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ABSTRACT

The solution of the characteristic breakdown equation, with

the proper boundary conditions imposed, leads to a method of

calculating an effective diffusion length, A , for the case

of non-uniform fields. ha, may be regardod as expressing an

equivalent parallel plate separation to give the same break-

down field as that of the actual cavity. This correction is

used to obtain values of the ionization coefficients from

the breakdown data. The object of this thesis is to prove

experimentally that for breakdown in hydrogen the curve of

vs. Ee/, is a universal curve, being valid in the uniform

and non-uniform field region. Breakdown data is obtained for

cylindrical cavities wrhose ratios of radius to length are as

low as 0.5.
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INTRODUCTION

The Townsend theory for breakdown of a low pressure gas

under the action of a d.c. electric field postulates two

sources of electrons. Most of the electrons are generated in

the volume of the gas through ionization by collision. The

original source of electrons at the cathode results from sec-

ondary emission caused by positive ion or photon bombardment.

Prediction of the breakdown voltage requires numerical data on

the efficiency of these processes. Thus attempts to determine

ionization coefficients from breakdown data have been compli-

cated by the operation of two electron generation processes.

In a high frequency gas discharge breakdown, the primary

ionization due to the electron motion is the only production

phenomenon which controls the breakdown; the electrons

formed at the walls or in the gas by secondary erissicn have

a negligible effect. It is therefore possible to predict the

electric field for breakdown from a knowlsdge of the ioniza-

tion coefficient only, or to measure the ionization coeffi-

cient from a breakdown experiment.

A theory has been developed for the breakdown criterion

in TMD,-mode cylindrical cavities. The object of the present

experiment is primarily to extend the range of the experi-

mental data beyond the region where the cavity height is

small compared to its diameter. This generalization removes

the assumption that the cavity approximates the conditions

of infinite parallel plates. The following theory has been

developed by Herlin and Brown (1,2).
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BREAKDOWN THEORY

The breakdown condition is developed for a region in a

resonant cavity bounded by walls which absorb electrons. A

radioactive source near the discharge cavity provides a small

amount of ionization in the cavity. The microwave field in

the cavity is gradually increased until the gas suddenly

begins to glow, becomes conducting, and the field drops to a

much lower value. The field necessary to produce this phe-

nomenon is called the breakdown field.

From the principle of balancing the generation of elec-

trons through ionization by collision against the loss of

electrons through diffusion, the differential equation and

and boundary conditions which lead to the breakdown field

strength can be obtained (1). The resulting differential

equation is

Vr-V + t E( 0

where the electron diffusion current density potential 1+ is

given by *:Dn, and Y is the high frequency ionization coeffi-

cient defined by Z:/DE . The quantity n is the electron

density function, D is the electronic diffusion coefficient,

Y is the net production rate of electrons per electron, and

E is the r.m.s. value of the electric field intensity.

The boundary condition on -* is obtained by setting the

diffusion current approaching the wall equal to the random

current collected by the wall. It can be shown that the

density of the electrons will go to zero at a distance of the

order of a mean free path beyond the wall (3). However,
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because diffusion theory is valid only when the mean free

path is small compared to the dimensions of the discharge

tube, it is sufficiently accurate to apply the condition that

the electron density, and therefore 4, vanish at the walls.

The ionization coefficient is a function of E/p and pA.,

where E/p expresses the energy gained by an electron per

collision at zero frequency, and p). expresses the ratio of

the collision frequency of the electrons to the frequency of

the applied high frequency field. The quantity p is the

pressure and A is the free-space wave length of the electric

field. The electric field appears explicitly in Eq. (1)

because it varies with position in the cavity. On the other

hand, pA is constant throughout the cavity. The electric

field is expressed in the form E=Eof(x,y,z), where Eo is the

maximum value of the field and f is a geometrical factor ob-

tained from a solution of Maxwell's equations for the field

distribution within the cavity as an electromagnetic boundary

value problem. The value of f is unity at the maximum field

point. The magnitude of excitation in the cavity is expressed

by Eo, and the relative field distribution through the cavity

is independent of the excitation. The boundary value problem

of finding a non-zero solution to Eq. (1), with the boundary

condition that I*f be zero on the cavity walls, leads to a

characteristic value of Eo, which is the breakdown field at

the maximum field point.
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BREAKDOWN IN UNIFORM FIELDS

If the end plate separation is small compared to the dia-

meter of the region where the field is substantially uniform,

in the vicinity of the center of the cavity, then these ca-

vities approximate the conditions of infinite parallel

plates with a uniforia electric field. Under such conditions,

the solution of Eq. (1) is

-= A s (%/N)
where A: LtrkI, L is the plate separation distance, z is the

distance from one plate to an arbitrary point in the cavity,

and A is a constant. A is also known as the diffusion length.
The breakdown condition is

The electric field for breakdown may be measured as a function

of pressure, frequency, and plate separation. From this data

the ionization coefficient S may be computed.
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BREAKDOWN IN NOII-UNIFORdi FIELDS

If the end plate separation cannot be neglected compared

to the diameter of the cavity, then the electric field in the

cavity can no longer be considered uniform. Its variation

with respect to the distance fron the center of the cavity

must be taken into account. The solution of the character-

istic value of Eq. (1) becomes considerably nore difficult.

Integration of Eq. (1) is simplified by the use of the

approximation employed by Herlin and Brown (1,2).

where is the value of the ionization coefficient at the

maxiuum field point, Aa is introduced for mathematical

convenience and has the units of reciprocal length. The

quantity J9 -2 is obtained as the slope of the vs. E/p

plot on a logarithmic scale at the point Eo/p. This approx-

iaation gives accurate results because it is correct where

the ionization is high, aad is inaccurate only where the

ionization is low and therefore has little effect on the

solution of the equation.

From the solution of ivaxwell's equation the electric

field in the Tid,,,-mode cylindrical cavity, shown in Fig. 1,

is found to be given by the expression,

E-Eo Jo(2.405 r/R). (5)

R is the radius of the cavity and Jo is the Bessel function

of order zero.
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Fig. 1. Cylindrical cavity, showing dimensions
and coordinates.

Since the electric field depends on the radical component only,

the differential equation, Eq. (1), may be separated. Sep-

aration results in

Z P4 Si I/g V% (6)

where A is a constant, L is the length of the cylindrical

cavity, z is the axial coordinate, and (r) is determined

from the differential equation

The approximation of Eq. (4) and the electric field of Eq. (5)

substituted into Eq. (7) lead to the equation

.( .t ( I.%aso .4 /Of o (8)

It is difficult to find an analytic solution to this

equation. A good approximation is to express the Bessel

function as the first two terms of its power series. This

approximation is also valid where the ionization is high and

fails only where it low. hquation (8) then becomes

(V . .. -- ( L jW ( 9)

L
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where

b= 0.831 R/ula. (10)

is the radius at which the ionization goes to zero under

the above assumptions.

The ionization function in Eq. (9) is negative where

r#b, which is not physically possible. Accordingly, the

ionization is set equal to zero from ra b to ra R. Equation

(9) is used in the range 06rtob and in the range b rIfR

the equation

-- (T l
Vd 4y Li (11)

is applied. The ionization function employed here is

compared with the actual ionization function in Fig. 2.

They are identical in the vicinity of r a0, where the ioni-

zation is high. The error in the approximation becomes

positive as r increases, and negative as it approaches the

radius b. Beyond r -.b, the ionization drops rapidly to zero

and is approximated by the value zero. The boundary condition

on Q is that it be zero at r x R and that its derivative and

value match at rz: b.

b R

Fig. 2. Comparison of actual ionization function
(solid curve) with its approximation
(dotted curve).
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The solution of Eq. (9) is

- 3 1 , 4r 7)

where
'=/A a b 0 - Ae -t/L)

x:L' -t T71?e /a Y'/A
and M is the confluent hypergeometric function (4). The second

solution is omitted because it has a singularity at the origin.

The solution of Eq. (11) is

K. HV. r/ - K J. ('iL V/ (13)

where K is a constant of integration. It is chosen to make (

equal to zero at the ooint r=R, and it is thus a function of

R/L. For values of R/L greater than 0.5, the Bessel term may

be neglected (2). The range below 0.5 may be computed if the

Bessel term is retained. The numerical computations were per-

formed only for R/L'70.5 so that the results here are

applica'le to cavities whose heights are smaller than their

diameter. This increase in t>.e coverage of the range of R/L

is a substantial gain over the coverage of the parallel plate

treatment, for which R/L should be greater than 15.

The matching condition at rs b may be satisfied by making

the ratio Q7eaual on both sides of the matching point.

is the derivative of Q with respect to r. The resulting

equation is a transcendental equation for the breakdown

field:

LH (J4A ["c M ( E 1
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where
% z Tr b/L

and
'd* b/A

Eq. (14) may be solved for b/A as a function of L/A The

results are most conveniently represented by expressing

as a function of b/L. This plot is shown in Fig. 3.

100

10-

0.01 0.1 bfL 1.0 t

Fig. 3. Solution of the transcendental breakdown

equation, Eq. (14).

For the case of a uniform field, the characteristic dif-

fusion length is Ac Lin. gn may be considered as an effective

diffusion length or the equivalent infinite parallel plate

separation which will give the same breakdown field as that of

the actual cavity. Therefore, at large b/L the conditions of a

uniform field prevail and A is equal to A@, so that the



100

ordinate of Fig. 3 approaches unity. If the tube is long or

the slope of the ionization coefficient curve is large, b/L is

small and. a larger value of At , and therefore electric field,

is required for Dreakdcown, relative to what would oe required

with a uniforid field.
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VERIFICATION OF THE UN IVERSAL BREAKDOWN

CURVE FOR HYDROGEN

From the uniform field data for hydrogen a plot of

as a function of Ef/p can be obtained. EV is the effective

field defined by the following relation (5)

where B is the r.m.s. value of the applied field, VC is the

collision frequency, and w is the radian frequency of the

field, Ee is the effective field which would produce the

same energy transfer at zero frequency. The collision

frequency as a function of pressure is known from experiment.

It is found that for various diffusion lengths the sane

curve is obtained. It is assumed that as a function of

Ee/p is a universal curve and the object of this thesis is

to prove experimentally that the curve is also valid in the

non-uniform field region. The results obtained in the

preceeding sections are used to extend the range of experi-

mental values of the ionization coefficient from experimental

data in longer cavities than are permitted by the uniform

field theory. From this result, the validity of the universal

curve in the non-uniform field region can be tested.

The following procedure is utilized: From the plot of

(X)- as a function of E/p, the slope of the constant 
p% curves

are plotted as a function of E/p. The ordinate( would

be the high frequency coefficient if the experiment were

performed between infinite parallel plates. If this assuaiP-
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tion is made, the slope of the constant pA. curves would be

the 3 contained in Eq. (4). As a first approximation this

value of 5 is used to find the effective diffusion length

from Fig. 3. Thus, a second approximation to the ionization

coefficient curves is obtained. The process is repeated

until no further correction is indicated. In order for the

theory to be valid, any correction to the ionization curves

after the first correction is made shlould be only a second

order effect. This method has also been used satisfactorily

in the case of electron diffusion in a spherical cavity by

MacDonald and Brown (6).

Another raethod of verifying the universal curve of

vs. E&/p in the non-uniform field region has been suggested

by Karl-Berger PerSson. A curve of /t as a function of

the radius of a given cavity in the non-uniform field region

may be obtained from the above curve and the fact that I/D= EV.

The curve will appear.similar to the one in Fig. 2. If this

curve can be expressed as an analytic function of the radius,

it may be inserted in Eq. (7). The procedure is to betain

an arbitrary constant in the expression of 1/D as a function

of the radius and to determine this constant from solving the

characteristic breakdown equation. If this constant agrees

with the actual value, then it may be assumed that the curve

of as a function of Ee/p is valid in the non-uniform

field region. Although the above mnethod appears reasonable

in theory, it is very difficult to perform in practice. The

obstacle encountered is that the differential equation ob-
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tained by inserting the function /D in Eq. (7) cannot as

yet be solved by known methods of integration. However,

it may be possible that an approximation sirilar to the one

discussed on page 7 can be nade such that the differential

equation becomes integrable. This method of approach will

be attempted after the complete set of experimental data is

obtained.
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EXPERIMENTAL PROCEDURE

A block diagrai of the apparatus used in the experiment

is shown in the following figure.

SPELTftUM
ANALViER /

(ustr As
BRIDGE ocA r VTYVST

WAVEMETE

AaWTR CA/L4IAT

'THERMIsToR A7TaLHU1 OIL

PAhD
p~'o IRJ.CTtoNM.

I H POWER DIVIDER, SLOTTD
IISECTOe RESONANT

PMD I fl C11AV ITV

fMATcHED LOAU

A continuous-wave tunable magnietron in the 10 cm. wave

length region supplies microwave power into a coaxial line

connecting to the ieasurement equipment. In order to pre-

vent leakage of the magnetron power from introducing an inter-

fering signal in the measurements, a brass shield, enclosing

the magnetron, is used. The stability of the input power is

improved by employing a regulated voltage supply.

A cavity wavemeter determines the frequency of the magnetron

power. The power incident on the cavity is varied by a

power divider. A directional coupler provides a known fraction

of the incident power to a thermistor element, whose resist-

ance, measured by a sensitive bridge, indicates power incident
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on the cavity. The slotted section is a standing wave de-

tector which determines the field in the coaxial transmission

line as a function of distance. The power picked up by the

probe in the slotted section is transmitted through an ad-

justable, calibrated attenuator to the input terminals of

the spectrum analyzer. The standing wave ratio in decibels

can be determined directly from the attenuator readings.

The cavities are designed so that they resonate in the

TM.10 -mode in the 10 cm. wave length region, and are coupled

to the coaxial transmission line by a coupling loop. A

second coupling loop provides a transmitted signal to a cut-

off attenuatcr terminated in a crystal rectifier and micro-

ammeter. A description of the equipment and the method of

calibrating and adjusting it is given in reference (8).

The cavities were made of oxygen-free high conductiv-

ity copper and all joints were hard soldered. The coupling

loops were :a.ade of copper, Kovar, and glass. The cavity was

connected through Kovar to an all glass system including a

three stage oil diffusion pump and a liquid nitrogen trap.

The vacuum was measured by an ionization guage. In order to

obtain as high a degree of purity as possible, the cavity and

ionization guage were baked at 300 C for several days before

each set of measurements. The remainder of the vacuum system

was carefully outgassed by frequent heating with a Bunsen

flame. With the cavity, ionization guage, and liquid nitrogen

trap isolated from the pumps, an equilibrium pressure of 1 to

5110 mm. of ercury could be obtained for several hours. A

single series of breakdown maeasurements takes about this time.
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When the equilibrium vacuum is such that a sufficiently

high degree of purity can be obtained, the cavity is filled

with hydrogen. The hydrogen is introduced into the system by

allowing an iron slug encased in glass to fall on a glass neck

which separates a flask containing hydrogen from the remainder

of the vacuum system. The iron slug is lifted into position

by means of a magnet. A small stopcock has been connected

between the cavity and pumps so that a small mount of gas can

be removed as desired. The pressure of the hydrogen gas is

measured by means of a igcleod guage and is calibrated in milli-

meters of mercury.

The power incident on the cavity is increased oy varying

the power divider, while the frequency of the signal is main-

tained at'the resonant frequency of the cavity. At a certAin

value of power, the transmisjion crystal current will suddenly

fall to a lower value. This change indicates that the gas has

oroken down, and the maximum crystal current indicates the power

required for breakdown. Previous to this, the crystal current

and attenuator have been calibrated as a function of the ther-

mistor bridge reading so that the incident power can be deter-

mined from the crystal current and attenuator dial setting.

However, if the bridge is sufficiently stable so that the zero

setting does not drift appreciably with time, the breakdown

power can be read directly from the thermistor bridge and the

above procedure may be omitted.

The r.m.s. breakdown field is obtained from the following

relation (7)
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Eb z C ?iaLW)(16)

where P is the power absorbed in the cavity, Q is the un-

loaded Q of the cavity,andtJ1 is the resonant frequency. The

unloaded Q is calculated from the standing wave measurements.

The experimental procedure iiay be found in references (7) and

(8). The power absorbed is calculated from the power incident

on the cavity an the stancing wave ratio of the cavity at

resonance. The breakdown field can be measured within an

accuracy of approximately 8%. The inherent accuracy of the

thermistor bridge is 4 to 5%, and the accuracy in determining

the fraction of power to the thermistor bridge is approximately

3%. The pressure can be measured within an accuracy of 1%.
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RESULTS

The results obtained in three cavities resonant at 10.6

cm. wave length are shown in Figures 4,5, and 6. The data for

the cavity with L= 10 cm. was obtained from Karl-Berger

Persson. This cavity was excited in the TM.a. -mode and its

resonant frequency was 10.1 cm. The diameters of the other

cavities were all the same and equal to that necessary to

give a resonant wave length of 10.6 cm. The breakdown field is

computed from the measured breakdown power and cavity para-

meters. Figure 4 shows the experimental breakdown field as a

function of pressure for the various cavity lengths. The

accuracy of the curves is slightly higher than 15% due to the

fact that impurities were present in the hydrogen gas so that

the breakdown field was higher. This discrepancy was found by

comparing the experimental breakdown fields with those

theoretically predicted in reference (9). Further measurements

will be performed on the same and additional cavities in order

to acquire more accurate results. Every effort will be made to

minimize the presence of impurities.

Figure 6, computed from the experimental E versus p curve,

depicts the quantity as a function of E/p for various

cavity lengths. If the field were uniformo(F- would be equal

to the high frequency ionization coefficient. However, the non-

uniformity must be taken into account, especially for the

longer cavities. Figure 5 shows pX plotted as a function E/p.

The values of E/p for various px values may be transferred to

Fig. 6 and the constant p% curves are drawn in. The curves are
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then corrected as described previously to yield a final set

of ionization coefficient curves. Y obtained from these

curves is plotted as a function of Ee/p and the assumption

that S versus Ee/p is a universal curve, being valid in the

non-uniform field region, can be verified. These final steps

were not performed in this thesis because of the inaccuracy

of the present data and the limited time available for the

problem. The author, however, intends to continue with the

problem until a complete set of data. is obtained and the

object of this thesis is proved.



I 1 1 1 .1 1

I I I lIt t

cI
C.

CC,

I. II I I II1
I

S I I I il

10
P (wm of- HS)

Fig. 4. Experimental values of breakdown field E as

a function of pressure p for various cavity

lengths.

000

t0
.1

- - . Uphownwhodmohm"

20.

I ! I I 1 1 11 1 1 11 1



21.

7100

\0 --

1.0
tt oo 1000

E/P (Voatb/cm- Y"Y"

Fig. 5. Curves of p X versus E/p for various cavity
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constant p?. curves in Fig. 6.
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