)

FS = s I - Cos 6 csNC r (4-85)a a 1- N al-I
1 - Cos e.a

Conversely, if r were closest to vi, as before, then we would have

FS1  = si 1 No a Cos I (4-86)
1 - Cos N61 CO

FS = s cosNo i|r (4-87)
a a al-i

In summary, rp plays the same role for measurement failures as r-v does

for input failures.

With the FS's, one can implement independent detection tests for

failures of each component. In general, any component for which the FS

gets too large would be declared failed. Conceivably, jrf could be

large enough to indicate a failure without any of the FS's being large

enough to do so, in which case an undiagnosed failure would be declared.

Similarly, a large fri coupled with a highly unlikely combination of

FS's, all notably smaller than frl, would also indicate an undiagnosed

failure. In both instances, the failure.would probably be one for which

the detection filter is not designed. Sometimes, though, modeling

errors or simultaneous failures could disguise the signature of a failure

for which the filter is designed. On the other hand, a large Ir
coupled with a predictable combination of FS's might be interpreted as

an indication of concurrent failures of two or more components.

The matter of how to decide when a scalar measure is large enough

to indicate a failure is discussed in detail in the literature and will

not be elaborated on here (see, for instance, Van Trees [481). In a

relatively noise-free environment, a simple threshold test may be ade-

quate. When sensor noise is bothersome, a more sophisticated, integra-

tive technique is needed. One relatively simple technique is the

sequential probability ratio test as modified by Chien [121 and Deckert

et al [13].
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4.3.3 Scaling

Detection filters do not produce residuals of equal magnitude for simi-

lar failures of different components, even when the reference model and

the measurements have been nondimensionalized. This is a result of the

variation in the magnitudes of the event vectors and of the columns of

D. We can compensate for this, but first we must clarify the meaning of

"comparable failures." We require at the outset that all the variables

in x, y, and u be normalized so they range in value from zero to one

over the normal operating range of the system. This not only makes the

values of the variables comparable, it also makes the magnitude of the

residual a meaningful number. (Furthermore, the reference model becomes

easier to understand and to implement.) Now, with this done, we define

the magnitude of a failure to be the value of nk in the input failure

model (4-21) or in the measurement failure model (4-25). In other

words, it is the deviation of a component's output from its nominal

value, relative to its normal range. We should like each failure signal

to equal in magnitude any failure of the corresponding component, if not

always when the magnitude is varying, then at least when it is steady.

As usual, let us consider first those failures modeled by the input

failure model. For convenience, we take as a sample failure a steady

bias in the i'th input. The magnitude of the failure is written as Aui.

The event vector is the i'th column of r, denoted by Yi. From (4-45),

the response of the filter to the bias is given by

q+ = [G- DC] + Au Y

(4-88)

.Ek+ 1 =C-k+ I

In steady state, r becomes

r = C[I - 0 + DC] 1y.Au. (4-89)

When the filter is designed according to Equation (4-57), the relation

for [I-4+DC]- given in (4-69) is valid, and (4-89) reduces to:
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r = 1 : D12I-D221 }1 Y.Au. (4-90)
-ss 1 - A -i 1

Partitioning F as x was partitioned, we may write it as

S.111 ILI2 1k

= [j = [ : :12 -- :(4-91)

Lr2J L 1 21 I22 12j

The i'th column is then expressible as

= [ j (4-92)

.2.
L IJ

To be consistent with the use of (4-57) and (4-69) in obtaining (4-90),

we assume Y2j is negligible. From (4-90), we see that this does not

necessarily mean that the elements of .2, are small compared to those

of yl,, but rather that +12[1I- 22 P1 Y21 is small compared to yi . With

this so, we have

Y1 .
r - 1-A Au. (4-93)

Previously, for the event vector fa we defined va to be Cf a normal-

ized to length one; here, let vi be Y1. normalized to length one (note

that Yi is Cy.). For the hypothesized bias failure, r begins at zero

and simply grows in the direction of v until its magnitude is fYijAu1 .

The failure signal as defined in Section 4.3.1 becomes

1 - cosNO .
FS. = . N c n cos ._ r (4-94)

1 - Cos 6

When there are no disturbances or errors, cosNei and cosN min equal 1,

and

FS. - 1-A Au. (4-95)
1 1
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To compensate for the term in front of Aui, we define a scaling factor

Ki as follows:

Ki = - 1 (4-96)

and we redefine the failure signal to be

FS. = s.w.(1 + w.K.) Ir (4-97)

where for notational simplicity, the angle-dependent weighting function

is represented by wi:

N
1 - cos 0

Min Cos N (4-98)

1 - cos 0.
I9

The failure signal now has the desired magnitude, Aui, when r is steady

and lies exactly along v . The scaling factor is weighted by w to make

its effectiveness dependent on how likely it appears that component i is

causing r. It is possible for Ki to be considerably greater than one,

in which case if it were not itself weighted by wi, it would tend to

cancel the desired overall attenuation by wi.

We proceed now to the more difficult task of scaling the failure

signals for the sensors with planar failure signatures. Consider again

the sudden appearance of a bias in sensor j. From (4-71) we know that

in steady state the residual becomes

[e.- ]0
r = -J - Ay. (4-71)
-ss 1 - X

When the bias first occurs, however, the residual is

r = Ay.e. (4-99)

- J~-J

0
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The magnitude of r changes from Ay.--the desired value for FS --to
J J

[le.- .i/(1-X)IAyj, so we cannot simply scale FS. by a constant factor.

We must instead vary the scaling according to where r is in relation to

[e ,v 1. In (4-82), the value of r was defined in three parts; simi-

larly, the scaling factor K. will be defined in parts, for the same

three cases. This requires the coefficients a and 3 used previously, so

for reference, Equations (4-72), (4-79), and (4-80) describing the

orthogonal projection of r onto the plane spanned by e and e- are

rewritten here:

r = ae. + jv.
- -J -J

r - (r-v )v

v ii2
(1 -v.)

(r-v.) - r.v.

S = ~ 2 33
(1 - v2)

(4-100)

(4-101)

(4-102)

We would like to define Kj SO

by

FS.
J

will equal Ayj when cosO. is

factor, defined by

that the failure signal for sensor j given

(4-103)= s.w.(1 + W.K.) Ir
II J JJ

1. To this end, let P be another scale

p . i
-j -j

Now we define Kj by

a2 + W)2

2 2
(a + 30

K. p.-

0

+ 2apfv.)1/2
+

" 2a.1v.)1i/2
J

1

- 1, sign(a)=sign()

} sI >{ (4-105)

sign(a)#sign(O)
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The first part of this definition is illustrated in Figure 4.9. Part a

of the figure is similar to Figure 4.8a; part b shows the effect of

multiplying by p. The vector r*' is the vector whose projection onto

the plane spanned by e. and v. is r' and whose angle to that plane is
-J -J -

6., the same angle r makes.

With Kj defined as in (4-105), we obtain the desired result, namely

that whenever wj equals 1, Equation (4-103) reduces to

FS. = Ay. (4-106)
.1 3

4.3.4 Summary

The identification procedure presented in this section consists mainly

of the calculation at each sampling time of a scalar quantity associated

with each component. These scalars are well-suited to any of several

deterministic or statistical tests for deciding whether one, or more, is

large enough to indicate a failure.

The scalars are defined by

FS. = s.w.(1 + w.K.) Irl (4-97)

with

1 - cosNO. .

w. = mn cos N6. (4-108)
1 cosN1I

The cosines are calculated from (4-58) for unidirectional failure vec-

tors and from (4-83) for plane segments:

r-v. = r cose. (4-58)

r = r cose. (4-83)
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Figure 4.9. Scaling the failure signature of a sensor.
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The sign of FSi, si, is the sign of cosei. The number N is any positive

even integer, chosen to give the calculations the desired selectivity.

The angle Omin is the 6 for which cosE is closest to 1. For unidirec-

tional signatures K is given by

K. . 1 - 1 (4-107)
i 

I 1i

where fji is frequently j . For planar signatures, K is given by the

lengthier expression in (4-105).

6
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Chapter V

APPLICATION TO THE F100 ENGINE

The motivation for the analytical discussion just completed is the need

for methods of failure detection, identification, and accommodation suit-

able for use in the controllers of modern aircraft turbine engines.

One important way of increasing the performance, the overall efficiency,

and the life of these engines is to use sophisticated control laws

implemented in versatile and economical microprocessors. But such con-

trol requires measurement of many pressures, temperatures, and rotor

speeds and requires precise regulation of fuel flow and of the positions

of the fan vanes, compressor vanes, and exhaust nozzle; each sensor and

actuator incorporated in the system to fulfill these needs might at some

time malfunction. The more of them there are, the more likely that one

will fail. But on the other hand, with many of them, when one does

fails sufficient capability remains to run the engine satisfactorily,

provided the controller does not act blindly on the basis of a false

measurement or does not expect an inoperative actuator to move. When it

knows a component has failed, it can adapt its operation to keep the

engine running properly, though perhaps not with full performance.

The aim of this research was to evaluate the ability of a detection

filter to detect and identify failures of most engine parts of concern--

sensors, actuators, compressors, and turbines., Specifically excluded

is the controller itself, for its microprocessors will do the calcula-

tions that constitute the filter. For the purposes of this study, it

has been assumed that the microcomputer controller will be made reliable

by other fault-accommodation techniques appropriate to it.
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5.1 THE F100 ENGINE

The testbed chosen for the evaluation of the detection filter concept is

a nonlinear dynamic simulation of the Pratt and Whitney F100-PW-100(3)

military engine. The Pratt and Whitney Company has provided the digital

simulation that that company and others have used to test new control

techniques. The F100 powers the McDonnell-Douglas F15 Eagle and the

General Dynamics F-16 Falcon and is currently the most advanced engine

in production. It is a two-spool, low-bypass-ratio turbofan with a mixed-

flow afterburner. Maximum thrust is between 25,000 and 30,000

pounds, roughly eight times its weight. The F100 is shown in Figure 5.1

with the major components labeled. Figure 5.2 shows the locations of

the control measurements and inputs and of the station numbers used in

the notation. The variables shown are described in Table 5.1.

The F100's control system is primarily hydromechanical, but it has

an electronic supervisory unit that performs some of the logic and trims

the engine for more precise operation. The F100-PW-100(3) simulation

incorporates a representation of this control system. The detection

filter designed for the engine is of course intended for use with an

electronic controller, but its performance depends little, if any, on

the control law actually used, so the simulation as it is provides a

suitable test of the filter. Pratt and Whitney is developing a full-

authority electronic controller for the engine, a controller that will

probably use just one more measurement than the present system. That

measurement is Pt6 and is included in the reference model of the

detection filter. Figure 5.3 shows the general structure of the

electronic control system, with the measurements and control inputs the

system is likely to have. The sensors in this system will be more

accurate and more responsive than the ones in the hydromechanical

system; the sensor models in the simulation have been altered to reflect

this improvement. Also, a model of the Pt6 sensor has been added.

Table 5.2 lists the probable characteristics of the electronic sensors,

including their dominant first-order time constants.
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Figure 5.1. A cut-away view of the F100 turbofan.
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Figure 5.2. Drawing of the F100 showing the measured variables,
the actuators, and the station numbers.
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TABLE 5.1

Control variables.

Measured
Engine Variables

Inlet Conditions

- Fan speed

- Compressor speed

- Burner total pressure
- Augmentor total pressure

- Fan outer discharge
total temperature

- Low pressure turbine
inlet total temperature

P0
Pt2
T t2

- Ambient static pressure

- Fan inlet total pressure
- Fan inlet total temp.

Controlled Inputs

W - Fuel flow, main burner

Wab - Fuel flow, augmentor
A. - Exhaust nozzle area

FIGV - Fan inlet vane angle
CSVA - Compressor vane angle

BLC - Compressor bleed airflow

5.2 CONSIDERATIONS FOR THE DESIGN OF THE FILTER.

Some of the motivation and justification for using an analytical tech-

nique such as the detection filter comes from statistical data on sensors

that have been in service. As the numbers in Table 5.2 indicate, about

90 percent of all sensor failures are hard failures that can be detected

and diagnosed by checking for signals that go out of range or that

change unreasonably rapidly. But recent studies suggest that if goals
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TABLE 5.2

Sensor characteristics.

X__
0

'Range is normal operating range listed in Table A.2.
2 epends on how well the instrumentation can compensate for heat transfer lags.
3The response is best modeled by two parallel first-order lags, one with time constant of .6, the other of 5.5.

0 0 0

Accuracy I Time I Failure rate I Out-of-range I Drift I Noise

Sensor I Type I (7 of rangel) Constant I per mil. hrs.I 7 I % %

Ni I Magnetic I 3 rpm (.04%) .02 sec. I 22 93 1 6

pickup I
N2  I Alternator I 3 rpm (.07%) .02 58 80 10 10

winding I
PtI Vibrating I .02 psi(.09%) .02 18 89 10 1

I cylinder
P Vibrating .4 psi (.077) .035 18 89 10 1

I cylinder I
Pf6 I Vibrating .07 psi (.1%) .02 18 89 10 1

cylinder
Tt2 I Thermocouple 3 R (1%) 0.5-2.02 43 87 10 1

Tt2S Thermocouple 7 R (1%) 0.1-0.52 43 87 12 1

FTIT Thermocouples 12 R (1%) 0.5-6.03 222 20 79 1

A -Resolver - - 25 85 10 5

FIGV Resolver -I - 25 85 10 5

CSVA Resolver -. - 25 85 10 5
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for overall reliability are to be achieved, virtually no single sensor

failure can be allowed to evade detection and identification. 1 Therefore

the fault-accommodation system must be able to isolate the remaining

10 percent of the sensor failures--slow, in-range drifts and excessive

noise. The detection filter concept is a promising approach to meeting

that challenge.

A filter will only be part of the detection system, and there are

many benefits to designing it specifically to complement the rest of the

system. In particular, a filter can be used in conjunction with redun-

dant sensors to greatly enhance identification accuracy. It is likely

that some of the least costly and most failure-prone sensors will be

duplicated--perhaps the two speed sensors and either the Tt2 sensor or

the Tt25 sensor. In that case, only one of each pair is connected to

the detection filter. A mismatch in any pair signals a failure, and

whether or not the filter also signals a failure indicates which member

of the pair is faulty. Subsequently, the filter covers the second mem-

ber of the pair for a possible failure. Common-mode failures of each

pair would also be covered. In principle, when a detection filter is

used, redundant sensors should not be necessary, at least for coverage

of any single sensor failure; but in practice, some redundancy may be

essential, both to enhance coverage of multiple failures and to help the

filter with single failures. Some of the failure directions lie close

enough together that modeling error may prevent consistent identifica-

tion of which of two possible failures has occurred. Wherever potential

ambiguity exists involving a sensor, a redundant sensor would resolve

the problem.

For purposes of modeling sensor behavior, we categorize the sensors

on the engine into two classes: those that measure important dynamics

(viz. N1 , N2 , Pb> Pt6, Tt 25, FTIT) and those that measure inputs (viz.

1The sensor data and reliability studies are presented in the progress
reports of the FAFTEEC Program [31]. Similar sensor data are given
in the monthly reports of the Failure Detection System Program [28].
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Pt2, Tt2, Aj, FIGV, CSVA). 2 The first class is explicitly discussed in

the procedures of the preceding chapters; the second is not. Neverthe-

less, the sensors in the second class come within the purview of the

filter, for the failures of these sensors can be modeled in the same way

as actuator failures. Let us consider first the Pt2 and Tt2 sensors.

The inlet conditions are not freely controllable in the manner the

actuators are, so for purposes of control system design they are not

usually considered as inputs (i.e. they are not included in the input

vector u). But in the reference model for a detection system they

should be. The measurements of Pt2 and Tt2 are essential--the required

fuel flow and the appropriate vane and nozzle positions depend on those

quantities--so it is important to monitor the sensors for malfunction.

With Pt2 and Tt2 included in u, failures of those sensors can be treated

just like actuator failures, and the failure signatures will be unidi-

rectional. Specifically, suppose the i'th element of u represents Pt2

and the sensor is in error by the amount Aui. The input failure model

is applicable, so the error would be modeled by

k+l . + k + Ii Aui

(5-1)

Yk+1 = :0O]2k+1

The event vector is yi, the corresponding column of r.

A general note of clarification is needed here. When modeling

failures in the above manner, we have implicitly considered u to be the

expected inputs to the system--that is, the commanded or measured3 posi-

tions of actuators and the measured values of uncontrolled inputs. When

a failure occurs, one of the elements of u differs from the actual input

to the system, and we add a term to the dynamics equation to depict the

2 See Figure 5.3. Also, fuel flow is not measured because there is no
reliable sensor that is accurate over the full range of flow rates.

3The measured position of an actuator can be used when the dynamics of
the actuator are insignificant and the actuator's output is not made a
state variable. This approach is discussed later in this section.
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difference. In other words, the elements of u are specifically what the

controller believes each input to be either on the basis of a command

issued or a measurement received. This is not entirely consistent with

the original definition of u as the "vector of inputs"--which by impli-

cation meant the actual inputs--but the shift in interpretation should

cause little, if any, difficulty.

The sensors that measure Aj, FIGV, and CSVA must be considered in

conjunction with the actuators. A detection system can be designed to

monitor each actuation system as a unit or to look separately for fail-

ures of the actuator mechanism and of the feedback sensor. The latter

approach is taken here because the detection filter provides not only

the information necessary to perform the separation but also a means of

controlling the actuator if the sensor fails.

The four controllable inputs--Wf, Aj, FIGV, and CSVA--are all

regulated by mechanisms with inherent dynamic lags, but only one, the

fuel flow, is slow enough to warrant including its dynamics in the

reference model. Figure 5.4 shows approximate transfer functions for

the actuators. The nozzle position and the fan and compressor vane

angles are fed back in high-gain proportional control loops, which make

the actuators respond rapidly. The time constants characteristic of

these actuation systems range from 0.05 second to 0.02 second. The time

constants of the dominant dynamic lags in the engine range from a little

under 1 second down to about 0.15 second. At 0.10 second, the dominant

time constant of the fuel system is comparable to some of the important

time constants of the engine itself.

A simple method of failure detection can be used in conjunction

with the detection filter to take advantage of the rapid responses of

the three actuators that have feedback loops. Since the position of any

of these actuators should never lag much behind the commanded position,

a comparison of the measured position with the position commanded tells

whether the actuator is functioning properly: a significant discrepancy
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Figure 5.4. Linear characterizations of the actuation systems.

0

-144-

4

AREA

a

0

0

0

POSITION
0



indicates malfunction. The detection filter would then be designed to

identify failures of the position sensors, in the same manner failures

of the Pt2 and Tt 2 sensors are to be identified. Figure 5.5 illustrates

this approach. The quickness of the actuators should allow use of tight

thresholds, particularly if the rate of change of the command is used to

move the threshold band up or down as appropriate. Since each of the

nozzle and vane control loops inherently contains integration, the

difference between the measured position and the command should quickly

become zero whenever the command stays constant. Just a small

difference would indicate some difficulty with the actuator.

We should note that relatively rapid sensor failures could also

cause the difference between the actuator commanded position and

measured position to exceed the threshold. To cover the possibility

that the change in sensor output is not rapid enough to be caught by the

reasonableness checks, the failure identification logic must include a

pause after an indication of an actuator failure to give time for the

filter to generate a failure signature should the sensor be at fault.

When a position sensor does fail, it must be disconnected from the

filter, and the position error signal must be disconnected from the

input to the actuator. Operation of the actuator can then be partly

restored by using the position command as the input to the filter and

the failure signal corresponding to that input as the driver of the

actuator, as shown in Figure 5.6. The failure signal is a slow-response

error signal indicative of the difference between the actuator's

position and the command. This substitute feedback loop must have a low

gain, but however small the gain is and however slowly the actuator then

moves, at least the actuator can still be used.

This idea has not been tested, nor has the proposed method of

detecting actuator failures. The failure simulations that have been

conducted were intended strictly for testing the ability of the

detection filter and the identification procedure to produce readily

4 This method of diagnosing actuator failures has been proposed by others
as well, notably by Rock [37].
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6

interpretable failure signals. Failures of the fuel system and of the

position sensors for nozzle and the vanes do come within the scope of

the filter, and the testing included examples of such failures. The

untested procedures are mentioned to provide the rationale for designing

the filter to identify failures specifically of the position sensors,

not of each actuation system as a whole, and to suggest another possible
0

use of detection filters.

In summary of this section, Table 5.3 lists the components the

filter is designed for and the type of failure signature each has. Not

yet mentioned are the high-pressure compressor and turbine; decreases in

the efficiencies of these components were simulated to test the filter's

ability to diagnose malfunctions within the engine itself.

TABLE 5.3

Components covered by the detection filter and the identification

procedure.

With planar With unidirectional

signatures signatures

1) N sensor 5) Tt25 sensor* 10) nozzle pos sensor

2) N sensor 6) FTIT sensor 11) FIGV pos sensor

3) Pb sensor 7) HP comp eff 12) CSVA pos sensor

4) P t6 sensor 8) HP turb eff 13) Pt2 sensor
9) Fuel system 14) Tt2 sensor

*These sensors have unidirectional signatures because

they are not included in the state vector.

5.3 LINEAR MODELS

There are many methods of constructing linear models of nonlinear sys-

tems, and several have previously been applied to turbine engines.5 The

5 See, for example, DeHoff and Hall [14], Edmunds [17], Merrill [32] &

[33](pp.3-9), and Michael and Farrar [35].
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one used in this study is a multivariable tangent-approximation method.

Basically, it involves calculation of the first-order terms in the Tay-

lor series expansion of the nonlinear dynamic relationships about a

given operating point. This approach can only be used when an accurate,

nonlinear mathematical representation of the system is available. For

the F100 engine, the nonlinear simulation serves this purpose. In this

chapter, the reference model for the filter is derived for the vicinity

of just one operating point; in Chapter 6, a procedure is developed for

concatenating linear models from several operating points into a single,

piecewise linear model.

5.3.1 Full-order Model

The F100 nonlinear simulation contains a tangent-approximation routine

for generating a 16th-order linear model at any equilibrium point. The

operating point selected for initial evaluation of detection filters is

full intermediate (nonaugmented) power at sea level static conditions.

Only some of the dynamics of the 16th-order model are slow enough to

warrant inclusion in the reference model of the filter, so the high-

order model was reduced to a more easily implemented low-order model.

Since detection filter theory is strictly linear, initial testing of a

filter built from this linear reference model that is reasonably accu-

rate at oe operating point has verified the applicability of the con-

cepts embodied in the theory. Morever, working with various models

obtained from the 16th-order model has shown what the important dynamics

of the engine are, and hence what order and what state variables the

reduced-order model should have.

The 16th-order linearizations are produced in the form

x(t) = AAx(t) + BAu(t)

(5-2)

Ay(t) = CAx(t) + DAu(t)

The A's indicate deviations from the equilibrium about which the linear-

ization is performed. The matrix D in (5-2) is unrelated to the feed-
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back matrix of the detection filter, and in fact, it must be eliminated

to make the model suitable for a detection filter. The linearization

procedure consists of calculating approximate partial derivatives of x

and Ay with respect to the elements of x; these derivatives become the

elements of A and C. Then for a small deviation in each ui, the respec-

tive columns of B and D are set to make x zero and y the appropriate

value for the equilibrium Ax corresponding to the Aui. Details are pre-

sented in References [14] and [211. Table 5.4 lists all the variables

of the model used in this study.

The next few pages describe the steps taken to obtain a simple

linear model. Appendix A presents the numerical results. Given first

in Table A.1 are the A, B, C, and D matrices of the 16th-order model.

The beginning step in reducing these to a lower order is calculation of

the eigenvalues of A; they determine the selection of variables for the

reduced-order model. Table 5.5 lists them in sequence from least to

most negative. The separation between the fifth and sixth values is the

division chosen for the order reduction: all dynamics with eigenvalues

less than -10 are ignored. The reduction is accomplished by identifying

five state variables with the first five eigenvalues and eliminating

from the model the remaining state variables. 6 From the nonlinear simu-

lation's modeling of the mechanics and thermodynamics of the FIOO, one

can discern which eigenvalues correspond to which energy-storing compo-

nents in the engine, and hence with which state variables. The first

two eigenvalues are associated with heat transfer between the gases and

the heavier metal parts in the hot section; the variables are Tt4lo and

Tt45lo. The third, fourth, and fifth correspond to couplings among the

kinetic energies of the two rotors and the energy of the large volume of

gas in the augmentor. They as a group are related to NI, N 2 , and Pt7'

The energies involved in the two heat transfer processes are an order of

magnitude less than those of the primary thermodynamic processes in the

engine, so the variables Tt4lo and T4 5 10 could justifiably be neglected

6 Weinberg [50] and Edmunds [17] have previously used this approach with

the F100 linear models.
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TABLE 5.4

Variables of the 16th-order model.

Engine State Variables

x = Fan speed, N, - rpm

x2= Compressor speed, N2 - rpm
x3  Compressor discharge total pressure, Pt3 - psia
X = Interturbine total pressure, Pt45 - psia

x5= Augmentor total pressure, Pt7 - psia

x6= Fan core discharge total temperature, Tt25 - OR

x7= Fan duct discharge total temperature, Ttg5 - OR
x8= Compressor discharge temperature, Tt3 - R
x = Burner exit fast-response temperature, Tt4hi - OR

x10= Burner exit slow-response temperature, Tt4lo - 'R

X = Burner exit total temperature, Tt5 - OR

x12= Fan turbine inlet fast-response temperature, Tt45hi - OR

x13= Fan turbine inlet slow-response temperature, Tt451o - OR

X = Fan turbine exit total temperature, Tt5 - OR

x15 = Duct exit total temperature, Tt6 - OR
x16 = Augmentor exit total temperature, Tt7 -R

Inputs

u = Main burner fuel flow, Wf - lb./hr.

u2= Exhaust nozzle area, Aj - ft. 2

u3= Fan inlet guide vane angle,.FIGV - degrees

u = Compressor stator vane angle, CSVA - degrees

u5= Compressor bleed to aircraft, BLC - fraction of airflow

u6= Fan inlet total pressure, Pt2 - psia

u7= Fan inlet total temperature, Tt2 - R

Measurements

yj = Fan speed, NI - rpm

Y2 = Compressor speed, N 2 - rpm

Y3 =Burner total pressure, Pb - psia

Y = Augmentor inlet total pressure, Pt6 - psia

Y5= Fan outside discharge total temperature, Tt25 - OR

Y6 = Fan turbine inlet total temperature, FTIT (Tt45) - R
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even though their dynamics are slow. In Chapter 6, Tt4lo and Tt4510 are

deleted from the model, but here they are retained because of the possi-

bility their effects would, if neglected, cause false indications of

small failures. The test results presented at the end of this chapter

show, however, that their effects are smaller than the many modeling

errors already introduced by neglecting nonlinearities and some of the

dynamics.

TABLE 5.5

Eigenvalues of the 16th-order model.

1) -0.660 6,7) -18.62 i5.352 12) -47.52
2) -1.964 8) -19.45 13) -49.38
3) -2.732 9,10) -20.66 iO.921 14) -58.26
4,5) -6.102 i2.259 11) -39.71 15) -177.7

16) -573.4

At some point in the construction of the reference model, the vari-

ables must be normalized. It is advantageous to do so before reducing

the full-order model, for when the model is normalized one can more

easily discern what elements of the model are most important. In parti-

cular, the eigenvectors of the normalized model provide confirmation of

how the eigenvalues are related to particular state variables. The most

most meaningful normalization for purposes of failure detection is

7Skira and DeHoff [41] did an eigenmode analysis of the F100 linear
model as part of a modal reduction of the model. This reduction proce-
dure yields a model whose eigenvalues are selected eigenvalues of the
full model. This procedure was tried in this study also, but the model
obtained was not quite as good as the one obtained using the approach
described above. In general, unless the deleted eigenvalues are all
greatly different from the ones retained, the eigenvalues of the best
low-order model do not form a subset of the eigenvalues of the full-
order model. Truxal [46] (p.285) made this point in regard to single-
input single-output systems.

Rock and DeHoff [37] have done an eigenmode analysis of a variable
cycle engine. This provides some additional insight into the dynamic
behavior of turbofan engines.
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obtained by referencing each variable to its minimum realizable value

and scaling it by the reciprocal of its range over all operating condi-

tions. The normalized variables thus defined range from zero to one.

(See Table A.2.) Henceforth, although the notation is unaltered, all

the variables are normalized unless otherwise indicated.

5.3.2 Reduced-Order Model

We now reorder and partition the state variables to collect in a subvec-

tor xj the variables to be retained:

[N1

N 2

S= Pt7 (5-3)
ITt4

[t45 j

With A, B, and C rearranged accordingly, the state and measurement equa-

tions of the 16th-order model take the form

xi A1 1  A12 l 11 (5) B1i
=+ u

[2 A21 A 2 2  x2 (10) B 2]

= [C 1 C 2] ~ + Du

x2

To perform the reduction, we assume the variables in x2 are always in

equilibrium with respect to xi and u. Their values as functions of xi

and u are found by setting x.2 in (5-4) equal to zero:

x2 = 0 = A21xl + A22x2' + B2u (5-5)

This yields

x = -A 2 2~ 1[A21xl + B2uI (5-6)

There are no zero eigenvalues of A22, so the solution given in (5-6)

exists. Substituting (5-6) into (5-4), we obtain the reduced-order

model:
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= [A1  - A 12 A2 2 ~ A 21 ]x + [B1 - A 1 2A 2 2 ~ B 2 ]u

(5-7)

= [C1 - C 2A 22 A 2 1 ]xl + [D - C 2A 2 2 ~ B2]u

To this fifth-order model must be added first-order dynamics to account

for hydromechanical lags in the fuel system and heat transfer lags in

the Tt25 and FTIT sensors. 8 The primary time constants of all three

components are greater than or equal to the value of 0.10 second that

delineates the dynamics included in the model. The procedure used to

generate the resulting eighth-order model is outlined in Appendix A.

The expansion to eighth-order leaves y unchanged, but it does, how-

ever, change the elements of u slightly. We replace the first element,

Wf, by the fuel flow command, and now, having neglected the dynamics of

the vane and nozzle mechanisms, we consider u2 , u3 , and u4 to be the

measured values of nozzle area, inlet vane angle, and stator vane angle,

in accordance with the previously described method of separating actua-

tor failures from failures of position sensors.

The next step in the process of putting the model in the desired

form is transforming the state variables so that six of them equal the

measurements and so that the remaining two are independent of those six.

We do this as described in Section 4.2.1, except that it is more conven-

ient to do so now rather than after the model is put in discrete-time

form. The eight state variables are currently N1 , N2 , Pt7, Tt4lo,

Tt451o, Wf, Tt25 sensed, and FTIT sensed. The measurement variables are

the sensed values of N1 , N2 , Pb, Pt6, Tt25, and FTIT. Clearly, four of

the state variables are already appropriate; the remaining four must be }

transformed to Pb and Pt6 and to two independent canonical variables.

The variables Pt6 and Pt7 differ only by the pressure drop along the

augmentor duct (they have appeared separately in this model because the

nonlinear simulation uses Pt7 as the state variable, while in practice

Pt6 is the quantity measured), so transforming Pt7 to Pt6 presents no

8With the reduction procedure given by (5-7), it makes no difference

whether these dynamics are added before or after the reduction is per-

formed.
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difficulty. Of the three remaining state variables, Wf is most closely

related to Pb. At intermediate power, the burner pressure depends

roughly one-half on Pt6, one-quarter on N2 , and one-quarter on Tt4; and

in turn, Tt4 depends strongly on Wf. Thus Wf can reasonably be replaced

by Pb- The two slow-response temperatures, Tt4lo and Tt451o are

replaced by the two canonical variables that make the last two rows of A

all zeros except for the elements on the main diagonal, which become the

eigenvalues associated with the Tt4lo and Tt451o (see Section 4.2.1 and

Equation (4-37)).

Accordingly, beginning with the eighth-order model (with the trans-

fer of Wf into the state vector, the Du term becomes negligible)

x = Ax + Bu
(5-8)

and following Section 4.2.1, we define the transformation as follows:

x = Tx

C
T =

W

A' = TAT- (5-9)

B' = TB

C' [1:01
The resulting model is

-xi ~A11' A12 I - X ' B11-
+ u

_$2' 0 A22' I x2 _ B2

(5-10)

y = x1

The variables in x', y, and u are summarized in Table 5.6. The two rows

of the matrix W are rows from the inverse of the matrix of A's eigenvec-

tors, the two rows corresponding to the eigenvalues associated with
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Tt4lo and Tt45lo. The matrices of (5-10) are listed in Table A.3.,

along with the eigenvalues of A'.

TABLE 5.6

The state, input, and measurement variables of the transformed
eighth-order model.

N1  W command

N2  A. sensed

=.1 b FIGV sensed

Pt6 u = CSVA sensed

Tt25 sensed BLC

FTIT sensed Tt2 sensed

z 22
P sensed

x= [ZJ

N 2 sensed

-2 1

N sensed

2= N2 sensed

Pt6 sensed

Tt25 sensed

FTIT sensed

5.3.3 Discrete-Time Model

The continuous-time model (5-10) is in the standard linear form of

(4-1), so the procedure in Section 4.1 for calculating discrete-time

models applies directly. It is not yet apparent just how long the samp-
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ling interval in an operational electronic controller will be, as the

intervals used in experiments have ranged from about 5 ms to 50 ms or

more. The interval selected for testing the detection filter is 20 ms,

short enough that there is some assurance the discontinuity in the meas-

urements will not noticeably degrade the performance of the filter, yet

long enough that it is reasonably likely the required calculations can

be implemented in a microprocessor.

The form of the discrete-time model derived from (5-10) is (with

the primes on x omitted)

.'Di 1 ID12- x1

- 2l k+l L 0 k L (5-11)

-k+1 = -k+l

(See Table A.4.)

5.4 DESIGNING A DETECTION FILTER

The system model (5-11) is in the form necessary for the design proce-

dure given in Section 4.2.2. Because failures of the sensors of y must

be detected, Equation (4-57) is used to compute the feedback matrix D.

Specifically,

D1 - 011 - XI

(5-12)

D2 = 0

(Table A.5 lists the elements of D.) Fortunately, a filter having this

D matrix is also suitable for all the other components of concern. The

value selected for X is .819, the discrete-time equivalent of -10. This

value results in relatively little attenuation of the failure signatures

and yet does not make the filter unduly slow. It becomes six of the
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eigenvalues of [0-DCI; the other two are the elements of the diagonal

matrix 022, .846 and .983. These two unassignable eigenvalues are less

than one and thus are acceptable.

Table 5.3 listed all the components the filter is to cover.

Because it is designed by (5-12), the filter covers the six sensors of y
properly, but it slightly compromises coverage of some of the other com-

ponents to do so. The signatures of the others, which we would like all

to be unidirectional, will deviate slightly from the desired directions.

The event vectors for most of them are columns of r, and the elements of

r2 are not zero, as they must be if (4-57) is to be entirely valid for

the associated components. But the two rows of r2 drive the two state

variables associated with the gas/metal heat transfers that do not

influence the engine's behavior much. It is therefore reasonable to

expect that r2 can be neglected. The maximum deviations from the

expected directions can be found by calculating the matrix

0 1 2 [I-0 2 2 ]^IF 2 and comparing it column by column to F1 .9 The deflection

angles thus calculated are listed in Table A.5. The failure signature

for the fuel system is the only one that should deviate noticeably, and

that only by about 18 degrees. The calculated deflections of the others

are less than 5 degrees. It turns out that even the predicted deflec-

tion for the fuel system signature is unnoticeable amidst the distortion

caused by modeling error. 0

The method used for evaluating the residuals generated by the fil-

ter is exactly as specified in Section 4.3, with the parameter N equal

to six (this value was found by experiment to give the desired degree of

sensitivity). Using the failure vectors and scale factors listed in

Table A.5, the algorithm calculates the magnitude of the residual vec-

tor, the angle the vector makes with the failure vector or plane segment

nearest it, and scalar failure signals for the covered components. The

test results that follow consist of plots of the residual magnitude, the

angle, and the failure signals for simulations of various failures. As

previously noted, the failure signals are designed so that in the

9Refer to Equations (4-90) to (4-93).
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absence of sensor noise and modeling error, a failure causes the appro-

priate failure signal to become equal to the magnitude of the failure

(e.g., to Aui or Ayj), with the others remaining zero. With a failure

of a sensor in y, the failure signal immediately acquires the value Ayj,

whereas with failures of any of the other components the failure signal

trails the value of Aui (or A efficiency in the case of turbine or com-

pressor degradation) with the first-order lag associated with the

0.10-second time constant of the filter.

5.5 SIMULATION RESULTS

Sample failures induced in the full nonlinear simulation generated meas-

urement and input data to test the detection filter on. The arrange-

ment used in the testing is illustrated in Figure 5.7. Though the simu-

lation and the detection filter were programmed on the same digital

computer (Amdahl 470-V/8), they were run separately, with data from the

simulation recorded for use by the filter. Early in each 1.8-second run

of the simulation a small offset was injected into the output of the

component selected to "fail" during that run. The controller compen-

sated according to the normal control laws, unaware that a component had

malfunctioned. The measurement and input data needed by the filter were

recorded at 20 ms intervals, the design rate for the filter. Running

the filter on these 1.8-second segments of data produced output consist-

ing of the residuals and the failure signals. The latter appear in the

results plotted on the following pages.

The responses of the filter to simulated malfunctions of four

components are shown. Those components are the Tt2 sensor, the high-

pressure turbine, the fuel valve, and the Pb sensor. In addition, a

fifth set of results shows the response to a sudden increase in airflow

bled from the compressor. For each test, the plots appear in four

groups of four. The first group gives the measured fan and compressor

speeds, the fuel flow command, the magnitude of the filter residual

vector, and the angle the vector makes with the failure direction it is

nearest to. These plots provide information about the behavior of the
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F100 simulation, including the action of the controller, and about the

performance of the filter in generating a residual vector of the size

and direction expected for the particular malfunction. The other three

groups of plots show the failure signals for 12 of the 14 components

listed in Table 5.3. One of the two left out is the signal for

decreases in compressor efficiency; it was not calculated during these

tests. The other is the signal for the Tt25 sensor; in each of these

tests it was insignificant. Chapter 6 presents results from simulated

failures of several of the components not failed in any of these

examples, including the compressor and the Tt 25 sensor.

Figure 5.8 shows the results of a test in which the simulation was

steady at intermediate power and then the inlet total temperature, Tt 2 ,

was gradually increased by 7*R, or 2 percent of range, with the Tt2

sensor inhibited from indicating this change. The increase occurred as

a linear ramp between the times of 0.1 and 1.0 second. As the graphs

show, the rotor speeds eventually increased, and fuel flow command

decreased slightly. Not shown is the decrease in burner pressure that

caused the controller to reduce the fuel flow command. The residual

from the filter increased in proportion to the increase in Pt2, with the

slight time lag it must have because the engine does not respond

instantaneously to the temperature change. As the residual became large

enough to be definitive, it moved to a direction within a few degress of

the failure direction for the Tt2 sensor. The failure signal for that

sensor moved negative about 2 percent, indicating that the sensor output

was too low by that amount. None of the other failure signals became

significant.

The results of the second example failure, an uncommanded increase

in fuel flow by 200 lbs/hr, are shown in Figure 5.9. The increase

represents about 1.2 percent of the maximum flow rate the fuel pump can

deliver to the primary burner, and about 2 percent of the actual flow at

steady state with PLA equal to 83. It caused 1 percent increases in the

rotor speeds and created a residual vector with a magnitude of only

0.002. This was actually what the magnitude should have been, given the
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small size of the event vector for fuel system failures (the first

column of F). The scale factor of 5 for the Wf failure signal (see

Table A.5), which reflects the size of the event vector, made the

failure signal as large as 0.01. If the residual vector had not been 15

to 20 degrees from the fuel failure vector, then the signal would have

indicated almost exactly the 1.2 percent increase in fuel flow that had

occurred.

This example was included among the test cases for the purpose of

determining whether the Wf failure signature would deviate about 18

degrees as predicted in Section 5.4. Certainly it has, but examination

of the residual vector reveals that the direction of the deviation is

altogether different than expected--in fact, the vector is more than 20

degrees from the predicted deflected direction. It is apparent that, as

mentioned in Section 5.4, the reference model is not accurate enough to

warrant concern about neglecting the effects of the slow-response

gas/metal heat transfers.

In any case, in spite of missing the proper direction for the

residual, the filter did not generate any failure indications for any

other components, and it produced a Wf failure signal of nearly the

correct magnitude.

The third set of graphs, shown in Figure 5.10, show the results of

a simulated decrease in the efficiency of the high-pressure turbine from

about 90 percent to 88 percent. The decrease was induced suddenly at t

equal to 0.1 second. The speed of the turbine dropped quickly, and the

low-pressure rotor sped up momentarily, then slowed. Meanwhile, the

controller increased the fuel command to compensate. The filter

residual responded quickly, and at first grew in a direction very close

to the failure direction for the turbine. Accordingly, the failure

signal for the turbine rapidly indicated the 2 point drop in efficiency.

But as the fuel command took effect beginning between 0.3 and 0.4 0

second, the direction of the residual vector pulled more than 20 degrees

away from where it should have been. Commensurately, the failure signal

declined and settled at an indication of a 1 point drop in efficiency.
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One possible reason for this is that this malfunction is not correctly

modeled by the input failure model, either because its effects are

nonlinear or because it is a type of failure that even in a purely

linear system would not fit that model. Another is that the reference

model poorly tracked the effects of the 2.5 percent increase in fuel

flow. Once again, in spite of difficulty with the direction of the

residual, the filter indicated an anomaly in the faulty component and in

no others.

In the next example, the PLA was first decreased from 83 to 75

degrees at t = 0.1 second, then at t = 0.3 second a bias of 10 psi

(1.8%) was stepped into the output of the Pb sensor. Figure 5.11 shows

the results. The purpose of this test was twofold: first to demonstrate

that the filter can identify a sensor failure that occurs during a

transient, and second to determine how well the filter does when the

operating point is moved away from the PLA=83 condition. Some details

to note are the sudden decreases at t = 0.3 second in the fuel command

and in the failure signal for the Pb sensor. The first is the direct

effect of the bias on the controller and the second is from the change

the bias causes in the Pb residual. Shortly afterward, the failure

signal for the Pb sensor became the largest one, and as the transient

settled out, it indicated a negative bias of just over 1.8 percent,

while all the others dropped nearly to zero. The only particularly

apparent steady-state effect of mismodeling is the angle of about 10

degrees. When the same bias is introduced with PLA steady at 83

degrees, the angle is virtually zero.

During the transient, the filter exhibited some undesirable

behavior caused by inaccurate modeling of the dynamics of the F100

simulation. The large peak in the fuel failute signal shortly after the

beginning of the transient indicates once again that the reference model

does not appropriately follow changes in fuel command. Also, as the

graph of the angle shows, during the transient the direction of the

residual wanders around some. Overall, the results of this test show

that the filter functioned reasonably well inspite of the modeling
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inaccuracy, yet that the modeling must be better if false indications of

fuel system failures are to be avoided. 0

The last example, shown in Figure 5.12, is of a smaller change in

power followed by an abrupt opening of the compressor bleed valve at

t = 1.0 second. The purpose of this test was to see if the filter would

correctly identify the 2 percent bleed of compressor airflow, rather

than falsely indicate a failure of some component. The reference model

was not informed of the command to open the valve, because most often

the changes in bleed airflow are the result of varying demand from
0aircraft systems, with no indication of such sent to the engine

controller. Except again for anomalous signals caused by the transient,

the filter performed properly.

In these examples the filter performed generally as intended. As

small as the malfunctions were, in each case the faulty component would

have been identified, provided that short-lived peaks in the fuel

failure signal are ignored. The performance of the filter together with

the algorithm for computing the failure signals was mostly robust; even

when the reference model was obviously not accurately duplicating the

engine dynamics, the proper failure signal, and only that one, emerged

and gave a useful estimate of the magnitude of the failure. The main

problem encountered was the sensitivity of those failure signals that

contain a large scale factor in their calculation--namely those for the

fuel system, the inlet guide vanes, and the compressor stator vanes--to

inaccuracies in the modeling of the dynamics. This is not unexpected,

as it is bound to be difficult to distinguish modeling errors from

malfunctions that cause only small residuals.

Nevertheless, the results clearly indicate that the modeling of the

effects of changes in fuel flow command, both dynamic and static, must

be better if a detection filter is to be practical in this application.

Improved modeling is the main topic of the next chapter.
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5.6 SUMMARY

The detection filter designed for the F100 operating at full interme-

diate power at sea level static conditions incorporates an eighth-order

linear model that approximates the engine's dynamics near that operating

point. The dynamics the model includes are those of the rotors, the gas

volume in the augmentor, the fuel system, the Tt2 5 and FTIT sensors, and

the slower gas/metal heat tiansfers in the hot section.

The measurement sampling rate used with the filter is 50 times per

second, and the time constant selected for the filter's dynamics is 0.10

second. The linear model is implemented in the filter in discrete-time

form and thus has no differential equations to be integrated.

Tests results presented include simulations of decreased efficiency

in the high-pressure turbine and of steady biases and ramped biases in

the Pb and Tt2 sensors and in fuel flow. The magnitudes of these simu-

lated failures were from 1 to 3 percent of range. The results demons-

trate that the filter functions properly for the engine operating condi-

tion the linear reference model was designed for, even though the model

does not include any dynamics with time constants smaller than 0.10 sec-

ond. A test with 2 percent of the compressor airflow suddenly bled off

produced no false failure indications and demonstrated that the filter

can estimate what the bleed airflow is. Experience with this filter has

guided the development reported in the next chapter of a filter able to

accommodate the nonlinear behavior of the engine.
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can easily be calculated as accurately as desired. Investigation of the

behavior of the F100 simulation revealed that the transient responses it

generated did not faithfully represent the true behavior of the physical

processes incorporated in the simulation. Actually, within a restricted

range of operation, the simplified linear model more accurately

reflected the dynamic relationships embodied in the simulation than the

simulation did.

Notable improvement resulted from inserting a more rigorous inte-

gration routine into the simulation. As anticipated, this quickened the

response of the simulation. At 0.3 second following a PLA step from 830

to 600, the compressor speed was slowed by 150 rpm more than it was in the

response generated with the original integration routine. This is about

4% of the speed range of the compressor, an amount large enough to dis-

rupt identification of the smaller in-range failures of concern. The

graphs in Appendix B show the response curves for the transient just

mentioned, plotted to the same scale used in Appendix A for the curves

produced by the original version of the simulation.

The integration method previously used is a modified Euler method

that enabled the simulation to run stably with an integration time step

that normally would be too large. Unfortunately, specifying a time step

small enough for the basic Euler routine to be accurate is uneconomical.

With a more complex routine, though, the necessary accuracy could be

attained at acceptable cost. The new routine was implemented in two

parts, a simple third-order Adams "derivative predictor" procedure for

the dynamics of the sensors and actuators, and, for the engine dynamics,

a "backwards differentiation formula" designed by Gear [191 for use on

systems that have a wide range of eigenvalues. 1

1This procedure is available as part of the International Mathematical
Subroutine Library.
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Chapter VI

EXTENSION TO NONLINEAR OPERATION

The two preceding chapters described the methods used to derive a sim-

plified linear model and to implement it in a filter; this chapter deals

with making the dynamics of the reference model and the F100 simulation

more alike. Two changes were needed to achieve the necessary improve-

ment: replacement of the numerical integration routine in the F100 simu-

lation and expansion of the reference model to include nonlinear

effects. The new filter worked well in tests on simulated failures at a

variety of power levels, both steady and varying. The focus here was on

extending the validity of the reference model; no changes were made to

the manner of selecting the feedback matrix of the filter or to the

procedure used to analyze the residuals.

Unexpectedly, a substantial reduction in modeling error was

achieved by using a different integration method in the F100 simulation.

This is discussed in Section 6.1. Additional improvement resulted from

linking several linear models together in the reference model to make it

nonlinear, as described in Section 6.2. The simulation results given

Section 6.3 show the performance of the filter constructed from that

model.

6.1 NUMERICAL INTEGRATION IN THE F100 SIMULATION

The complexity of the physical processes modeled in the F100 simulation

requires that sophisticated numerical integration be used if the time

response of the engine is to be calculated accurately. In contrast, the

F100 model used in the filter is simple enough that its dynamic response
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6.2 THE NONLINEAR REFERENCE MODEL

6.2.1 Method of Incorporating Nonlinear Effects

The results given in Chapter 5 demonstrate successful operation of the

detection filter with the FINO simulation operating near the equilibrium

point at which the linear model was derived. Extending the range of the

filter to a variety of operating conditions requires making the refer-

ence model nonlinear, but for ease of use in a detection filter a

nonlinear model should have the same form as the linear model used

previously. A way to construct such a model is to concatenate linear

models into a single model that is nonlinear overall, but that operates

linearly within small ranges of engine power and flight condition. When

used in a filter, this type of model switches successively from one

linear model to another as the state of the engine changes. This

approach accommodates most of the nonlinear effects associated with var-

iations in engine power and with changes in aircraft altitude and Mach

number, but it does not encompass the off-equibrium nonlinear effects

encountered when an engine is transitioning rapidly from one power level

to another.

Figure 6.1 shows schematically how several linear models for dif-

ferent power levels at one flight condition would be linked together. A

state variable or a combination of state variables would be selected as

an approximate indicator of the state of the engine. The measured value

of N2 is the choice here. For a given flight condition, at selected

values of N2 the equilbrium values of the state varaibles and the inputs

are recorded and the matrices 0 and F of the linear model for that point

are derived. In operation, the set {xouo,, F}j whose recorded value of
N2 is closest to the measured value is used in the filter equations. At

each sampling time, the filter is updated as follows:
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r 
A

-=k kOj

(6-1)
AA
AX D Ax + r.Au + D.r
-k+l -k J -=k j-k
A A

-k+1 k+1 + -Oj
A A

=-~ -k+ 1

The sets {x0,u0,0,r} can be stored individually or as polynomial

functions of N 2 and aircraft altitude and Mach number (or of whatever

other independent variable may have been chosen). Obviously, much less

memory space would be required for storing the steady-state points

{xo,uO} than for the dynamics matrices 0 and r. It is probably

desirable, then, to record x0 and uo at more points than D and r in

order to make the stored "map" of steady-state operating points as

accurate as possible. For purposes of failure identification, the

dynamics part of the reference model need not be as accurate as the

steady-state part; identification of small biases in components can

usually wait until a period of steady-state operation.

This separation of the static model from the dynamics model is the

approach used with the filter for the F100. For demonstration of the

concept, at one flight condition--sea-level-static--ten {x 0 ,u 0 } pairs

and two {O,r} pairs were recorded. The steady-state data spans the

power range from idle to intermediate, while D and r were calculated

only for PLA equal to 53* and to 83*. This is illustrated in

Figure 6.2. The N 2 measurement is the independent variable. When a

reference state other than either of the two with corresponding 0 and P

is selected, approximate values for 0 and r are calculated by linear

interpolation or extrapolation (with respect to N 2 ) between or from the

two recorded {0,r} pairs. At each measurement sampling time, the new

value of N 2 is checked to see if the reference state last used is still
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Figure 6.1. Format of a piecewise linear model.
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Figure 6.2. Format of the model used in the F100 filter.
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the one whose N2 0 is closest to N 2 ; if not, the reference state is

changed, and only at that time are 0 and r recomputed. Thus 0 and F

become step functions of N2. It was anticipated, however, that for low

power settings this relation would not be quite adequate, and, indeed,

the results indicate that a third {f,r pair is needed to provide

sufficient accuracy at those settings. An additional feature

incorporated in the model is that when the rate of change of N 2 is

small, the model determines the reference {xo,uo} pair by interpolating

between the two nearest recorded pairs.

In addition to its use in modeling for failure identification,

separation of the static and dynamic parts of the reference model may

also be useful in controlling the engine. For every power setting, the

control system must have a set of reference values to match the measured

engine variables to, and the values x0 and u0 that would be contained in

the steady-state part of the model are just the values needed.

6.2.2 Designing the Filter

The two {O,r} pairs were derived slightly differently than the {O,r}

pair used earlier in the linear model. The linearization procedure was

modified, and after the order reduction, the two unimportant state vari-

ables were deleted, which decreased the order of the final model to six.

The method of linearization, namely tangent approximation, was not

changed, but the procedure was rewritten to avoid some uncertainty about

its calculation of derivatives and to make the derivation of the B

matrix the same as that of the A matrix. For both A and B, the revised

approach consists of calculating approximations to the partial deriva-

tives that are the first-order terms of the Taylor series expansion of

about the chosen equilibrium reference point, {xo,uo}. For the method

of nonlinear modeling described above, it is better that the B matrices,

and hence the r matrices, be calculated to represent engine dynamics,

rather than steady-state relationships as was previously the case.
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For the calculation of the partial derivatives of x and of y with
respect to x and u, the perturbation sizes selected were 2% of range for

each element of x and 200 lbs/hr (1.3%) for fuel flow, .07 ft2 (2%) for

nozzle area, -4 degrees (16%) for fan vane angle, and -1 degree (2.3%)

for compressor vane angle. For use as failure vectors, the partial

derivatives of x with respect to bleed fraction, Pt2, Tt2, compressor

efficiency, high-pressure turbine efficiency, and low-pressure turbine

efficiency were also calculated. The perturbations in bleed fraction and

in the efficiencies were 0.02, and in Pt2 and Tt 2 they were 2% of range.

The 16th-order linearization of the engine dynamics was augmented

with first-order dynamics for the fuel system, the Tt25 sensor, and the

FTIT sensor. The resulting model was reduced to eighth order and subse-

quently transformed to make x equal to y, as described in Chapter 5.

The same state variables were retained: N1 , N 2, bs Pt6, Tt2 5 sensed,

FTIT sensed, and the two canonical variables for the modes associated

with the slow-response metal temperatures in the turbines. The time

constant used for the fuel system dynamics was 0.125 second.

Following the conversion of the continuous-time eighth-order model

to discrete-time form, the two state variables for the slow-response

metal temperatures were simply deleted, leaving a sixth-order, fully-

measured model. As mentioned in Chapter 5, those two state variables

have relatively little effect on the engine dynamics and, as expected,

eliminating them from the model caused little additional modeling error.

Implementing the detection filter with the nonlinear reference

model posed no difficulty. The filter was structured in the form shown

in Figure 4.3 (with x1 being the entire state vector), so at each change

of D and r, the corresponding change in the feedback of the filter

occurred automatically. Also at each change, the majority of the fail-

ure directions became the new directions of the columns of r and I-D

(see Equation (4-71)). Thus, because most of the failure vectors depend
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so simply on t and 1, they need not be kept in memory. The remainder

were stored as adjuncts to the r matrix.

As before, the time constant of the filter was chosen to be

0.1 second, and the measurement sampling interval was taken as 20 ms.

6.2.3 Estimates of Memory and Computation Requirements

The filter appears simple enough to be implemented in a microcomputer

engine controller. The greatest uncertainty is how much memory will be

required to store a reference model that encompasses all flight condi-

tions and power levels. Table 6.1 lists the number of arithmetic opera-

tions needed to run the three portions of the filter--the filter update,

the model interpolation, and the analysis of the residuals--and esti-

mates of the times required to perform them. The times assumed for the

individual operations are 4 ps for additions and compares, 10 ps for

multiplications, 20 ps for divisions, and 25 ps for square roots. The

total times shown are double the sums of the operation times and thus

should not be unduly optimistic.

The 3 ms listed for the filter update allows for calculation of the

magnitude of the residual vector. Presumably, failure detection would

be based on this, and the identification routine would be called only

after a failure is detected. The time requirements for that are, as

shown, 12 ms for the first sample time--the failure directions must be

determined--and 6 ms for each subsequent sample time at which the model

does not change.

Also listed in the table are estimates of the memory requirements

for a sixth-order model with six inputs (including Pt2 and Tt 2 ) and four

additional vectors (directions for the compressor and turbine efficien-

cies and compressor bleed). It was assumed that for each flight condi-

tion five to ten sets of ten numbers (six variables and four inputs)

will be needed for the steady-state part of the model and three sets of

0 and r and the additional vectors will be needed to model the dynamics.

The number of flight conditions at which the model must be explicitly

recorded was assumed to be between 20 and 40. The memory requirement,
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TABLE 6.1

Estimates of computation and memory requirements.

Computation Time

Filter update and failure detection:
Frequency - every 20 to 50 ms
Number of operations - additions and compares 80

- multiplications 80

Total time - 3 ms

Change coefficients of the model:

Frequency - every .1 to .2 sec

Number of operations - additions 120
- multiplications 186

Total time - 5 ins - (univariate -- N2 )
10 ms - (bivariate -- N2 and

flight condition )

Identification:
Frequency - on demand
Number of operations - additions and compares 270

- multiplications 300

- divisions 40

- square roots 20

Total time - 12 ms on first call and following
each subsequent model change.

- 6 ms each other sample time.

Memory Space
(16-bit words)

Min Max

Steady-state model 500 4000
Dynamics model 4,500 16,000
Total 5,000 20,000
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then, might be as low as 5,000 words or as high as 20,000 words.

Achieving the lower figure would require storing the elements of the

model as polynomial functions.

6.3 SIMULATION RESULTS

We proceed now to discussion of the performance of the nonlinear filter

on six sample failures. The data sequences for these tests were gener-

ated by the F100 simulation with the new integration routine. The first

five examples involve malfunctions in the Tt 2 5 sensor, the Pt2 sensor,

the fuel pump, the compressor, and the Pb sensor. The sixth shows an

acceleration from idle to intermediate power without a malfunction. The

simulated failures varied in magnitude from 2% to 10% of range, and they

were introduced at various transient and static conditions between part

power and intermediate power. The graphs are presented in the same for-

mat as before, except that only four failure signals are plotted--in

each case the four most prominent ones. To supplement to these six

examples, Appendix C presents, without discussion, several other

examples.

6.3.1 Bias in the Tt25 Sensor

The plots from the first test of the nonlinear filter, shown in Fig-

ure 6.3, give the responses of the F100 simulation and the filter to a

step bias of 50'F (10% of range) in the Tt 2 5 measurement. The bias was

introduced at T = .5 second, following a rapid increase in PLA from 60*

to 70* and during a gradual decrease in PLA from 700 back to 600.

(Recall that the axis labels on the plots on the left indicate the meas-

ured fan and compressor speeds, the fuel flow command, the length of

the residual vector, and the angle that that vector makes with the fail-

ure vector it happens to be closest to.) At the moment of the malfunc-

tion, the residual vector and failure signal for the Tt25 sensor both

jumped to the appropriate magnitudes. Subsequently, these magnitudes

were maintained, and no other failure indication appeared.
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Prior to the malfunction, the transient in engine power caused

brief failure signals for the fuel system and the FIGV sensor. Notably,

the fuel signal is insignificant compared to what it is in the examples

in Chapter 5. The FIGV signal, which indicates a momentary one degree

mispositioning of the inlet guide vanes, is of small concern because the

failure threshold for that signal would be large, commensurate with the

minor effect that deflection of the vanes has on the engine.

6.3.2 Bias in the Pt2 Sensor

The second example is of a bias in the Pt2 sensor. Figure 6.4 shows the

results. Part way through an acceleration commanded by a ramped

increase in PLA from 600 to 830, the measurement of Pt2 was abruptly

decreased by 2 psi (6% of range) while Pt2 remained constant. The

residual vector soon lengthened, and the failure signal for the Pt2 sen-

sor increased to the proper magnitude. The increase was not immediate

as in the previous example because Pt2 is an input to the engine,

whereas Tt25 is an output. An erroneous measurement of Pt2 must propagate

through the reference model before it affects the residuals.

In addition to the signal for the Pt2 sensor, we see a short-lived

signal for the Tt2 sensor. This arose because mismodeling of the

transient in engine speed deflected the residual vector by 10 to 15

degrees. In part, the mismodeling is due to the 10% overshoot in engine

speed, because that put the engine state in a region beyond where the

last step in the reference model is accurate. Probably this is

correctable by including in the model another step, an equilibrium point

at a (nonafterburning) power level higher than that at PLA=830 . (At such

a point, one or more operating limits would be exceeded).

A deflection of 10 to 15 degrees would in many other circumstances

be inconsequential, but the physical effects of changes in Pt2 and Tt2

are closely related, so in this case the deflection caused some

uncertainty. The influence of Pt2 and Tt 2 on the engine occurs, in

essence, through their effects on the corrected mass flow,

1
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0

m. VT /T r
air t2 ref , and on corrected speed, N/ITt2 Tf. To first order,

Pt2 ref *

Pt2 and Tt2 have inverse effects on the mass flow, so the failure

vectors associated with them lie near each other and have opposite

signs.

6.3.3 Uncommanded Increase in Fuel Flow

This example, Figure 6.5, is of a malfunction in the fuel system that

resulted in a fuel flow that was 2000 lbs/hr (12% of range) more than

the amount commanded. First an increase in PLA from 500 to 65* over the

interval from zero to 0.5 second began an acceleration, and then, during

the next quarter of a second, the extra fuel flow was introduced. The

filter produced a clear failure signal for the fuel system, but the sig-

nal was less than half as large as it should have been. This was due to

the 30-degree angle between the residual vector and the failure vector

for the fuel system. This, in turn, was a consequence of the small mag-

nitude of the residual vector, little more than twice the magnitude

before the malfunction. The modeling errors were thus able to skew the

direction of the vector considerably.

As mentioned in Chapter 5, the small size of the residual vector

reflects the small size of the first column of the r matrix (see

Appendix B, Table B.2). Unfortunately, the only remedy for that is a

sensor that directly measures fuel flow. Burner pressure is now the

measured variable most directly dependent on fuel flow, and that

dependence is at most only 20% to 25% . Therein lies the difficulty:

the detection filter is designed to let only the direct effects of a

malfunction in a system input show up in the residuals; that is how it

keeps the residual vector fixed in direction. If a suitable flow meter

were available and were used in the system, then 100% of any change in

fuel flow (assuming negligible sensor dynamics) would appear immediately

in a measurement.
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A similar difficulty hinders identification of malfunctions in the

nozzle actuation system, as illustrated by the example in Appendix C that

shows results from a simulated malfunction in the Aj sensor. Although a

measured variable, Pt6, is strongly dependent on nozzle area, the rate

of change of Pt6 is relatively slow, and, consequently, the second

column of F, the one for nozzle area, is not much larger than the

first. 2 And two more inputs, FIGV angle and CSV angle, have columns (the

3rd and 4th) that are even smaller. In sum, the foregoing observations

point to this conclusion: In this application of a detection fiter, it

is exceedingly difficult to detect and identify small malfunctions in

the actuation of the four control inputs.

This example of the fuel-flow malfunction brings up another,

unrelated point, one that is perhaps better illustrated by the examples

in Appendix C of a decrease in LPT efficiency and of a bias in the Aj

sensor. There is some indication in Figure 6.5 that the Pb sensor had

become biased, and, under these same circumstances, when the fuel flow

bias is smaller, the signal for the Pb sensor is about the same size as

the one for the fuel system. Such ambiguity is avoidable, though,

because the failure vector for a steady bias in the Pb sensor is well

separated from the one for a fuel flow malfunction. The problem is that

a portion of the plane segment associated with the Pb sensor is

relatively close to the failure vector for the fuel system. With some

additional computation, the algorithm that calculates the failure

signals could discriminate between the transient and steady effects of

sensor malfunctions. A steady residual vector would then be compared

only to the steady-state failure directions for sensors, not to the

entire plane segments.

2The reason a fuel flow sensor would make the first column larger,
while, even with a sensor for A , the second column is not large, is
that fuel flow is a state variable of the reference model and nozzle
area is not.

1
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6.3.4 Decrease in Compressor Efficiency

This example is intended to demonstrate what capability the filter may

have in detecting a consequence of rotating stall, namely a significant

drop in efficiency of the compressor. The results are plotted in

Figure 6.6. In the first half-second, an increase in PLA from 500 to

600 initiated an acceleration, and during the next tenth of a second the

compressor efficiency was dropped by 10 points.3 Subsequently, the

compressor speed dropped sharply, and in compensation the fuel command

increased. Concurrently, the failure signal for compressor efficiency

grew, and for a while it was the only significant signal. But then the

direction of the residual vector changed 5 degrees, causing indications

of failures in three more components: the N2 sensor, the CSV sensor, and

the high-pressure turbine. This sharp sensitivity to the direction of

the residual vector is due to the small angles between the failure

vectors of concern here (see the tables of angles in Appendix B). Once

again, similarity of physical effect is the reason for this. Reduced

efficiency in either the compressor or the turbine makes N2 decrease and

the pressures increase, and, further, one of the most noticeable effects

of mispositioning the stator vanes is a drop in compressor efficiency.

Note how much deflection of the vanes is indicated in this example--some

20 to 25 degrees. This occurs because the immediately measurable

effects (measurable with the given sensor set) of movement of the stator

vanes, like those of the fan vanes, are relatively small (provided they

are not moved far enough to induce a surge), and conversely, even a

small residual vector can indicate substantial movement of the vanes.

One of the examples in Appendix C is of a malfunction of the CSV sensor;

it illustrates the difficulty of trying to identify a problem in the

stator-vane actuation system.

3A 10-point decrease was selected as one that was not likely to cause a
surge and hence cause the simulation to fail. Also, the ramping of the

decrease over a tenth of a second avoided a sharp change that could
make the simulation integrate improperly.
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6.3.5 Change in the Scale Factor of the P. Sensor

The results of this example are shown in Figure 6.7. The scale factor

of the Pb sensor was changed from 1.0 to 1.1 over the interval 0.5 to

0.75 second, during an acceleration from low power to cruise power. The

change caused a small but noticeable increase in fuel command. The rise

in scale factor resulted in a Pb measurement that was about 30 psi (6%

of range) too high, an error that the failure signal for the Pb sensor

soon showed. Indication of the malfunction was delayed slightly by

modeling errors encountered at low power levels, apparently because the

reference model lacked the third pair of ( and F necessary to model the

dynamics at those power levels sufficiently accurately.

6.3.6 Acceleration from Idle to Intermediate Power without a

Malfunction

This test demonstrated that the filter suppresses failure indications

when there is no failure, even during a sharp transient. In Figure 6.8,

the eight most significant failure signals are given, showing that no

signals of concern appeared. Again, the brief peaks in the signals for

the FIGV and CSV sensors are below what the thresholds for those compo-

nents would be.

Of more concern is the failure signal that toward the end of the

test indicated a possible 90"F error in the FTIT measurement. The rea-

son for this is that the sensor is characterized in the reference model

by only one state variable, whereas the sensor actually exhibits two

prominent thermal lags that act in parallel rather than in series. One

is associated with the thermocouple itself and has a time constant of

about 0.5 second. The other is due to the thermal capacity of the cas-

ing and support of the sensor and has a time constant of approximately 5

seconds. For the purposes of this study, using a single lag with a com-

promise time constant of 1.7 second proved to be adequate, but in a real

application, probably both of the lags would have to be included in the
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reference model. An additional complication is that the time constants

of a real sensor vary with mass flow and pressure.

Regarding sensor dynamics, a consideration worth noting here is

that the slower a sensor is, the less its output contributes to the

failure signatures generated by a detection filter for malfunctions of

other components. This suggests that if a slow sensor can be modeled

well, the model should not be used in the filter itself but in a

separate compensator that improves the dynamic response of the

measurement. The representation in the filter should be of the

compensated measurement, as this would further separate the failure

vectors. With the FTIT sensor, for example, dynamic compensation would

be quite helpful.

The good performance of the filter during the first part of the

acceleration seems to indicate that the modeling at low power settings

is adequate, but other examples indicate otherwise. In particular, in

Appendix C are results from a deceleration from intermediate power to

idle that show erroneous failure signals when the rotor speeds get

small. This evidence supports the conjecture made in Section 6.3.5 that

a third { ,D} pair is needed to improve the modeling at low power

settings.

This concludes both the discussion of the examples and the

presentation of the research undertaken during this project. Chapter 7

summarizes the results and then presents several conclusions.

-197-



IDLE TO INTERMEDIRTE POWER.
PLA 20->83 0 O.-.7SS. BELOW: N1 & N2 SENSED. FUEL CMD, MAG(R) & RNGLE.

"a i I I

'0.00 0.40 0.80 1.20 1.60 2.00

9.00 0.140 0.80 1.20 1.60 2.00

2.410 2.80 3.20 3.60

2!40 2.80 3.20 3.60

%.00 0. 40 0.00 1.20 1.60 2.00 2.40 2.80

-D 00 0.40 0.80 1.20 1.60 2.00 2.40
TIME (SEC)

2.80

3.20 3.60

3.20 3.60

Figure 6.8. Acceleration from idle to intermediate power without a malfunction.

a aa a

z

Cu
z:

U0

Lb-

61

a:

-J

z
a: lV v'

a

" I I I

I

a & aa aa



a

z

z

I-

L

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.

0.00 0.40 0.80 2.20 1.60 2.00 2.40 2.80 3.2O 3.

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.

2

p C I I I I

0.00 0.40 0.80 1.20 1.60 2.00
TIME (SEC)

2.40 2.80

FRILURE SIGNRLS FOR NI, N2, PB, RND FTlT SENSORS.

fa 9 LA

FRILURE SIGNRLS FOR COMP k FUEL AND FOR FIGV 4 CSV SENSORS.

00

ID

60

It

10.00 0.40 0 .80 1.20 1.60 2 .00 2.40 2.80 3.20 3.60

0.00 0.40 0.00 1.20 1.60 2.00 2.40 2.80 3.20 3.60

60

3.20 3.60

z

L

0. 00 0.40 0.80 1.20 2.60 2 00 2.40 2.80 3.20 3

C33

.4T 0.80 1.20 1.60 2.00 2.40
T IME (SEC)

60

60

Figure 6.8, continued.

0 Uj

2

.60

.2.80 3.200 00



4

6

a

-200-

6



Chapter VII

SUMMARY AND CONCLUSIONS

7.1 SUMMARY

The results of this research establish that the detection filter is a

viable approach to failure detection and identification in the control

of advanced turbofan engines. Although detection filter theory is

strictly applicable only to linear systems, it has been shown to be use-

ful in the design of a filter for a highly nonlinear system, the F100

engine. Tests on a full simulation of that engine have demonstrated

successful operation of the filter and, in the process, have shown that

the filter need not be highly complex in order to function well.

Only a few of the many dynamic modes of the engine must be repre-

sented by the reference model contained in the filter, and an approxi-

mate and undetailed representation of the nonlinear characteristics of

the engine apparently is sufficient. Specifically, the reference model

used is only sixth order. Of the six state variables, three represent

the dynamics of the rotors and of the pressure in the afterburner duct,

one the hydromechanical lag in the fuel system, and two the thermal lags

in the Tt25 and FTIT sensors. The model has the simple structure of a

linear model, but it is nonlinear in that the coefficients vary as step

functions of the compressor speed. All the testing was conducted for

one flight condition: sea level static. To be suitable for other flight

conditions, the model must also vary with aircraft altitude and Mach

number.
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In tests on simulated failures, the filter was able to monitor fif-

teen components: the inlet sensors, the sensors on the engine, the fuel

system, the nozzle and vane actuation systems, and the high- and low-

pressure turbines. It was also able to identify changes in compressor

bleed and thereby avoid falsely indicating a malfunction. The measure-

ments used by the filter are the same ones likely to be used by the

electronic controllers now under development, namely the outputs N1 , N2,

Pb> Pt6, Tt25, and FTIT, plus the inputs Pt2, Tt2, nozzle area, fan vane

position, and compressor vane position. As it was designed to do, the

filter constrained the failure signatures of the monitored components to

characteristic directions in the vector space of filter residuals. The

technique developed for discerning which, if any, of the fifteen failure

directions the residual vector lies close to consistently yielded

"failure signals" that correctly indicated the failed component and the

magnitude of the failure. These signals are scalar numbers to which

one can easily apply deterministic or statistical threshold tests.

Malfunctions of some components have similar effects on engine per-

formance--for example, decreases in compressor efficiency and high-

pressure turbine efficiency--and, as a result, occasionally the correct

failure signal was accompanied by one or more other failure signals. In

some cases it may not be possible, and perhaps not necessary, to resolve

this difficulty; then the filter will only be able to indicate that one

of two or more related components has malfunctioned--not which one.

Another difficulty the tests showed lay in obtaining correct failure

signals for the positions of the fan and compressor vanes. Movements of

the vanes normally have such small effects that a malfunction must cause

a deflection of at least 10 to 20 degrees to produce a residual vector

that might be identifiable.

Generally, aside from vane deflections, any malfunction that

altered the output of the affected component by 10% or more of the range

of the component was almost always identifiable even during a sharp

transient in engine power. With some components, even 5% deviations in
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output were distinguishable, and when engine power was steady, devia-

tions of 2% could be correctly attributed. These results are summarized

in Table 7.1.

TABLE 7.1

Summary of the performance of the filter.

- Detection: 2% to 5% change in one or more output measurements

- Identification: Minimum failure size

Engine state: Steady Unsteady

Output sensors 2% 5-10%

Inlet sensors 2% 5-10%

Fuel system, exhaust nozzle 5-10% 10-20%

Compressor vanes, fan vanes 10-30% 20-60%

Rotor efficiencies 2% 5-10%

The method used to design the filter is much simpler than the

design procedure devised from the full theory of detection filters. The

complete procedure and the condensed one have been described in detail

in separate sections. Also, an algorithm was developed for analyzing

the residuals the filter generates. Although the condensed design

procedure and the diagnostics algorithm were both developed for use with

the F100, they are described in general terms without reference to any

attributes of the F100, and, therefore, they may be useful for failure

detection and identification in other complicated systems as well.

7.2 CONCLUSIONS

The results obtained lead to these conclusions:

1. The detection filter is a viable approach to the task of fail-

ure detection and identification in the control of advanced
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gas turbine engines. Tests with a full simulation of the F100

turbofan engine have demonstrated that the concept works well

even when many approximations are made in implementing it.

2. Only three of the dynamic modes of the F100 engine need be

represented in the mathematical model contained in the filter.

Of the dynamics in the sensors and actuators, only the hydro-

mechanical lag in the fuel pump and the thermal lags in the

temperature sensors are important.

3. The detection filter concept works with nonlinear systems.

The reference model must be nonlinear, but when it is, the

filter is robust: identification accuracy is good, and in fail-

ure-free circumstances, indications of failures are well sup-

pressed.

4. Contrary to early expectations, the filter does just as well,

and frequently better, with failures in the sensors that meas-

ure state variables as with failures in the actuator subsys-

tems. The larger magnitudes of the residuals produced by the

sensor failures outweighed the greater difficulty of identify-

ing residual vectors constrained only to a plane segment

rather than to a single direction.

5. The computation time and the memory space needed to implement

the filter apparently are reasonable. Estimates are that when

the filter designed in this study is implemented in a micro-

computer, it would require 3 ms of computation every sampling

cycle (every 20 to 50 ms), plus 5 to 10 ms every fourth or g

fifth cycle for determining the coefficients of the model.

When called on, the diagnostics will need 6 and 12 ms, respec-

tively. Estimates of the memory required for the reference

model range from 4,000 to 20,000 16-bit words.
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7.3 SUGGESTIONS FOR FURTHER WORK

This research has developed the detection filter from a theoretical con-

cept to a potentially practical method for diagnosing failures in a com-

plicated system, but it is yet a long way from application. Some sug-

gestions follow for both further analytical research and further

development.

Theoretical investigation is needed of the behavior of filters con-

taining nonlinear reference models. An analytical description of how

the direction of the residual vector is influenced by nonlinearities

would be helpful in developing methods for including nonlinearities in

the model. Regarding the algorithm for analyzing the residuals, better

selectivity is possible by making the algorithm sensitive to the tran-

sient behavior of the residual vectors that are caused by sensor mal-

functions.

For the application to turbine engines, the range of the nonlinear

model must be extended to encompass the entire flight envelope. Also,

the accuracy of the filter could be improved by including in the model

the major nonlinearities associated with nonequilibrium states.

Further, the possibility of storing and executing the reference model in

terms of nondimensional and corrected parameters should be explored.

Use of such a model would undoubtably reduce the number of parameters

that the model's coefficients depend on and would thereby make the sto-

rage of the model much more compact. On the other hand, the corrected

parameters must be converted to physical variables for comparison with

the measurements, so additional computation would be required. On the

whole, modeling in terms of corrected parameters would probably be bene-

ficial, but more investigation is needed to demonstrate this.

And in conclusion, none of the possible auxiliary uses of the fil-

ter have been explored. One of the important capabilities of a detec-

tion filter is that when a nonredundant sensor fails, the filter can

provide to the controller an estimated substitute for the lost measure-
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ment. And, generally, as filtering concepts are further developed and

are applied in conjunction with other techniques, other ways a detection

filter can help with fault accommodation may arise. It is through the

combination and interlinking of separate techniques of failure

detection, identification, and accommodation that a truly fault-tolerant

engine control system will evolve.

0
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Appendix A

NUMERICAL DATA OF THE LINEAR MODEL REFERENCE

This appendix contains tables of the matrices of the full- and reduced-

order linear models of the F100 at full intermediate (PLA=83) power.

Also included are listings of the feedback matrix and the failure vec-

tors of the detection filter.

Table A.1 contains the matrices of the 16th-order model produced by

the linearization routine built into the nonlinear simulation. The var-

iables of the model are listed in Table 5.4. The perturbation sizes

used in the linearization are 2 and 3 percent of the equilibrium values

of the elements of x and u respectively, except for FIGV, which was per-

turbed by 5 degrees, and CSVA, perturbed by 2 degrees. These perturba-

tion sizes give a model which, compared to other models that were gener-

ated with different perturbation sizes, appears least inaccurate for a

transient from 100 percent intermediate power to 75 percent (PLA=60) and

back to 90 percent (PLA=75).

The method used to normalize the variables and matrices is given in

Table A.2. The resulting nondimensional model was reduced to fifth

order by the procedure given in Section 5.3.2. To this model were added

first-order dynamics representative of the fuel system and the Tt25 and

FTIT sensors. Fuel flow is the first element of u, so the first columns

of the normalized and reduced B and D matrices become the sixth columns

of the new A and C matrices. The elements A 6 6 and B 1 6 become respec-

tively the negative and positive reciprocals of the fuel system time

constant; the remainders of the first column of B and the sixth row of A

become zero, as does the entire first column of D. The dominant time
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constant of the fuel system is 0.10 second (see Figure 5.4), but using

0.15 second in the model yields better results, as that helps account

for some of the neglected lags. The measurements Tt 2 5 and FTIT are the

fifth and sixth elements of y. To make them state variables, we divide

the fifth and sixth rows of C and D by the respective time constants and

juxtapose them with D1 5 and D 16 to make up most of the the seventh and

eighth rows of A and B. The values of A7 7 and A8 8 are the negative

reciprocals of the time constants, and A7 8 and A8 7 are zero. Those rows

of C and D become zero, except for C5 5 and C 6 6 , which of course take the

value one.

The variables of the resulting eighth-order model were transformed

to the variables listed in Table 5.6. The model that this tranformation

produced is listed in Table A.3. Conversion to discrete-time form

resulted in the model given in Table A.4. In Table A.5 appear the D

matrix (computed from Equation (5-12)) for the detection filter, and the

associated failure vectors and scale factors used in the identification

algorithm. (The vectors are all normalized to length one.) The failure

vectors shown for the four sensors that have planar signatures point in

the steady-state directions of the signatures. Also shown are the maxi-

mum deflections that neglecting r2 should cause in the failure signa-

tures. Table A.6 lists the angles between the failure directions. For

the four failure signatures that are plane segments, the direction the

angles are measured from is the steady-state failure direction.

Finally, in Figure A.1 is shown a comparison of the responses of

the F100 nonlinear simulation and the linear model given in Table A.4 to

two changes in PLA, from 83 to 60 degrees, and from 60 to 75 degrees.

On the left appear the measured values of N1 , N2, Pbs t6, Tt 2 5, and

FTIT, then the fuel command and the nozzle and FIGV positions, all from

the simulation. On the right are the differences between the six mea-

surements from the simulation and the measurements from the linear

model. The model received the same inputs in fuel command and nozzle

and vane positions as the simulation did. The model did not have the

feedback loop of the detection filter.

6

-208-
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TABLE A.1

Matrices of the 16'th-order F100 linear model.

.1470
-5.205

5.050
-. 1842
-. 1198E-1
-. 9928E-2
-. 7697E-2

9729
-. 7251E-2
-. 1078E-3
-5.435
-. 4216
-. 1874E-1
-. 2245

.2556E-1
1.528

1.098
11.40

-. 1056
-2.978
-. 8075E-2
-. 5915E-2
-. 1014E-1

2535E-2
-. 4225E-2
-. 6667

.8450E-1
-9.603
-. 4268
-4.413
-. 8450E-3

.5394

4.951
127.7

-166.9
131.8
.9341E-1
.6168E-1
.1113
17.42
.1765
.2607E-2
26.86

-52.19
-2.320
-23.82
-. 1183
-3.884

-4.030
-3.939
5.634
5.858

-. 3617E-1
3783E-2

.1674E-1
-. 9337E-2

39.42
.5841

-47.86
38.39
1.706
17.61
.1956E-1

-2.323

400.5
-232.6
-5.294
-574.9
1.694

-. 3056
.3369
.5101
.3008E-1
.4011E-3
6.389
198.8
8.837
24.12

-. 2406E-1
113.8

9.540
.4990E-2

-. 1497E-1
-. 9356E-2
-. 2435E-2
-. 3743E-3
-. 9980E-3

3743E-3
-. 2183E-2
-. 3327E-4

.1123E-1
-50.00
-2.000
-3.122
-. 124CE-3

.3119E-3

-738.6
-431.3

1029.
110.2

-9.657
42.19
78.32

-97.27
-8.583
-. 1273
-1246.
-26.60
-1.182
149.9
5.796
343.7

9.560
.1123E-1
.8982E-1

-. 7359E-1
-. 2282E-1
-. 4491E-2
-. 5614E-2
.0
.1403E-1
.1871E-3
.5614E-1
.6175E-1

-1.997
-3.089
.0
.3930E-1

-2.686
32.62

-91.40
-9.623

.2355
-19.75
.2572
29.75
.7823
.1159E-1
115.1
2.572
.1143
1.852

-. 4824
-29.71

-. 6664
.4010E-2

-.9357E-2
-. 5347E-2

.4136E-1
-. 2674E-3
-. 4010E-3
.0

-. 3342E-3
-. 4456E-5

.4010E-2

.1337E-2

.5347E-4
-19.78
.0
30.82

Eigenvalues of A:

-0.660 -1.964
-20.66 i.9212

-2.732
-39.71

-6.102 i2.259
-47.52 -49.38

-18.62 t ;5.352 -19.45
-58.26 -177.7 -573.4

A

10

-4.469
-. 4250

1.032
.5187
.1057E-1
.8638
.6643

-. 1023
-. 9134E-2
-. 1352E-3
-1.265
-. 2681E-1
-. 1191E-2
-. 1299
-. 1279E-1
-1.696

1.038
11.33

-. 3380E-1
-2.920

.7029E-2
-. 2253E-2
-. 3474E-2

.2535E-2
-50.00
-. 6667

.3568E-1
-9.620
-. 4275
-4.416
-. 2816E-3

.5896

1.032
2.193

-5.343
-. 5772

. 7577E-2
-. 2048
-20. 35

.52388

.4089E-1

.6082E-3
6.560
.1510
.6700E-2
.1085
19.81

-1.763

-. 1530
-. 4090
1.002
.8741E-1
.2091E-1
.5120E-1
.5932E-1

-. 1011
-. C535E-2
-. 1353E-3
-1.244
-. 2419E-1
-. 1093E-2
-. 3715E-1
-19.99

20.05

-1.032
-2.505
5.036

-2.117
-. 1275E-1

.1238E-2
.1288E-2

-20.00
6.547
.9700E-1
36.49
9.672
.4299
4.435
.1270

-. 4543

.0

.0

.0

.0
-. 3508E-2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

-50.00

a 0 11110 w 0



TABLE A.1 continued

B =

.7976E-1
-. 2038

.7882

.1632

.5316E-3
-. 1217E-1
-. 3931E-2
-. 1073

.4868E-1

.7220E-3
5.349
.1247
.5542E-2
.4374E-1
.2755E-2
.C2279

I

1.000
.0

C = -. 544E-3
.8644E-4
.05

--. 5955E-3

.0

.0
.0
.1203E-3
.0

-. 2138

.0
D = -. 3011E-3

-. 3149E-4
.0
.277SE-2

a 0 0 0 0

-488.7
-1055.

1977.
212.9

-103.4
72 . 71
74.68

-93.08
3.567
.5113E-1

-2273.
16.56
.7278
41.49
13.40
629.3

.0
1.000

-,2402E-2

-. 1121E-3
.0

-. 9370E-2

.0

.0

.0

.1347E-3

.0
-. 2134

.0

.0
-1.098

2832E-2
.0
.4064

-121.9
.0591
4.701
.1114
.8520
8.942
9.684

-1.432
- .2836
-. 4173E-2
-4.258
-. 6889
-. 3053E-1

.3919
-1.075
-114.8

.0

.0
1.048
.1210E-2
.0

-1.160

.0

.0

.9135E-3
-. 4600E-3
.0
.8532

.0

.0
-. 2606E-2
.7632E-2
.0

-. 1552E-1

2.707
-89.78
89.97
9.412

-. 2008
-. 1999
-. 1376

13.27
-. 7813
-. 1154E-1
-103.5
-2.392
-. 1063
-1.752

.5007
30.02

.0

.0

.2767E-2

.2335E-1

.0
4.418

.0

.0

.0

.0

.0

.0

.0

.0
-. 4793E-1
-. 2327E-2

.0
-. 5317E-1

-2235.
8343.

-. 7859E5
584.1

-5.820
341.1
37.90
2396.

-6699.
-99.28
.9977E5

-6178.
-274.7
-1683.
-45.68
-2686.

.0

.0
-. 5466

.9367

.0
-. 5911

.0

.0

.0

.0

.0

.0

.0

.0
40.16
.6998
.0

-136.9

-554.5
-268.6
616.4
89.80
12.22

-142.9
-266.0
-104.7
-34.83
-. 5158
-691.1
-54.17
-2.407
-26.66
-14.29
-1704.

.. 0
.0
.4763E-1
.2624E-2
.0
.5715E-1

.0
.0
.0
.7348E-3
.0
.0

.0

.0

.3284

.1103

.0
-1.207

24.39
-5.937
-9.704
1.604

-. 3455
21.13
22.87
.2060

-1.722
-. 2552E-1
10.43

-1.450
-. 6444E-1
-. 3746

.4961
50.92

.0

.0

.2831E-2

.1740E-3
1.000
.3350E-2

.0

.0
-. 5307E-3

.3307E-3
.0
.0

.0

.0

.5294E-2
-. 3536E-2

.0
-. 3217E-1_

.0
.0

-. 1146E-1
-. 1232E-3

.0

.2149

.0

.0

.0

.0

.0

.0 I

db a a 0 0
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TABLE A.2

Values used to normalize the variables in the F100 model.

x min) / x range
i i

u min) / u range
I i

y min) / y range
i i

(x -

= (u -

(y -

Range

7000
4500

570
155
65

500
500
820

1305
145

1500
990
110
900
450

2920

A norm = A * x range / x range
ij IJ J i

B norm = B * u range / x range
IJ lJ J I

C norm = C *x range/ y range
iJ I j 

0 norm =D * u range / y range
lj lJ J I

Inputs

Wf
AJ
FIGV
CSVA
BLC
PT2
TT2

Measurements

Nlsen
N2sen
PBsen
PT6sen
TT25Csen
FTITsen

M I n i mum

300
2.8

0
4
0
1

400

Minimum

3700
9000

30
2

500
1100

Range

16000
3.6
25
44
1

35
350

Rz-nge

7000
4500

550
65

500
1100

0 0 C1

x norm

u norm

y norm

Units

rpm
rpm
psia
psia
psia
deg R
deg R
deg R
deg R
deg R
deg R
deg R
deg R
deg R
deg R
deg R

State
Variables

N1
N2
PT3
PT45
PT7
TT25H
TT25C
TT3
TT4hi
TT41o
TT4'
TT45hi
TT45 o
TT5
TT6C
TT7

M i n i mum

3700
9000

30
5
2

500
500
880

1350
150

1550
990
110
960
500
730

Un i ts

lbs/hr
sq.ft.
degrees
dcgrees
fraction
psia
deg R

Units

rpm
rpm
psia
psia
deg R
deg R

0



TABLE A.3

Normalized, continuous-time, reduced-order linear model of the
F100 operating at sea level static conditions with PLA = 83.

Equilibrium values of the state variables:

N1 N2 PB PT6 TT25sen FTITsen Z1 Z2
= 0.9416 0.9182 0.6174 0.6457 0.5523 0.9768 1.0701 1.2646

-2.730
2.550
1.242

A = 2.597
3.759
1.194
0.0

L 0.0

E igenvalues:

-1.788
-5.567
-0.053
-1.241
0.039

-1.079
0.0
0.0

14.598
10.869
-3.904
5.279

-0.256
4.073
0.0
0.0

-10.527
-7.236
-1.283
-9.347
4.479

-2.630
0.0
0.0

0.0
0.0
0.0
0.0

-8.333
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

-0.833
0.0
0.0

-0.661 -0.833 -1.957 -3.033 -5.975 11.8806

Equilibrium values of the Inputs:

WF AJ FIGV CSVA
U 0.6418 0.0085 -0.0859 0.0

B [

C =

0.0
0.0
1.770
0.090
0.0
0.0
0.959
3.690

1
0
0
0
0
0

-0.577
-0.909
-2.545
-5.549

0.225
-0.261-

0.509
2.109

0
1
0
0
0
0

-0.346
0.160
0.235
0.394
0.185
0.058

-0.040
-0.165

0
0
1
0
0
0

-0.239
-1.001
-0.022
-0.175
0.006

-0.184
-0.012
-0.021

0
0
0
1
0
0

BLC
0.0

0.547
0.366

-0.447
0.081

-0.010
0.379
0.067
0.241

0
0
0
0
1
0

-0.065
0.394
0.080

-0.052
0.0

-0.026
-0.661
0.0

-6.667 -8.333

PT2 TT2
0.3913 0.3391

-4.891
-5.752
4.648
5.696

-7.871
-2.174
-1.345
-4.868

0
0
0
0
0
1

3.506
3.929

-1.792
-0.212
6.627
1.951
0.686
2.321J

0
0
0
0
0
0

0 00 40 0 0000

0.1511
-0.004
-0.050
-0.047
0.0
0.0
0.0

-1.957

Ni
N2
PB
PT6

TT25sen
FTITsen

Zi
Z2

N1
N2
PB
PT6

TT25sen
FTITsen

Zi
Z2

NIsen
N2sen
PBsen
PT6sen

TT25sen
FTITsen

0
0
0
0
0
0I

a a0 r] 0 0 0



0 0 0

TABLE A.4

Discrete-time linear model of the F100 operating at sea level static conditions with PLA=83.
(Time interval for sampl ing of measurements is 0.02 second.)

EquI i ibr iLum values of the state var iables:

N1
_x = 0.9416

N2 PD PT6 TT25sen -FTITsen Zi Z2
0.9182 0.6174 0.6457 0.5523 0.9763 1.0701 1.2646

State transition matr Ix:

0.9444
0.0460
0.0226

= 0.0466
0.0693
0.0220.0 222
0.0

-0.0307
0.8953

-0.0011
-0.0222
-0.0014
-0.0201
0.0
0.0

0.2595
0.1976
0.9268
0.0968
0.0094
0.0762
0.0
0.0

-0.1876
-0.1319
-0.0247

0.8251
0.0680

-0.0494
0.0
0.0

0.0
0.0
0.0
0.0
0.8465
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.9835
0.0
0.0

-0.0011
0.0076
0.0015

-0.0010
-0.0001
-0.0005
0.9869
0.0

0.0028
0.0

-0.0009
-0.0008

0.0001
0.0
0.0
0.9616

Equilibrium values of the inputs:

WF
U 0.6418

AJ FIGV
0.0085 -0.0859

Input transfer matrix:

0.0047
0.0036
0.0340

r = 0.0034
0.0002
0.0013
0.0191
0.0724

-0.0069
-0.0151
-0.0477
-0.1037
-0.0005
-0.0043

0.0101
0.0414

0
1
0
0
0
0

-0.0069
0. 0028
0.0043
0.0072
0.0035
0.0010

-0.0008
-0. 0032

0
0
1
0
0
0

CSVA
0.0

-0.0040
-0.0189
-0.0004
-0.0031
-0.0002
-0.0034
-0.0002
-0.0004

0
0
0
1
0
0

BLC
0.0

0.0092
0.0062
-0.0085
0.0012
0.0002
0.0072
0.0013
0. 0047

0
0
0
0
1
0

PT2 TT2
0.3913 0.3391

-0.0919
-0.1096

0.0870
0.1074

-0.1440
-0.0423
-0.0267
-0.0955

0
0
0
0
0
1

0.06251
0.0727

-0.0337
-0.0049

0.1243
0.0374
0.0136
0.0455J

0
0
0
0
0
0

I)

INI
N2
PB
PT6

TT25sen
FTITsen

Zi
Z3

Measurement matr ix:

0
C =0

0
0
0

N2
Ni
PB
PT6

TT25sen
FTITsen

zi
Z3

Nlsen
N2sen
PBsen
PT6sen

TT25sen
FTITsen

0
0
0
0
0
0I

S~ ~ S 0 a 0 w



TABLE A.5

Filter feedback matrix and failure vectors.

Fetcfbick matrix:

Fa Iltre vectors:

Scale factors:

Deflection angles:

0.1256
0.0460
0.0226

0 0.0466
0.0693
0.0222
0.0

.L.0

Nlsen

0.4844
-0.4004
-0.1968
-0.4060
-0.6034
-0.1933

1.579

N2sen

0.2713
0.9252
0.0094
0.1965
0.0128
0.1775

1.603

-0.0307
0.0766

-0.0011
-0.0222
-0.0014
-0.0201
0.0
0.0

PBsen

-0.7283
-0.5544
0.2054

-0.2716
-0.0263
-0.2137

0.5086

TT25sen FTITsen Fuel

Failure vectors:

Scale factors:

Deflection angles:

AJsen

0.0600
0.1307
0.4136
0.8982
0.0046
0.0373

1.570

3.0

FIGVsen CSVAsen BLEED

0.58554
-0.23736
-0.36765
-0.60996
-0.29340
-0.08661

15.34

2.4

0.2037
0.9507
0.0214
0.1558
0.0093
0. 1726

9.132

0.2

0.5825
0.3925

-0.5407
0.0767
0.0154
0.4563

1.1524

2.6

Bb Bb a a a

-0.1876
-0.1319
-0.0247
0.0064
0.0680

-0.0494
0.0
0.0

0.0
0.0
0.0
0.0
0.0278
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.1 6 4 8

0.0
0.0 j

0.2595
0.1976
0.1081
0.0968
0.0094
0.0762
0.0
0.0

PT6sen

0.6224
0.4376
0.0821
0.5803

-0.2256
0.1637

0.6013

0.0
0.0
0.0
0.0
1.0
0.0

1.181

0.0
0.0
0.0
0.0
0.0
1.0

10.97

0

0.1353
0.1025
0.9800
0.0968
0.0044
0.0383

5.219

180

PT2sen

0.3690
0.4399

-0.3492
-0.4310
0.5778
0.1698

0.7276

3.0

TT2sen

-0.3792
-0.4409
0. 2042
0.0296

-0.7536
-0.2267

1.312

HPT eff

-0.1220
0.9306
0.3338

-0.0514
-0.0064
-0.0706

1.333

2.5

4-
I

a a a a a
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TABLE A.6

Angles between the failure directions.

NIsen N2sen PBsen PT6sen TT25sen FTITsen FUEL AJsen FIGVsen CSVAsen BLEED PT2sen TT2sen HPT EFF

-53 -79 -77
89
-89
-77

0
90
90
90
73
90
89

-55
41
90

80
-78
81
90
0

88
-88
85
-80
63

-80
77

-86

80
89
74
90
88
0

-59
68

-80
-67
74

-85
66

61 -27 67
-71 78 -5

74 80 41
-49 86 -49
-90 73 -90
-88 85 -80
-59 68 -80

0 -46 73
-46 0 -77

73 -77 0
87 -69 -55

-64 71 63
89 88 -58
78 -68 32

W W W

U,

Nisen
N2sen
PDsen
PT6sen
TT25sen
FTITsen
FUEL
AJsen
FIGVsen
CSVAsen
BLEED
PT2sen
TT2sen
HPT EFF

0
-69
-90
-89
-53
-79
-77
61

-27
67
84
82

-64
-63

-69
0

-37
44
89
80
80

-71
78
-5
52

-63
56
36

-90
-37

0
-30
-89
-78
89
74
80
41

-29
59

-52
-71

-89
44

-30
0

-77
81
74

-49
86

-49
53

-88
75
71

84
52

-29
53
89
63

-67
87

-69
-55

0
-51
52
86

82
-63
59

-88
-55
-80
74

-64
71
63

-51
0

-27
75

-64
56

-52
75
41
77

-85
89
88

-58
52

-27
0

-74

-63
36

-71
71
90

-86
66
78

-68
32
86
75

-74
0

W



PLA 83->60: LINERR MODEL VS F100 SIM
SENSED N1, N2, PB, PTS. TT25, RND FTIT.

b.00 0. 20 0.40 0 .60 0.80 1.00 1.20 1.40 I 60 1.

FUEL CMHAND RNO RJ, FIGV, RND CSV POSITIONS.

-j ..

'b. 00 0 ,.20 0.40 0. 60 1 0.60 1.00 1.20 1140 1.60 1.0080
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61
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TIME (SEC)

Figure A.1. Comparison of the responses of the simulation and the linear model to a change
in PLA from 830 to 600. Above: response of the F100 simulation.
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N1. N2, AND PB ERRORS.
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Figure A.1, continued. Differences between the F100 simulation and the linear model.
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TABLE B.1

Sea-level-static equilibrium points used in the reference model.

PLA Ni

0
83
70
62
53
43
35
30
26
23
20

0.94152
0.93808
0.88161
0. 80226
0.68115
0.56382
0.48026
0.33462
0.17804
0.02755

N2

0.91774
0.91119
0.79355
0.67297
0.53394
0.41841
0.32464
0.23229
0.13945
0.04368

Pb

0.61734
0.60732
0.51761
0.42798
0.32880
0.25652
0.20717
0.15487
0.11083
0.07302

Pt6

0.64569
0.63083
0.54847
0.47361
0.38473
0.32545
0.29146
0.25894
0.23644
0.22075

Tt25

0.55227
0.54429
0.47055
0.40451
0.33628
0.28151
0.23982
0.19168
0.15359
0.12048

FTIT

0.97724
0.97377
0.81944
0.66150
0.49823
0.37347
0.28089
0.17624
0.11282
0.08353

Wf

0.64176
0.63135
0.49963
0.38000
0.26657
0.19306
0.14716
0.10256
0.07276
0.05165

AJ

0.00850
0.00000
0.05555
0.05555
0.05555
0.05555
0.05555
0.05555
0.05555
0.05555

FIGV

-0.08593
-0.07006
-0.37138
-0.75998
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000

CSv

0.00000
0.00000

-0.02950
-0.08285
-0.18271
-&.31164
-0.42392
-0.51645
-0.63476
-0.78068

S ~0000

9 v 0 r

a0 0
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Appendix B

NUMERICAL DATA OF THE NONLINEAR REFERENCE MODEL
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TABLE B.2

Discrete-time model for PLA=83.

N1
N2

_X= Pb
Pt6
Tt25sen
FTITsen

Wf cmd
Aj
FIGV

U = CSV
Bleed
Pt2
Tt2

I
I

Fai lure
Directions:

Scale factors:

0.94415
0.05313
0.01914
0.03134
0.07597
0.01902

0.00419
0.00474

r = 0.02757
0.00289
0.00015

L 0.00132

Nlsen N2sen

0.48207 0.28083
-0.45860 0.93284
-0.16520 0.03863
-0.27048 0.11609
-0.65568 0.01360
-0.16412 0.18919

1.5646 1.0657

-0.04777
0.84133

-0.00657
-0.01975
-0.00231
-0.03218

0.00217
0.00122

-0.03732
-0.07422
-0.00294

0.00042

Pbsen

-0.64007
-0.71579

0.11619
-0.14745
-0.02250
-0.20544

0.29633
0.33139
0.94621
0.06827
0.01042
0.09511

-0. .0683
0.00235
0.00324
0.00478
0.00309
0. 00072

Pt6sen

0.62822
0.60935
0.06259
0.39344

-0.20618
0.18113

-0.20019
-0.19418
-0.01994

0.87462
0.06570

-0.05772

-0.00361
-0.02545
-0.00421
-0.00152
-0.00035
-0.00204

0.00000
0.00000
0.00000
0.00000
0.84649
0.00000

0.10626
0.12030

-0.06658
0.00939
0.00483
0.06950

Tt25sen FTITsen Fuel

0.00000
0.00000
0.00000
0.00000
1.00000
0.00000

0.39153 0.56883 1.1808

0.00000
0.00000
0.00000
0.00000
0.00000
1.00000

15.506

FIGVsen CSVsen Bleed

0.69916
-0.24010
-0.33108
-0.48857
-0.31589
-0.07372

0.13792
0.97235
0.16088
0.05795
0.01350
0.07810

0.56688
0.64175

-0.35517
0.05012
0.02576
0.37079

Pt2sen

0.42820
0.63298

-0.22970
-0.26460

0.50682
0.19062

Tt2sen

-0.34110
-0.61934

0.09410
0.03445

-0.67326
-0.19168

Comp eff HPT eff LPT eff

0.04291
0.97297
0.22684
0.00492
0.00101
0.00332

-0.12638
0.94655
0.29054

-0.03630
-0.00515
-0.04818

0.98600
-0.00811
-0.15539
-0.04078
0.04389

-0.00070

6.9240 0.96703 0.56194 0.96420 0.94480 0.89947 2.46190

0

0.00000
0.00000
0.00000
0.00000
0.00000
0.98831 J

-0.13813
-0.20419
0.07410
0.08535

-0.16349
-0.06149 I0.06413

0.11644
-0.01769
-0.0-0648
0.12657
0.03604

Aisen

-0.02614
-0.01471
0.44876
0.89243
0.03540

-0.00509

Failure
Directions:

Scale factors:

0.14711
0.16638
0.96861
0.10143
0.00542
0.04648

6.3670 2.1795

0 0 9 e 0

18.554



TABLE B.3

Discrete-time model for PLA=53.

11
H2

x= Pb
Pt6
Tt25sen
FTITsenj

Wf cmd
Aj
FIGV

U= CSV
Bleed
Pt2
Tt2

r~

Nlsen

Failure
Directions:

Scale factors:

0.80126
0.24563

-0.04442
-0.24395
-0.48142

0.04394

1.8409

0.92110
-0.02419
0.00437
0.02451
0.04740

-0.00433

0.00490
0.00517
0.03061
0.00460
0.00023
0.00183

N2sen

0.27489
0.91236
0.05154
0.18136
0.08148
0.22328

1.1894

-0.04189
0.86096

-0.00785
-0.02764
-0.01242
-0.03403

0.00276
0.00068

-0.01593
-0.05678
-0.00267

0.00012

Pbsen

-0.65527
-0.67509

0.02369
-0.23280
-0.02099
-0.24431

0.32002
0.32969
0.98843
0.11370
0.01025
0.11931

-0.00881
-0.00505

0.00085
0.00266
0.00344

-0.00173

Pt6sen

0.68394
0.43775
0.12299
0.45693

-0.31000
0.14349

-0.18161
-0.11624
-0. 03266
0.87867
0.08232

-0.03810

-0.00217
-0.01646
-0.00236
-0.00130
-0.00061
-0.00164

0.00000
0.00000
0.00000
0.00000
0.84649
0.00000

0.08738
0.08765

-0.02935
0.02838
0.00097
0.05905

Tt25sen FTITsen Fuel

0.00000
0.00000
0.00000
0.00000
1.00000
0.00000

0.37117 0.68264 1.1808

0.00000
0.00000
0.00000
0.00000
0.00000
1.00000

15.506

FIGVsen CSVsen Bleed Pt2sen Tt2sen Comp eff HPT eff LPT eff

Failure
Directions:

Scale factors:

0.78573
0.45021

-0.07576
-0.23751
-0.30649

0.15443

16.170

0.12814
0.97342
0.13932
0.07661
0.03629
0.09712

10.720

0.61068
0.61260

-0.20510
0.19833
0.00676
0.41272

1.2669

0.49589
0.76523

-0.07218
-0.04776
0.28721
0.28026

-0.33834
-0.61776

0.01876
-0.09942
-0.65948
-0.24238

0.04132
0.97990
0.19505
0.00006

-0.00616
0.00285

0.57069 0.86061 1.3343

-0.13258
0.96065
0.22982

-0.05863
-0.00802
-0.05701

1.2542

0.99803
-0.00861

0.04475
-0.03165
0.02911

-0.00092

3.4720

0 S S 0 0 0

0.00000
0.00000
0.00000
0.00000
0.00000
0.98831

-0.15751
-0.24306
0.02293
0.01517

-0.09123
-0.08902

0.07127
0.13012

-0.00395
0.02094
0.13891
0.05105

AJsen

-0.04663
-0.01149

0.26958
0. 96072
0.04517

-0.00199

3.0672

0.15392
0.16251
0.96208
0.14470
0.00736
0.05750

5.6985

a 0 0 ar]
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TABLE B.4

The angles between the failure directions.

Matrix of angles for PLA

NMsen N2sen Pbsen Pt6sen Tt25sen FTITsen

Nlsen
N2sen
Pbsen
Pt6sen
Tt25sen
FTITsen
Fuel
Ajsen
FIGVsen
CSVsen
Bleed
Pt2sen
Tt2sen
COMPeff
HPTeff
LPTeff

0
-67

82
-88
-50
-77
-76
-69

31
-63
-83
-69

54
-62
-59
61

-67
0

-25
33
89
75
73
83

-82
14
34
44

-44
23
34
76

82
-25

0
-22
-89
-73
-79
-86
-80
-37
-19
-40
43

-46
-57
-52

-88
33

-22
0

-78
75
70
69
84
43
35
61

-61
51
61
56

-50
89

-89
-78

0
90
90
88

-72
89
89
60

-49
90

-90
87

-77
75

-73
75
90

0
86

-90
-84

84
60
74

-75
90

-86
-90

Matrix of angles for PLA = 53:

Nisen N2sen Pbsen Pt6sen Tt25sen FTITsen

Mlsen
1N2sen
Pbsen
Pt6sen
Tt25sen
FTITsen
Fuel
A jsen
FIGVsen
CSVsen
Bl eed
Pt2sen
Tt2sen
CoMPeff
HPTeff
LPTeff

0
68

-51
46

-61
86
84

-72
18
72
54
62

-84
74
82
38

68
0

-26
46
85
72
71
80
53
15
31
24

-37
26
37
75

-51
-26

0
-28
-89
-70
-73
-79
-37
-38
-16
-24
41

-48
-59
-52

46
46

-28
0

-72
78
67
65
42
54
36
52

-66
61
71
49

-61
85

-89
-72

0
90
90
87

-72
88
90
74

-50
-90
-90
88

86
72

-70
78
90

0
85

-90
77
82
57
67

-71
90

-85
-90

Fuel

-76
73

-79
70
90
86
0

59
-71
68

-88
-89
-83
67
66

-89

Fuel

84
71

-73
67
90
85

0
67
83
69
82
78

-78
69
70
79

Ajsen FIGVsen CSVsen

-69
83

-86
69
88

-90
59

0
-52
83

-85
-72
87
84
85

-83

31
-82
-80

84
-72
-84
-71
-52

0
-76
77
81
83

-73
-67
42

-63
14

-37
43
89
84
68
83

-76
0

47
49

-48
9
20
84

Ajsen FIGVsen CSVsen

-72
80

-79
65
87

-90
67
0

-73
84
83

-86
-84
87
90

-86

18
53

-37
42

-72
77
83

-73
0

58
39
44

-68
62
72
40

72
15

-38
54
88
82
69
84
58
0

46
34

-45
11
22
83

Bleed

-83
34

-19
35
89
60

-88
-85
77
47

0
37

-44
56
66
55

Bleed

54
31

-16
36
90
57
82
83
39
46

0
26

-43
56
67
56

Pt2sen Tt2sen COMPeff HPTeff LPTeff

-69
44

-40
61
60
74

-89
-72
81
49
37

0
-19
54
62
61

54
-44
43

-61
-49
-75
-83
87
83

-48
-44.
-19
0

-53
-60
-68

-62
23

-46
51
90
90
67
84

-73
9

56
54

-53
0

11
-90

-59
34

-57
61

-90
-86
66
85

-67
20
66
62

-60
11

0
-80

61
76

-52
56
87

-90
-89
-83
42
84
55
61

-68
-90
-80

0

Pt2sen Tt2sen COMPeff HPTeff LPTeff

62
24

-24
52
74
67
78

-86
44
34
26

0
-26
42
52
61

-84
-37
41

-66
-50
-71
-78
-84
-68
-45
-43
-26

0
-53
-60
-70

74
26

-48
61

-90
90
69
87
62
11
56
42

-53
0

12
88

82
37

-59
71

-90
-85

70
90
72
22
67
52

-60
12
0

-83

38
75

-52
49
88

-90
79

-86
40
83
56
61

-70
88

-83
0

S 9 a U3
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PLR 83->60, WITH MODEL INTEHPOLHTIGN
SENSED N1, N2. PB, PT6, TT25. AND FTIT.

92.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.60

FUEL COMMAND AND RJ, FIGV, AND CSV POSITIONS.

o 0.20 0.4 06 e 1. -

1 1.

.00 O.20 O. 40 O.60 0.8 c .o IfO .I2o 1.40 1.60 1.80

.oo 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

Ln

0.00 0.20 0.0 0.60 01.00 1*.00 1.20 1.40 1.0 1.60

b.oo 0.20 0.40 0.60 0.60 1.00 1.20 i.40 1 60 I. 0
TIME (SEC)

CE2

'I I i i I | , , , , .-----4--4--I -
9.oo 0.20 O.4O 0.60 0.80 1 00 1.20 1.40 1.60 1.60

(no

10.00 0.20 0.40 0.60 0.80 1.00 - 1.20 1.40 1.60 1.60

Figure B.1. Comparison of the nonlinear model and the F100 simulation for a deceleration
from PLA=83' to PLA=63". Above: response of the F100 simulation.
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6W 0

N1, N2, RNO PB ERRORS.

C

~1J0Z0

0.03 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.60

LLJc\5 -
Z

0.00 0.20 0.40 0.60 0 80 1.00 1.20 1 4o 1.60 1.80

I i I . 1i i

C10

m15

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
TIME (SEC)

V to

PT, TT25, RNO FTIT ERRORS.

coL J

0.00 0.20 0.40 0.60 0.60 1.00 1.20 1.40 1.60 1.60

C.
0Lr

0.00 0.20 0.40 0.60 0.60 1.00 1.20 1 40 1.60 1 80

C;

00O

0.00 0.20 0.40 0.60 0.60 1.00
TIME (SEC)
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Figure B.1, continued. Differences between the responses of the F100 simluation and the model.
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Appendix C

ADDITIONAL TESTS OF THE NONLINEAR FILTER
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5 PSI 0 .5-. 75S.
PLA 83->65 0 G.-.5S. BELOW: NI & N2 SENSED. FUEL CMD, MAG(R) & ANGLE.

-b.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

3

b.00 0.20 0.40 0.60 0.60 1.00 3.20 1.40 1.60 1.80

I I I I i I I I -
b. 00 0.20 0 .40 0.60 0.80 3.00 3.20 1.40 1.60 .60

3 3 I I 3 3 _ I _ I 3 _ 3 I
.00 0.20 0.40 0.60 0.80 3.00

TIME (SEC)

AhAL

1.20 1.40 1.30 1.80

Figure C. 1.

*b

FAILURE SIGNALS FOR N2, PB, PT6. AND AJ SENSORS.

(Uc

c1

c I I
0.00 0.20 0.40 0.60 0.60 1.00 1.20 1.40 1.60 1.60

LOO

an-.

In,
U-_0

C,.00 O .20 0. 40 O. 60 O .80 1.00 L.2 1.40 1.160 1.80

Ino

3 3 I 3 3 3 i i I '

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.110 1.60 1.8

L i I i i i I

CE

(r) i i i i i i
0.00

Bias in the Pt6

A

0.20 0.40

sensor.

a

0.60 0.60 1.00 3.20 3.40 1.60
TIME (SEC)

ab db

1.0

db

PT6 SEN BIAS:

a



S

RJ SEN BIAS: -10%

0 S~ S

a .5-. 75S.
PLA 83->65 a O.-.5S. BELOW: Ni & N2 SENSED, FUEL CMO, MAG(R) & ANGLE.

b.oo 0. 20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.0

.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

Vi \AQ
11.00 0.20 0.40 0.60 0.60 1.00 1.?0 1.40 1.60 1.60

TIME (SEC)

FAILURE SIGNALS FOR PB, RJ, FIGV, AND PT2 SENSORS.

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.

Ujo

LL-

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.
L'O

'-L-h0 . 0 I 0104 1 1601 80 10 1 . . 1

80
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0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.60
TIME (SEC)

Figure C.2. Bias in the A. sensor.
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LPT EFFICIENCY DECRERSE 2 PTS @ .15.
BELOW: NI & N2 SENSED. FUEL CMD. MAG(RI & ANGLE. FAILURE SIGNALS FOR NI AND FIGV SENSORS AND FOR HPT & LPT.

z
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Figure C.3.
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Decrease in LPT efficiency.
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PLA 53.
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w1 Ll

CSV SENSOR BIAS 10 DEG.

9

PLA 60->70: 0.-.755. BELOW: NI 4 N2 SENSED, FUEL CMD, MAGIRI & ANGLE.

C, i I i i i I i i i

00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 1.60 1.0

:1

9)00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8

93.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8

't.00 0.20

FAILURE SIGNALS FOR N2 AND CSV SENSORS AND FOR COMP & HPT
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Figure C.4. Bias in the CSV sensor.
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INTERMEDIRTE TO IDLE POWER.
PLA 83->20 a 0.-.75S. BELOW: N1 & N2 SENSED, FUEL CMD, MAG(R) ANGLE.

SI I I : +
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Figure C.5. Decleration from intermediate to idle without a malfunction.
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S 5 9 4 9 ; qv

FRILURE SIGNALS FOR N1, N2, PB, AND PT6 SENSORS. FRLURE SIGNALS FOR FUEL SYSTEM AND FOR RJ, FIGV, & TT2 SENSORS.
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Figure C.5, continued.
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