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i.

ABSTRACT

The solution of the characteristic breakdown equation, with
the proper boundary conditions imposed, leads to a method of
calculating an effective diffusion length, Ae , for the case
of non-uniform fields. I\e may be regarded as expressing sn
equivalent parallel plate separation to give the same break-
down field as that of the actual cavity. This correction 1s
ugsed to obtain values of the ilonization coefficients from
the breakdowh data. The object of this thesls is to prove
experimentally that for breakdown in hydrogen the curve of
S vs.El/P is a universal curve, being valid in the uniform
and non-uniform field region. Breakdown data is obtained for
¢ylindrical cavities wnose ratios of radius to length are as

low &3 O.5e
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INTRODUCTION

The Townsend theory for breakdown of a low pressure gas
under the action of a d.c. electric field postulates two
gources of electrons. Most of the electrons are generated in
the volume of the gas through ionization by collision. The
original source of electrons at the cathode results from sec-
ondary emlission caused by positive ion or photon bombardment.
Prediction of the breakdown voltage requires numerical data on
the efficiency of these processes. Thus attempts to determine
ionization coefficients from breakdown data have been compli-
cated by the operation of two electron generation processes.

In a high frequency gas discharge breakdown, the primary
ionization due to the electron motion is the only production
phenomenon which controls the breakdown; the electrons
formed at the walls or in the gas by secondary enissicn have
a negligible effect. It 1s therefore possible to prediet the
electric field for breakdown from a knowledge of the loniza-
tion coefficient only, or to measure the ionization coeffi-
cient from a breakdown experiment.

A theory has been developed for the breakdown criterion
in Tlge-mode cylindrical cavities. The object of the present
experiment ig primarily to extend the range of the experi-
mental data beyond the region where the cavity height is
gmall compared to its diameter. This generalization removes
the assumption that the cavity approximates the condltions
of infinite parallel plates. The following theory has been

developed by Herlin and Brown (1,2).
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BREAKDOWN THEORY

The breakdown condition is developed for a region in a
resonant cavity bounded by walls which absorb electrons. A
radioactive source near the digcharge cavity provides a small
amount of ionization in the cavity. The microwave field in
the cavity 1s gradually increased until the gas suddenly
beging to glow, becomes conducting, and the field drops to a
much lower value. The fleld necessary to produce this phe-
nomenon 1s called the breakdown field.

FProa the principle of balancing the generation of elec-
trong through ionization by collision against the loss of
electrons through diffusion, the differential equation and
and boundary conditions which lead to the breakdown field
strength can be obtained (l). The resulting differential
equation is

vey + SE*V=0 | m
where the electron diffusion current density potential VY is
given by Y=Dn, and ¥ is the nhigh frequency ionization coeffi=-
cient defined by 2;:9/13}:*. The quantity n is the electron
dengity function, D is the electronic diffusion coefficlent,
¥ is the net production rate of electrons per electron, and
E is the r.m.s. value of the electric field intensity.

The boundary condition on P is obtained by setting the
diffusion current approaching the wall equal to the random
current collected by the wall. It can be shown that the
dengity of the electrons will go to zero at a distance of the

order of a mean free path beyond the wall (3). However,
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because diffusion theory is valid only when the mean free
path is small compared to the dimensions of the discharge
tube, it is sufficiently accurate to apply the condition that
the electron density, and therefore Y, vanish at the walls.
The ionizstion coefficient is a function of E/p and pA,
where E/b expresses the energy gained by an electron per
collision at zero frequency, and pN expresses the ratio of
the collision frequency of the electrons to the frequency of
the applied high frequency field. The gquantity p is the
pressure and A 1s the free-space wave length of the electric
field. The electric field appears explicitly in Eg. (1)
because 1t varies with position in the cavity. On the other
hand, pA is constant throughout the cavity. The electric
field is expressed in the form Es=kof(x,y,z), where Eo is the
maxXimum value of the field and f is a geometrical factor ob-
tained from a solution of Maxwell's equations for the field
distribution within the cavily as an electromagnetic boundary
value problem. The value of f is unity at the maximum field
point. The magnitude of excitation in the cavity 1s expressed
by Eo, and the relative field distribution through the cavity
is independent of the excitation. The boundary value problem
of finding a non-zero solution to Eq. (1), with the boundary
condition that'Yobe zero on the cavity walls, leads to a
characteristic value of Eo, which is the breakdown field at

the maximum field pointe.
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BREAKDOWN IN UNIFORHM FIELDS

If the end plate geparation is small compared to the dia=-
meter of the region where the field is substantially uniform,
In the vicinity of the center of the cavity, then these ca-
vities approximate the conditions of infinite parallel
plates with & uniform electric field. Under such conditions,
the solution of Eq. (1) is

W= Asin (3/A) (2)
where A= \Jtr, L is the plate separation distance, z is the
distance from one plate to sn arbitrary point in the cavity,
and A is a constant. N is also known as the diffusion length.
The breakdown condition is

§$= V/nez | (3)

The electric field for breakdown may be measured as a function
of pressure, frequency, and plate separation. From this data

the ionization coefficient § may be computed.
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BREAKDOWN IN NON-UNIFQRM FIBLDS

If the end plate separation cannot be neglected compared
to the diameter of the cavity, then the electric field in the
cavity can no longer be considered dniform. Its variation
with respect to the distance from the center of the cavity
must be taken into acccunt. The solution of the character-
istic value of Eg. (1) beccmes considerably more difficult.

Integration of Eq. (1) 1s simplified by the use of the

approximaticn ewployed by Herlin and Brown (1,2)..

B8 () - ()Y W

where 3, is the value of the ionizatiun coefficient at the

saxivum field point, Mg is introduced for mathematical
convenience and has the units of reciprocal length. The
quantity § -2 is obtained as the slope of the § vs. E/p
plot on a logarithmic scale at the point Eo/b. This approx-
laation gives accurate regults because it is correct where
the ionization is high, and is inaccurate only where the
ionization is low and therefore has little effect on the
solution of the equation.

From the solution of iaxwell's eqguation the electric
field in the Tiig,gymode cylindrical cavity, shown in Fig. 1,
is found to be given by the expressicn,

Es ko Jo(2.405 r/R). : (5)
R is the radius of the cavity and Jo is the Bessel function

of order zero.
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Fig. 1. Cylindrical cavity, showing dimensions
and coordinates.

Since the electric field depends on the radical component only,
the differential equation, Eq. (1), may be separated. Sep-
aration results in
WYz A s (W2/) Q) (6)

where A 1s a constant, L is the length of the cylindrical
cavity, z is the axial coordinate, and Q (r) is determined
from the differential equation

TE D s may]e o (")
The approximation of Eq. (4) and the electric field of Eq. (5)
substituted into Eq. (7) lead to the equation

L4 (v88) + [Re T uosr/)-TAY J@=0 (&)
It is difficult to find an analytic golution to this

equation. A good approximation is to express the Bessgel

function as the first two terms of its power series. This

approximation is also valid where the ionization is high and

fails only where it low. Lguation (8) then becones

el + LR 0-H) -] @ =0 ©
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where

bz 0.831 R/gwa (10)
is the radius at which the lonization goes to zero under
the above assumptions.

The ionization function ian Eq. (9) is negative where
rPpb, which is not physically possible. Accordingly, the
ionization 1is set equal to zero from rsb to raR. Eguation
(8) is used in the range 0% r£b and in the range b€ r£R

the equation

+ 549 - (M) e=0 (11)
is applied. Tne ionization function employed here is
compared with the actual ilonization function in Fig. 2.
They are identical in the vicinity of r=0, where the ioni-
zation 1s high. The error in the approximation becones
positive as r increases, and negative as 1t approachnes the
radius b. Beyond r=sb, the lonization drops rapidly to zero
and is approximated by the value zero. The boundary condition

on@is that it be zero at r=R and that 1ts derivative and

value match at r=b.

%

b R vo»

Fig. 2. Comparigon of actual ionization function
(solid curve) with its approximation
(dotted curve).
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The solution of Eq. (9) is

ezexp(LLYm (552, 1, o) (12)

where

o= Aeb (- Ae '“'z/l_:\
x= [1-7Re ()R v/p,
and M is the confluent hypergeometric function (4). The second
solution is omitted because it has a singularity at the origin.
The solution of &q. (1ll) is

Q = ¢ R (& wvr/) - Kdo (L my/) (13)
where K 1is a constant of integratione. It is chosen to make Q
equal to zero at the voint r=R, and it is thus a function of
R/Le. For values of R/L greater than 0.5, the Bessel term may
be neglected (2)s The range below O.5 may be computed if the
Bessel term is retained. The numerical computations were per-
formed only for R/&N70.5rso that the results here are
applicable to cavities whose heights sre smaller than their
diameter. Thig increase in the coveruge of the range of R/L
is a substantial gain over the coverage of the parallel plate
treatment, for which R/L should be greater than 15.

The matching condition at r=b may be satisfied by making
the ratio Q'/' equal on both sides of the matcning pointe. @'
is the derivative of @ with respect to r. The resulting
equation is a transcendental equation for the breakdown

field:

11'}* (‘/l;\ =y -1 M ( JE; y 2, 5‘)
L HD L) Tt | e M, 0, ,J (14)
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Yo = b/l\.
Eqe (14) may be solved for b/,\‘ a3 a function of L/l\i The

results are most co’nveniently represented by expressing (AQ/AY'

as a function of b/L. Thls plot is shown in Fige. 3.

{ooor T IVTTYHI |ﬁ1ll[lrl IR EREREERL

L1

As
/\1.

LA
|

1

?

T T
£ 1 Lol

1

T
1

10

T Fnrii[

L1 41 J,

1.0l Ll lnuJJ L1 lunll L1
0.0 O.1 1.0
' b/L

Fige. 3« Solution of the transcendental breakdown

[

equation, Tge. (14).

For the case of a uniform field, the characteristic dif-
fusion length is A= L[y, Ng nay be considered as an effective
diffusion length or the equivalent infinite parallel plate
gseparation which will give the same breakdown field as that of
the actual cavity. Therefore, at large b/L the oonditionskof a

uniform field prevail and A is equal to Mg, so that the
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ordinate of Fig. 3 approaches unitye. If the tube is long or

the slope of the ionization coefficient curve is large, b/L is
small and a larger value of A,; and therefore electric field,
is required for opreakdown, relative to what would ne required

with a uniform field.
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VERIFICATION OF THE UNIVERSAL BREAKDOWN
CURVE FOR HYDRCGEN

From the uniform field data for hydrogen a plot of S
as 2 function of He/p can be obtained. Eg is the effective
field defined by the following relation (5)

Ev=E' [—-V-':-——] (15)

(X

where E is the r.m.s. value of the applied field, ¥g is the
collision frequency, and w is the radian frequency of the
field, Ee is the effective field which would produce the
seme energy transfer at zero frequency. The collision
frequency as a function of pressure is known from experiment.
It is found that for various diffusion lengths the sane
curve is obtained. It is assumed that k as a function of
Ee/b is a universal curve and the object of this thesis is
ﬁo prove experimentslly that the curve is also valid in the
non-uniform field region. The results obtained in the
preceeding sections are used to extend the range of experi-
mental values of the ionization coefficient from experimental
data in longer cavities than are permitted by the uniform
field theory. From this result, the validity of the universal
curve in the non-uniform field region can be teated.

The following procedure is utilized: From the plot of
(-—\ as a function of n/p, the slope of the constant pA curves
are plotted as a function of E/p. The ordinate (El\\ would
be the high frequency coefficlent if the experiment were

performed between infinite parallel plates. If this assump-



12,

tion is made, the slope of the constant pA curves would be
the § contained in Eqe. (4). As a first approximation this
value of P is used to find the effective diffusion length
from Fige 3. Thus, & second approximetion to the ionization
coefficient curves is obtained. The process is repeated
until no further correction 1s indicsted. In order for the
theory to be valid, any correction to the ionization curves
after the first correction is made should be only a second
order effect. This method has 2lsc been used satisfactorily
in the case of electron diffusion in a spherical cavity by
MacDonald and Brown (6).

Another nmethod of verifying the universal curve of's
V3. E./b in the non-uniform field region has been suggested
by Karl-Berger Persson. & curve of \&b ag a function of
the radius of a given cavity in the non-uniform field region
may be obtained from the above curve and the fact that q/D: XE‘.
The curve will appear similar to the one in Fige. 2. If this
curve can be expressed as an analytic function of the radius,
it may be inserted in Eqg. (7). The procedure is to bpetain
an arbitrsry constent in the expression of QVD as a function
of the radius and to determine this constant from solving the
characteristic breakdown equation. If thisvconstant agrees
with the actual value, then 1t may be assumed that the curve
of S as a function of Eg/p is valid in the non-uniform
field region. Although the above method appears reasonable
in theory, it is very difficult to perform in practice. The

obstacle encountered is that the differemtial equation ob-
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tained by inserting the function VY/D in Eq. (7) cannot as

yet be solved by known methods of integration. However,

it may be posgsible that an approximation similar to the one
discussed on page 7 can be made such that the differential

equation becomes integrable. This method of approach will

be attenpted after the complete set of experimental data is

obtained.,
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EXPERIMENTAL PROCEDURE

A block diagramn of the apparatus used in the experiment

is shown in the following figure.

SPECTAUM
ANALYZER
! (usEo as
l 8RIDGET DEYECTOR) "::;:l
w
AVEMETE METE
CALtsuAr1n
11
<>TH€ RMisTOR ATIZHUA
PAD
[]]] —— DIRECTIONAL
RN COUPLER
POWER DIVIDER sLorteDd
SECTION RESONANT
PAD { i ” CAVITY
MATCHED LOAD

A continuous-wave tunable nagnetron in the 10 cum. wave
length region supplies microwave power into a coaxial line
connecting to the measurement ecuipment. 1In order to pre-
vent leskage of the magnetron power from introducing an inter-
fering signal in the measurements, a brass shield, enclosing
the magnetron, is used. The 3tability of the input power is
improved by eumploying a regulated voltage supply.

A cavity wavemeter determines the frequency of the magnetron
power. The power incident on the cavity 1s varied by a
power divider. A directional coupler provides a known fraction
of the incident power to a thermistor element, whose resist-

ance, neasured by a sensitive bridge, indicates power incident
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on the cavity. The slotted section is & standing wave de-
tector which determines the field in the coaxial transmission
line as a function of distance., The power picked up by the
probe in the glotted section i1s ftransmitted through sn ad-
justable, calibrated attenuator to the input terminals of

the spectrum snalyzer. The standing wave ratio in decibels
can be determined directly from the attenuator readings.

The cavities are designed so that they resonate in the
TMeso ~mode in the 10 cm. wave length region, and are coupled
to the coaxial transmission line by a coupling loop. A
second coupling loop provides a btransmitted signal to a cut-
off attenuatcr terminated in a crystal rectifier and micro-
amuneter. A description of the equipment and the method of
calibrating and adjusting it is given in reference (8).

The cavities were made of oxygen-free high conductiv=-
ity copper and all Jjoints were hard soldered. The coupling
loops were :aade of copper, Kovar, and glass. The cavity was
connected through Kovar to an all glass system including a
three stage oll diffusion pump and a liquid nitrogen trap.
The veacuum was measured by an ionization guage. In order to
obtain as high a degree of purity as possible, the cavity and
ionization guage were baked at 300%C for several days before
each gset of measurements. The remainder of the vacuum system
was carefully outgassed by frequent heating with a Bunsen
flame. With the cavity, ionization guage, and liquid nitrogen
trap isolated from the pumps, an equilibrium pressure of 1 to
Stldnzmn. of mercury could be obtained for several hours. A

single gseries of breakdown wmeasurements takes about this time.



16.

When the equilibrium vacuum is such that a sufficiently
high degree of purity can be obtained, the cavity is filled
with hydrogen. The hydrogen is introduced into the system by
allowing an iron slug encased in glass to fall on a glass neck
which separates a flask contalning hydrogen from the remainder
of the vacuum system. The iron slug is lifted into position
by means of & magnet. A small stopcock has been connected
between the cavity and pumps so that a small amount of gas can
be removed as desired. The pressure of the hydrogen gas is
measufed by means of a lgcleod guage and is calibrated in milli-
meters of mercury.

. The power incident on the cavity is increased by varying
the power divider, while the frequency of the signal is main-
tained at'the resonant frequency of the cavity. At a certain
value of power, the transmission crystal current will suddenly
fall to a lower value. This change inaicates that the gas has
oroken down, and the maximum crystal current indicates the power
réquired for breakdown. Previous to this, the crystal current
and attenuator have been calibrated as a function of the ther-
mistor bridge reading so that the incident power can be deter-
mined from the crystal current and attenuator dial setting.
However, 1f the bridge is sufficiently stable so that the zero
setting does not drift appreclably with time, the breakdown
power can be read directly from the thermistor bridge and the
above procedure may be omitted.

The refe.s. breakdown field 1s obtained frcm the following

relation (7)
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- (P _Qu ‘Iz
E. = (.zsssc.uiﬁ.o.) (16)

where P 1is the power absorbed in the cavity, Q@ 1s the un-
loaded @ of the cavity,and We 1s the resonant frequency. The
unloaded Q is calculated from the standing wave measurements.
The experimental procedure may be found in references (7) and
(8)s The power absorbed is calculated from the power incident
on the cavity and the standing wave ratic of the cavity at |
resonance. The breakdown field can be measured within an
accuracy of approximately 8%. The inherent accuracy of the
thermistor bridge is 4 to 5%, and the accuracy in determining
the fraction of power to the thermistor bridge is approximately

3%. The pressure can be measured within an accuracy of 1%.
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RESULTS

The results obtained in three cavities resonant at 10.6
cme wave length are shown in Figures 4,5, and 6. The data for
the cavity with L =10 cm. was obtained from Karl-Berger
Persson. This cavity was excited in the TMg,qe -mode and its
resonant freguency was 10.1 cme The diameters of the other
cavities were all the same and equal to that necessary to
give a resonant wave length of 10.6 cme The breakdown field 1is
computed from the measured breakdown power and cavity para-
meters. Figure 4 shows the experimental breakdown field as a
function of pressure for the various cavity lengthse. The
accuracy of the curves is slightly higher than 15% due to the
fact that impurities were present in the hydrogen gas so that
the breakdown field was higher. This discrepancy was found by
comparing the experimental breakdown fields with those
theoretically predicted in reference (9). Further measurements
will be performed on the same and additional cavities in order
to acquire more accufate resultse. Hvery effort will be made to
minimize the presence of impurities.

Pigure 6, computed from the experimental E versus p curve,
deplcts the quantity(éhcfas a function of E/p for various
cavity lengthse. If the field were uniform,ﬁéiar would be equal
to the high frequency ilonlzation coefficient. However, the non-
uniformity must be taken ;nto account, especially for the
longer cavities. Figure 5 shows pA plotted as a function E/b.
The values of E/p for various pA values may be transferred to

Fige 6 and the constant pA curves are drawn in. The curves are
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then corrected ag described previously to yleld a final set
of lonization coefficient curves. S’ obtained from these
curves 1ls plotted ss a function of Ee/b and the assumption
that S versus Ee/b is a universal curve, being valid in the
non-uniform field region, can be verified. These final steps
were not performed in this thesis because of the inaccuracy
of the present data snd the limlted time available for the
problem. The author, however, intends to continue with the
problem until a complete set of data 1s obtained and the

object of this thesis is proved.
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