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Abstract

The study of two-dimensional statistical physics models leads naturally to the
analysis of various conformally invariant mathematical objects, such as the Gaus-
sian free field, the Schramm-Loewner evolution, and the conformal loop ensemble.
Just as Brownian motion is a scaling limit of discrete random walks, these objects
serve as universal scaling limits of functions or paths associated with the under-
lying discrete models. We establish a new convergence result for percolation, a
well-studied discrete model. We also study random sets of points surrounded
by exceptional numbers of conformal loop ensemble loops and establish the ex-
istence of a random generalized function describing the nesting of the conformal
loop ensemble. Using this framework, we study the relationship between Gaus-
sian free field extrema and nesting extrema of the ensemble of Gaussian free field
level loops. Finally, we describe a coupling between the the set of all Gaussian
free field level loops and a conformal loop ensemble growth process introduced
by Werner and Wu. We prove that the dynamics are determined by the conformal
loop ensemble in this coupling, and we use this result to construct a conformally
invariant metric space.
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Chapter 1

Percolation

This chapter presents joint work with Dana Mendelson and Asaf Nachmias. It appears
verbatim in [38].

1.1 Introduction

Let Q C C be a nonempty Jordan domain, and let A, B,C, D be four points on 9Q
ordered counter-clockwise. Let P® denote the critical site percolation measure on
the triangular lattice with mesh size § > 0, that is, each site in the lattice is inde-
pendently declared open or closed with probability 1/2 each. The Cardy-Smirnov
formula [72] states that as § — 0, the probability P°(AB «» CD) that there exists a
path of open sites in Q starting at the arc AB and ending at the arc CD converges
to a limit that is a conformal invariant of the four-pointed domain (see Figure 1-1).
Our main theorem establishes a power law rate for this convergence under mild
regularity hypotheses.

Theorem 1.1.1. Let (Q, A, B,C, D) be a four-pointed Jordan domain bounded by
finitely many analytic arcs meeting at positive interior angles. There exists ¢ > 0
such that

P°(AB < CD) — %%P&(AB & CD) = 0(89),

where the implied constants depend only on (2, A, B,C, D).

We prove Theorem 1.1.1 for all ¢ < 1/6, with better exponents for certain domains
(see Remark 1.2.2).

Schramm posed the problem of improving estimates on percolation arm events
(see Problem 3.1 in [71]). In Section 1.6, we obtain the following improvement
of the estimate found in [75] for the probability that the origin is connected to
{z : |z| = R} in the upper half-plane.

Theorem 1.1.2. Let {0 < Sgr} denote the event that there exists an open path
from the origin to the semicircle Sg of radius R in critical site percolation on the
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Figure 1-1: We picture triangular site percolation by coloring the faces of the
dual hexagonal lattice. Smirnov’s theorem states that the probability of a yellow
crossing from boundary arc AB to boundary arc CD converges, as the mesh size
tends to 0, to a limit which is a conformal invariant of the four-pointed domain
(Q, A, B,C,D). In the sample shown, the yellow crossing event {AB « CD} oc-
curs.

triangular lattice in the half-plane. Then
P(0 ¢ Sg) = eO(VIoglogRIR=1/3 — (1og R)O(1/V/loglog R) g=1/3,

Our methods also yield the estimate ¢©(V1°8108 R) R=1/66 for the probability that
the origin is connected to {z : |z| = R} in the sector centered at the origin of angle
2nf. We remark that our methods are insufficient to give better estimates for the
probability that the origin is connected to {z : |z| = R} in the full plane (the so-
called one-arm exponent, which takes the value 5/48, [31]) and multiple arm events
either in the full or half plane.

In his proof of Cardy’s formula, Smirnov constructs a discrete observable G :
Q% — C, defined as a complex linear combination of crossing probabilities, and
shows that G5 converges as § — 0 to a conformal map. The crossing probabilities
and their limits can be then read off G5 and its limit. A similar high-level strategy
was also used by Smirnov [74] and Chelkak and Smirnov [9] to show that the
interfaces of the critical Ising and FK-Ising model converge to SLE curves. See [15]
for a comprehensive survey of this subject.

We note that the power law rate of convergence is obtained for the FK-Ising
model ([74, 22]) more directly than for percolation, because the combinatorial rela-
tions in the Ising model establish that “discrete Cauchy-Riemann” equations hold
precisely. In particular, in the case of the Ising model one can work with discrete
second derivatives and obtain discrete harmonic functions. By contrast, for per-
colation the observable Gs is only known to be approximately analytic. Thus it is
necessary to control the global effects of these local deviations from exact analytic-
ity. To accomplish this, we use a Cauchy integral formula with an elliptic function
kernel in place of the usual z — 1/z.

The half-plane arm exponent, as well as the validity of Smirnov’s theorem is
widely believed to be universal in the sense that it should hold for any reason-
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able two-dimensional lattice. Nevertheless, so far it is an open problem to prove
Smirnov’s theorem even for the case of bond percolation on the square lattice. The
value of the exponent does, however, depend on the dimension. For example, in
high dimensions (that is, dimension at least 19 in the usual nearest-neighbor lat-
tice, or dimension at least 6 on lattices which are spread-out enough) its value is
—3 [27]. To the best of our knowledge, there are no predictions in dimensions
3,4,5. As for the error terms, in dimension 2 it is believed that the correct bound
for P(0 <> Sg) of Theorem 1.1.2 is ©(R~1/3) (we are unable to prove this here). In
general, it is believed that the polynomial decay should have no logarithmic cor-
rections except for at dimension 6, the upper critical dimension (see [76]).

Finally, we remark that Theorem 1.1.1 has been independently proved by Binder,
Chayes, and Lei [6] using different methods. Their approach applies to arbitrary
simply connected domains, while our proof achieves explicit exponents for the
subclass of piecewise analytic domains (see Remark 1.2.2).

Acknowledgements

We thank Vincent Beffara, Gady Kozma and Steffen Rohde, and Scott Sheffield
for helpful discussions. We specifically thank Scott for suggesting the idea to use
elliptic functions in the proof of Theorem 1.2.1 and for his help with the proof of
Proposition 1.3.6.

D.M. was partially supported by the NSERC Postgraduate Scholarships Pro-
gram. A.N. was supported by NSF grant #6923910 and NSERC grant. 5.5.W. was
supported by NSF Graduate Research Fellowship Program, award number 1122374.

1.2 Set-up and notation

Throughout the paper, we consider piecewise analytic Jordan domains Q with pos-
itive interior angles. That is, 0Q is a Jordan curve which can be written as the con-
catenation of finitely many analytic arcs 3, ...,¥Yn. Recall that an arc is said to be
analytic if it can be realized as the image of a closed subinterval I C R under a real-
analytic function from I to C. We will call the point at which two such arcs meet a
corner, and we will denote the collection of corners by {x;};_1,..n. Our hypothe-
ses imply that there is a well-defined interior angle at each corner, and we impose
the condition that each such angle lies in (0, 2r]. We define 7 := exp(2ri/3) and
let Q have three marked boundary points, labeled x(1), x(7), and x(z?) in counter-
clockwise order. We denote the angles at marked points by 27a; and those at un-
marked points by 27 8;.

Denote by Q° the sites of the triangular lattice with mesh size § which are con-
tained in Q or have a neighbor contained in Q and consider critical site percolation
on Q°. Let (Q%)* be the sites of the hexagonal lattice dual to Q° (that is, (Q2°)* are
the centers of the triangles of 0°). We depict open and closed sites by coloring

13



the corresponding hexagonal faces yellow and blue, respectively. For z,z’ € 0Q,
let [z,z'] denote the counter-clockwise boundary arc from z to z’. As in [72], the
following events play a central role (see Figure 1-2):

ES(z) = 3 a simple open path from [x(7%+2), x(z¥)] to [x(z¥), x(7¥+1)]
: separating z from [x(**1), x(7"+2)] :

for k € {0,1,2}. Let HS = P(E’,) and for z and z + 1 neighbors in (Q°)*, define
P%(z,m) = P(E%(z+n) \ E%(2)). Following [3], we define

G®:=H} +TH? +1*H%,  S°:= H{ + H? + H%,.

Figure 1-2: The event ES (z) occurs when there exists a simple open path separating
z from [x(7), x(7?)].

We extend the domain of G? from the lattice (Q°)* to all of Q by triangulat-
ing each hexagonal face and linearly interpolating in each resulting triangle. The
possible triangulations for each face are © and & and rotations thereof. We will
see that the choice of triangulation is immaterial. We obtain Theorem 1.1.1 as a
corollary of the following theorem.

Theorem 1.2.1. Let (©2,x(1),x(z), x(1?)) be a three-pointed, simply connected Jor-
dan domain bounded by finitely many analytic arcs meeting at positive interior
angles, and let T be the triangular domain with vertices 1,7, and 72. Then there
exists ¢ > 0 so that |G%(z) — ¢(z)| = O(8°), where ¢ is the conformal map from
(Q,x(1),x(r), x(1?)) to (T,1,7,72), and where the implied constants depend only
on the three-pointed domain.

Remark 1.2.2. Our methods establish Theorem 1.2.1 (and thus Theorem 1.1.1) for
any exponent
21 1
= 121
¢ S (3’6a1~ 2ﬁ,-) -
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These exponents are essentially the best possible given our approach, because no
piecewise-linear interpolant of a function on a lattice of mesh é can approximate
the conformal map to T with error better than 6™ (1/62i1/2;) due to behavior
near the boundary.

Remark 1.2.3. Our proof of Theorem 1.1.1 uses results whose proofs require SLE
tools, but only for two purposes: (1) to handle the case where the domain con-
tains reflex angles (that is, some interior angle formed at the intersection of two
of the bounding analytic arcs is greater than 7), and (2) to obtain the sharp expo-
nent discussed in Remark 1.2.2. Without SLE machinery, we obtain Theorem 1.1.1
for domains without reflex angles and for exponents ¢ < min;;(c3,1/6a;,1/ 68;),
where c3 is the three-arm whole-plane exponent (which is known to be 2/3, but
only by using an SLE convergence result). See Remark 1.5.3 for further discussion
of this point.

Remark 1.2.4. In [75], a bound of R~1/3+°(1)) for the half-plane arm exponent was
proved using SLE calculations and the fact that the percolation exploration path
converges to SLE¢ as proved by Smirnov [72] and Camia-Newman [8]. By contrast,
our proof follows from Proposition 1.5.6, which is a variation of Theorem 1.1.1
proved by similar methods. The only SLE result on which our proof of Theo-
rem 1.1.2 depends is the statement c3 > 1/3, where c3 is the three-arm whole-plane
exponent.

For two quantities f(8) and g(8), we use the usual asymptotic notation f =
O(g) to mean that there exist constants C and 8y > 0 so that |f(6)]| < C|g(6)] for
all 0 < & < 8p. We use the notation f < g to mean f = O(g) as§ — 0, and we
write f < g to mean f = O(g) and g = O(f). We sometimes use C to denote an
arbitrary constant.

1.3 Preliminaries

First we recall some results from [72]. The first is a Hélder norm estimate of H «
and is obtained via Russo-Seymour-Welsh estimates.

Lemma 1.3.1 (Lemma 2.2 in [72]). There exist C,c > 0 depending only on Q such
that for all 6 > 0, the c-Holder norm of H fk is bounded above by C. That is,

|HS(z) — HY(2))| < Clz—2'|f, (13.1)

for ¥ € {1,7,7%}.
Our second estimate is Smirnov’s “color switching” lemma.

Proposition 1.3.2 (Lemma 2.1 in [72]). For every vertex z € (Q°)* and k € {0,1,2},
we have

P-fk (Z, 77) = Pfk+l (Z, Tﬂ)-

15



Figure 1-3: The event E;(z) \ E1(z + n) occurs if and only if there are disjoint yel-
low arms from z to [x(72),x(1)] and from z to [x(1), x(7)] forming a simple path
separating z from [x(7), x(7?)], as well as a blue arm from z + 1 to [x(7), x(7?)]
which prevents a yellow path from separating z + n as well.

We will sometimes drop the superscript § from the notation when it’s clear
from context. If F is a hexagonal face in (Q°)*, let V(F) denote the set of vertices
of F and define for each z € V(F) the vector 5 pointing to the adjacent vertex
counterclockwise from z. Define the difference (see Figure 1-4(a))

Rk(z) = |p1-k (Z H Tkn! '_Tkﬂ) - P‘rk(z + Tk+1n! "Tkﬂ) I

Define z/ = z + tn — n and rewrite P (z/,7) as Pﬁ' (z,1m), where ' is obtained by

translating Q by z — 2/ (and P% refers to probability with respect to '). Define the

events E!,(z) with respect to (', and define x’ (%) to be x(7*) translated by z — z'.
Given k,1 € {0,1,2}, o € {-1,1}, and z € (Q%)*, we say that the event

Efivearm(z) occurs if

e 0 =1,and E_«(z) \ E,x(z + ) occurs, and the arm from z to
[x(z7t1), x(¢!*?)] fails to connect in O/, or

e 0=—1,and E/;(z) \ ELi(z + %) occurs, and the arm from z to
[ (z1*1), %' (r1+2)] fails to connect in Q.

For zg € Q, we define Ef;’i,a;m (z) to be the union of Ef,}’:la;m (z) as z ranges over the
vertices of the hexagonal face containing z.

Note that these are indeed five-arm events because two additional arms are
required to prevent the failed arm from connecting elsewhere on [x(7!), x(z!*1)]

16



U2

(b)

Figure 1-4: (a) Each arrow represents the probability of a three-arm event as shown
in Figure 1-3. The quantity Ro(z) is defined to be the difference between the prob-
abilities represented by the two green arrows. Similarly, Rq(z) is shown in blue
and R;(z) is shown in orange. (b) Suppose that the triangle z;zz3 is in the trian-
gulation of the face F. For z in the interior of this triangle, we bound 9G?(z) by
applying (1.3.4) to triangles zz1z4 and z1z423.

(see Figure 1-5).

Proposition 1.3.3. If F is a hexagonal face in (Q°)*, then for z in the interior of F
we have

810G% (z0)| < 3V3 Ri(z) (1.3.2)

max
zeV(F),ke{0,1,2}

<543 PESYSEm (5], (1.3.3)

max E ol
kle{01,2},0e{-11} £5

Proof. The main idea in the following proof is suggested in [72]. For (1.3.2), we first
observe that for z € V(F), we have

) d

o a_T]HTk(z) e W

Hk1(2)| = Pu(2z,m) — Pz +1,—n)
—iP e (z,tn) + P kn (z+ 11, —11)
= Py (z + 10, —10) — Pi(z +1,—7)
= Pu(z+ 10, —n) — Pu(z +n,-7),
by Proposition 1.3.2. Suppose that the triangle T with vertices z, z + 7, and z + 17
is in the triangulation of F. Then for z in the interior of T, we may write 89 as

17



Figure 1-5: The symmetric difference of the events E1(z) \ E1(z + ) and Ej(z') \
E}(z' +n) can occur in six ways. One way for the event to occur is shown above:
the three requisite arms are present in Q, so the event Eq(z) \ E1(z + 1) occurs.
However, the blue arm fails to connect to [x/(7), x'(z?)] in €. This requires two
additional yellow arms to prevent the blue arm from connecting elsewhere on
[x'(z),x'(?)]. This event is denoted E{{5*™(z). The first subscript % speci-
fies that the three-arm event under consideration involves the blue arm touching
down on [x(7¥1), x(7¥*2)]. The second subscript 7! indicates that the boundary
arc [x(7!*1), x(7"*?)] is involved in a failed connection. The third subscript o de-
scribes whether the failed connection occurs in Q but not ' (in which case we say
o = 1), or vice versa (o = —1).

18



a1 .
6|A, (5 — '; a(rn)) (H1 +TH1+T th)

_ 0H; oH, 0H; 0H,p , (0H? 9H;
—w’(an 9m>+r(_ar_n ar"’n>+T or’n  an

<3 max ‘ (z+ 19, —7*n) — Pui(z+ Thtly, —rkn)‘ . (1.34)

For triangles whose vertices are not consecutive vertices of the hexagon, we obtain
a similar bound by applying (1.3.4) two or three times (see Figure 1-4(b)).

For the bound in (1.3.3), we let A = E_«(z) \ Ex(z + *n) and B = Eli(2) \
Eli(z+ 7%n) and apply |P(A) — P(B)| < P(A A B), where A A B denotes the sym-
metric difference of A and B. Note that A A B C Uk 1,0 Ei‘,)’ ;’,a"“ (zo), since some arm
in O must fail to connect in €/, or vice versa. Applying a union bound as k and !
range over {0,1,2} and o ranges over {—1,1} yields the result. a

Finally, we need the following a priori estimates for H x(z) when z is near 0Q.

Proposition 1.3.4. Let (Q, x(1), x(1), x(1?)) be a three-pointed Jordan domain. There
exists ¢ > 0 such that for every z € (Q5)* which is closer to [x(7%¥*1), x(7%+2)] than
to Q2 \ [x(7%*1), x(7%+2)], the following statements hold.
(i) Hx(z) S dist(z,0Q)¢.
(ii) |S(z) — 1| < dist(z, 0Q)°.
(iii) dist(G®(z), [x(z¥*+1), x(7%+2)]) < dist(z, [7**1, T¥+2])¢,
with implied constants depending only on (Q, x(1), x(7), x(z2)).

Proof. (i) For w € [x(z%¥*1), x(7¥+?)], define D;(w) and D(w) to be the distances
from w to the boundary arcs [x(7¥2), x(7%)] and [x(¥), x(7%*1)], respectively. Let
D = inf ¢ y(sk+1) x(rk+2) Max(Dy(w), Do (w)) > 0. Letz' € [x(7%*1), x(7¥+2)] be a
closest point to z, and consider the annulus centered at z’ with inner radius |z —
/| and outer radius R. Then E «(z) entails a crossing of this annulus, which has
probability O(|z — 2’|) by Russo-Seymour-Welsh.

(ii) Again let 2’ € [x(z 1), x(7%+2)] be a pomt nearest to z. Consider the event
that there is a yellow crossing from [x(7¥*2), x(7*)] to [x(7%*1),z’] and the event
that there is a blue crossing from [x(7*), x(v¥*1)] to [/, x(7¥*?)]. These events are
mutually exclusive, and their union has probability 1. Since these two events have
probability H «+1(z) and H «+2(z), we see that

Hyt(2) + (Hper(2) + Hyan(2) = O((dist(2,9Q)°) + 1.

(iii) This statement says that G maps points near each boundary arc to the cor-
responding image segment in the triangle, and it follows directly from (i). a
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1.3.1 Percolation Estimates

In this subsection we present several percolation-related estimates in preparation
for the proof of Theorem 1.2.1. We think of these lattices as embedded in R? with
mesh size 8, and distances are measured in the Euclidean metric.

Define C(r, R) to be the event that there exist k disjoint crossings of alternating
colors from the inner to the outer boundary of an annular section Ag(r, R) of angle
0 and inner radius r and outer radius R. The following is a well-known result on
the half-annulus two-arm and three-arm exponents. We refer the reader to [31,
Appendix A] for a proof.

Proposition 1.3.5. We have

P°(C2(r,R)) and

_T
~~ R 7
8(03 \?
P(C3(r,R)) = (%) -
R
In the next proposition, we show that the exponents in the estimates above are

continuous in the angle 6.

Proposition 1.3.6. For all € > 0, there exists a = a(¢) > 0 so that

PP(C2, (1, R)) < (%)H, and (1.3.5)
PP(C3, ,(r,R)) < (%)H, (1.3.6)

with imnliad conctante de
W1 ed congtanis de

L

Proof. We only prove (1.3.5) since the proof of (1.3.6) is essentially the same. We
begin by showing that there exists C > 0 so that forallr > 0 and R > 0, there exists
80 = 8o(r, R, €) > 0 for which P°(C2, ,(r,R)) < C (ﬁ)l‘f holds when 0 < § < &.
For this statement, we may assume without loss of generality that R = 1.

Consider the sector of angle 7 + a as a union of a sector of angle = with a sector
of angle a. Divide the sector of angle a into [(1 —r)a~!] curvilinear quadrilaterals
of radial dimension a, as shown in Figure 1-6. Lets € {1,...,[(1 —r)a~!]} and
note that the event C2,,(r,1) \ C2(r, 1) entails the existence of a quadrilateral of
distance sa from the inner circle of radius r such that there is a three-arm crossing
of alternating colors of the half-annulus with inner radius @ and outer radius sa A
(1-r—(s+1a).

In the case sa < (1 —r)/2, there is also a two-arm crossing from the annulus of
inner radius sa and outer radius sa + r (see Figure 1-6(a)). If s € [2", 2k"'1] and sa <

(1 —7)/2, then the probability that both of these events occur is O ((;"5)2 (& )) =

as—+r

O(5¢) by Proposition 1.3.5. Applying a union bound over s we obtain
PP(C2, o (r, 1)\ C3(r,1)) < calog ' a. (1.3.7)
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Since C2(r,1) C C2,,(r,1),(1.3.7) implies

PP(C2,4(r,1)) < P%(C%(r,1) + caloga™
<c(r+aloga™?).

In the case sa > (1 —1)/2, the event C2,,(r,1) \ C3(r,1) implies the existence
of a two-arm crossing of alternating colors from the annulus of inner radius sa
and outer radius sa — r and a similar computation yields P*(C2,,(r,1)) < c(r+
alog a™!) in this case as well.

—_ Ta —_ Ia
(a) (b)

Figure 1-6: The cases (a) sa < (1 —r)/2 and (b) sa > (1 —r)/2 for the event
CZ, (r,R)\ C3(r,R) in Proposition 1.3.6.

Finally, to show that §yp may be taken to be independent of r and R, we ap-
ply a multiplicative argument. Let K > 0 be large enough and §p small enough
that P°(C2(r,R)) < (1/K)'~¢ forall 0 < § < 8. Insert concentric arcs of radii
r,rK,7K?,...,7K llogg(R/7)] between the arcs of radii # and R, and consider the re-
gions between successive pairs of these arcs. Since a crossing from the arcs of
radius r to the arc of radius R implies that each of these regions is crossed, we have

[logg (R/1)]

PR RN [ PG (k)
k=1

£C (%)H. O

Remark 1.3.7. In particular, by taking r = &, the previous results yields bounds for
half-disk crossing probabilities for z € Q.

Using Smirnov’s theorem, we can generalize one-arm estimates to annulus sec-
tors of any angle.

Proposition 1.3.8. For every ¢ > 0,

PR S () 138)
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Proof. Smirnov’s theorem implies that for all r and R there exists 69 = 6o(r, R, €) >
0 so that for all 0 < 6 < 8, we have P°(C}(r,R)) < (r/R)}3¥~¢. As in the previ-
ous proposition, we can remove the dependence on r and R with a multiplicative
argument. O

We can generalize the previous results for annular regions to a neighborhood
of a meeting point of two analytic arcs. We let Cf ,(r, R) denote the event that
there exist k disjoint crossings of alternating color contained in Q2 and connecting
the circles of radius » and R centered at z. We have the following corollary of
Propositions 1.3.6 and 1.3.8.

Corollary 1.3.9. Let € > 0, let a = a(¢) be an angle satisfying the conclusion in
Proposition 1.3.6. Let Q be a piecewise analytic Jordan domain in R2. Fix z € 9Q
and suppose that z is not a corner of Q. Let Ry = Ry(z, €) > 0 be sufficiently small
that Bg,(z) N Q is contained in a sector centered at z and having angle 7 + a and
radius Rg. Then for all k € {1,2,3} and forall 0 < r < R < Ry,

r\k(k+1)/6—¢
PP(cha(rR) S (%)

with implied constants depending only on €.

, (1.3.9)

Proof. Since the event C§(r, R) implies a crossing of a sector of angle 7 + a with
inner and outer radii of r and R,

P?(C§(7,R)) < P°(Crya(r, R))

and we can estimate the probability on the right by Proposition 1.3
or Proposition 1.3.8 for k = 1.

\-:
m
P“‘ﬂ
W
o=

We conclude this section by recording a generalization of the previous corollary
for corners z € dQ. The proof of this proposition uses convergence of the explo-
ration path to SLE¢. We know how to remove this dependence on SLE results only
when k = 1, where Smirnov’s theorem suffices. We use (1.3.10) when k € {2,3}
only to handle the case where 2 has reflex angles and to obtain the sharp exponent
discussed in Remark 1.2.2.

Proposition 1.3.10. Suppose that z € dQ is a corner of Q, but otherwise the hy-
potheses and variable definitions are the same as in Corollary 1.3.9. Then the con-
clusion holds, with (1.3.9) replaced by

5ok 7 \Kk(k+1)/1260—¢
PP(Ch=(nR) 5 (%)

where 270 is the angle formed by dQ at z.

, (1.3.10)

Proof. Define aglg(r, R) to be the probability of k disjoint crossings of alternating
color from inner to outer radius in {z : argz € (0,276) and r < |z| < R}. In [75],
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it is shown that
}SI_E(\) 111/2(1 R) R—k k+1)/6+0(1) (1311)

using the convergence of the percolation exploration path to SLEs. By the invari-
ance of the law of SLE¢ under the conformal map z s z2%, we conclude that (1.3.11)
generalizes to

lim azs(lz R) — R—k(k+1)/120+0(1)

60 ™

The following multiplicative property is also used in [75]: forallk < r <7 <r”,
we have
allcé‘z(rr //) < al/Z(r, /)al/Z( / //) (1'3‘12)

This inequality still holds with 1/2 replaced by 8. The proof in [75] for the case
0 = 1/2 relies only on these two facts and therefore generalizes to (1.3.10) for the
sector domain {z : argz € (0,2708)}. The extension of this result to piecewise
real-analytic Jordan domains with positive interior angles is obtained by following
the same argument carried out in Corollary 1.3.9 for 6 = 1/2. O

1.4 Proof of Main Theorem

1.4.1 Background and set-up

We begin by recalling few definitions and facts from complex analysis and differ-
ential geometry. See [1], [71], and [34] for more details. If g,b € C are linearly
independent over R and P is a parallelogram with vertex set {0,4,b,a + b}, then a
function f : P — CU {00} is said to be doubly-periodic if f(z + a) = f(z) for z on
the segment from 0 to b and f(z +b) = f(z) for all z on the segment from 0 to a.
If f is continuous, then such a function may be extended by periodicity to a con-
tinuous function defined on C. An elliptic function is a doubly-periodic function
whose extension to C is analytic outside of a set of isolated poles. Given distinct
points py, p2 € P, there exists an elliptic function f with simple poles at p;, p2 (and
no other poles) [71, Proposition 3.4]. One way to obtain such a function is to define
the Weierstrass product

4 ) 4 ¢ )

= 1—

o) =¢ (],ngz ( 2+ bk) P (aj+bk+2(aj+bk)2
()#(00)

and set

o((¢ = (p1+p2)/2))?
= 1.4.1
O = e pett—pa). (14D
We recall the definitions of the differential forms d{ = dx + idy and d{ = dx —

idy. Note that d{ A d{ = 2id A, where d A is the two-dimensional area measure and
A is the usual wedge product. Recall that the exterior derivative d maps k-forms to
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(k + 1)-forms and satisfies
df =dfd{ +dfdl, and d(fd{) =df Nd{ (1.4.2)

for all smooth functions f.

Let ¢ : (Q,x(1),x(1),x(?)) = (T,1,7,72) be the unique conformal map from
Q to the equilateral triangle T with vertices 1,7, and 7> which maps x(7%) to 7* for
k € {0,1,2}. Let & > 0 be small and define Qcqg, to be such that \ Qegge is the set
of all hexagonal faces of (Q25)* completely contained in Q. Let Toqg. be the image
of Qeqge under ¢.

We modify G? to obtain a function G for which the lattice points on the bound-
ary of Q \ Qegge are mapped to the boundary of T. Specifically, we set

k

T z is adjacent to x(7*)

G3(z) = proj (G%(z), ¥, 7%*1])  if z is not adjacent to x(z¥)
- but is adjacent to [x (rk+1),x(1—k+2)]

G%(z) otherwise,

where we are using the notation proj(z, L) for the projection of a complex number
z onto the line L C C. Now linearly interpolate to extend G° to a function on Q,
and define | : T — T by J(w) = G (¢~ (w)).

Schwarz-reflect 17 times to extend | to the parallelogram P in Figure 1-8. For
example, if r is the reflection across the line through 1 and 7, then for w in the
triangle 7(T), we define J(w) = roJor(w). Define an elliptic function g, via
(1.4.1) with period parallelogram P and poles at p1 = wg := (1 + 7+ 72)/3 and
p2 = w varying over the grey triangle K in Figure 1-8.

Figure 1-7: The function | is defined as the composition of G® with the inverse of
the Riemann map from Q to the triangle. The region Tegge is the image under the
conformal map ¢ from Q to T of the region Qcgge, shown in green.
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We will also need a result from the theory of Sobolev spaces. If U C R? is a
bounded domain, and 1 < p < oo, we define the Sobolev space W' (L) to be the
set of all functions u : U — R such that the weak partial derivatives of u, %, and

%5 are in LP (U); see [16] for more details. We equip WP (U) with the norm

a_u
ox

Ju

ullwir := ||”||Lv(u) + @

LP(U) L)

Denote by id the identity function from P to P, and define C*°(P) to be the set of
smooth, real-valued functions from P. Since | is piecewise-affine on P, the real
and imaginary parts of | are in W'(P). Since J is defined so that J : T — T
takes vertices to vertices and boundary segments to boundary segments, | —id is
continuous and doubly-periodic. Since smooth functions are dense in W1 (P) and
L*®(P) [16], for each ¢ > 0 we obtain a pair of smooth functions Q1, Q2 € C®(P)
such that

|Q(w) — (J(w) —w)| < eforallw € P,
|Q1 —Re(J —id)||w11 < €, and (1.4.3)
”QZ - Im(] - id)”wl,l <e§g,

where Q = Q; +iQ; (for see [16] §5.3.3 and §C.5, for example). Defining Q; and Q;
to be bump function convolutions, we arrange for Q1 and Q; to inherit periodicity
from | —id. We note that by choosing ¢ sulfficiently small in (1.4.3), we can for
every ¢ > 0 choose Q so that

/P 90 — 3(J — id)| |gw| dA < €, (1.4.4)

where dA refers to two-dimensional Lebesgue measure. One way to see this is to
define f(z) = 0Q(z) — 9(J(z) — z) and note that for R > 0, we have

£l <RIl + 1 fll 15115 Ry 81 1 (1.4.5)

By the dominated convergence theorem, we may choose R sufficiently large that
the second term on the right-hand side is less than £’ /2. Once R is chosen, we may
choose Q so that ||f||r, < €’/(2R), by (1.4.3). Then (1.4.4) follows from (1.4.5).

1.4.2 Proof of main theorems

Proof of Theorem 1.2.1. The following calculation is similar to the proof of the Cauchy
integral formula, but with two key changes: we keep track of the d term, and we
use the elliptic function gy in place of the usual kernel { + 1/{. Choose r > 0
sufficiently small that the balls B; and B; of radius r around wg and w are disjoint,
and apply Stokes’ theorem to the region P \ (B; U Bz) to obtain that for smooth,
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Figure 1-8: We extend J(w) to a function on the parallelogram P, which is a union
of 18 small triangles. The elliptic function g, : P — C has poles at wy fixed and w
varying in the gray region.

complex-valued, periodic functions Q on P, we have

- Q@ &~ [ QW)zu(¢)de = 4(Qgwd?)

|{—w|=r | /f;\(BiUBz}

Note that the integral around 9 vanishes by periodicity. Applying (1.4.2) and the
product rule, we obtain

d(ngdC) = L\{B UBy) [(an‘: + éQdZ)gw + (agwdC +3gwdf)Q] Adl

= 0 w(O) dT A dL.
P\(B,UB,) Q(¢)gw(¢) dl N dl

'/P\(BlUBZ)

Let Q be a smooth, complex-valued, periodic function on P such that (1.4.3) and
(1.4.4) are satisfied with ¢ = & = 1%, say. Since Q is bounded and g has an
integrable pole at {, we can take r — 0 and apply the dominated convergence
theorem. We obtain

2miQ(w) Res(gw, w) + 2miQ(wq) Res(gw, wo) = ZIfPEQ(C)gw(() dA({), (1.4.6)

where dA({) = dx dy is notation for the area differential. The key step of the proof
is to bound the right-hand side of (1.4.6) by O(8°). To do this, we first consider
J in place of Q, and we estimate the integral over the regions T \ Teqge and Tegge
separately. We postpone the details of these calculations to the following section,
along with stronger lemma statements (Lemmas 1.5.2 and 1.5.4).
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Lemma 1.4.1. There exists ¢ > 0 so that

. 310z2a(0)44() = 0(59), (14.7)

edge
where the implied constants depend only on the three-pointed domain.

Lemma 1.4.2. There exists ¢ > 0 so that
/ 9](£)gw(()dA(L) = O(8°), (1.4.8)
T\Tedge

where the implied constants depend only on the three-pointed domain.

Since Res(gw, w) is a continuous function of w with no zeros in K, there exists
C > 0 such that

0<Clc Res(gw, w) < C < oo, Yw € K,

and similarly for the residue at wq. Therefore, (1.4.8) implies that Q(w) is within
O(8°) of a constant function, as w ranges over the gray triangle shown in Figure 1-
8. By considering w to be one of the vertices of the gray triangle (so that J(w) —
w = 0), we see that this constant function is O(8°). We conclude that Q(w) =
O(6°). By (1.4.3), this implies J(w) —w = O(6°). By definition, this is equivalent
to G%(z) — ¢(z) = O(8°). The theorem follows, since G® agrees with G’ except on
the outermost layer of lattice points. O

We combine the rate of convergence for H; + 7H; + rzH,z with the rate of con-
vergence for Hy + H; + H,2 near dQ to prove the rate of convergence of the crossing
probabilities.

Proof of Theorem 1.1.1. Let z € [x(1),x(7)]. First we note that H%(z) = O(6°) by
Proposition 1.3.4. Hence, by Theorem 1.2.1,

HY(z) + tHS (2) = ¢(2) + O(5°) .

We also have that
H{(z) + H?(z) = 1+ 0(8°),

since $%(z) = 1+ O(8°) by Proposition 1.3.4 (ii). Since the vectors (1,1), (1,7) € C?
are linearly independent, this concludes the proof. O

1.5 Bounding the error integral

1.5.1 Piecewise analytic Jordan domains

In this section, we prove the two lemmas used in the proof of the main theorem.
We often treat the conformal map ¢(z) like a power of z when z is near a corner
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of the domain Q. To make this precise, we use the following theorem from the
conformal map literature [35].

Theorem 1.5.1. If Q is a Jordan domain part of whose boundary consists of two
analytic arcs meeting at a positive angle 2za at the origin, and if ¢ : Q@ — His a
Riemann map sending 0 to 0, then there exists a neighborhood B of the origin and
continuous functions py, p; : BNQ — Cand p3, ps : (BN Q) — C for which

¢(z) =22%py(2),  ¢(2) =2/ D 1py(z),
¢~ (z) =2%p3(z), and  (¢7")'(z) = 2% pa(2)

and p;(0) #0fori € {1,2,3,4}.

We choose a collection B of disks covering the boundary of Q as follows (see
Figure 1-9). For each z € 9Q, choose a disk B(z) centered at z and small enough
that the boundary arc (or arcs) containing z admits a Taylor expansion in B(z). If
necessary, shrink B(z) so that 92 is well-approximated by its tangent (or tangents,
if z is a corner point) in B(z), in the sense of Propositions 1.3.6 and 1.3.10. If nec-
essary, shrink B(z) once more to ensure that Q N B(z) has one component. From
this collection of open disks, extract a finite subcover B = ( B]-);’:1 of dQ containing
Bcomers = {B(z) : zis a corner point}. Then B is an annular region whose interior
has positive distance from 0Q. Thus, for all sufficiently small §, B covers Qegge-
Note that this cover has been chosen in a manner which depends only on Q2 and ¢,
and in particular is independent of 6.

Throughout our discussion, we permit the constants in statements involving
asymptotic notation to depend only on the three-pointed domain. We also use C
to represent an arbitrary constant which depends only on the three-pointed do-
main. When working with the variable ¢, we will frequently relabel small constant
multiples of € as € from one line to the next.

Lemma 1.5.2. Let ], g be as in Section 1.4, and suppose that the angle measures
at marked points are 2ra; for i = 1,2,3, and remaining angles are 2zf; for j =
1,2,...,n. Forevery e >0,

[ ai0ga(aa) o™ ), (1.51)

edge
where the implied constants depend only on € and the three-pointed domain.

Proof of Lemma. Let B be as described above. Since the number of disks in B is
bounded independently of §, it suffices to demonstrate that (1.5.1) holds for each
one. Let B € B, and let 7 be the angle formed by 92 center of B.

To bound | [, 45" P(QNB) 9J({)gw(¢)dA(7)|, we index all the faces {F} intersect-

ing dQ in such a way that the distance from F to the center of B is < k& for all k;
this is possible since dQ is piecewise smooth. We will bound the integral over each
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Figure 1-9: We cover the boundary with finitely many small disks, so that the
boundary is approximately straight in each disk. Moreover, we ensure that every
corner and every marked point is centered at one of these disks. More disks are
required in regions of high curvature, as illustrated here for a domain bounded by
a limagon.

Figure 1-10: If z is adjacent to the side [x(z**1), x(7¥2)], then the distance from
G°(z) to dT is equal to the probability H,«(z). This probability is bounded by that
of a two-arm half-plane event with radius k§ and the two-arm f-annulus event
with inner radius 2ké and constant-order outer radius.
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Fy and then sum over k (see Figure 1-10). Let { € Tegge N ¢(Fy) and suppose that
[, 72] is the closest boundary arc. We rewrite

9J(¢) =aG° (¢~ () (™) (0), (1.5.2)

and we define z = ¢~1({). First we bound 9G%(z). In modifying G°(z) to obtain
G%(z), the image of z has to be moved no farther than Hy(z) = P(E;(z)), by the
definition of G°(z). The event E1(z) entails a two-arm half-disk crossing and a
two-arm f-annulus crossing (see Figure 1-10). Since these events occur in disjoint
regions, they are independent and we can bound P(E;(z)) by the product of their
probabilities. By Corollary 1.3.9, the two-arm half-plane exponent in Q, is 1 and by
Proposition 1.3.10 the two-arm f-annulus exponent is 1/2f. Thus the probability
of E1(z) is at most (k6)'/2=¢(1/k)1~¢. Hence for z + 7 in the outermost layer and
z a neighbor of z + 1, we have

(G2(z+n) — G°(2))

S| =

G2(z+1m) —G(z+ 1) +G%(z+n) — G%(z) + G%(z) — G®(2))  (1.5.3)

(
(ka)wﬂ £(1/k) f+<;5(z+n) G’(2)).
~1(k6) /2P~ (1/k)1-

°>09|'—‘09|'—'

In the last step we use a shifted domain trick (see the proof of the second in-
equality in Proposition 1.3.3 and Figure 1-5) and apply the trivial inequality P(A \
B) < P(A). Using (1.5.3) to bound each term of the expression dG%(z) = (% =
1525) GO(z), we get 3G (z) < 67 (k6)1/26=¢(1/k) 1.

o(7n)

We assume that the location z of the pole is in the face nearest to the center of
B (since that is the worst case) and also that the image of the center of B is not a
vertex of the equilateral triangle T. We obtain

3(0)gu(§)dA() (154)

C/é
< 3" sup [0G (2)(¢7 1) (¢(2))gw (b7 (2)) |area(ep(F))

k=1 z€F;

Tedgem‘p(QmBj)

by replacing the integrand with its supremum on each F; and summing over k.
We use the estimate area(¢(F)) < sup,.p, [¢/(z)[?6% and use Theorem 1.5.1 to
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estimate the factors involving ¢. We bound the right-hand side of (1.5.4) by

/s 3G @) 8w area(¢(F))
<3 5—1(k5)1/2p-e(1/k)1—e‘ (k6)1‘1/25’(k6)'1/23;52(k6)2/2ﬂ‘i
k=1
C/é
= 61—6 (Z(k6)l/2ﬁ—25)
k=1

~ o1-¢  if28<1
o1/2B-¢ if2B > 1.

We have evaluated the sum by noting that the factor in parentheses is a convergent
Riemann sum when the exponent is at least —1. When the exponent is less than
—1, the summation over k gives a constant factor, leaving the contributions of the
powers of §.

If the center of B} is a marked point, the proof is essentially the same and the net
effect is to replace 1/2p with 1/6a throughout the calculation. These replacements
are justified either by fewer percolation arms (when the exponent appears in an
arm event estimate), or by the angle of n/3 at the vertices of the triangle T (when
the exponent appears because of the conformal map ¢). O

Remark 1.5.3. We can remove the dependence on SLE by using Smirnov’s theorem
to estimate one-arm f-annulus probabilities (instead of using Proposition 1.3.10).
The result is that we obtain (1.5.1) with the right-hand side replaced by

in 11 )_
g™ (e ah) <.

Lemma 1.5.4. Let ], gu, {a;}, {B;} be as in the statement of Lemma 1.5.2. Let c3 =
2/3 be the 3-arm whole-plane exponent. Then

1
Y

[ @)ge()dA@) 6™ (cvmah) (1.5.5)
T\Tedge

where the implied constants depend only on € and the three-pointed domain.

Proof of Lemma. We will use Proposition 1.3.3 to bound dG. Let B be as above and
note that dist(dQ, @ \ U B) > 0 by the discussion preceding Lemma 1.5.2.

We first handle Q \ (J B. Suppose that one of the five-arm events of Figure 1-5
occurs, say E{i"{flarm (z). Let b be the point nearest x(7?) where a blue arm touches
down in the shifted domain, and let s be the number of lattice units along the
boundary from b to x(1%). When z ¢ | B (see Figure 1-11), z is well away from the
boundary thus we note that such a five arm event entails the existence of:

1. a 3-arm whole-plane event in alternating colors at z, in a ball of radius ©(1),

2. a 3-arm half-annulus event of alternating colors originating at b, in a semi-

circle of radius s§/2, and
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Figure 1-11: To bound the probability of the five-arm difference event described in
Proposition 1.3.3, we consider three regions which contain two-arm or three-arm
crossing events (these regions are shown in green and red, respectively).

3. a 2-arm half-annulus event in an annulus of inner radius s§/2 and outer ra-
dius ©(1).
Since the derivative of the conformal map is bounded above and below for z away
from the boundary, we can ignore the contribution of ¢'(¢~1(z)) in (1.5.2) and
calculate
3-arm whole-plane ~ 3-arm half-plane  5_;: half-ann.
e, e,

@< @ x 1R x ()
s=1

< 6‘:3—5.

Hence we have

A (O)gu(¢)dA()| S 077 o(O)|dA(Q) < 67,
-[sb(n\s) J(©)gu(¢) (f)‘w L(Q\B) 18(¢)|dA() <

since a simple pole is integrable with respect to area measure.

To bound the integral of the union of the balls in B, we handle each B € B
separately. We first consider a ball centered at a marked corner, say x(7). Once
again, for each z and each percolation configuration, we define b € 0Q to be the
point nearest x(72) at which a blue arm from z touches down in the shifted domain.
This time we let s be the graph distance from b to the boundary point z¢,,: nearest
to z (see Figure 1-14) and index the faces F,  in such a way thatif z € F,, |x(7) —
z| =< k& and dist(dQ,z) < nd. As above, we bound |dG®(z)| using percolation
arm estimates in each hexagonal face and sum over all the faces in ¢(Q N B). By
symmetry, it suffices to sum over only the faces which are closer to the boundary
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Figure 1-12: We sum over the possible locations for b, considering the cases b € A,
be B,beC, and b € D separately.

arc [x(7), x(7?)] than to the boundary arc [x(1), x(7)].

Suppose that the corner at B is one of the three marked points and has inte-
rior angle ar. We bound |0G®| by summing over all possible locations for b. We
consider four cases:

e Case A: b is closest to the corner at x(7) (Figure 1-13(a)),
e Case B: b is within k/2 units of zs,, (Figure 1-13(b)),

e Case C: b is more than k/2 units to the right of zgt but closer to zg¢ than to
x(7?) (Figure 1-13(c)), and

e Case D: b is closest to x(72) (Figure 1-13(d)).

For simplicity, we assume that [x(7), x(72)] is a real analytic arc (that is, that there
are no corners between x(7) and x(72)). It will be apparent that similar estimates
hold when additional corners are accounted for.

Denote by P(z,b) the contribution to 0G? of the five-arm event with missed
connection at b (see Figure 1-5). As in (1.5.4), we bound the sum for Case A by a
constant times

P(z,b)

C/6 Ck k/2” 1/2a—¢ )
Sy et e 2 () (ke
N, o’

k=1n=1r=1 § 3.arm disk. 3-arm half-disk. ==~ 1_a1m g-ann.
2-arm a-ann.

(671 ($(Fux)) area(¢(Fux)))  gw

56 (k5)1—1/6a‘ 52(k5)1/3a—i’(k5)-1/6£
< 6min(63,1/6a)—s_
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We upper bound the contribution of Case B by a constant times

P(zb)
Yo kK2 1 s? +n? 1/6a—¢
> Y e (k)
N N—\— 82 + nz k S

k=1n=1s=1 9 3-armdisk S~——— ——— tlamma
3-arm half disk 2-arm half-ann.

O @FED) aea@Fu) g

% '(k5)1—1/602 52(k5)1/3a—2'(k5)—1/6a
< 5min(03,l/6a)—5.

-ann.

For Case C, we get

P(z,b)
C/6 Ck C/é& A~ -
Z Z Z n—c—€ k-—2 (k6)1—1/6a62(k5)1/3a—2(k5)—1/6a
H,-—f ~—~
=1n=1r=k/ 2 o 3-arm disk. 3-arm half-disk.
< 61/6(1—6-

For Case D, we denote by 2ry the angle at x(z?) and by t the number of lattice
units from x(72) to b. We obtain

P(zb
C/8 Ck C/6 =)
S £ (@) (k) ere(ko) - 2(ks) e
P s Jra - g et

3-arm disk. 3-arm half-disk. 7, rm y ann

)
< £1/2v—¢
S0 .

The proofs for the bounds in a disk whose center is not marked are essentially
the same as these. As in the proof of Lemma 1.5.2, the net effect is to replace 1/6a
with 1/28. 0

Remark 1.5.5. As in Remark 1.5.3, we can remove the dependence on SLE by using
Smirnov’s theorem instead of Proposition 1.3.10, under the additional assumption
that 9Q2 has no reflex angles (that is, max; j(a;, §;) < 1/2). By using the weaker one-
arm fS-annulus bound in place of the two-arm and three-arm bounds, we obtain
(1.5.5) with the right-hand side replaced by

: 1 1
e -
5mmw< 3’5_‘11"3_5,') €

Without the help of SLE, our techniques break down in the presence of reflex an-
gles.
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Figure 1-13: Assuming that z is near a marked corner, we have four cases to con-
sider: (a) b is close to x(z), (b) b is close to z, (c) b is between z and x(z2) but far
from both, and (d) b is close to x(72). For a closer view of the corner with additional

labels, see Figure 1-14.
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Figure 1-14: A close-up view of the corner of Figure 1-13(b), with labels illustrating
the roles of k, n, r, and s. The faces are indexeed by k and n in such a way that
the distance from z to the corner is < k& and the distance from z to 0Q is =< né.
Similarly, the faces intersecting the boundary are indexed so that the distance along
the boundary from the corner to b is =< rd and the distance from b to zg, is < s6.

1.5.2 Uniform bounds for half-annulus domains

While the constants in Theorem 1.1.1 generally depend on the three-pointed do-
main, there are some classes of domains for which Theorem 1.1.1 holds with uni-
form constants. In preparation for the proof of Theorem 1.1.2, we obtain uniform
constants for a class of half-annulus domains with arbitrarily small ratio of inner
to outer radius.

Let Q, g C H be the origin-centered half-annulus of inner and outer radius r
and R, respectively. Let T,y be the triangle with vertices 0, 1, and e™/3, and define
®r.r : Qg = Tunie to be the conformal map sending —R, —7, and R to /3,0, and
1, respectively. For r > 0, define S, = {re®® : 0 <0 < n}.

Proposition 1.5.6. Forall0 <c¢ <¢3 =2/3and0< 6 <r <1/2, we have
PP(S, ¢ S1) — ¢p1(r) = O(r~1/38%) = O(6°71/3), (1.5.6)

where the implied constants depend only on ¢ and, in particular, are uniform over
re (0,1/2].

Remark 1.5.7. To ensure that the interval (0,c3 — 1/3) of possible exponents ¢ is
nonempty, we need the SLE result that the three-arm whole-plane exponent c3 is
greater than 1/3.

Proof. We proceed by modifying Lemmas 1.5.2 and 1.5.4 to prove (1.5.1) and (1.5.5)
with constants uniform over the domains Q, ;. Forz € Cand p > 0, let B(z, p) be
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the disk of radius p centered at z. For the integral over Q,; \ B(0,1/2) we obtain a
bound of O(62/3~¢) by Lemmas 1.5.2 and 1.5.4, so it suffices to consider the integral
over Q,1 N B(0,1/2).

Fix ¢ > 0, and determine a(¢) from Proposition 1.3.6. Choose 7(g) small
enough that B(i,n) \ B(0,1) is contained in a sector of angle = + a centered at i.
Cover S, with finitely many balls of radius 2rn in such a way that Uyes, B(w, 1)
is contained in the union U of the balls. By Lemmas 1.5.2 and 1.5.4 and rescaling
(1.5.1) and (1.5.5) by a factor of 7, we find that f;; |9]Jgw|dA = O(r~1/35%7¢). So it
remains to consider the integral over theannulus A’ := {z : r(1+79) < |z| < 1/2}.
We reduce further to considering the integral over the left half {z € A’ : n/2 <
arg(z) < m} of A/, since the contribution from the right half of A’ is smaller. We
compute this integral similarly to those in Lemmas 1.5.2 and 1.5.4 (see Figure 1-15):
we index the faces F, ; in such a way that |F, x| —7 < k& and dist(F,x, R) =< né and,
for z € F, x we bound

P(z,b) <
é =€ 56 Aqr\ 1€ r \1-¢
5 L (n Nk)~ote (—————-———) ( ) ks 1/3-¢
v(n_g_/ sé6 Anr nr (k6 + r) ,(—+£)——-«
] 3-arm disk. h - 1-arm half-ann’.

3-arm l;;]f-disk. 2-arm }Ea.nn 2-arm half-ann.

Figure 1-16 shows how to write ¢, 1 as a composition of simpler conformal maps.
Using this composition, we compute

_ (24?8
¢r1 (Z) =i/

, = zZ—7
¢r,l(z -~ Z4/3(Z+T)1/3’ and
24/3(z+r)1/3
z—r

¢, 1 (¢ra(2)) =

Using these estimates, we can upper bound [ |9]gw| dA by summing over the faces
F, x. We obtain

(671 (9(Fni)) area(¢(Fy ) &
C/6 Ck Cr/s . ~ - ~ (k6 +7)1/3
S 303 Plab) (k5 4+ A(k0) V6% (k5 +) (ko)

k=nr/é n=1 s=1
< T_1/3563_E.
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Figure 1-15: We use crossing events for the five regions shown to bound the prob-
ability of a five-arm event for which b € §,.

1.6 Half-plane exponent

We begin with a lemma about the conformal maps ¢, r : Qg — Tunit; see Subsec-
tion 1.5.2 for notation.

Lemma 1.6.1. There exist a;,a; > 0 so that for all#, R > Osuch thatr/R < 1/2, we

have
¢rr(r) (1.6.1)

a1 < W < ay.

Proof. By scaling, we may assume R = 1. Consider the sequence of conformal
maps illustrated in Figure 1-16. Let us call these maps f, forn =1,2,...,5, so that
fn : Dy — Dy41. Since the domains are Jordan, we may regard f, as a continuous
map defined on the closure of each domain. Define the compositions f, = fu©

fn—l _ Ofl-

For n > 2, let K, C D, denote the image of
Ki:={z: |z| =rand argz € [0,n/2]} U[r,1/2]

under f,,_1. Forn € {2,3,5}, regard f, as having been analytically continued in a
neighborhood of every straight boundary (by Schwarz reflection), and define m,
and M, to be the infimum and supremum of f;(z) as z ranges over K, and r ranges
over [0,1/2].

We claim that 0 < m, < M, < o for all n € {2,3,5}. For n = 5, this follows
from the continuity of f;, and the fact that the derivative of a conformal map cannot
vanish. For n = 3, this follows from the joint continuity of the Mobius map (z —
w)/(1 —@z) in w and z.

The case n = 2 requires more care, since the eccentricity of D depends on r. We
introduce the notation D,, and f>, to indicate this dependence. Let I C (0,1/2)
be an interval. We claim that for every fixed z € (yer Dy, the quantity f; (z) is
continuous in r. We first recall some definitions from complex analysis: given a
simply connected domain U C C and a point z € U, we will say that a Riemann
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map ¢ : D — U is normalized if p(0) = z and ¢’(0) > 0. Recall that a sequence
of open sets U, C C converges to an open set U C C in the Carathéodory sense
with respect to z € U if (a) for all compact K C U containing z, we have K C U,
for all n sufficiently large, and (b) U contains every open set satisfying condition
(@). If U, — U in the Carathéodory sense, then the normalized Riemann maps
¢n : D — Uy, converge uniformly on compact subsets to the normalized Riemann
map ¢ : D — U [82]. Observe thatif , — r, Dy, converges to D;, with respect to
0 in the Carathéodory sense. Hence f5,, —+ f2, uniformly on compact sets, which
in turn implies that f;, — f3 , uniformly on compact sets. In particular, we obtain
joint continuity of f; ,(z) in z and r. It follows that the infimum and supremum of
|f/(z)| over (z,7) € Ky % [0,1/2] are achieved, which implies 0 < my < My < o0.
Since f1(r) = 2r/(1+1?), we have

r< fi(r) < 2r.

We note that each f, is monotone on the real line, and apply f5 o fy o f3 0 f, to the
inequality above. Using our derivative bounds, we obtain

ms (mzmg,r)l/3 < f4(r) < Ms (2M2M3r‘)1/3 ,

thus the result holds with a; = ms(moms3)1/3 and a; = Ms(2M, M3)Y/3. O

Remark 1.6.2. Numerical evidence suggests that Lemma 1.6.1 holds witha; =1
and a; =~ 1.426.

We denote by P the measure P°=! corresponding to site percolation on the tri-
angular lattice with unit mesh size.

Lemma 1.6.3. Forall 0 < ¢ < ¢3 —1/3 = 1/3 there exists Ry > 1 such that for all
R > Rgand for allr < %R,

[PPU(S, & Sk) — r(r)| < T5R7E. (162)
Proof. This follows immediately from Proposition 1.5.6, by rescaling by a factor of
R. Note that we have used the openness of interval (0,c3 — 1/3) to deal with the
multiplicative constant in the bound given by Proposition 1.5.6. O

Proof of Theorem 1.1.2. Let € > 0, and define Ry = ¢V'°81°8R We assume that R is
sufficiently large that Ry satisfies the statement of Lemma 1.6.3. Definea = 1/(1 —
3c) and n = |logy log, R]. Let Ry = Rf]'k for1 <k <n-—1,and let R, = R. We
first prove the upper bound. Since an open path from 0 to Sg includes a crossing
from Sg, to Sg, , forall0 < k < n, we may use Lemma 1.6.1, Lemma 1.6.3, and
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Figure 1-16: Panels (b) through (f) show the images of the half-annulus in panel (a)
under successive conformal maps. Composing these maps gives the conformal
map ¢, r from the half-annulus to the equilateral triangle which sends —R, —7,
and R to /3, 0, and 1. The ratio of outer radius to inner radius is 20 for the half-
annulus shown. The map from D; to D; is a suitable scaling of z — z + 1/z. The
map from D; to Dj is the restriction of the conformal map from an ellipse to the
disk. From Dj3 to D4, a Mébius map moves the image of —r to the origin. The map
from Dy to Ds is the cube root, and the map from Dj to Dy is the restriction to a
sector of the Schwarz-Christoffel map from the disk to the regular hexagon.
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independence to compute

n-1
P(O > SR) < H P(SRk « SRk+1)
k..

-1/3
< k+1)
H [ ( Ry + 10Rk+1

by (1.6.2). Factoring out the first term in brackets and splitting the product, we
obtain

-1/3n-1
P(0 <+ Sg) < ]‘[ a H (R"“) IT [1 +a1(10a2) " 'RY5 R3]
k=0
< (a1/10+a2)" Y(R/Rg)™'3,

because the second term in brackets simplifies to 41/ (10a2) by our choice of R.
Substituting the value of n gives

P(O o SR) < R(l)/s(log a)—log(a1/10+a2)/log Ry (log R)log(a1/10+a2)/ log Ry p—1/3

< eC\ /loglogRR—1/3’

for some constant C and for sufficiently large R, which gives the upper bound.

For the lower bound (see Figure 1-17), we define R;, = 2Ry. Define Ej to be the
event that there is an open crossing of Qg, z/ from [Rx, Ry] to [—R}, —Rg]. By the

Russo-Seymour-Welsh inequality, this probability is bounded below by a constant
p which does not depend on k. Note that there is a path from the origin to Sy if the
following events occur:

1. there is an open path from the origin to S,
2. there is an open path from Sg, to S R, forall0 <k < n,and
3. E; occurs forall0 < k < n.

Since these events are increasing, we can use the FKG inequality to lower bound
the probability of their intersection by the product of their probabilities. We obtain

n—1 n—1
(0 R SR) > P(O > SRO H P SRk > SR' H P(Ek)
k=0 k=0

1/2 n-1 Ryt Py
> Ry [ (Tt} - ﬁm;m)-f} ,
k=0 k
since P(0 > Sg,) = R, 1/3+01) > Ry /2, by the Cardy-Smirnov theorem. Factor-
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e m—

R,=R

Figure 1-17: If there are segment-to-segment crossings of each narrow half-
annulus, crossings from S R, to S Rl for each 0 < k < n, and an open path from

the origin to Sg,, then there is an open path from the origin to Sg. The figure
shown is an image under radial logarithmic scaling (r,8) — (log7, ).

ing as before and simplifying, we obtain

1/2 i (R Bt = 1 1/3 1/3

— — ’ Ca-— o

P(0 <> Sg) > Ry "“(a1p)" " ] (_“R+ ) I1 [l - E(Rk+l) Al " ]
k=0 k k=0

n—1 -1/3n-1 1/3—c
/2 y Riiy 2 e
> By Vo ui3gu=L ] (—+ ) I1 [1— A T
k=0 \ Rk k=0 10

> Ry1/2p-n/3 [alp(l _21/3—'-‘/10)]"_1 (R/Rg)~1/3
> e—C,/loglogRR—1/3’

for some constant C > 0 and sufficiently large R. a
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Chapter 2

Nesting in the conformal loop
ensemble

This chapter presents two joint works with Jason Miller and David Wilson. It appears
almost verbatim in [49] and [47].

2.1 Introduction

The conformal loop ensemble CLE, for x € (8/3,8) is the canonical conformally
invariant measure on countably infinite collections of non-crossing loops in a sim-
ply connected domain D C C[65, 69]. It is the loop analogue of SLE,, the canonical
conformally invariant measure on non-crossing paths. Just as SLE, arises as the
scaling limit of a single interface in many two-dimensional discrete models, CLE,
is a limiting law for the joint distribution of all of the interfaces. Figures 2-1 and 2-2
show two discrete loop models believed or known to have CLEy as a scaling limit.
Figure 2-3 illustrates these scaling limits CLE, for several values of .

2.1.1 Overview of main results

Fix a simply connected domain D G C and let T be a CLE in D. For each point
z € D and € > 0, we let N;(g) be the number of loops of I which surround
B(z,€), the ball of radius ¢ centered at z. We study the behavior of the extremes of
N;(€) as ¢ — 0, that is, points where N;(¢) grows unusually quickly or slowly
(Theorem 3.8.7). We also analyze a more general setting in which each of the loops
is assigned an i.i.d. weight sampled from a given law g. This in turn is connected
with the extremes of the continuum Gaussian free field (GFF) [23] when x = 4
and p({—0}) = p({o}) = 1 for a particular value of & > 0 (Theorem 2.1.2 and
Theorem 2.1.3).
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2.1.2 Extremes

Fix @ > 0. Recall that the Hausdorff a-measure H, of a set E C C is given by

Ha(E) = lim (inf{Z(diam(F,-))“ : UF,- D E, diam(F) < 5}) ,

i

where the infimum is over all countable collections {F;} of sets. The Hausdorff
dimension of E is defined to be

dimy (E) := inf{@ >0 : Hq(E) =0}.

Foreachz € Dand e > 0, let

7. _Na(e)
For v > 0, we define
®,(CLEy) := &,(T) := {z € D : lim NV (¢) = v} 2.1.2)

Our first result gives the almost-sure Hausdorff dimension of ®,(CLEy). The
dimension is given in terms of the distribution of the conformal radius of the con-

O

(a) Site percolation. (b) O(n) loop model. Percola- (c) Area shaded by nesting of
tion corresponds to n = 1 and loops.
x = 1, which is in the dense
phase.

Figure 2-1: Nesting of loops in the O(n) loop model. Each O(n) loop configuration
has probability proportional to xtotallengthofloops 5 #loops  For a certain critical
value of x, the O(n) model for 0 < n < 2 has a “dilute phase”, which is believed
to converge CLE, for 8/3 < x < 4 with n = —2cos(4n/x). For x above this
critical value, the O(n) loop model is in a “dense phase”, which is believed to
converge to CLE, for 4 < x < 8, again with n = —2cos(47/x). See [24] for further
background.



(a) Critical FK bond configura- (b) Loops separating FK clus- (c) Area shaded by nesting of
tion. Here g = 2. ters from dual clusters. loops.

Figure 2-2: Nesting of loops separating critical Fortuin-Kasteleyn (FK) clusters
from dual clusters. Each FK bond configuration has probability proportional to
(p/ (1 — p))¥*edses x g#clusters [18] where there is believed to be a critical point at
p=1/(1+1/ \/cf) (proved for g > 1[5]). For 0 < g < 4, these loops are believed
to have the same large-scale behavior as the O(1) model loops for n = /7 in the
dense phase, that is, to converge to CLE, for 4 < x < 8 (see [56, 24]).

nected component of the outermost loop surrounding the origin in a CLEy in the
unit disk. More precisely, recall that the conformal radius CR(z, U) of a simply con-
nected proper domain U C C with respect to a point z € U is defined to be |¢’(0)|
where ¢: D — U is a conformal map which sends 0 to z. For each z € D, let Lk be
the kth largest loop of I’ which surrounds z, and let U¥ be the connected component
of the open set D \ £X which contains z. Take D = D and let T = — log(CR(0, Uj)).
The log moment generating function of T was computed in [61] and is given by

— cos(4n/x)
Ax(1) == logE [¢*] = log (cos (n\[(l N i)Z 4 %)) ' (2.1.3)

K

for —oo < A < 1— 2 — 3% The almost-sure value of dimy ®,(T) is given in terms
of the Fenchel-Legendre transform A} : R — [0, co] of Ay, which is defined by

A%(x) :==sup(Ax — Ac(A)).
A€R

We also define

Tdv:={VAA1hO temEal (2.1.4)

2 3 . -
1-2-%% ifv=0.

For each x € (8/3,8), let vimax be the unique value of v > 0 such that y,(v) = 2.
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(a) CLE; (from critical Ising model)

(c) CLE;4/3 (from the FK model with g = 2) (d) CLEg (from critical bond percolation) %

Figure 2-3: Simulations of discrete loop models which converge to (or are believed
to converge to, indicated with x) CLE, in the fine mesh limit. For each of the
CLE,’s, one particular nested sequence of loops is outlined. For CLEy, almost all
of the points in the domain are surrounded by an infinite nested sequence of loops,
though the discrete samples shown here display only a few orders of nesting.
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2 4 3k
1+2+355

dimy®, (CLEK )

Viypical Vmax 1

Figure 2-4: Suppose that D C C is a simply connected domain and let I be a CLE
in D. For x € (8/3,8) and v > 0, we let ®,(T) be the set of points z for which the
number of loops N;(¢) of T surrounding B(z, ) is (v +0(1))log(1/¢) as ¢ — 0.
The plot above shows how the the almost-sure Hausdorff dimension of @, (CLE)
established in Theorem 3.8.7 depends on v (the figure is for x = 6, but the behavior
is similar for other values of x). The value 1 + % + g’—; = dimy ®,(CLEy) is the
almost-sure Hausdorff dimension of the CLE, gasket [61, 51, 45], which is the set
of points in D which are not surrounded by any loop of I.

Theorem 2.1.1. If 0 < v < vax, then almost surely

and @, (CLEy) is dense in D. If vmax < v, then @, (CLEy) is almost surely empty.

Moreover, if I is a CLE, in D, ¢: D — D is a conformal transformation,
[ := ¢(T), and @,(T) is defined to be the corresponding set of extremes of I,
then @, (') = ¢(®,(T)) almost surely.

We also show in Theorem 2.4.9 that ®,__ (T') is almost surely uncountably infi-
nite for all x € (8/3,8). This contrasts with the critical case for thick points of the
Gaussian free field: it has only been proved that the set of critical thick points is
infinite (not necessarily uncountably infinite); see Theorem 1.1 of [23].

See Figure 2-4 for a plot of the Hausdorff dimension of ®, (CLEg) as a function
of v. The discrete analog of Theorem 3.8.7 would be to give the growth exponent
of the set of points which are surrounded by unusually few or many loops for a
given model as the size of the mesh tends to zero. Theorem 3.8.7 gives predictions
for these exponents. Since CLEg is the scaling limit of the interfaces of critical
percolation on the triangular lattice [73, 7, 8], Theorem 3.8.7 predicts that the typical
point in critical percolation is surrounded by (0.09189. ..+ 0(1)) log(1/¢) loops as
€ — 0, where € > 0 is the lattice spacing.
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Vmax ( K)
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Figure 2-5: Plotted as a function of x are the typical nesting and maximal nesting
constants (vtypical and vmay, respectively). For example, when x = 6, Lebesgue al-
most all points are surrounded by (0.091888149... + 0(1)) log(1/¢) loops with in-
radius at least £, while some points are surrounded by as many as (0.79577041 ...+
0(1))log(1/¢) loops.

We give a brief explanation of the proof for the case v = 1/ET: by the re-
newal property of CLE, (Proposition 2.2.3), the random variables log CR(z, U¥) —
log CR(z, U5*1) are i.i.d. and equal in distribution to T. It follows from the law of
large numbers (and basic distortion estimates for conformal maps) that, for z € D
fixed, /’\vfz(e) — 1/ET ase — 0, almost surely. By the Fubini-Tonelli theorem,
we conclude that the expected Lebesgue measure of the set of points for which
N.(g) - 1/ET is 0. It follows that almost surely, there is a full-measure set of
points z for which ]\72(8) — 1/ET. In other words, v = vypical := 1/ET corre-
sponds to typical behavior, while points in ®,(CLEy) for v # 1/ET have excep-
tional loop-count growth.

The idea to prove Theorem 3.8.7 for other values of v is to use a multi-scale re-
finement of the second moment method [23, 11]. The main challenge in applying
the second moment method to obtain the lower bound of the dimension of the set
@, (CLEx) in Theorem 3.8.7 is to deal with the complicated geometry of CLE loops.
In particular, for any pair of points z,w € D and &€ > 0, there is a positive proba-
bility that single loop will come within distance € of both z and w. To circumvent
this difficulty, we restrict our attention to a special class of points z € ®,(CLEy) in
which we have precise control of the geometry of the loops which surround z at
every length scale.

Recall that the CLE gasket is the set of points z € D which are not surrounded
by any loop of I'. Equivalently, the gasket is the closure of the union of the set of
outermost loops of I'. Its expectation dimension, the growth exponent of the ex-
pected minimum number of balls of radius € > 0 necessary to cover the gasket as
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£ — 0,is givenby 1+ 2 + 3% [61]. It is proved in [51] using Brownian loop soups
that the almost-sure Hausdorff dimension of the gasket when x € (8/3,4] and it
is shown in [45] that this result holds for x € (4,8) as well. We show in Propo-
sition 2.2.17 that the limit as v — 0 of dimy ®,(T) is 1 + 2 + & (equivalently,
Y« is right continuous at 0). Consequently, from the perspective of Hausdorff di-
mension, there is no non-trivial intermediate scale of loop count growth which lies
between logarithmic growth and the gasket.

Theorem 3.8.7 is a special case of a more general result, stated as Theorem 2.5.3
in Section 2.5, in which we associate with each loop £ of I an i.i.d. weight ¢,
distributed according to some probability measure p. For each @ > 0, we give the
almost-sure Hausdorff dimension of the set

O (T) := {z €D: Elir&i-(z) = a}

of extremes of the normalized weighted loop counts

= 1

Sz(e) = log(—l/e)SZ(E) where SZ(S) = Z (fﬁ, (216)

LeT,(e)

and I';(¢) is the set of loops of I which surround B(z, €). This dimension is given
in terms of Ay and the Fenchel-Legendre transform A} of u. Although the dimen-
sion for general weight measures y and x € (8/3, 83 is given by a complicated
optimization problem, when x = 4 and p is a signed Bernoulli distribution, this di-
mension takes a particularly nice form. We state this result as our second theorem.

Theorem 2.1.2. Fix ¢ > 0, and define pg({o}) = ps({—0}) = 1. In the special
case x = 4 and p = ug, we have

2
. _ T 2
dimgy ®48(I') = max (0,2 ~ 520 ) (2.1.7)

almost surely.

This case has a special interpretation which explains the formula (2.1.7) for the
dimension. It is proved in [44] that the random height field S; (&) converges in the
space of distributions as € — 0 to a two-dimensional Gaussian free field #, and the
loops I' can be thought of as the level sets of & (since h is distribution-valued, h
does not have level sets strictly speaking, but there is a way to make this precise).
This suggests a correspondence between the extremes of S;(¢) and the extremes
of h. Although h is a distribution-valued random variable and does not have a
well-defined value at any given point, extreme values of k (also called thick points)
can be defined by considering the average k. (z) of h on 0B(z, €) and defining T(a)
to be the set of points z for which h.(z) grows like alog(1/¢) as e — 0. Itis
shown in [23] that dimy T(a) = 2 — na?, which equals dimy ®¥8 when o = /n/2
and x = 4. The following theorem relates exceptional loop count growth with the
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extremes of the GFF. Loosely speaking, it says that for each a there is a unique
value of v for which “most” of the a-thick points have loop counts N ~ v.

Theorem 2.1.3. Letx =4 and ug({o}) = pg({—0}) = 1 for some o > 0. For every
a € R, there exists a unique v = v(a) > 0 such that the Hausdorff dimension of

the set of points with S;(¢) — a as ¢ — 0 is equal to the Hausdorff dimension of
the set of points with S;(¢) — a@ and NV (e) — v as € — 0. Moreover, we have

n-a

v(a) = gcoth (—z—) .

The usual multiple of the GFF is obtained by taking 0 = v/7/2. Theorems 2.1.2
and 2.1.3 are proved in Section 2.5.

Vinax & 07107~~~ =~ ==L

Viypical = 1/

Figure 2-6: A graph of v(a) versus @, which gives the typical loop growth
vlog(1/¢) corresponding to each point with signed loop growth alog(1/¢), for
a € [L\/Z/ 7, v/2/m|. Also shown is the value vmax beyond which there are no
points having growth vlog(1/¢). The graph does not reach the dashed line be-
cause it is not optimal to use the maximum number of loops: the advantage of
having many loops (and thus many terms in the sum S;(¢)) is offset by the dis-
advantage of having fewer points which are surrounded by many loops. This
optimization problem is the one described in the proof of Theorem 2.1.3.

2.2 Preliminaries

We first give a brief overview of the exploration tree based construction of CLE,
in Sections 2.2.1 and 2.2.2. In Section 2.2.3, we review some facts from large de-
viations, and then in Section 2.2.4 we collect several estimates for random walks.
Finally, in Section 2.2.5 we apply these estimates to establish asymptotics for the

probability that AV;(g) ~ v for v > 0.
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2.2.1 The continuum exploration tree

In this section, we review the exploration tree construction of CLE, forx € (8/3,8)
given in [65]. We begin by briefly recalling the definition of the SLE, and SLE,(p)
processes. There are many surveys on the subject (for example, [83, 30]) to which
we refer the reader for a more detailed introduction. The radial Loewner transform
of a continuous process W : [0, 0) — 9D is defined as follows. For z € C, define
8:(z) to be the solution of the ordinary differential equation

9gi(z) _ 8:(z) + W, _
T (Z)m, go(z) =z. (2.2.1)
This ODE is well-defined until g;(z) = W}, and the swallowing time T? is defined
to be the first time at which this occurs, or oo if it never occurs. For t > 0 the hull K;
is defined to be the set of points K; := {z € D : T* < t} of D swallowed by time .
For each t > 0, g; is the unique conformal transformation D \ K; — D with g;(0) =
0and g;(0) > 0. We refer to W as the driving function of the Loewner evolution, and
we refer to the random growth process (K;);> as the radial Loewner transform of
W.

Radial SLE, introduced by Schramm [57], is defined to be the Loewner trans-
form (K;);>p of the driving function W; = exp(i/xB:), where B; is a standard
Brownian motion. Time is parametrized by log-conformal radius, which means
that g;(0) = ¢ for all ¢ > 0. It was proved by Rohde and Schramm [56] (x # 8)
and Lawler, Schramm, and Werner [32] (x = 8) that there is a curve 77 from 1 to 0
in D such that D \ K; is the unique connected component of D \ 5[0, ] containing 0.
We say that n generates the process K; and call n the radial SLEy trace. The driving
function can be recovered from 7 by the relation W; = lim,_,,; g:(z), where the
limit is taken with z € D \ K;.

Let D ¢ C be a simply connected domain. For any conformal transformation
¢ : D — D, we take the image of radial SLEx in I under ¢ to be the definition
of radial SLE, in D from ¢(1) to ¢(0) (with ¢(1) interpreted as a prime end). If
¢ extends continuously to D (equivalently if aD is given by a closed curve, see
[55, Theorem 2.1]) then radial SLE. in D is almost surely a continuous curve. It
was proved by Garban, Rohde, and Schramm [20] that for x < 8, radial SLEy in
an arbitrary proper simply connected domain is almost surely continuous except
possibly at its starting point.

We now describe the radial SLE(p) processes, a natural generalization of ra-
dial SLE, first introduced in [29, Section 8.3]. For w,v € 9D, radial SLE,(p) with
starting configuration (w, v) is the Loewner transform of W, where the pair (W, V)
solves the system of SDEs

v, = vt 4
) | Vi ;Bwt KW o Wi+ Vi ; (2.2.2)
WtZZ\/EWt P — (E t+EWt_——Wt—Vt) t,
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with Wy = w and Vy = v. The force point V; satisfies V; = g;(v) for all t > 0. The
system (2.2.2) has a unique solution up to the collision time 7., = inf{t > 0 :
W; = V;}. The weight p = x — 6 is special because SLE,(x — 6) is target invariant
[63]: radial SLEx(x — 6) in D with starting configuration (w,v) and target a € D
has the same law (modulo time change) as an ordinary chordal SLE, in D from w
to v, up to the first time the curve disconnects 2 and v [63].

We now explain how to construct a solution to (2.2.2) which is defined even
after the collision time 7). A more detailed treatment is provided in [65, Section
3]; we give here a brief summary following [61]. We first consider p > —2. For
t < 741, we define the process 8; = arg W; — arg V; taking values in [0, 27] and find
using I1t6’s formula and (2.2.2) that 6; satisfies the SDE

0, = \/xdB, + 2 Jz“ 2 cot(6,/2) dt . (2.2.3)

Moreover, a similar calculation shows that W; and V; may be recovered from 6; via

t
argW; =argw + /xB; + g /0 cot(0s/2) ds. (2.2.4)
arg Vy —arg W; — 6;.
Motivated by (2.2.3) and (2.2.4), we define a process 0; for t > 0 by evolving 6;
according to (2.2.3) on each interval of time for which 6; ¢ {0,27} and instanta-
neously reflecting at the endpoints (so that the set {¢ : 6; € {0,27}} has Lebesgue
measure zero). There is a unique process 8; with these properties [65, Proposi-
tion 4.2]. We define W; and V; for t > 0 using (2.2.4), and we define radial SLE,(p)
in D with starting configuration (w, v) to be the radial Loewner transform of W.
When —x /2 —2 < p < —2, the integral in (2.2.4) is infinite, and a different ap-
proach is required. One possibility is to lift §; to a continuous real-valued process
6; as follows. Instead of reflecting the process 6 to the interior of [0,2n], we flip
a fair coin at every hitting time T of 27Z to determine whether to subsequently
evolve @ in (07,01 + 27) or (67 — 27,87). Cancellation introduced by the coin
tosses is sufficient to make the integral in (2.2.4) finite (see [84] for more discussion
of this point). We define W; and V; according to (2.2.4) with @ in place of 0, and
we define SLE,(p) to be the radial Loewner transform of W. We now drop the
notation and will write 8 for the lifted process whenever —x/2 —2 < p < —2.

For p > x/2 — 2, the laws of radial SLE,(p) and ordinary radial SLE, are mu-
tually absolutely continuous up to any fixed positive time, so SLE.(p) is a.s. gen-
erated by a curve by the result of [56]. In [39] it is established that SLE,(p) is a.s.
generated by a curve for all p > —2 (see Remark 2.2.2). The continuity of radial
SLEx(p) has not yet been established for p € (—x/2 — 2, —2]. Radial SLE,(p) in a
general proper simply connected domain is defined again by conformal transfor-
mation, but the analogue of the continuity result of [20] is not known for p # 0.

The target invariance of radial SLE,(x — 6) processes continues to hold after
time 7,], and using this property we can construct a coupling of radial SLEy (x — 6)
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Figure 2-7: For —x/2 —2 < p < —2, we modify the [0, 27]-valued process 6 to
obtain a process 6 taking values in R: after each hitting time T of 27Z, an indepen-
dent coin toss determines whether the next excursion of 8 is in the interval above
1 or the interval below O7.

processes targeted at a countable dense subset of D.

Proposition 2.2.1 ([65, Section 4.2]). Let {ax }xen be a countable dense sequence in
D. There exists a coupling of radial SLE.(x — 6) processes 7% in D from 1 to a;
started from (w,v) = (1,1¢0) such that for any k,¢ € N, n’ and n* agree a.s.
(modulo time change) up to the first time that the curves separate a; and a4, and
evolve independently thereafter.

From the coupling {n%}cn defined in Proposition 2.2.1, we can almost surely
uniquely define (modulo time change) for each 2 € D a process 7 targeted at
a, by considering a subsequence {a;, },en converging to a. Then n? is a radial
SLE,(x — 6), and we write 87, W/, V/ for the corresponding processes of (2.2.3)
and (2.2.4). The complete collection of curves {n} . is the branching SLE, (x — 6)
or continuum exploration tree of [65].

2.2.2 Loops from exploration trees

The CLE, loops { £k} surrounding a point a € DD are defined in terms of the branch
n” of the exploration tree as follows [65] (see Figure 2-8):
Suppose 8/3 < x < 4.

o Let 7* = inf{t > 0 : 0 € {+2r}} be the first time that 5 forms a loop
around a.

e If 7% = o, then there are no loops surrounding a. If 7% < o0, let 0* = sup{s <
7 : 8% = 0}. Then L} is defined to be n°[0?, 7%]. If 0%, = 27 (resp. 6% = —2m)
then £} has a counterclockwise (resp. clockwise) orientation.

The next loop £2 is defined similarly, with the interior of L] playing the role of D.
Continuing this process yields the full sequence { £k} of loops.
Suppose 4 < x < 8.

e Let 72, be the first time at which 67 completes an upcrossing of an inter-
val of the form [27k,2n(k + 1)] for k € Z. This is the first time n* forms a
counterclockwise loop surrounding 4.

53



7 (Tecw)

7*(Tew) 0

(@) 8/3<x<4 (b)d<k<8

Figure 2-8: Branching SLE, (x — 6) construction of CLE, process I' in H. (a) When
8/3 < x < 4, the branch 7* targeted at a traces out a countable sequence of
disjoint simple loops until the first time that the process 6f hits +27. If we de-
fine 0® = sup{s < 7° : 7 = 0}, then the outermost CLE, loop surrounding
a is n°[0”,7%]. The schematic figure above disguises an important feature of the
SLEx(x — 6) process: n° is tracing out a CLE loop at Lebesgue almost all times. So,
for example, there are countably many small loops between the two points marked
with a purple dot. (b) For each a € H, n* (dashed blue line) is the branch of the
exploration tree targeted at a. Marginally it evolves as a radial SLE, (x — 6) which,
whenever it hits the domain boundary or its past hull, continues in the comple-
mentary connected component containing a. Let 2., be the first time t that n*
completes a counterclockwise loop surrounding a; the location of the force point
at time (g, is v* := *(#l,) for some #%,, < 72%,. The outermost loop L} of
I' surrounding a is n”a|[fgww}. Successive loops are defined in analogous fashion.
L} is necessarily counterclockwise and pinned at 7°(#%,,). It is disjoint from the
domain boundary if and only if a is first surrounded by a clockwise loop.

e If 7{,, = oo then there are no loops surrounding 2 and we set £, to be the
empty sequence. If 0., < colet 7%, = sup{t < 1%, : 67 = 0}, let v? :=
n°(#%.,), and let 7}° be the branch n”, reparametrized so that o8] =
1°|j0,4,,,]- The outermost loop L} surrounding a is defined to be 1| #2400

If £] is defined, it is necessarily counterclockwise and pinned at n?(#%,); more-
over, °(¢.) is in the boundary if and only if #* has not previously made a clock-
wise loop around a [65, Lemma 5.2]. The next loop £2 surrounding a is then de-
fined in analogous fashion, and continuing in this way gives the full CLE, process
I'in . See Figs. 2-8 and 2-9.

Remark 2.2.2. For 4 < x < 8, assuming that chordal SLE,(x — 6) processes are
generated by continuous curves with reversible law [65, Conjecture 3.11], it was
shown [65, Proposition 5.1 and Theorem 5.4] that CLE, loops are continuous, and
that the law of the full ensemble is independent of the choice of root for the explo-
ration tree. This conjecture was proved in [39, Theorem 1.3] and [41, Theorem 1.1
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Figure 2-9: When 4 < x < 8, clockwise loops of n® (dashed blue line) are not
CLE loops, but correspond either to complementary connected components of CLE
loops (left panel) or complementary connected components of chains of CLE loops
(right panel). The CLE process is renewed within each clockwise loop (Proposi-
tion 2.2.3).

and Theorem 1.2], so the properties hold. (They are immediate for x € (8/3,4] by
the equivalence of CLE, and the outer boundaries of loop soups [70].)

The CLE process in a general proper simply connected domain is defined by
conformal transformation, so the law of CLEy is conformally invariant. Moreover,
conditional on the collection of all of the outermost loops, the law of the loops
contained in the connected component D? of D\ £} containing  is equal to that of
a CLE, in D? independently of the loops of I which are not contained in D“.

Proposition 2.2.3. For any fixed countable set {4;};en C D, conditioned on {E}}_ }ien

the collections of loops within the connected components of I \ U; E,l,]_ are dis-
tributed as independent CLE, processes.

Note that when x € (4,8) a complementary component need not be surrounded
by any L; see Figure 2-9.

2.2.3 Large deviations

We review some basic results from the theory of large deviations, including the
Fenchel-Legendre transform and Cramér’s theorem. Let u be a probability mea-
sure on R. The logarithmic moment generating function, also known as the cumu-
lant generating function, of u is defined by

A(A) = Au(A) = logE [e*¥] ,
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where X is a random variable with law p. The Fenchel-Legendre transform A* :
R — [0, o] of A is given by [12, Section 2.2]

A*(x) == sup(Ax — A(A)).
AER

We now recall Cramér’s theorem in R, as stated in [12, Theorem 2.2.3]:

Theorem 2.2.4 (Cramér’s theorem). Let X be a real-valued random variable and
let A be the logarithmic moment generating function of the distribution of X. Let
Sn = 3i_1 Xi be a sum of i.i.d. copies of X. For every closed set F C R and open
set G C R, we have

lim sup —log]P> { Sn € P] < —inf A*(y), and

n—co yEF

lir{rl)icgf;log]P’ ;Sn € G} > _yig(f;A*(y) .

Moreover,

P an € F| <2exp (—n inf A*(y)) . (2.2.5)
n ] yeF

Following [12, Section 2.2.1], we let Dj := {1 : A(A) < oo} and Dy» = {x :
A*(x) < oo} be the sets where A and A* are finite, respectively, and let Fp =
{A'(1) : A € D3}, where A° denotes the interior of a set A C R. The following
proposition summarizes some basic properties of A and A*.

Tat A i T~
Prnpne1hnn 7 ') : Suppose tbat ;4'« 15 a probuuu.xt)/ mgcaasure on R, 1Cl. 4}y VO LI.D J.U5

moment generating function, and assume that Dy # {0}. Let a and b denote
the essential infimum and supremum of a p-distributed random variable X (with
a = —oo and/or b = co allowed). Then A and its Fenchel-Legendre transform A*
have the following properties:
(i) A and A* are convex
(ii) A* is nonnegative
(iii) Fp C Dpx
(iv) A is smooth on D3 and A* is smooth on Fj
(v) If Dy =R, then F5 = (a,b)
(vi) If (—00,0] C Dy, then (a,a + &) C Fg for some § > 0
(vii) If [0, 00) C Dy, then (b —8,b) C F for some § > 0
(viii) A* is continuously differentiable on (g, b)
(ix) If —oo < a4, then (A*)'(x) - —casx | a
() If b < o, then (A*)'(x) = +casx b

Proof. For ((i))—((iv)), we refer the reader to [12, Section 2.2.1].
To prove ((v)), note that
E[Xe?X]
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Therefore,
' 4o E[ae?X]
~ E[eAX]
Thus Fa C [a,b], which gives F3 C (a,b).
This leaves us to prove the reverse inclusion. Suppose ¢ € (a,b), and let Y =
X—c
Then

E[be?X]

BN 0

<ANQ) <

A(A) = E[xeX] | E[yeM] + E[1{y>q, Ye™] + E[1iy ) Ye*] .
E[e*X] E[e"Y] Efe?]

Since Dp = R, the tails of X and Y decay rapidly enough for each of the above
expected values to be finite. Since P[Y > 0] > 0, the first term in the numerator
diverges as A — oo, while the second term decreases monotonically in absolute
value. So for sufficiently large A, we have A’(1) > c. Similarly, for sufficiently
large negative 1 we have A’(1) < c. Since A is smooth, A’ is continuous, so ¢ € Fj.
The proofs of ((vi)) and ((vii)) are analogous.

To prove ((viii)), note that F3 = (4b) for somea < 4@ < b < b. By ((iv)),
A* is smooth on (&,b). Therefore, it suffices to consider the possibility that a < a
or b < b. Suppose first that b < b. By the proof of ((v)), b < b implies that
Dy = (M, A7) for some A; < co. Furthermore, observe that A’(1) — bas A * 2,.
It follows that A(A3) < oo, and by convexity of A we have for all b<x<b,

A (x) = s1/1{p[x/l —A(Q)] = x1; — A(Ap).

In other words, A* is smooth on (7, b) and is affine on (b, b) with slope matching
the left-hand derivative at b. Similarly, if 4 < &, then A* is affine on (a,4) with
slope matching the right-hand derivative of A* at 4. Therefore, A* is continuously
differentiable on (a, b).

To prove ((ix)), we note that since X is bounded below, D§ = (—oo,¢) for some
0 < & < +00. Moreover, there exists € > 0so that (2,4 + ¢) C F§, by essentially the
same argument we used to prove ((v)) above. Let D={A:NQ) € (aa+e)},
and note that the left endpoint of D is —oo. Since A’ is smooth and strictly in-
creasing on D (see [12, Exercise 2.2.24]), there exists a monotone bijective function
A: (a,a+€) — D for which A’(A(x)) = x. In the definition of A*(x), the supre-
mum is achieved at A = A(x). Differentiating, we obtain

(N (x) = = [eA(x) — AA))]
= Ax) + xA' (x) — M (x)A"(A(x)) (2.2.6)
= A(x).

Since the monotonicity of A implies that A(x) — —oco as x — a, this concludes the
proof.
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The proof of ((x)) is similar. a

The following is a simple corollary of Cramér’s theorem which is applicable to
a sequence of bounded, closed intervals contained in F§. The proof is routine and
is omitted.

Corollary 2.2.6. Suppose c,d € R, ¢ < d, and [c,d] C FR. If ¢, — cand d, — d,
then

.1 1 . N
nll_l;l’.}o - logP hsn € [cu, dn]} = — yélllcfd] A*(y).
We also have the following adaptation of Cramér’s theorem for which the num-
ber of i.i.d. summands is not fixed.

Corollary 2.2.7. Let X be a positive real-valued random variable with exponential
tails (that is, E[e*0X] < oo for some Ag > 0), and let A(A) = logE[e*X]. Let S, =
>, Xibeasum of i.i.d. copies of X, and let N = min{n : S, > r}. If 0 < v1 < v,
then .

rlggo ;logIP’[vlr <Ny <wpr]=— inf vA*(1/v). (2.2.7)

veE(vy,val

This is the origin of the expression vA*(1/v) in (2.1.4).

Proof. Recall that
A*(x) = sup[Ax — A(A)],
A
where the bracketed expression is 0 when A — 0. Because X has exponentiai taiis,
A (0) = E[X] exists. If x < E[X], then for some sufficiently small negative 1,
the bracketed expression is positive, so A*(x) > 0. Likewise, if x > E[X] then
A*(x) > 0. Recall also that A*(E[X]) =0.

Leta = essinfX € [0,) be the essential infimum of X and b = esssup X €
(0, 00] be the essential supremum of X.

Because A* is convex on [g, b], by Lemma 2.2.8 proved below, vA*(1/v) is con-
vex on [1/b,1/a]. The expression vA*(1/v) is 0 when v = 1/E[X] and is positive
elsewhere on [1/b,1/a], so it is strictly decreasing for v < 1/E[X] and strictly
increasing for v > 1/E[X].

There are three possible cases for the relative order of 1/E[X], v, and v,. For
example, suppose v; < v, < 1/E[X]. We write

{vir < N; < vor} = > Xi<rpn > Xiz2ry=ENF.
1<i<[vyr] -1 1<i<|vor|

Since vA*(1/v) is continuous on (1/b,1/a), by Cramér’s theorem,

P[ES] — e~ A @/v)(A+o(D)  andq PR] = e 2N (/) (4o(1))
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except when 1/vq = 1/b, in which case the expression for P[Ef] becomes an upper
bound. Therefore,

P[E, N F] = P[F,] — P[F, NE{] = ¢~¥2"A"(1/v)(14o(1))

which gives (2.2.7). The proof for the case 1/E[X] < v; < v; is analogous, and in
the case v1 < 1/E[X] < v, both sides of (2.2.7) are 0. O

Lemma 2.2.8. Suppose that f is a convex function on [a,b] C [0,0]. Then x —
xf(1/x) is a convex function on [1/b,1/a].

Proof. Since f is convex, it can be expressed as f(x) = sup;(a; + Bix) for some pair
of sequences of reals {a;};cn and {f;}ien. For x € [0, 00] we can write xf(1/x) =
sup;(a;x + B;), so it too is convex. O

Proposition 2.2.9. Let X be a nonnegative real-valued random variable, and let
A(A) = log E[e*X]. Then

lgﬂl\ vA*(1/v) =sup{i: A(A) < oo}. (2.2.8)

Proof. Let 49 = sup{A : A(A) < oo}, and note that 0 < Ay < oo. Recall that
A*(x) := sup, (Ax — A(1)), so

vA*(1/v) = sap()c —vA(A)).

The supremum is not achieved for any A > Ag. If Ay > 0, then E[X] < oo and for
v < 1/E[X] the supremum is achieved over the set 1 > 0 [12, Lem. 2.2.5(b)]. For
any A > 0 we have A(A1) > 0, so vA*(1/v) < Ap for 0 < v < 1/E[X]. On the
other hand, for any A < Ag we have A(1) < o, so liminf, ;o vA*(1/v) > A. Thus
lim,, g vA*(1/v) = Ag when A9 > 0.

Next suppose A9 = 0. Then the supremum is achieved over the set A < 0,
for which A(A) < 0. For any € > 0, thereis a § > 0 for which —¢ < A(A) < 0
whenever —§ < A < 0. Since 19 = 0, Pr[X = 0] < 1, so A(—68) < 0. Let
vo = —8/A(—6). By the convexity of A, for 0 < v < v, the supremum is achieved
for A € [—4,0]. For A in this range, A — vA(1) < v, 50 0 < vA*(1/v) < ev when
0 < v < vo. Hence lim, g vA*(1/v) = 0 when 19 = 0. O

We conclude by giving a parametrization of the graph of the function y, over
the interval (0, c0).

Proposition 2.2.10. Recall the definition of Ak in (2.1.3). The graph of yx over the
interval (0, c0) is equal to the set

{(ﬁ,a_%);—maa—%—%} (2.29)
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Proof. Recall that A% (x) = sup,cg[Ax — Ac(A)]. Since A} is continuous and strictly
increasing, the maximizing value of A for a given value of x is the unique A € R
such that A} (1) = x. If we let A be this maximizing value, then we have

A(x) = Ax — Ax(A). (2.2.10)

Differentiating (2.1.3) shows that as A ranges from —co to 1 — 2/x — 3x /32, A (A)
ranges from 0 to co. Using (2.2.10) and writing v = 1/x, we obtain

y=2-_1
x  AL(A)’
and
vAL(1/v) = ﬁ(/l) (AAL(A) — Ac(R)) = A — 2283 .
Therefore, {(v,vAL(1/v)) : 0 < v < oo} is equal to (2.2.9). O

Proposition 2.2.11. The function v is strictly convex over [0, o).

Proof. Definex(A) =1/A)(A)and y(1) = A — A«(1)/AL(A). By Proposition 2.2.10,
the second derivative of yy is given by

fr (S0 smsin? (3BRT (= 97) tan (3BRA T (c—97)
Y(A)  2m/BkA+ (x —4)2 — xsin (Z\/8xA + (x — 4)2)

2.2.11)

Ttis straightforward to confirm thatsin?ttant/ (2t —sin(2)) > O forallt € [0, n/2)
(where we extend the definition to t = 0 by taking the limit of the expression
as t \, 0). Similarly, sinh?(2t) tanh(t)/(sinh(2t) — 2¢) > 0 for all ¢ < 0 (again
extending to ¢+ = 0 by taking a limit). Setting t = Z./8xA + (x —4)?2, these ob-
servations imply that the second derivative of y, is positive for all A less than
1-2/x—3x/32. a

2.2.4 Overshoot estimates

Let {Sx }nen be a random walk in R whose increments are nonnegative and have
exponential moments. In this section, we will bound the tails of S, stopped at
(i) the first time that it exceeds a given threshold (Lemma 2.2.12) and at
(ii) a random time which is stochastically dominated by a geometric random
variable (Lemma 2.2.13).

Lemma 2.2.12. Suppose {X;} eN are nonnegative i.i.d. random variables for which
E[X;] > 0 and E[e%%1] < o for some Ay > 0. Let S, = E?:1 X;jand 7y = inf{n >
0: S, > x}. Then there exists C > 0 (depending on the law of X; and A¢) such that
P[S:, —x > a] < Cexp(—Apa) forallx > 0and a > 0.
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Proof. Since E[X;] > 0, we may choose v > 0 so that P[X; > 7] > . We partition
(—o0, x) into intervals of length v:

(—o0,x) = U I, where Li=[x—(k+1)v,x—kv).
Then we partition the event S;, — x > a into subevents

{S:,—x>a U U where  Eux = {Su € I, Sp41 > x+a}.

The event E, x implies X,,+1 > kv + a, and since X, 41 is independent of S,, we

have
E [ /10X]

P[E, ] < P[Sn € I X sy -

On the event S, € I, since X, is independent of what occurred earlier and is
larger than v with probability at least 3, wehave P[S, 11 € I|Sn € I, Sy—1,-..,51] <
1 Thus

5-

ép[sn e =E[|{n: S, € L}|] <2.

Thus
o zIE[ )\.0X] < 2E[e/10X]

]P[ST —x2 a] < Z e)lo(kv+a) = 1= MV x e~ M%, O

Lemma 2.2.13. Let {X;}en be aniid. sequence of random variables and let S, =
I, Xi. Let N be a positive integer-valued random variable, which need not be
independent of the X;’s. Suppose that there exists A9 > 0 for which E[eMX1] < o0

and g € (0,1) for Wthh P[N > k] < g1 for every k € N. Then there exist
constants C,c > 0 (depending on q and the law of X;) for which P[Sy > a] <
Cexp(—ca) for every a > 0. ;

Proof. Since gE[e*¥] is a continuous function of A which is finite for A = 29 > 0
and less than 1 for A = 0, there is some ¢ > 0 for which gE[¢**X] < 1. The Cauchy-
Schwarz inequality gives

E[e“¥] =E [Z ecs"l{N=k}]
k=1

<Y VEFSPIN = A
k=1

_ —1/22(¢'72CT) < oo,

We conclude using the Markov inequality P[Sy > a] < e~ “®E[e®SN]. a
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2.2.5 CLE estimates

We establish two technical estimates in this section. Lemma 2.2.18 uses Cramér’s
theorem to compute the asymptotics of the probability that the number N(¢) of
CLE loops surrounding B(z, ¢) has a certain rate of growth as ¢ — 0. We begin
by reminding the reader of the Koebe distortion theorem and the Koebe quarter
theorem.

Theorem 2.2.14. (Koebe distortion theorem) If f : D — C is an injective analytic
function and f(0) = 0, then

ﬁlf/(o)l < |f(re?)| < ﬁ]f’(O)L for6 cRand0<r<1.

The lower bound implies the Koebe quarter theorem, which says that B(0, | f'(0)|/4) C
f(ID) [30, Theorem 3.17]. Combining the quarter theorem with the Schwarz lemma
[30, Lemma 2.1], we obtain the following corollary.

Corollary 2.2.15. If D C C is a simply connected domain,z € D,and f : D — D is
a conformal map sending 0 to z, then the inradius inrad(z; D) := infy,ec\p |z — w|
and the conformal radius CR(z; D) := |f’(0)] satisfy

inrad(z; D) < CR(z; D) < 4 inrad(z; D).

We also record the following corollary of the distortion theorem, see [30, Propo-
sition 3.26] for a proof.

Corollary 2.2.16. There exists a constant C, such that for all conformal maps f from
the unit disk to C with ffn\ —Q0and i =1and forall Izl <+

IL s MLOK\ L VVAI.A[J \U — v ClLluJ \l}) 1 allu 11Ul all I I ~ 1

f(2) =2 < Gz

Furthermore, by de Branges’s theorem this statement holds with C, = (2 —r) /(1 —
r)2.

In preparation for the proof of Lemma 2.2.18 below, we establish the continuity
of the function y, defined in (2.1.4). Throughout, we let vmax be the unique solution

to 7« (v) = 2.

Proposition 2.2.17. The function yx is continuous. In particular,

2 3x
i =1—-——-—. 2.2.12
1313 re(v) =1 x 32 ( )
Recall that two minus the quantity on the right side of (2.2.12) is the almost-sure
Hausdorff dimension of the CLE, gasket [61, 51, 45].

Proof of Proposition 2.2.17. The continuity of y on (0, o) follows from Proposition 2.2.5 ((iv)),
and the contmulty at 0 follows from Proposition 2.2.9 and the fact that (2.1.3) blows
ur)atﬂn—-l—;— X but not for A < Ag. a
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Lemma 2.2.18. Let x € (8/3,8),0 < v < Vmax, and 0 < a < b. Then for all
functions & — &(¢) decreasing to 0 sufficiently slowly as € — 0 and for all proper
simply connected domains D and points z € D satisfying a < CR(z; D) < b, we
have

i log P[v < N;(e) < v +6(e)]

lim fog e =7v«(v) forv>0

2.2.13)

lim log]P’[%a(E) < Nz(e) < 5(5)]

£—0 loge =7x(0) forv=0,
where vy is defined in (2.1.4), and the convergence is uniform in the domain D.

Proof. Let {T;}ien be the sequence of log conformal radius increments associated
with z. That is, defining U to be the connected component of D \ £; which con-
tains z, we have T; := log CR(z; Ui 1) — log CR(z; U%). Let

n
Sn:=>_ T, =1ogCR(z; D) — logCR(z; U?) forn € N.
i—1

As in Corollary 2.2.7, we let N, = min{n : S, > r}.
By Corollary 2.2.15 and the hypotheses of the lemma, we have

log(a/4) — loginrad(z; U}) < S, < logb — loginrad(z; U7). (2.2.14)
Suppose first that v > 0. Let

E:={(v+n)log(1/€) < Niog(a/a)+10g(1/¢) }» and
F := {Niog()+10g(1/¢) < (v + 80 — 1) log(1/¢)}.

It follows from (2.2.14) that for all fixed 6 > 0 and 0 < 1 < §y/2 and for all
€ = £(n) > 0 sufficiently small, we have

{v<Ni(e)<v+6y} DENF.

By Corollary 2.2.7, 1og P[E|/ log € — infse[y4nv+80—n) Y (§)- Furthermore, Cramér’s
theorem implies that P[F | E] = ¢°(!). It follows that

< Ni(e) <
liming CBEV SN SvH 8] Tx(€).
£—0 loge E€[vn,v+80—n]

Letting n — 0 and using an analogous argument to upper bound the limit supre-
mum of the quotient on the left-hand side, we find that

logP[v < N;(e) <v+38
WL Y S
e—=0 loge ¢Elvv+0]

(€)-
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By the continuity of y, on [0,00), we may choose 6(¢) | 0 so that (2.2.13) holds.
The proof for v = 0 is similar. As above, we show that for 5y > 0 fixed, we have

log P[60/2 < N (¢) < 8]

li = inf £).
) loge 66[51;}2,50] relé)
Again, choose 6(¢) | 0 so that (2.2.13) holds. O

2.3 Full-plane CLE

Let D C C be a proper simply connected domain and let I' be a CLE in D. For
each z € D, let £} be the jth largest loop of I' which surrounds z. In Section 2.3.1

we estimate the tail behavior of the number of such loops £ which intersect the
boundary of a ball B(z,r) in D. Using these estimates, in Section 2.3.2 we show
rapid convergence of CLE, on large domains D as D — C.

2.3.1 Regularity of CLE

Lemma 2.3.1. For each x € (8/3,8) there exists p; = p1(x) > 0 such that for any
proper simply connected domain D and z € D,

P[LlNaD = @] > p; > 0.

Proof. 1fx € (8/3,4], we can take p; = 1since the loops of such CLEs almost surely
do not intersect the boundary of D. Assume x € (4,8). By the conformal invari-
ance of CLE, the boundary avoidance probability is independent of the domain D
and the point z, so we take D = D. Let n = 1’ be the branch of the exploration
process of T targeted at 0 and let (W, V) be the driving pair for . Let 7 be an al-
most surely positive and finite stopping time such that 7||g ;; almost surely does
not surround 0 and 7(7) # V; almost surely. Then 7], .,y evolves as an ordinary
chordal SLE, process in the connected component of D \ 77([0, 7]) containing 0 tar-
geted at V;, up until disconnecting V; from 0. In particular, n|(; «) almost surely
intersects the right side of n[|g ;) before surrounding 0. Since 7 is almost surely not
space filling [56] and cannot trace itself, this implies that, almost surely, there exists
z € Q% ND such that the probability that n makes a clockwise loop around z before
surrounding 0 is positive. This in turn implies that with positive probability, the
branch 7* of the exploration tree targeted at z makes a clockwise loop around z
before making a counterclockwise loop around z. By [65, Lemma 5.2], this implies
P[LlNnoD = Q] > 0. O

Suppose that D = D. By the continuity of CLE, loops, Lemma 2.3.1 implies
there exists rg = ro(x) < 1 such that

P} C B(0,70)] > %. (2.3.1)
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Figure 2-10: Illustration of Lemma 2.3.2. With uniformly positive probability p =
p(x) > 0, the second outermost CLE, loop surrounding a point z € D is contained
within the largest ball B(z, r) centered at z and contained within the domain.

Lemma 2.3.2. For each x € (8/3,8) there exists p = p(x) > 0 such that for any
proper simply connected domain D and z € D,

P[£2 C B(z,dist(z,dD))] > p.

(See Figure 2-10.)

Proof. Let D be the connected component of D \ £1 which contains z and let X =
CR(z;D1)/ CR(z; D) < 1. Let ¢: D — Dj be a conformal map with ¢(0) = z, and
let r = dist(z,dD). By Corollary 2.2.15, we have CR(z; D) < 4r, hence

3 CR(z; Dq)

— = — ot 8 —— < F
[¢/(0)] = CR(z; D1) = CR(zD) - G5 < 4Xr
Theorem 2.2.14 then implies for |w| < ryp < 1, we have

1o

lp(w) —z| < 4Xr(1 — 5 (2.3.2)
Since the distribution of — log X has a positive density on (0, o) [61], the probabil-
ity of the event E = {X < (1 —rq)?/(4rg)} is bounded below by p» = p2(x) > 0
depending only x. On E, the right hand side of (2.3.2) is bounded above by r, i.e.,
¢(roD) C B(z,r). By the conformal invariance and renewal property of CLE, the
loop £2 in D is distributed as the image under ¢ of the loop £} in D, which is
independent of X. Thus, by (2.3.1), P[£2 C B(z,r)] > P[E|P[£: C B(z,7)|E] >
(p2)(p1/2) =t p > 0. 0
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For the CLE, I'in D,z € D and v > 0 we define

J2. == min{j > 1: LN B(z,7) # &} (2.3.3a)
JS, == min{j > 1: £} C B(z,1)}. (2.3.3b)

Corollary 2.3.3. JS, — J0 is stochastically dominated by 2N where N is a geo-
metric random variable with parameter p = p(x) > 0 which depends only on
x € (8/3,8).

Proof. Immediate from Lemma 2.3.2 and the renewal property of CLE,. O

Lemma 2.3.4. For each x € (8/3,8) there exist c; > 0 and ¢; > 0 such that for
any proper simply connected domain D and point z € D, for any positive num-
bers r and R for which r < R and B(z,R) C D, a CLE, in D contains a loop £
surrounding z for which £ C B(z, R) and £ N B(z,r) = @ with probability at least
1— (c1r/R)“.

Proof. For convenience we let x = log(R/r) and rescale so that R = 1. For the CLE,
I, let A; = —log CR(LL(T)). By the renewal property of CLE,, {441 — A;} forman
ii.d. sequence, and their distribution has exponential tails [61]. Now min({4;} N
(0,0)) = 2 X which by Lemma 2.2.12 is dominated by a distribution which has
exponential tails and depends only on . By Cramér’s theorem, there is a constant
c > 0 so that /1121 +ex < x —log4 except with probability exponentially small in
x. By Corollary 2.33, J& — J; is stochastically dominated by twice a geometric
random variable, and so J5; < Ji; + cx except with probability exponentially small

O ¢ SRS NI oS R UL ISR, PR S - R TSSO MRS 2] ~A DM _—X\ 1 m
1L A. 11 DOLIL U1 LIIESE Illgll PlUUdUlllLy CVEILS UCCUl, LIeIL L']C [ D\L,C ) — . [ -
z,1

2.3.2 Rapid convergence to full-plane CLE

Recall that the total variation distance between two probability measures y and v
(on a common probability space) is defined by

|l — v|lrv := sup{|u(A) — v(A)| : A measurable}.

Lemma 2.3.5. Let {X;};cn be non-negative i.i.d. random variables whose law has
a positive density with respect to Lebesgue measure on (0, c0) and for which there
exists A9 > 0 such that E[e%X] < co. Let Sy = % X;. For M > 0, let 1y =
min{n > 0 : S, > M} and let pys be the law of the “overshoot” S;,, — M. There
exists a probability measure p supported on (0,00) with exponential tails and a
constant C > 1 such that
lpa = pllry < Ce™/€.

It is known that there is a limiting measure p (for example, see [21, Chapt. 3.10]).

If f(x) is the density function for the law of X3, then the density function of S;,, —
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S1y—1 converges as M — o to

)
T{Or

and the law of the overshoot S;,, — M converges as M — o to

[ () dt
i a

For our results we need this convergence to be exponentially fast, for which we
did not find a proof, so we provide one.

Proof of Lemma 2.3.5. For M > N > 0, we construct a coupling between py and
pum as follows. We take S = 0and Sy = N — M, and then take {Xj}jen and
{Xj} jeN to be two i.i.d. sequences with law as in the statement of the lemma, with
the two sequences coupled with one another in a manner that we shall describe
momentarily. WeletS, = 37 ; X;and Sn="50+ Y1 X;. Define stopping times

in=min{n>0:5, >N} and 7y =min{n>0:5,>N}.

Then S;,, — N ~ py and §;N — N ~ pym. We will couple the X;’s and )A(]-’s so that
with high probability S;,, = S}N

Lemma 2.2.12 implies that there exists a law § on (0, 00) with exponential tails
such that p stochastically dominates pp for all M > 0. We choose 8 to be big
enough so that 5([0,26]) > 1/2.

We inductively define a sequence of pairs of integers (i, jx) for k € {0,1,2,...}
starting with (ip,jo) = (0,0). IfS; +6 < S]k then we set (ixy1,jksr1) = (zk +
1, jx) and sample X; independently of the previous random variables. If §]’k +

6 < S;, then we set (ix41, jkt1) = (ik jk + 1) and sample Xik ., independently

i — §jk| < 6. In that case, we
set (ix41,jk+1) = (ik + 1, jx +1) and sample (X, +1’X]k +1) independently of the
previous random variables and coupled so as to maximize the probability that
Sip1 = S; jes1- Note that once the walks coalesce, they never separate.

We partition the set of steps into epochs. We adopt the convention that the kth
step is from time k — 1 to time k. The first epoch starts at time k = 0. For the epoch
starting at time k (whose first step is k 4 1), we let

of the previous random variables. Otherwise,

£(k) = min {k' > k: min(Sik,,gjk,) > max(Sik,gjk) —6}.

Let E; be the event R

Ex = {ISiyyy — Sjpy | < 0}
By our choice of 8, P[Ex] > 1/2. If event Ej occurs, then we let £(k) + 1 be the last
step of the epoch, and the next epoch starts at time £(k) + 1. Otherwise, we let £(k)
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be the last step of the epoch, and the next epoch starts at time £(k).

Let D(t) denote the total variation distance between the law of X; and the law
of t + X;. Since Xj has a density with respect to Lebesgue measure which is posi-
tive in (0, o), it follows that

g:= sup D(t) < 1.
0<t<8

In particular, if the event E occurs, i.e.,

Simq — SA]-M)\ < @, and the walks have not

already coalesced, then P[S;, | 7# §j€(k>+1] <q.

Let Y = max(S;,, §]-k). For the epoch starting at time k, the difference Yy — Y
is dominated by a random variable with exponential tails, since p has exponential
tails. On the event Ej there is one more step of size Yy3)41 — Y(x in the epoch.
This step size is dominated by the maximum of two independent copies of the
random variable X; and therefore has exponential tails. Thus if K is the start of the
next epoch, then Yy — Yj is dominated by a fixed distribution (depending only on
the law of X;) which has exponential tails. It follows from Cramér’s theorem that
for some ¢ > 0, it is exponentially unlikely that the number of epochs (before the
walks overshoot N) is less than cN.

For each epoch, the walks have a (1 — q)P[Ex] > 0 chance of coalescing if they
have not done so already. After cN epochs, the walkers have coalesced except
with probability exponentially small in N, and except with exponentially small
probability, these epochs all occur before the walkers overshoot N. a

Lemma 2.3.6. Let X be a random variables whose law is the difference in log con-
formal radii of successive CLE, loops. Let f)s denote the density function of X — M
conditional on X > M. For some constant C, depending only on %,

sup fp < Ce x exp [—(1 —2/x — 3x/32)x].
M

For all M and all x > 1, the actual density is within a constant factor of this upper
bound.

Proof. The density function for the law of X is [61, eqn. 4]

xcos(4r/x) & 1 (i+%)2_(1_%)z
—Tg(—l)](]‘*‘i)exp - 8/x x|-

For large enough x, the first term dominates the sum of the other terms. For small
x, a different formula [61, Thm. 1] implies that the density is bounded by a con-
stant. Integrating, we obtain P[X > M] to within constants, and then obtain the
conditional probability to within constants. O

For a collection T' of nested noncrossing loops in C, let g, ,+ denote the
collection of loops in I which are in the connected component of C\ {£ € T :
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L surrounds B(z,7)} containing z. If T is a CLE, in a proper simply connected
domain containing B(z,7), then T'|g(, )+ =T| jn ;.
- uzz,r

Theorem 2.3.7. For x € (8/3,8) there is a unique measure on nested noncross-
ing loops in C, “full-plane CLE.”, to which CLE,’s on large domains D rapidly
converge in the following sense. There are constants C > 0 and a > 0 (de-
pending on «) such that for any z € C, r > 0, and simply connected proper
domain D containing B(z,r), a full-plane CLE, I'c and a CLE, I'p on D can be
coupled so that with probability at least 1 — C(r/ dist(z,9D))¢, there is a confor-
mal map ¢ from I'g| Bizr)+ toT Dl B(zr)+ Which has low distortion in the sense that
l¢'(z) — 1] < C(r/ dist(z,0D))* on I'c|p(;+. Full-plane CLEy is invariant under
scalings, translations, and rotations.

Proof. We first prove for that x > 0, the stated estimates hold forz =0andr =1,
with C and D replaced by any two proper simply connected domains D; and D,
which both contain the ball B(0, e*).

For i € {1,2}, let T; denote the CLE, on D;. Let A = —logCR(0, L)(T7)).
Note that A(()i) < —xfori € {1,2}. Furthermore, {)1](21 — A](i) }iEN is ani.i.d. positive

sequence whose terms have a continuous distribution with exponential tails [61].
Therefore, by Lemma 2.3.5, there is a stationary point process A(®} on R with i.i.d.
increments from this same distribution, and the sequences A() and 1) can be
coupled to A(®) so that A0 N (=3x,00) = A0 N (~3x,00) for i € {1,2}, except
with probability exponentially small in x.

Let 3
4 := min (,1(0) N (—Zx, oo)) . (2.3.4)

By Lemma 2.2.12 or Lemma 2.3.6, a € (—%x, —%x) except with probability expo-
nentially small in x.

We shall couple the two CLEx processes I'1 and I'; as follows. First we generate
the random point process A(9). Then we sample the negative log conformal radii of
the loops of I'; and I'; surrounding 0, so as to maximize the probability that these
coincide with () on (—3x,c0). If either A() or A(?) does not coincide with A
on (—32x, ), then we may complete the construction of I'; and I', independently.
Otherwise, we construct I'y and I'; up to and including the loop with conformal ra-
dius e7?, where a is defined in (2.3.4). Let £,(1’) denote the loop of I'; whose negative
log conformal radius (seen from 0) is 4, and let Ué’) denote the connected compo-
nent of C\ cﬁ’) containing 0. Then we sample a random CLEy I'p of the unit disk D
which is independent of a and the portions of I'; and I'; constructed thus far. (We
can either take I'p to be independent of 1(%), or so that the negative log conformal
radii of I'p’s loops surrounding 0 coincide with (A9 — 2) N (0,0).) Then we let
¥ be the conformal map from D to U} with ¢ (0) = 0 and (y?)'(0) > 0, and
set the restriction of I; to u,ﬁ’) to be () (I'p). If there are any bounded connected
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components of C \ LY other than U, then we generate the restriction of I'; to
these components independently of everything else generated thus far. The result-
ing loop processes I'; are distributed according to the conformal loop ensemble on
D;, and have been coupled to be similar near 0.

Let y = 3@ o (y)~1 be the conformal map from UV to Uu® for which
¥(0) = 0and ¢/(0) = 1. Assuminga € (—3x,—1x) anda € AV and 2 € 1@, the
Koebe distortion theorem implies that on B(0,e*/4), |y’ — 1| is exponentially small
in x.

By Lemma 2.3.4, except with probability exponentially small in x, both I'; and
I'; contain a loop surrounding B(0, 1) which is contained in B(0,e*/4). It is possi-
ble that ¢ maps a loop of I'; surrounding ID to a loop of I'; intersecting ID or vice
versa. But since ¥ has exponentially low distortion, any such loop would have to
have inradius exponentially close to 1. The expected number of loops of I'; with
negative log conformal radius between —log4 and 1 is bounded by a constant, so
by the Koebe quarter theorem, the expected number of loops of I'; with inradius
between 1/e and 1 is bounded by a constant. Let D3 = ¢*D; be a third domain,
where u is independent of everything else and uniformly distributed on (0,1). It
is evident that e“I'1 has no loop with inradius exponentially (in x) close to 1, ex-
cept with probability exponentially small in x. On the other hand, we can couple a
CLEx on Dj to I'1 in the same manner that we did for domain D,, and deduce that
I'1 must also have no loop with inradius exponentially close to 1, except with prob-
ability exponentially small in x. We conclude that it is exponentially unlikely for
there to be a loop of T'; surrounding B(0, 1) which ¥ maps to a loop of I'; intersect-
ing B(0,1) or vice versa. Thus ¢/(T'1|p(;1)+) = T'2|p(1)+, except with probability
exponentially small in x.

The corresponding estimates for general z and r and domains D; and D, con-
taining B(z,r) follows from the conformal invariance of CLEj.

Given the above estimates for any two proper simply connected domains which
contain a sufficiently large ball around the origin, it is not difficult to take a limit.
For some sufficiently large constant kg (which depends on x), we let I'y be a CLE,
in the domain B(0, et), where k > kg is an integer. For each k, we couple T'y;1 and
I'y as described above. With probability 1 all but finitely many of the couplings
have that Tky1[g(g 2+ = Wi(Tk|p(getr2)+) for a low-distortion conformal map vy,
so suppose that this is the case for all k > ¢. The conformal maps y; (for k > ¢)
approach the identity map sufficiently rapidly that for each m > ¢, the infinite
composition - - - o ¢, 11 o Yy, is well defined and converges uniformly on compact
subsets to a limiting conformal map with distortion exponentially small in m. We
define I'c|g(gm2)+ to be the image of I'y| B(0,em/2y+ under this infinite composition.
These satisfy the consistency condition I'c|g(gexp(m/2))* € TclBo,exp(mar2))+ for
my > my > £, so then we define I'c = Um>s Il B(0,em/2)+ For any other proper
simply connected domain D containing a sufficiently large ball around the origin,
we couple I'p t0 T'|10g 4ist(0,0p) | @ described above, and with high probability it will
be close to I'¢ in the sense described in the theorem.

It is evident from this construction of I'¢ that it is rotationally invariant around
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0. Next we check that I'¢ is invariant under transformations of the form z —
Az 4 C where A,C € Cand A # 0. Note that AT'¢ + C restricted to a ball B(0,r)
is arbitrarily well approximated by CLE on B(C, A2*) for sufficiently large k. But
by the coupling for simply connected proper domains, the CLEs on B(C, A2¥) and
B(0, 2*) restricted to B(0,r) approximate each other arbitrarily well for sufficiently
large k, and by construction, I'c restricted to B(0,r) is arbitrarily well approxi-
mated by CLE on B(0,2*) restricted to B(0,7) when k is sufficiently large. Thus
full-plane CLE is invariant under affine transformations.

Finally, if there were more than one loop measure that approximates CLE on
simply connected proper domains in the sense of the theorem, then for a suffi-
ciently large ball the measures would be different within the ball. Since for some
sufficiently large proper simply connected domain D, CLE on D restricted to the
ball would be well-approximated by both measures, we conclude that full-plane
CLE is unique. O

2.4 Nesting dimension

In this section we prove Theorem 3.8.7, which gives the Hausdorff dimension of
the set @, (T') for a CLE I in a simply connected proper domain D ¢ C. Define

o (T) := {z € D : iminf N;(r;T) > v}
r—0

@ (T) := {z € D :limsup N;(r;T) < v} .

r—0

Then the sets @ (') are monotone in v, and @, (T) = @ (T') N®; (T). (We suppress
I' from the notation when it is clear from context.)

Proposition 2.4.1. ®} (T') and ®; (T') are invariant under conformal maps.

Proof. Letp: D — D’ be a conformal map, and letT be a CLE, in D; ¢(T') is a CLE,
in D’. By Theorem 2.2.14, for all € > 0 small enough

Nz (16¢]/ (2)| 75T) < N (&5 0(I) < Az (Fgele/ (2)]75T) -

But
. N(16F el ()71 L Nz(g;T)
i I e (172) = I it e/ (1671610 (7))
N (ET)
_helgégflog(l/e)'
Thus

hergégfﬂfz(e,l") = liel‘il)%gfﬁ,p(z)(e;(p(r)) ’

0 (@7 () = & (¢(1)). Simmilarly, (g (1)) = @5 (¢(T))- 0



Observe that conformal maps preserve Hausdorff dimension: away from the
boundary, conformal maps are bi-Lipschitz, and the Hausdorff dimension of a
countable union of sets is the maximum of the Hausdorff dimensions. So we may
restrict our attention to the case where the domain D is the unit disk D.

24.1 Upper bound

Let T be a CLE, in D. Here we upper bound the Hausdorff dimension of ®F(T).
Recall that yx is defined in (2.1.4) and that vimax is the unique value of v > 0 such
that y«(v) = 2. Moreover, y«(v) € [0,2) for 0 < v < vpax.

Proposition 2.4.2. If 0 < v < vyypical, then dimy @ (CLE,) < 2 — ¥4 (v) almost
surely. If vigpicat < v < Vmax, then dimg ®F (CLE,) < 2 — 7, (v) almost surely. If
V > Vmax, then @ (CLE,) = @ almost surely.

Proof. Observe that the unit disk can be written as a countable union Mobius trans-
formations of B(0,1/2). For example, for g € D N Q?, define @ to be the Rie-
mann map for which ¢4(0) = g and ¢;(0) > 0. Then D = U,epng2 4(B(0,1/2)).
By Mobius invariance, therefore, it sutgﬁces to bound the Hausdorff dimension of
®F N B(0,1/2) for a CLE, in D.

To upper bound the Hausdorff dimension, it suffices to find good covering sets.
Letr > 0. Let D" be the set of open balls in C which are centered at points of 7Z2 N
B(0,1/2+7+r/ \/E) and have radius (14 1/+/2)r. For every point z € B(0,1/2), the
closest point in rZ? to z is the center of a ball U € D" for which B(z,r) C U C
B(z, (1+ V2)r).

For each ball LI € D", let z(LI) be the center of LI. We define

Ut .= {U €D : J\v/'z(u)(r) > v}

—_ 241
u" = {U €D : Nyuy(r) < v} . ( )

Recall that the conformal radius of D with respecttoz € Dis 1 — |z|?. For U €
D", we have |z(U)| < 1/2+71/v/2,s0 % < CR(zD) <1 providedr <1 — 1/2.
Thus by Cramér’s theorem (as in the proof of Lemma 2.2.18) and the continuity of
Yx(v), for v > vipic we have

]P’[U = ufﬂ"l'] < rrx(V)+o(l) ,
and for v < viypical we have
PlU e U™ < pYe¥)+o(1)

where for fixed v, the o(1) terms tend to 0 as r — 0, uniformly in U.
Next we define
cm,v:l: — U uexp(—n),v:l: . (2_4_2)

n>m

72



Suppose thatz € @] (T) N B(0,1/2). Since lim inf,_,g Nz (g) > v, forany v/ < v,
for all large enough 1, Nz((1 4+ v/2)e™") > v'n. Thereis aball U € U* " for which
U C B(z,(1+ v2)e™), and so Ny (1 + 1/v2)e ) > Ny ((1 + v2)e™™), so
U € U¢"V'+. Hence, for any m € N and v/ < v, we conclude that C my'+ is a cover
for ®F (I') N B(0,1/2).

Suppose that z € ®; (T') N B(0,1/2). Since lim sup, _)0.7\7;(8) <w, forany v >
v, for all large enough n, N;(e™") < v'n. There is a ball U € U* " for which
B(z,e™") C U, and so Nz(e™") > Ny ((1 + 1/v2)e™),so U € U™~ Hence,
for any m € Nand v/ > v, we have that ™"~ is a cover for @ (I').

We use these covers to bound the a-Hausdorff measure of @ (T). If m € N and
V' > v > Vegpical (for @F (T), or v/ < v < gpical (for @ (T)),

EHo(@F(D)] <E| > (diam(U))®

Uecmy'+

=3 3 [@+v2e| Plu ey
n2myepe ™

< Z en(2—a-—y,(v’)+o(1)) )

n>m

(2.4.3)

If @ > 2 — y,(v'), the right-hand side tends to 0 as m — 0. Since m was arbitrary,
we conclude that E[Hq(®E(T))] = 0. Therefore, almost surely Ho(®E(T)) = 0.
Any such « is an upper bound on dimjy ®F(T). The continuity of y(v) then im-
plies that almost surely dimy; @ (') < 2 —yx(v) (Whenv > Vipical) and dimy @5 (T) <
2 — ¥x(v) (when v < Vigpical): When v = v, the dimension bound (which
is 2) holds trivially. Finally, when v > vpax, the bound in (2.4.3) shows that
Ho(®;H(T)) = 0 almost surely. Therefore, @ (T') = @ almost surely. a

2.4.2 Lower bound

Next we lower bound dimy (®,(T)). As we did for the upper bound, we assume
without loss of generality that D = D. We introduce a subset P, (T') of ®,(I') which
has the property that the number and geometry of the loops which surround points
in P,(T) are controlled at every length scale. This reduction is useful because the
correlation structure of the loop counts for these special points is easier to estimate
(Proposition 2.4.7) than that of arbitrary points in ®,(I'). Then we prove that the
Hausdorff dimension of this special class of points is at least 2 — y, (v) with positive
probability. We complete the proof of the almost sure lower bound of dimy; @, (T)
using a zero-one argument.

Lemma 2.4.3. Let I be a CLE, in the unit disk D, and fix v > 0. Then for functions
8(e) converging to 0 sufficiently slowly as € — 0 and for sufficiently large M > 1,
the event that
(i) there is a loop which is contained in the annulus B(0,¢) \ B(0,e/M) and
which surrounds B(0,e/M), and
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(ii) the index | of the outermost such loop in this annulus B(0,¢) \ B(0,e/ M)
satisfies vioge™! < J < (v+6(g))loge™?,
has probability at least e”(*)+°(1) a5 & — 0.

Proof. We define 6(¢) to be 2 times the function denoted § in Lemma 2.2.18. Let
E; denote the event that between vloge™! and (v + 15(¢)) log £~ loops surround

B(z,¢), let E; denote the event that at most 36(¢) log e ™! loops intersect the circle
dB(z,€), and let E3 denote the event that there is a loop winding around the closed

annulus B(0,¢) \ B(0,&e/M).
Lemma 2.2.18 implies

P[E,] = e"~W+o() a5¢ 0. (24.4)
Corollary 2.3.3 implies that for sufficiently small ¢, we have
P[E; | E1] > 3. (2.4.5)

Lemma 2.3.6 applied to the log conformal radius increment sequence implies
that for some large enough M,

n
P[CR (0;Ug) > M™% |Eq] > . (2.4.6)
Lemma 2.2.13 and Corollary 2.3.3 together imply that for large enough M
C N
P [CR (o; ué“'lf) / CR(0;Up) > M~V/?| El] >7. (24.7)

Combining (2.4.4), (2.4.5), (2.4.6), and (2.4.7), we arrive at
P[EyNEx;NE3] = g+ 4 ¢ 0.

Since Eq N E; N E3 implies the event described in the lemma, this concludes the
proof. d

We define the set P, = P,(I) as follows. For z € D and k > 0 we inductively
define

o Lettg=0.

Let Vzk = Uz* be the connected component of D\ LIk containing z. In partic-
ular, V9 = D = D.

Let ¢f be the conformal map from V¥ to D with ¢f(z) = 0 and (¢})'(z) > 0.

Let tj = 2~ (k+1),

Let 741 be the smallest j € N such that ¢5(£L) < B(0, t;).
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Let IX be the image under ¥ of the loops of I' which are surrounded by £7* and
in the same component of D\ £z* as z. Then X is a CLE, in D.

Let M > 1 be a large enough constant for Lemma 2.4.3, and let EX to be the
event described in Lemma 2.4.3 for the CLE I* and ¢ = t;. We define

Ebvk = N EL.
k1 Sk(kz

Throughout the rest of this section, we let

S = H t; for kZO (2.4.8)

0<i<k

Lemma 2.4.4. There exist sequences {r¢}ren and { Ry }ren satisfying

m 987k _ y; 108 Rk _ (2.4.9)
k—oo logsy  k—oo log sy

such that for all z € B(0,1/2) and k > 0, we have
B(z,1) C V¥ C B(z, Ry) (2.4.10)
on the event Eg'k .
Proof. For 0 < j < k, the chain rule implies that on the event E* we have
CR(z; VJ) = CR(0; ¢} (V) CR(z; Vi ™Y) < tj_1 CR(z; VI 7Y, (24.11)

where the inequality follows from Corollary 2.2.15. Iterating the inequality in
(2.4.11), we see that

CR(z; V) < 1 CR(zVF™!) < -+ <ty - - £0) CR(z; V)
= 5, CR(z; D). (2.4.12)

Since |((¢5~1)~1)(0)| = CR(z; V¥~1), it follows from the Koebe distortion theorem
that V¥ C B(z, ti_1/(1 — t_1)2CR(z; V¥~1)). Since CR(z; VF~1) < s;_1 CR(z; D),
CR(z;D) = 1—|z|? < 1, and t;,_; < 1/2, we see from (2.4.12) that V¥ C B(z,4sy),
so we set Ry = 4s; to get the second inclusion in (2.4.10).

0k

To find {rx }ren satisfying the first inclusion in (2.4.10), we observe that on E;
we have

CR(z;VE) > M4 _1CR(z; VE 1) > - > M~*(t3_1 - - - ) CR(z; V?)
= M7*s, CR(z; D).

Applying the upper bound of Corollary 2.2.15, we thus see that inrad(z; V¥) >
iM*s, CR(z; D). Since CR(z;D) > 3/4 for z € B(0,1/2), setting r, = M s
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gives (2.4.10).
A straightforward calculation confirms that these sequences {ry }xen and { Ry }ren
satisfy (2.4.9).

We define P,(I') C Dby

P,(T) := () {z € B(0,1/2) : EX" occurs}. (2.4.13)

n>1
Next we show that elements of P, (T') are special points of @, (I'):
Lemma 2.4.5. For v > 0, always P,(T') C ®,(I').

Proof. Tt follows from the definition of EX that for z € P,, the number of loops
surrounding V¥ is (v 4+ 0(1)) logs; ' ask — c0. Lemma 2.4.4 then implies that the
number of loops surrounding B(0, s¢) is also (v +0(1)) logs; * as k — 0.

If 0 < € < 1, we may choose k = k(¢) > 0 so that sy, < & < s¢. Then

Ne(sx) logsi’ _ Nale) _ Nalsian) | 1ogsiy

logs;t ‘loge=T ~ loge~1 = logs; “loge1°

Observe that logs;,1/logsy — 1 as k — co. From this we see that both the left
hand side and right hand side converge to v as ¢ — 0, so the middle expression
also converges to v as € — 0, which implies z € @, (T'). d

We use the following lemma, which establishes that the right-hand side of

o I, B o 3 WL U R -y’ (R | N
(£.4.10) 15 dIl HEersSeCiorn Ol Closea 5eLs.

Lemma 2.4.6. For each n € N, the set P,, := {z € B(0,1/2) : E" occurs} is
always closed.

Proof. Suppose that z is in the complement of P, ,, and let k be the least value of j
such that E] fails to occur. Each of the two conditions in the definition of E’; (see
Lemma 2.4.3) has the property that its failure implies that EX, also does not occur
for all w in some neighborhood of z. (We need the continuity of ¢¥ in z, which may
be proved by realizing ¢ as a composition of ¢ with a M6bius map that takes the
disk to itself and the image of w to 0.) This shows that the complement of P, is
open, which in turn implies that P, , is closed. O

Proposition 2.4.7. Consider a CLE, in D. There exists a function f (depending on
x and v) such that (1) f(s) = s"*+°(1) as s — 0, and (2) for all z,w € B(0,1/2)

PIEY" N EY™ f (max(sy, |z — w|)) < PEY"P[ES"]. (2.4.14)

Proof. Suppose z,w € B(0,1/2). Let ry and Ry be defined as in Lemma 2.4.4. If
|z — w| < Ry, then we bound P[EY" N EY"] < P[E?"] and, using Lemma 2.4.3 and
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the fact that R,, = 4s,,,

PIEX" > ] tzx(7)+0(1) _ S%K(V)H(l) = max(sy, |z — w|)*M o)
k<n

which implies (2.4.14). Next suppose |z — w| > R,. Let

u=min{k € N : Ry < |z—w]|}.

P[ES" N EQ") = B[EX* N E¥[P[EL" N E4"[EQ* NEYY

By Lemma 2.4.4, w ¢ V} and z € V};, so we see that V} and V; are disjoint. By the

renewal property of CLE, this implies that conditional on EX* N E%*, the events EX
and EX for k > u are independent. Thus

P[E" N E"] = P[EQ* N E3*|P[EY"|P[E"]
< P[E2*]P[EZ"|P[EL"]
PE2" N EZ"P[ELY] < PEQ"IPIEL"].
Since
P(EQ"] > sl ™ = max(sy, |2 — w]) o),

(2.4.14) follows in this case as well. O

We take t; as in Section 2.4.2 and s; as in (2.4.8). We will prove Theorem 3.8.7
using Proposition 2.4.7 and the following general fact about Hausdorff dimension,
the key ideas of which appeared in [19, 11, 23].

Proposition 2.4.8. Suppose Py D P, D P; D --- is a random nested sequence of
closed sets, and {s, },cn is a sequence of positive real numbers converging to 0.
Suppose further that 0 < a < 2, and f(s) = s*t°(0) as s — 0. If for each z,w € D
and n > 1 we have Pz € P,] > 0and

Plz,w € Py|f(max(sy, |z — w|)) < Plz € Py]P[w € Py, (2.4.15)
then forany a <2 —g,

Pldimy(P) > a] >0 where P:= () P,.

n>1

Proof. Let u, denote the (random) measure with density with respect to Lebesgue
measure on C given by
dpn(z) _ Liep,np
dz  PlzeP,]’
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Then E[u,(D)] = area(D), and by (2.4.15),

Bl (@) =[]0 5 H;[Zéjﬂf[wpyé] P 2w < G <o

for some constant C; depending on the function f but not n.
Recall that for a > 0, the a-energy of a measure ¢ on C is defined by

()= [[. |Z_l—w|adu(2) dys(aw)

Recall also that if there exists a nonzero measure with finite a-energy supported
on aset P C C, usually called a Frostman measure, then the Hausdorff dimension
of P is at least & [17, Theorem 4.13]. The expected a-energy of uy is

Plz,w € Py) 1

Ella(pn)] = //Dx]]) Pz € Py|Plw € Py] |z — w|* dzdw,

and when a < 2 — g, the expected a-energy is bounded by a finite constant C;
depending on f and a but not n.

Since the random variable p, (D) has constant mean and uniformly bounded
variance, it is uniformly bounded away from 0 with uniformly positive probability
as n — oo. Also, P[I4(pn) < d] — 1asd — oo uniformly in n. Therefore, we can
choose b and d large enough that the probability of the event

Gy = {b7! < (D) < band Io(w,) < d}

is bounded away from O uniformly in n. It follows that with positive probability
infinitely many Gy,’s occur. The set of measures y satisfying b~! < p(D) < bandis
weakly compact by Prohorov’s compactness theorem. Therefore, on the event that
Gy occurs for infinitely many 7, there is a sequence of integers ki, k2, . .. for which
I, converges to a finite nonzero measure g, on .

We claim that p, is supported on P. To show this, we use the portmanteau
theorem, which implies that if 7; — 7 weakly and U is open, then n(U) <
liminf, 7,(U). Since P, is closed for each n € N, we have

p(C\ P) < liminf e, (C\ P) = 0,
—00

where the last step follows because gy , is supported on Py, C Py for k; > n. There-
fore

pe(C\ P) = nli_r)rgou*(C\Pn) =0,

SO U, is supported on P.

To see that p, has finite a-energy, we again use the portmanteau theorem,
which implies that

/fdﬂﬁli?_i)glf/fdﬂe
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whenever f is a lower semicontinuous function bounded from below and g, — u
weakly. Taking f(z,w) = |z —w|™%, pp = p,(dz)p, (dw), and p = p(dz)p(dw)
concludes the proof. O

Proof of Theorem 3.8.7. Recall that conformal invariance was proved in Proposition2.4.1.
We now show that dimy ®,(I') = 2 — y«(v) almost surely, when 0 < v < vpax.
(The case v = vmax uses a separate argument.) We established the upper bound in
Section 2.4.1, so we just need to prove the lower bound.

Suppose v < vmax. For each connected component U in the complement of the
gasket of T, let z(U) be the lexicographically smallest rational point in U, and let
¢y be the Riemann map from (U,z(U)) to (D,0) with positive derivative at z(U).
By Proposition 2.4.8, for any £ > 0, there exists p(¢) > 0 such that

Pldimy (Py(pu(T(u))) =2 —v«(v) — €] = p(e).
By Lemma 2.4.5 P, (¢u(T'|u)) C @ (¢u(T|u)), and by conformal invariance,
dimy; @, (¢u(T'|u)) = dimy @ (T|u),

which lower bounds dimy ®,(I'). Since there are infinitely many components U
in the complement of the gasket, and the T'|y’s are independent, almost surely
dimy ®,(I') > 2 — y«(v) — €. Since € > 0 was arbitrary, we conclude that almost
surely dimy @, (T) > 2 — y«(v).

It remains to show that ®,(T) is dense in D almost surely, for 0 < v < Vmax. Let
z be a rational point in D, and recall that U¥ is the the complementary connected
component of D \ £X which contains z. Almost surely ®, (T|y¢) has positive Haus-
dorff dimension, and in particular is nonempty. Since there are countably many
such pairs (z, k), almost surely @, (T'|;x) 7# @ for each such z and k, and almost

surely for each rational point z, diameter(UX) — 0. a

Theorem 2.4.9. For a CLE, T in a proper simply connected domain D, almost
surely @, . (T) is equinumerous with R. Furthermore, almost surely @, __ (T) is
dense in D.

Proof. Asusual we assume without loss of I§enerality that D = ID. We will describe
a random injective map from the set {0,1}" of binary sequences to D such that the
image of the map is almost surely a subset of @, (T').

Let M > 0 be a large constant as described in Lemma 2.4.3. For a CLET in
D, let EQ, (v) denote the event that there is a loop contained in B(0, ) \ B(0,&/M)
surrounding B(0, e/ M) and such that the index | of the outermost such loop is at
least vloge™1. If (D,z) # (D,0),Tisa CLE in D, and € > 0, let EP, (v) be the event
ER,(v) occurs for the conformal image of I' under a Riemann map from (D, z) to

(D,0). If {€;};en is a sequence of positive real numbers, let ED"(v) = E? iﬁj}w 1 (v)
’ ]=

denote the event that ED, (v) “occurs n times” for the first n values of ¢ in the
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sequence. More precisely, we define EP”(v) inductively by EP(v) = EEEl (v) and

(v) N EE"L (v, (2.4.16)

AC

EP™"(v) = EZ,
for n > 1. For the remainder of the proof, we fix the sequence gji=t;= 2-/-1 and
define the events EP™" (v) with respect to this sequence.

For a domain D with zg € D, let ¢ be a conformal map from (D,0) to (D, zp),
and let FP-%"(v) denote the event that there is some point z € B(0,1/2) for which
Eg(”z’) (v) occurs. By Lemma 2.4.6 and Propositions 2.4.7 and 2.4.8, we see that there
is some p > 0 (depending on x € (8/3,8) and v < Vmax), such that P[FP%07 (v)] >
p for all n.

For each k € N, we choose vi € (Viypical, Vmax) 50 that yx(vg) = 2 — 2=%=1 For
eachk € Nand ¢ € N, we define g5y = 2~ 2%l

Suppose z € B(0,1/2)and 0 < r < 1/2and 0 < u < r/M. For n € N and
v < Vmax, We say that the annulus B(z,r) \ B(z,u) is (n, v)-good if (i) there exists
a loop contained in the annulus and surrounding z (say E; is the outermost such

loop), and (ii) the event F W zn (v) occurs.

For g, > 0, define u(q,7) = (q/C)/%r'*2/¢, where C and a are chosen so
that every annulus B(z,r) \ B(z, u) contained in D contains a loop surrounding z
with probability at least 1 — C(u/7)? (see Lemma 2.3.4). For 0 < r < 1/2, let S,
be a set of ﬁ; disjoint disks of radius r in B(0,1/2). By our choice of u(q,r), the
event G that all the disks B(z,r) in S, contain a CLE loop surrounding B(z, u) has
probability at least 1 — g. We choose 7,4, > 0 small enough so that for all # € N,
with probability at least 1 — 2! =2~ there are two disks B(z,7¢,) in Sr,, such that
B(z,7¢¢) \ B(z, u(qk e, 7x¢)) is an (1, vi)-good annulus. This is possible because on
the event G, the disks in S, , give us ﬁg independent trials to obtain a good

annulus, and each has success probability at least p. Abbreviate 1y, = u(qi ¢, i¢)-
Finally, we define a sequence (ny)ien growing sufficiently fast that

sk loguil
im 21 5 M1, (2.4.17)
k—0 ijllogs;j

Now suppose that I' is a CLE in the unit disk. Define
A=AD,0,ruq,n,v)

to be the event that there are at least two disks B(z,r) and B(w,r) in S, such that
B(z,r) \ B(z,u) and B(w,r) \ B(w, u) are both (1n,v)-good. If (D, z) # (D,0) and T
isaCLEin D, define A = A(D, z,7,u,q,n,v) tobe theevent that A(D,0,r,u,q,1,v)
occurs for the conformal image of I' under a Riemann map from (D, z) to (D,0).
Abbreviate A (D, Z, V00 Uk s G 00 Vi Vk) as Ak,f (D, Z)

We define a random map b — D, from the set of terminating binary sequences
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to the set of subdomains of D as follows. If the event A;;(ID,0) occurs, we set

¢(D) = 1 and define Dy = @7} (U I(i)) and D; = (p‘l(ll](w)) where z and w
are the centers of two (n,v;)-good annuh, @, (resp. (pw) is a Riemann map from

(D, z) (resp. (D,w)) to (D,0), z € LIZ 11 and w € LIw "1 are points for which
JZ?‘ Iwr

EUZ "1( 1) and Eu“’ ”1(1/1) occur, and I(Z) (resp. I(w)) is the index of the nth

loop encountered in the definition of EJ”(v;) (resp. E2"(v1)) (in other words,

the first such loop is denoted | in (2.4.16), the second such loop is the first one

contained in the preimage of B(0,&;) under a Riemann map from (U, z) to (D,0),

and so on). If A does not occur, then we choose a disk B(z,71,1) in Sy, , and consider

whether the event Allz(Uiz"l'l) occurs. If it does, then we set (D) = 2 and define
C

C

Dy and D; to be the conformal preimages of uf"” and LI!,;” "2, respectively, where
again z and w are centers of two (n1,v1)-good annuli. Continuing inductively in
this way, we define {(D) € N and Dy and D; (note that £(D) < oo almost surely
by the Borel-Cantelli lemma since 3°,21-%~¢ < o). Repeating this procedure in
Dg and D; beginning with k = 2 and £ = 1, we obtain D; ; C D; for i,j € {0,1} x
{0,1}. Again continuing inductively, we obtain a map b — D, with the property
that D, C Dy whenever V' is a prefix of b.

If b € {0,1}N, we define z, = Ny is a prefix of b Dpr- Since Yx 2k2—2%k—t < oo, with
probability 1 at most finitely many of the domains Dj, have £(D;) > 0. It follows
from this observation and (2.4.17) that

lirtrl}iélfN;b(t) > Vmax -
But by Proposition 2.4.2, almost surely every point z in [D satisfies

limsupjvz(t) < Vmax-
=0

Therefore, z; € @y, (T).
Since the set of binary sequences is equinumerous with R, this concludes the

proof that @, (T') is equinumerous with R. The proof that @, (T') is dense now
follows using the argument for density in Theorem 3.8.7. O

2.5 Weighted loops and Gaussian free field extremes

The main result of this section is Theorem 2.5.3, which generalizes Theorem 3.8.7
and highlights the connection between extreme loop counts and the extremes of
the Gaussian free field [23]. Let I be a CLEx, and fix a probability measure g on
R. Conditional on T, let (&) zer be an iid. collection of p-distributed random
variables indexed by I'. For z € D and £ > 0, we let T';(¢) be the set of loops in T
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which surround B(z, €) and define

S, = 4 d &, =
(€) Le%(e) S ©) log(1/¢)

For a CLE« I on a domain D and a € R, we define ®4(I') C D by

() := {z eD: li_r)r(ngz(s) = a} .

To study the Hausdorff dimension of ®4(T'), where I is a CLE, on D, we intro-
duce for each (a,v) € R x [0, c0) the set

u . e T © _ s AT —
@ () := {z €D : ll_l’)l‘(\) S:(¢) =a and 251‘(1)./\/'2(8) = v} . (2.5.1)

Let A}, be the Fenchel-Legendre transform of  and let A be the Fenchel-Legendre
transform of the log conformal radius distribution (2.1.3). We define

VAL (£) +vAg (1) v>0
Ye(a,v) = {limyn g ¥i(a, V') v=0anda #0 (2.5.2)
lim, g ¥« (v ')—l—%—% v=0and a =0,
where the limits exist by the convexity of A} and A}, (Proposition 2.2.5((i))). Note
that v« (a, v) may be infinite for some (a,v) pairs. Note also that the second and

third limit expressions for @ = 0, v = 0 agree except when A};(0) = oo, because
_ad AK(0 /A ,\—n wha ror AXIN) ~ An

I}m / v 43 v V — v VVllLllLV\.l lx v ~N VW
v —0 p\v/ p\vJ

Theorem 2.5.1. Suppose v > 0, a € R, @5, (CLEy) is given by (2.5.1), and y«(a, v)
is given by (2.5.2). If yx(a,v) < 2, then almost surely,

dimgy @), ,(CLE«) = 2 — y«(a,v). (2.5.3)

If y«(a,v) > 2, then almost surely @4 ,(CLE,) = @.

Proof. Suppose that I' ~ CLE in a proper simply connected domain D C C. If
a = v = 0, then ®,,(T) contains the gasket of I, which implies dimy @ ,(T) >
2 — ¥« (0,0) [45]. Furthermore, ®%,(I') C ®(T), which implies by Theorem 3.8.7
that dimy @5, (I') < 2 — yx(0,0). Therefore, (2.5.3) holds in the case @ = v = 0.

Suppose that (a,v) # (0,0), and assume y,(a,v) < 2. For the upper bound in
(2.5.3), we follow the proof of Proposition 2.4.2. As before, we restrict our attention
without loss of generality to the case that D = D and the set @ ,,(I') N B(0,1/2).

For the remainder of the proof, we interpret the expression 0A*(a/0) to mean
limy_o vA*(a/v) for A* € {A}, A} and @ € R. Fix ¢ > 0. We claim that for § > 0
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sufficiently small,

1 1 €
i f , x o > X - - Qa oS
"'E(V—5,1£|-6)m[0,oo) v Ay (v’) > VAL (v) 3’ and (2.5.4)
!
i rax [ & fa £
vet-s e, M (7) Z 3N (VA” (;) - §) ' (2.5.5)
a’e(a_5/a+6)

(We include the minimum with 3 on the right-hand side of (2.5.5) to handle the case
that vAj(a/v) = co. The particular choice of 3 was arbitrary; any value strictly
larger than 2 would suffice.)

The continuity of vA}(1/v) on [0, c0) (Proposition 2.2.17) implies (2.5.4).
For (2.5.5), we consider three cases.

(i) If v > 0O, then (2.5.5) follows from the lower semi-continuity of A}, (See the
definitions in the beginning of [12, Section 1.2] and [12, Lemma 2.2.5]).
(ii) If v = 0 (so that @ # 0) and lim,_,o xA}(1/x) < co, we write

N a/ ,V/ al

Assume that @’ > 0; the case that @’ < 0 is symmetric. If § € (0,a), then
a' € (a — 8, a+ 6) implies that o’ is bounded away from 0. Therefore, (2.5.6)
and the lower semi-continuity of A} imply that for all n > 0, there exists

& > 0 such that
a

V/ /
whenever 0 < v < §and ¢’ € (a —6,a + §). Since a’ > a — 5, we can
choose 7 > 0 and then § > 0 sufficiently small that (2.5.5) holds.

(iii} If v = 0 (so that a # 0) and limy_,g xA};(1/x) = oo, then the lower semicon-
tinuity of A} implies that there exists & > 0 such that (2.5.5) holds with 3 on
the right-hand side.

We choose 6 > 0 so that (2.5.4) and (2.5.5) hold, and we replace the definition
(2.4.1) of U'¥+ with

U — {u eD : ‘,/A\fz(u)(r) - V’ < dand |§z(u)(r) - al < 6} ,
where D’ is defined as in Section 2.4.1 in the proof of Proposition 2.4.2. As in

(2.4.2), C"™¥% = Uy>m USP(=")72 ig a cover of @ ,(T) N B(0,1/2) for all m € N.
Suppose that y«(a,v) < 2. Using Lemma 2.2.18 and Cramér’s theorem, we see
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that for sufficiently large n,

PlU € YSP-mva] < P [‘gz(u)(e_n) —a] <8 |Nyaple™) —v| < 5] x

P [Wen (™) —v| <]
< e~ (rxlav)=e/2)n, (2.5.7)

If yx(a,v) > 2, then the same analysis shows that P[U € UeXP(_”)'V'“] < e~ for
some ¢ > 2. The rest of the argument now follows the proof of Proposition 2.4.2.

For the lower bound we may assume y, (@, v) < 2, which implies that VA, (a/v)
is finite. We consider the events denoted by Ef in the discussion following Lemma
2.4.3, which we now denote by EX(1). We also define events on which we can con-
trol the sums associated with the loops in each annulus. More precisely, suppose
that (6x)ken is @ sequence of positive real numbers with 6 — 0 as k — co. We
define

EX(2) = {So(tk;flg) € ((a—&x)logty!, (a+6) logtk_l)} .

(Recall the definition of TX from Section 2.4.2 and that Sp(t;; T%) represents the
weighted loop count with respect to I, where we define ¢, for £ € T to be
equal to the weight of the conformal preimage of £ in I'.) We define the events
EF = EX(1) N E&(2) and chike ﬂiz: Ky EX as before. Similar to (2.5.7), we have by
Cramér’s theorem

vA*(a/v)+o(1
P[EE@) | EA(1)] = g0,

provided 8; — 0slowly enough. We multiply both sides by P[EX(1)] = tZA: (1/%)+o(D)

and get
P[E}] = t}(’“(a’v)w(l) as k— co.

Thus Proposition 2.4.7 and its proof carry over with y«(v) replaced by v« (a, v).
It remains to verify that P(a,v;T) C ®h,(T), where P(a,v;T) is defined to be
the set of points z for which E}" occurs for all #. We see that lim,_,g N;(g) = v for

the reasons explained in the proof of Lemma 2.4.5. Moreover, lim,_,g gz (¢) = afor
analogous reasons. By Proposition 2.4.8, this concludes the proof. g

In Theorem 2.5.3 we show that dimy ®4(CLEy) is almost surely equal to the
maximum of the expression given in Theorem 2.5.1 as v is allowed to vary. In
Theorem 2.5.2 we show that, with the exception of some degenerate cases, there is
a unique value of v at which this maximum is achieved.

Theorem 2.5.2. Let a € R and let u be a probability measure on R.
(i) If @ = 0, then v — ¥« (e, v) has a unique nonnegative minimizer vg.
(i) If @ > O and p((0,00)) > Oorif @ < 0and p((—o0,0)) > 0, thenv — y«(a,v)
has a unique minimizer vg. Furthermore, vg > 0.
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({ii) If @ > 0 and p((0,o)) = 0 or @ < 0 and p((—o0,0)) = 0, then for all
v € [0,00) we have yx(a, v) = oo. In this case we set vg = 0.

Proof. For part ((i)), note that when a = 0, the expression we seek to minimize is
vA;(0) + vAX(1/v). If A}(0) < +oo, then this expression has a unique positive
minimizer because its derivative with respect to v differs from that of vAX(1/v) by
the constant A}(0) and therefore varies strictly monotonically from —oo to +oo. If
A}(0) = +oo, then v = 0 is the unique minimizer.

For part ((iii)), observe by Cramér’s theorem that Aj(x) = co when x and a
have the same sign, so y«(a,v) = o.

For part ((ii)), we may assume without loss of generality that a > 0 and p((0, )) >
0. Define a = essinfX and b = esssup X for a p-distributed random variable X,
so that —oo < a < b < +4o0. Since p((0,0)) > 0, we have b > 0 by Proposi-
tion 2.2.5((v)).

We make some observations about the functions f, : (0,00) — [0,00] and f; :
(0, 0) — [0, 00] defined by

fulv) == VAZ(%) and  f(v) := vA: (%) .

First, they inherit convexity from A} and A} by Lemma 2.2.8. Note that the sum
f(v) := fu(v) + fx(v) is also convex.
By Proposition 2.2.5((viii)), A, is continuously differentiable on (a,b). The chain

rule gives
fulv) = —%(AZ)’ (%) +A% (%) .

If a > —oo, then Proposition 2.2.5((ix)) implies (A})’(x) — —o0 as x "\ 4. Similarly,
if b < oo, Proposition 2.2.5((x)) implies (A})’(x) — +o0 as x / b. In other words,

vl/i?/a w(v) =+oc0 if a>0, and (2.5.8)
1\im/b w(v) = —c0 if b < oo. (25.9)

Recall from Proposition 2.2.10 that (note fx = y«)

{(v, fc(¥) : 0 < v < o0} = {(A;(A),A—IXZE;;) : —oo</1<1—%—§'—’2<-} .

Suppose —o0 < Ag < 1—2/x —3x/32. If v =1/ A, (Ag), then
x\V) =
1|y, (/M)

When we take 49 — —oo (which corresponds to taking v — +o0) and 19 — 1 —
2/x — 3x/32 (which corresponds to taking v — 0), respectively, in the explicit

= —A«(Ag) .
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formula (2.1.3) for Ay, we obtain

lim f,(v) = —c0, and (2.5.10)
v\0
Vgr_ir_loof,ﬁ(v) = 400, (2.5.11)

We conclude the proof of ((ii)) by treating five cases separately. For each of
the cases (i)-(ii) and (iv)—(v), we argue that f'(v) ranges from —oo to +oo for v €
(a/b,a/max(0,a)) (if a < 0 so that max(0,a) = 0 then we interpret a/0 = +o0).
Upon showing this, continuous differentiability of f (Proposition 2.2.5((viii))) guar-
antees by the intermediate value theorem that the equation f’(v) = 0 has a solu-
tion. The convexity of f, and strict convexity of fi (Proposition 2.2.11) imply that
the solution is unique. Case (iii) uses a separate (easy) argument.

()a <0 <b < oo. Note that f,,(x) - —oc0asx N\, a/band fy(x) — +oo as

x — +o0. Since fy(x) # o as x \, a/band fj(x) A —c0asx — +oo, we
conclude that f/'((a/b, +00)) = (—o0, +00).

(ii)a <0 < b = co. We have f/((0, +00)) = (—o0, +00) since f,(x) goes to —oco
as x \( 0 and to +o0 as x — +oo0.

(ii) 0 < a = b < 0. Sincea = b, Aj(x) = +oo forall x # b, sov = a/b is the
unique minimizer of v — y«(a, v).

(iv)0 < a < b < co. We have f'((a/b,a/a)) = (—oo,+00) since f,(x) goes to
—casx \ya/bandto+owasx S a/a.

(v)0 < a < b = co. Wehave f'((0,a/a)) = (—o0,+0c0) since f.(x) goes to —o

as x N\, 0 and f;(x) goes to +ooasx a/a. O
Thearem 2.5.3. Let o € R and let y be a probability measure on R. Let vy = vy(a)
be the minimizer of v — y«(a,v) from Theorem 2.5.2. If y,(a,vo(a)) < 2, then

almost surely
dimy ®%(CLEx) = 2 — yx(a, vo(a)). (2.5.12)

If y«(a,vo(a)) > 2, then @5 (CLE,) = & almost surely.

Proof. The lower bound is immediate from Theorem 2.5.1, since

4 (T) C P, (D),
where I is a CLE. For the upper bound, we follow the approach in the proof
of Proposition 2.4.2. It suffices to consider the case where the domain is the unit
disk D, and without loss of generality we may consider the set @5 (T') N B(0,1/2).
Observe that if @ = 0, then

Yx(0,v) = vA;(0) + vA(1/v). (2.5.13)

If A} (0) = oo, then the first term in (2.5.13) is infinite unless v = 0. It follows that
vo(0) = 0 in this case. If A}(0) < oo, then the derivative of the first term with
respect to v is a nonnegative constant Ay(0), while the derivative of the second
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vAx(1/v) vAZ(1/v) vy (a/v)

N ¥ cu(@) v v
V1 v V1 V2 Vi

(@) (b) (©)

Figure 2-11: To obtain (2.5.14), we trim [0, %) to a compact subinterval [v],v;] as
follows. First, we remove an interval (v3,00) on which vA%(1/v) is larger than
cu(a) = yx(a,vo(a)) (panel (a)). Second, if cp(a) is smaller than 1 — 2 — 35 we
remove an interval [0,v;) on which vAX(1/v) is larger than c,(a) (panel (b)). If
necessary, we remove intervals [v1,v]) and/or (v3,v2] on which f,(v) is larger
than ¢, (a) (panel (c) shows an example for which the former is necessary but not

the latter).

term is a strictly increasing function going from —co to co as v goes from 0 to co. It
follows that A%(0) < co implies vo(0) > 0. We first handle the case A}(0) < co.

Let cy(a) = yx(a,vo(a)). Since vA{(1/v) and vAj(a/v) are convex and lower
semicontinuous, we may define v; and v so that VA;(l /v) < cu(a) if and only if
0 < v; £ v < vy < oo (see Figure 2-11). Observe that [v1,v2] is nonempty since
it contains vo(a). We also define v{ := inf{v > v1 : vAj(a/v) < cu(a)} and
vy == sup{v < vy : vAj(a/v) < cu(a)}.

We claim that

Ve >0, 36 > 0so that V(a/,v) € [a — 8, a + 8] x [v},v5] we have

* ! €
vAs(a'/v) > vAL(a/v) — 1 (2.5.14)
Using (2.5.13), observe that if @ = 0, then ¢, (a) is less than yx (0,0), which implies
that v; > 0. Therefore, (2.5.14) follows in the case a@ = 0 from the lower semiconti-
nuity of A}, at 0. For the case a > 0, we observe that vA;(a/v) finite on [v],v5]. By
lower semlcontmmty and convexity of Aj, this 1mphes that vAj(a/v) is continu-
ous on [V}, v5]. Since [v},v5] is compact, we conclude that vA}, (a/ v) is uniformly
continuous on [v},v5]. Since vAj(a'/v) can be written as “—'l‘%A*(a/(va/a ))
(a straightforward limiting argument shows that this equality holds even when
v = 0), the uniform continuity of A}, implies (2.5.14) except possibly at the end-
pomts v} and vj. However, since A}, is lower semi-continuous, (2.5.14) holds at v]
and v; as well.
Recall the collection of balls D" for r > 0 that we defined in the proof of Propo-
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sition 2.4.2. Forn € N, let
Q":={QeD™( : S,y (") € (a—6,a+0)} .
Our goal is to show that for all Q € D*P(=") and # sufficiently large,
P[Q € Q"] < e~ Meula)=€/2) (2.5.15)

The rest of the proof is similar to that of Proposition 2.4.2. To prove (2.5.15), we
abbreviate N;(g)(e™") as N and write

PQe Q" =E[P[S, (™) € (a—6,a+8) | N]] .

We split the conditional probability according to the value of N

PlRQeQ<E [l{ﬁg[vl,vz]}]? [Suoy(e™) € (a—8,a+0) lf\fﬂ
+E {l{ﬁelvl,vz]\[va,vé]}]p [gz(Q) (e e(a—6,a+0)] /A\fﬂ
+E [l{ﬁe[v;,vfz]}lp [S.g(e™) € (@—8,a+90) |/A\7H :

The first term on the right-hand side is bounded above by e~n(cu(@)+0(1)) pecause of
our choice of v1 and v,. Similarly, the second term is bounded above by e—n(en(a)+o(1))
by Cramér’s theorem and our choice of v] and v5. Thus it remains to show that the
third term is bounded above by e~"(¢:(4)=¢/2) for all n sufficiently large. Multiply-
ing and dividing by e~V 1/N) applying Cramér’s theorem, and using (2.5.14),
we find that for large enough n, the third term is bounded above by

B —n(N A (a/NY+NAL(1/N)=£/2) nN AL (1/N)

B meman® ¢ }
< elen(@)~e/HR [1~ nJ\N/A:(l/JV)] .
e[vl vz]

It remains to show that E {1 { Newi v "NAK(l/N)} = ¢°(n) We claim that in fact

E {1]\76[1/’1,1/2
partition [Veypical, V5] into n intervals of equal length, with endpoints denoted by

Xo, ..., Xn. Denote by L(JT';) the law of \V. Applying (2.2.5) from Cramér’s theorem

and using an upper Riemann sum, we get

e NAL (/N )] is bounded above independently of 7. If viypical < v, we

/
/'Vé enxA:(]/x) dL(:l/)(X) < Zi en(xiA,’;(l/xi)—xi-lA:(1/xi_1)) Vo — Vtypical )
Vtypical N - i=1 n

Letting C be the maximum of the derivative of fi on [Viypical, V5], we estimate dif-
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ference in parentheses using the mean-value theorem. We get

A " i
/ 2 emA(1/) dL(Nf) (x) < 2(vh — Vigpicar) D i)y ~1
Vtypical i=1

'
= 2(v} — V)OS i)

which does not grow with n. By an analogous computation, if ] < vipical then
the integral from v} t0 Viypica is also bounded in 7. Writing
[Vi, VIZ] = [Vllf min(vtypical/ VIZ)] U [max(vtypical: Vi ), VIZ]
(where we interpret an interval [4,b] to be empty if b < a), we conclude that
E {1~ e NN )] is bounded in 7, as desired.
Ne[vi,v

Now consider the case Aj(0) = oo, which implies that v(0) = 0. As in the case
A} (0) < oo, it suffices to show that for every £ > 0, there exists § > 0 such that

P[|S:(e™™)] < 8] < e"(x(00)=¢) (2.5.16)

Choose 7 > 0 small enough that vAX(v) > 1—2/x —3x/32 — £¢/2 whenever v €
(0,7). Then choose § > 0 small enough that Aj;(x) > 2/n forall x € (—6/n,8/1)

(this is possible by lower semicontinuity of A*). Again abbreviating Na(e ™) as N,

we write
P8 (e < 8] =E[P[IS:(e™)| < 5| N]]
—E[P[|5( |<6|N1Nem,,>J
[P ['SZ - |<6|jl}\/’e[noo)]

Bounding the conditional probability by 1 and using our choice of 1, we see that
the first term is bounded above by e~"(*<(00)=¢)_ For the second term, we note by
(2.2.5) in Cramér’s theorem that the conditional probability is bounded above by

2exp (—n]\T inf~A*(y)) .
ly| <6 /N

On the event where A is at least 7, the factor N infly| <5/ N (y) is at least 2, which

implies that the second term is bounded by e=2". This establishes (2.5.16) and
concludes the proof. a

Proof of Theorem 2.1.2. The logarithmic moment generating function of the signed
Bernoulli distribution is A, (n) = log cosh(on). When x = 4, formula (2.1.3) for A,
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simplifies to
A =0 log cosh(nv/—24) A <0
A P log cos(mv/21) A>0.

Using the definition of the Fenchel-Legendre transform,

(@ (5gay ) + 0@ (5ogay) = nfsup lna-+A —v(Au(R) + Au(o))].

By the Minimax Theorem (see e.g., [54]), the right-hand side equals

supinf na+ A—v(Ad(d) + Aum)] = sup  [na+4].

n,A v20 N Ax () +Au(7)<0
Since A«(1) is continuous in A and Ax(1) — o0 as A — oo, if Ax(A) + Au(n) < 0,
then A can be increased so that Ax(A) + Au(n) = 0. Thus this last supremum can
be replaced by the supremum over A and 7 satisfying A«(A) + Au(n) = 0.

Observe that Ay(n) > 0 for all 7, and Ax(A) < 0 only when A < 0. It follows
that if Ax(A) + Au(n) = 0, then A < 0 and we can use the formulas for A, and A,
to conclude that

Ax(A) + Au(n) = Oimplies o = nv/ —2A1. (2.5.17)
So we have
v(@n () +w@ns (i) = s (a+a)
vo(a) vo(@) 2 A (A)+Au(m)=0
= sup (Z V=21 +1)
A<0 ~ O

_ 7[2(12
- 2027

since the supremum is achieved when A = —a?n?/20?. a

Proof of Theorem 2.1.3. In light of Theorems 2.5.1 and 2.5.3, it suffices to show that

the maximum of 2 — y,(a, v) is obtained when v = £ coth("fT“). As in the proof of
Theorem 2.1.2, we begin by writing

) = vt (5) 4 v (5) = sup e A= V(M) + Au(a))] -

At the minimizing value of v and the corresponding maximizing values of n and
A, the derivatives of the expression in brackets with respect to v, A, and 7 are all
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zero. Differentiating, we obtain the system

Ax(A) + Au(n) =0
1 1
/ — -
A (A) = EAL(W) =
The first equation implies o = mv/—2A as in (2.5.17). Substituting for A in the
equation Ay (1) = 1A% (n), we get @ = 627/ 72, Finally, substituting into LA}, (1) =
1/v gives v = £ coth (520—“), as desired. O

2.6 The weighted nesting field

We prove the existence and conformal invariance of the limit as ¢ — 0 of the ran-
dom function z — N; (&) — E[N;(g)] (with no additional normalization) in an ap-
propriate space of distributions (Theorem 2.6.1). We refer to this object as the nest-
ing field because, roughly, its value describes the fluctuations of the nesting of T
around its mean. This result also holds when the loops are assigned i.i.d. weights.
More precisely, we fix a probability measure g on R with finite second moment,
define I';(€) to be the set of loops in I' surrounding B(z, €), and define

Se)= ¥ &, (26.1)
LET,(e)

where ¢, are i.i.d. random variables with law y. We show that z — S,(¢) —
E[S:(¢)] converges as ¢ — 0 to a distribution we call the weighted nesting field.
When x = 4 and p is a signed Bernoulli distribution, the weighted nesting field is
the GFF [44, 48]. Our result serves to generalize this construction to other values
of x € (8/3,8) and weight measures y. In Theorem 2.6.2, we answer a question
asked in [65, Problem 8.2].

The weighted nesting field is a random distribution, or generalized function,
on D. Informally, it is too rough to be defined pointwise on D, but it is still possible
to integrate it against sufficiently smooth compactly supported test functions on D.
More precisely, we prove convergence to the nesting field in a certain local Sobolev
space Hj (D) C C°(D)" on D, where C2°(D) is the space of compactly supported
smooth functions on D, C°(D)’ is the space of distributions on D, and the index
s € R is a parameter characterizing how smooth the test functions need to be. We
review all the relevant definitions in Section 2.10.

Given h € CZ(D)' and f € C¥(D), we denote by (h, f) the evaluation of the
linear functional & at f. Recall that the pullback ko ¢~ of h € C®(D)’ under a
conformal map ¢! is defined by (ho @71, f) := (h, |¢'|2f 0 @) for f € CX(¢p(D)).

Theorem 2.6.1. Fixx € (8/3,8) and § > 0, and suppose p is a probability measure
on R with finite second moment. Let D C C be a simply connected domain. Let
I be a CLEx on D and (&) er be i.i.d. weights on the loops of I drawn from the
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distribution pu. Recall that for ¢ > 0 and z € D, S;(¢) denotes

Sz (6) = Z (Eﬁ .
Lel
L surrounds B(z, €}

Let
he(z) = S;(e) — E[S:(¢)]. (2.6.2)

There exists an H;;2~°(D)-valued random variable & = (T, (£.)) such that for all
f € C*(D), almost surely lim,_o(he, f) = (h, f). Moreover, h(T, (¢7)) is almost
surely a deterministic conformally invariant function of the CLE I' and the loop
weights (¢) cer: almost surely, for any conformal map ¢ from D to another simply
connected domain, we have

h(@(T), (Ep(r)) cer) = (T, (Ec)cer) o™t

In Theorem 2.11.2, we prove a stronger form of convergence, namely almost
sure convergence in the norm topology of H=27%(D), when ¢ tends to 0 along any
given geometric sequence.

We also consider the step nesting sequence, defined by

ba(z) = > &ér,) —E
k=1

Z fﬁk(z):| , neN,
k=1

where the random variables () zer are i.i.d. with law g. We may assume without
loss of gen‘erality that 4 has zero mean, so that b,(z) = ¥}_; ¢z, (2)- We estab1{is1h
the following convergence result for the step nesting sequence, which paraiieis
Theorem 2.6.1:

Theorem 2.6.2. Suppose that D C C is a proper simply connected domain and
6 > 0. Assume that the weight distribution p has a finite second moment and zero
mean. There exists an ngcz“s(D)-valued random variable b such that lim,_ e by, =
b almost surely in H;2~%(D). Moreover, b is almost surely determined by I' and
(f z:)l:er- . 3

Suppose that D is another simply connected domain and ¢: D — D is a con-
formal map. Let /i be the random element of ngcz‘é(f)) associated with the CLE
I = ¢(T) on D and weights (6¢_1(£))£€f' Then f = ho ¢~ ! almost surely.

In Proposition 2.12.2, we show that the step nesting field and the weighted
nesting field are equal, under the assumption that y has zero mean.

When x = 4,0 = /n/2, and p = pg where ug({o}) = pg({—0}) = 1/2 (as
in Theorem 2.1.2) the distribution % of Theorem 2.6.1 is that of a GFF on D [44].
The existence of the distributional limit for other values of x was posed in [65,
Problem 8.2]. Note that in this context, 2E[S;(¢)Sw(€)] is equal to the expected
number of loops which surround both B(z,¢) and B(w,¢). Let Gp(z, w) be the
Green'’s function for the negative Dirichlet Laplacian on D. Since S;{¢) converges
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to the GFF [44], it follows that 2E[S; (¢)Sw(€)] converges to 2Gp(z, w) (see Section
2 in [11]). That is, the expected number of CLE4 loops which surround both z and
w is given by 2Gp(z, w).

One of the elements of the proof of Theorem 2.6.1 is an extension of this bound
which holds for all x € (8/3,8). We include this as our final main theorem.

Theorem 2.6.3. Let I be a CLE, (with 8/3 < x < 8) on a simply connected proper
domain D. For z,w € D distinct, let N4, be the number of loops of I which
surround both z and w. For each integer j > 1, there exists a constant C, ; € (0, )
such that

[N 2] — (Vigpica1 27 Gp(z,w))/| < Cy(Gp (2, w) +1)17L. (2.6.3)

2.7 Further CLE estimates

We record the following corollary of the proof of Lemma 2.3.5.

Lemma 2.7.1. Let {X;};en be non-negative i.i.d. random variables whose law has
a positive density with respect to Lebesgue measure on (0, ) and for which there
exists A9 > 0 such that E[e*%X1] < co. Fora > 0, let $2 = a+ >#1 Xj, and for
a,M > 0,let 7%, = min{n > 0: S% > M}. There exists a coupling between S? and
SP (identically distributed to S? but not independent of it) and constants C,c > 0
sothatforall0 <a <b <M, wehave

P[Sg?w = §ng] >1—Ce M.

The following lemma provides a quantitative version of the statement that it is
unlikely that there exists a CLE loop surrounding the inner boundary but not the
outer boundary of a given small, thin annulus.

Lemma 2.7.2. LetI' be a CLE, in D. There exist constants C > 0, a > 0,and gg > 0
depending only on x such thatfor0 < e < gpand 0 < 4§ < 1/2,

E[No(e(1 —6)) — No(g)] < C6 + Ce“. (2.7.1)

Proof. We couple the CLEx I'p = T in the disk with a whole-plane CLE, I'c as
in Theorem 2.3.7. Index the loops of I'c surrounding 0 by Z in such a way that
LE(Tc) and L£3(T'p) are exponentially close for large n. For n € N define VP =
—loginrad £§(Tp), and for n € Z define V¢ = —loginrad £#(I¢). Since whole-
plane CLE, is scale invariant, the set {V,C : n € Z} is translation invariant. Using
Corollary 2.2.15 to compare (V,¢),cz to the sequence of log conformal radii of the
loops of I'c surrounding the origin, the translation invariance implies

IE[#{n : aSV,(,C<b}] = Vigpical (b — a) -
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Let a and the term low distortion be defined as in the statement of Theorem 2.3.7.
With probability 1 — O(e®) there is a low distortion map from I'p|g g ¢+ to [c|p(g,e)+.
and on this event, we can and bound

#{n : 1og%§VnD<log

1
8(1—5)}5
g#{n : 1og%—O(£“) <vE <log€(1—l_65+0(e“)} .

On the event that there is no such low distortion map, this can be detected
by comparing the boundaries of I'p|p(.)+ and I'c|g(e)+, so that conditional on
this unlikely event, I'p|p()+ is still an unbiased CLEy conformally mapped to
the region surrounded by the boundary of I'p|g(gy+. In particular, the sequence
of log-conformal radii of loops of I'p|g(g,)+ surrounding 0 is a renewal process,
which together with the Koebe distortion theorem and the bound § < 1/2 imply

E[No(e(1 — 8)) — Ny(¢) | no low distortion map] < constant.
Combining these bounds yields (2.7.1). a

Lemma 2.7.3. For each x € (8/3,8) and integer j € N, there are constants C > 0,
a > 0, and g > 0 (depending only on k and j) such that whenever D is a simply
connected proper domain, z € D, ¢ is a conformal transformation of D, and 0 <
e < g9, if T'is a CLE, in D, then

]E[NZ(SCR(Z;D);F) —N,T,,(Z>(eCR(@(z);cp(D));(p(l"))!j] < Ce®.

Proof. Observe that translating and scaling the domain D or its conformal image
¢(D) has no effect on the loop counts, so we assume without loss of generality
that z = 0, ¢(z) = 0, CR(z; D) = 1, and CR(¢(z); 9(D)) = 1. Observe also that it
suffices to prove this lemma in the case that the domain D is the unit disk D, since
a general ¢ may be expressed as the composition ¢ = @2 o ¢ 1 where ¢, and ¢
are conformal transformations of the unit disk with ¢;(0) = 0 and ¢;(0) = 1, and
the desired bound follows from the triangle inequality.

Let I be a CLE, on D, and let I' = ¢(T). By the Koebe distortion theorem and
the elementary inequality

1 1

B S e ()

5 <1+3r, forrsmallenough, (2.7.2)

we have
B(0,e — 36%) C ¢~ 1(B(0,¢)) C B(0,&+ 3£?),

for small enough e. Hence Ny(e + 3¢2;T) < My(g;T) < No(e — 3€2;T), and so for
X == No(e — 36%T) — No(e + 36%T)
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we have [Ny(g;T) — Ny(g;T)| < X.

By Lemma 2.7.2 we have E[X] = O(&%), which proves the case j = 1.

Notice that the conformal radius of every new loop after the first that intersects
B(0, & + 32) has a uniformly positive probability of being less than 1 (e — 3¢2),
conditioned on the previous loop. By the Koebe quarter theorem, such a loop
intersects B(0, € — 3¢?). Thus for some p < 1 we have P[X > k+ 1] < pP[X > k]
for k > 0. Hence

E[X/] = f: KP[X = k] < ikipk]P’[X =1]< (fj ki'pk> E[X] = O(¢%),
k=1 k=1 k=1

which proves the cases j > 1. O

2.8 Co-nesting estimates
We use the following lemma in the proof of Theorem 2.6.3:

Lemma 2.8.1. Let A9 > 0, and suppose { X;};cn are nonnegative i.i.d. random vari-
ables for which E[X;] > 0 and E[e*X1] < co. Let A(A) = logE[e?*1] and let
S, = 27:1 X;. For x > 0, define 7 = inf{n >0:5, > x}. For A < A, let

M} = exp(AS, — A(A)n).

Then for A < A9 and x > 0, the random variables {M2 ., }nen are uniformly
integrable.

Proof. Fix f > 1 such that pA < Ag. By Holder’s inequality, any family of random
variables which is uniformly bounded in L? for some p > 1is uniformly integrable.
Therefore, it suffices to show that sup, - E[(M}A;,)P] < co. We have,

(Mpire, )P = exp(BA(Suns, — x)) X exp(BAx — BA(A) (n A Tx))
< exp(BA(S;, — x)) x exp(BAx).

The result follows from Lemma 2.2.12. O

Proof of Theorem 2.6.3. Fix z,w € D distinct and j € N. Let ¢: D — D be the
conformal map which sends z to 0 and w to e™* € (0,1). Let Gp (resp. Gp) be
the Green'’s function for —A with Dirichlet boundary conditions on D (resp. D).
Explicitly,

GD(u,U) — ilog Il - uUl

f , D.
o Iu“"’| or u,v €

In particular, Gp(0,u) = o log|u|~! for u € D. By the conformal invariance of
CLEx and the Green’s function, i.e. Gp(u,v) = Gp(¢(u), ¢(v)), it suffices to show
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that there exists a constant C;, € (0, ) which depends only on j and x € (8/3,8)
such that

‘]E[(Nofe—x)j] — (vtypicalx)j’ < Cjaclx + 1)y~1  forallx > 0. (2.8.1)

Let {T;}ien be the sequence of log conformal radii increments associated with
the loops of T which surround 0, let S; = Zé‘:l T;, and let 7 = min{k > 1 :
Sk > x}. Recall that Ax(1) denotes the log moment generating function of the law
of Ty. Let My, = exp(AS,; — Ax(A)n). By Lemma 2.8.1, {Myar, }nen is a uniformly
integrable martingale for A <1 — % — % By Lemma 2.2.12, we can write S;, = x +
X where E[e*X] < co. By the optional stopping theorem for uniformly integrable
martingales (see [85, § A14.3]), we have that

1 = E[exp(AS:, — Ac(A)ty)] = E[exp(Ax + 21X — Ax(A)14)]. (2.8.2)

We argue by induction on j that
E[(Ax(0)72)] = ¥/ +O((x +1)/ 7). (2.8.3)

The base case j = 0 is trivial.

If we differentiate (2.8.2) with respect to A and then evaluate at A = 0, we obtain
0=E[(x+ X — A,(0)x)]-
If we instead differentiate twice, we obtain
0= E[(x + X — AL(0)7:)? — AL(0)ra].

Similarly, if we differentiate j times with respect to A and then evaluate at A = 0,
we obtain

0=E[(x+X - A(0)m)]+ X AciuBl(x + X —AL(0)T2)'7h], (284
i>0,k>1
i+2k<j

where the A, ;i’s are constant coefficients depending on the higher order deriva-
tives of A, at 0. By our induction hypothesis, for & < j we have E[t"] = O((x +
1)"). Conditional on 7y, X has exponentially small tails, so E[z2.X¢] = O((x + 1)¥)
as well. From this we obtain

0 =E[(x — AL(0)7x)/] + O((x +1)71). (2.8.5)

Using our induction hypothesis again for ki < j, we obtain

}—1 i . .
5 (i) (~1)" +E[(-AL0)r)] +O((x + 1Y), (286)
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from which (2.8.3) follows, completing the induction.

Recall that ]8, (resp. ]&r) is the smallest index j such that C{J intersects (resp. is
contained in) B(0,r). It is straightforward that

Tx—logs < ](r]je—" < NO,S"‘ +1= IOC,E_"'

Since the 7’s are stopping times for an i.i.d. sum, conditional on the value of 7,_jg4,
the difference 7x — 7x_jog4 has exponentially decaying tails. Moreover, by Lemma2.3.2,
conditional on the value of 14, ]oce—x — 7y has exponentially decaying tails. Thus

IE[Ng,e_x] = ]E[r&] + O((x + 1)=1). Finally, we recall that 1/A%(0) = 1/E[T;] =
Vtypical- -4

By combining Theorem 2.6.3 and Corollary 2.3.3, we can estimate the moments
of the number of loops which surround a ball in terms of powers of Gp(z, w).

Corollary 2.8.2. There exists a constant Cj,, € (0,00) depending only on x €
(8/3,8) and j € N such that the following is true. Foreach ¢ > O and z € D
for which dist(z,dD) > 2¢ and 6 € R, we have

[E[(Nz(2))] — (2nvegpicatGp (2,2 + £6°) )| < Cj(Gp (2,2 + £€®) + 1), (28.7)

In particular, there exists constant a constant Cx € (0, o) depending only on x €
(8/3,8) such that

< Cx. (2.8.8)

BIAL(e)] — viypia log T2
Proof. Letw = z + e¢'®. Corollary 2.3.3 implies that | Ny, — Nz (g)| is stochastically
dominated by a geometric random variable whose parameter p depends only on .
Consequently, (2.8.7) is a consequence of Theorem 2.6.3. To see (2.8.8), we apply
(2.8.7) for j = 1 and use that Gp(u,v) = 2 log|u — v|~! — y,(v) where y,(v)
is the harmonic extension of v +— »-1log|u —v|~! from 9D to D. In particular,
¥2(z) = 5 log CR(z; D). a

2.9 Regularity of the e-ball nesting field

A key estimate that we use in the proof of Theorem 2.6.1 is the following bound on
how much the centered nesting field #. depends on ¢. The proof of Theorem 2.9.1
and the remaining sections may be read in either order.

Theorem 2.9.1. Let D be a proper simply connected domain, and let h(z) be the
centered weighted nesting around the ball B(z, €) of a CLEx on D, defined in (2.6.2).
Suppose 0 < €1(z) < €and 0 < €(z) < € on a compact subset K C D of the
domain. Then there is some ¢ > 0 (depending on x) and Cp > 0 (depending on x,
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D, K, and the loop weight distribution) for which

// 'E[(hel(z) (Z)—hez(z) (Z)) (hel (w)(w) hEz('w) ‘dz dw < C08 (2.9.1)
KxK

Proof. Let A, B, and C be the disjoint sets of loops for which A U B is the set of
loops surrounding B(z,1(z)) or B(z, &(z)) but not both, and B U C is the set of
loops surrounding B(w, £1(w)) or B(w,&;{w)) but not both. Letting ¢, denote the
weight of loop £, then we have

E[(he, () (2) ey (2)(2)) (e, () (W) =y () (w))]
= CoV|hg, () (2) —hey () (2), e,y () (W) — hey () ()]

= +Cov [Z Sat D & Y D & (2.9.2)

acA beB beB ceC
= + Var[¢] E[|B|] £E[¢]* Cov(|A|+|B], |B|+|C]]
= £ Var[¢] E[|B]} +E[¢]* Cov(N;(e1) —Nz(e2), Nuw(er) —Nul(e2))

where the = signs are the sign of (£1(z)—¢2(z)) (&1 (w) —e2(w)).

Let Gi°(z, w) denote the expected number of loops surrounding z and w but
surrounding neither B(z, €) nor B(w, €). Then E{|B|} < G5*(z,w). In Lemma 2.9.3
we prove

/ Gi' (z,w) dzdw < C1€°,

and in Lemma 2.9.7 we prove

/_/KxK ‘ Cov(Nz(e1(z)) — Ni(e2(2)), Nw(e1(w)) —Nw(fz(w)))t dzdw < Cref,

where ¢ depends only on x and C; and C; depend only on x, D, and K. Equa-
tion (2.9.1) follows from these bounds. O

In the remainder of this section we prove Lemmas 2.9.3 and 2.9.7.

Lemma 2.9.2. For any x € (8/3,8) and j € N, there is a positive constant ¢ > 0
such that, whenever D C C is a simply connected proper domain, z € D, and
0 < e <, the jth moment of the number of CLEx loops surrounding z which
intersect B(z, €) but are not contained in B(z,r) is O((e/1)°).

Proof. 1f there is a loop £ = L} surrounding z which is not contained in B(z,7)
and comes within distance ¢ of z, then J, < kand JS, > k, so I\, < J5,. But
from Corollary 2.3.3 J, — Ji', is dominated by twice a geometric random vari-
able, and by Lemma 2.2.12 in [48] together with the Koebe quarter theorem we
have J{. — J), is order log(r/ ) except with probability O((e/r)1), for some con-
stant ¢; > 0 (depending on k). Therefore, except with probability O((e/r)) (with
¢z = c2(x) > 0), we have [0, > J<,. In this case there is no loop £ surrounding z,
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not contained in B(z,r), and coming within distance € of z. Finally, note that con-
ditioned on the event that there is such a loop £, the conditional expected number
of such loops is by Corollary 2.3.3 dominated by twice a geometric random vari-
able. 0

Lemma 2.9.3. For some positive constant ¢ < 2,
ffoK G5 (z,w) dzdw = O(area(K)*~/2¢). (2.9.3)

Proof. Let F,, denote the number of loops surrounding both z and w but not B(z, €)
or B(w, ). Then G (z,w) = E[F{,,].

Suppose |z — w| < e. Let £ be the outermost loop (if any) surrounding both
z and w but not B(z, €) or B(w, £). The number of additional such loops is NV 4, (I”),
where I’ is a CLE, inint £, and by Theorem 2.6.3 we have E[N; ,,(I")] < Cqlog(e/|z —
w|) + C; for some constants C; and C;. Integrating the logarithm, we find that

/f wxk O (z,w)dzdw = O(area(K)e?) . (2.9.4)

|z—w|<e

Next suppose |z —w| > . Now F,, is dominated by the number of loops
surrounding z which intersect B(z, £) but are not contained in B(z, |z — w|), an
Lemma 2.9.2 bounds the expected number of these loops by O((¢/|z — w|)€) for
some ¢ > 0. We decrease c if necessary to ensure 0 < ¢ < 2, and let R = area(K)/2.
Since (g/|z — w|)* is decreasing in |z — w|, we can bound

J[ kG (zw)dzdw < [[ep, g O(e/ 12— wl)) dzdw

|lz—w|>¢ |z—w|>e
= O(area(K)2™/2¢°) . (2.9.5)
Combining (2.9.4) and (2.9.5), using again ¢ < 2, we obtain (2.9.3). O

We let S, be the index of the outermost loop surrounding z which separates
z from w in the sense that w ¢ LIZS #¥_ Note that S, is also the smallest index for
which z ¢ LISZ s

Siw:=min{k:w ¢ U} = min{k:z ¢ U} . (2.9.6)
We let X, 4, denote the o-algebra
Swi=0({LF 1<k <S8, u{Lk :1<k<S,0)). (29.7)

Lemma 2.9.4. There is a constant C (depending only on x) such that if z,zw € D are
distinct, then
CR(z; U; ) <c.

—c<
C<Ellog e TCRED)) | =
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Proof. Let r = min(|z — w/|, dist(z,9D)). By the Koebe distortion theorem,
CR(z; U;*") < 4r,

which gives the upper bound. By [48, Lemma 2.3.4], there is a loop contained in
B(z,r) but which surrounds B(z, 7/2*) except with probability exponentially small
k, which gives the lower bound. O

Lemma 2.9.5. There exists a constant C > 0 (depending only on x) such that if
z,w € D are distinct, and 0 < € < min(|z — w|,CR(z; D)), then on the event

{CR(z; U;**) > 8¢},

E[Jze = Sew U] ~E[JZe = Sz -

S CR(z Uz™)
typical 108 min(|Z — wl,CR(Z; D))

<C. (29.8)

Proof. Let S = Sz 4. By (2.8.8) of Corollary 2.8.2 we see that there exist C; > 0 such
that on the event {CR(z; ) > 8¢} we have

CR (z U;™)

'IE[IQE — Sz | U] — Vigpicar 10g <C. (2.9.9)

We can write

__C\1 B 1.4 [N ova ) 1 %)
Sz — OJRCRZUS)28e} | T [Uze — 2 {CR(zUS ) <8e}] - 4

&

Applying (2.9.9), we can write the first term of (2.9.10) as,

E [(IQE - S)I{CR(z;LIZS)ESE}] = E[EUQE -5 | uzs] I{CR(Z;UzS)ZSE}]

CR(z; Us

(Vtypical log _(e_zl + Cl) I{CR(Z;Ug)ZSE}:l

min(|z — w|,CR(z; D))
£

CR(z; LI;)
€

=E

=+ const

= Vtypical log

—E li (Vtypical log

Using [48, Lemma 2.3.4], there is a loop contained in B(z, &) which surrounds
B(z, £/2F) except with probability exponentially small in k, so the last term on the
right is bounded by a constant (depending on x).

If J7, > S, then J{, — S counts the number of loops (LX)icn after separating z
from w before hitting B(z,¢). If J{, < S, then S — ], counts the number of loops
(LX)ren after intersecting B(z, £) before separating z from w. Consequently, by
Corollary 2.3.3, we see that absolute value of the second term of (2.9.10) is bounded

1{CR(z;uzs )<8£}] :
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by some constant C; > 0. Putting these two terms of (2.9.10) together, we obtain

min(|z — w|,CR(z; D))
£

‘]E [Jole — Szw] — Vegpicar log ‘ < const. (2.9.11)

Subtracting (2.9.11) from (2.9.9) and rearranging gives (2.9.8). O

Lemma 2.9.6. There exist constants C3,c > 0 (depending only on x) such that if
z,w € D are distinct, and 0 < ¢’ < ¢ < r where r = min(|z — w|, CR(z; D)), then

E (B[S — o | U] — E[JZ, - IQE/])Z] < G (g)c . (2.9.12)

Proof. We construct a coupling between three CLE’s, I, T, and I, on the domain
D.LetS = Sz, S = Sz w,and § = Sz w denote the three correspondmg stopping
times. We take T and I to be mdependent On D\ Uf, we take I to be identical to

I. In particular, S = $ and US = Ug Within Uf, we couple T to T as follows. We
sample so that the sequences

{— logCR (z; Uzs+k) }keN and {—— log CR (z; ﬁ§+k> }keN

are coupled as in Lemma 2.7.1. Define
K=min {k > S : CR (5;U}) = CR (z; TF) for somek > 3},

and let K be the value of k for which the conformal radius equality is realized. Let
w: UK > ﬁf be the unique conformal map with ¢/(z) = z and ¢'(z) > 0. We take
T restricted to ﬁf to be given by the image under y of the restriction of I' to uk.

Since | log CR(z; US) —log r| and | log CR(z; US) — log 7| have exponential tails,
and since the coupling time from Lemma 2.7.1 has exponential tails, each of K — S,
K—S5,and | log CR(z; UX) —log r| = |log CR(z; fIZE) —log r| have exponential tails,
with parameters depending only on «.

Let

= ]E[ zrje‘ - ]QE' | qu] _E[TQE - Tzrje’ | ijzs] .
In the above coupling U and ﬁf are independent, so we have
E[J5. — oo |UZ) = E{J7e — Jo] = E[A [ U]

Therefore, the left-hand side of (29.12) is equal to E[(E[A|US])?]. Jensen’s inequal-
ity applied to the inner expectation yields

E[(E[a|Us]))] < E[E[A? | UZ]] = E[A%].
We can also write A as
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= E[IQE - ]26, - fg&‘ + fzrje’ | uf’ E-’IZS]
= E[J0, — K- [0+ R|US, US| —E[j0, — K— T + K| uS, U5 .
and then use the inequality (a + b)? < 2(a® + b?) for a,b € R to bound
A% <2Y, +2Y.,
where for ¢ < £ we define
o~ 2
Yo = E[J0 — K~ JOp + K | US, 2]

We define the event
A = {CR(zUKX) > Vre}.
Then

Y].A

II

~, ~ -2
D — K — e+ K U, T2 14

IA

= e[
EE[(J0 — K]0 + K214 | ug, 2|
E[

(IZE—K ]ZE+K)21A]
< const x (e/r)¢

Il

where the last inequality foiliows from Lemma 2.7.3, for some ¢ > 0 and for suitably
larger/e.
Next we apply Cauchy-Schwarz to find that

E[Y:14] < E[YZP[A7].

Lemma 2.7.1 and the construction of the coupling between I' and T imply that
P[A€] < const x (&/r)¢ for some ¢ > 0. It therefore suffices to show that E[Y?] < C
for some constant C which does not depend on ¢ or ¢’. By Jensen’s inequality, it
suffices to show that there exists C such that

El(Ji: —K—To: +K)* < C. (2.9.13)
To prove (2.9.13), we consider the event B = {CR(z; UX) > ¢}. By Lemma 2.7.3,
E[(J0; — K — Ji: + K)*15] < const

where the constant depends only on .
Using (a + b)* < 8(a* + b*) for a,b € R, and the fact that ], — Kand J{; — K
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are equidistributed, we have
E[(J7e — K — Foe + K)* 15] < 16E[(J7 — K)* 1]

On the event B¢, we have K > J{,. Conditional on this, K — J{; has exponentially
decaying tails, so the above fourth moment is bounded by a constant (depending
on x), which completes the proof. O

Lemma 2.9.7. Suppose 0 < £1(z) < €and 0 < &(z) < € on a compact subset
K C D of the domain D. Then there is some ¢ > 0 (depending on x) and Cy > 0
(depending on «, D, and K) for which

] [ | Cov (N (e1(2)) — Na(ea(2)), Nuw(e1(w)) — Nip(e2(w)))| dz dw < Coe° .

KxK

(29.14)
Proof. For a random variable X, we let X denote
X =X - E[X]. (2.9.15)
We let Y, denote
Yo = o)~ e - (2.9.16)

Recalling that JI, = N;(r) + 1, we see that
E[Y;Yw] = Cov(N;(e1(2)) — Ni(e2(2)), Nu(er(w)) — Nu(e2(w))),

so we need to bound ‘]E[le?w] ‘

We treat two subsets of K X K separately: (1) the near regime {(z,w) : |z—w| <
€}, and (2) the far regime {(z,w) : € < |z —w|}.

For the near regime, we first write

Y, =Y +Y3,
1)

where Yz counts those loops surrounding B(z, min(e1(z), £2(z))) and intersecting

B(z,max(e1(z), £2(2z))) with index smaller than S 4, and Yz(zu), counts those loops

with index at least S; 4. Then X, determines Yz(lzg and }95}2, and conditional on

S w Y (2) and st, 2), are independent (recall that X,,, was defined in (2.9.7)). Thus
(’) and YZS,J l are conditionally independent (given Z,,,) for i,j € {1,2}.

Observe that . . ()
EY.Y,][ < X \ Yzl (2.9.17)
ije{1.2}
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Fori,j e {1,2},

@Héﬁ&ﬂmmﬁﬁwm

o /s 1/2 o (s 1/2
<EE[YD| 20 EENE |z . (29.18)

For the index i = 1, we write

=2l”] = E[(V2)7] < B[R] = E[E[0£2)7] [ul]

E E[v{)
But
V<1400 (1l )

By Theorem 2.6.3, E[(1 + N4 (T|u))? < const + const x Gy (z, w)?, where Gy
denotes the Green’s function for the Laplacian in the domain U. By the Koebe
distortion theorem, the Green’s function is in turn bounded by Gy;(z, w) < const +
const x max(0,1og(CR(z; U)/|z — w|)). Therefore,

E (Vi) <E

Rv Temma 2.2. 1'7 _]r\rr("P (- TT]ZE\ —lao e + X for some random variable X

S \Lr 2 ivey e P o Rt u FS S U 4 [ & Py

w1th exponentlally decaymg tails. It follows that

E E[Y{)|2Z:0)| =E|[(¥2))] =0 (1 +log? [—Z_g—wl) . (2.9.19)

For the index i = 2, we express Yﬂ(%g in terms of |, . ;) and J;.,(;) and use

Lemma 2.9.5 twice (once with £1(z) and once with £;(z) playing the role of ¢ in the
lemma statement) and subtract to write

E[ Oz(zzg | Z20] = E[Y:, Y2 % | UZSZ""] < const
E [E[V2 |5..)°] < C. (2.9.20)

for some constant C depending only on .

Combining (2.9.17), (2.9.18), (2.9.19), and (2.9.20), we obtain

‘E[}c}sz]‘ < const + const x log? IZ—E—

’
_wl
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which implies

// ‘]E[Yz)o(w]‘ dzdw < const x area(K) x 2. (2.9.21)
KxK
|z—w|<e

For the far regime, we again condition on X, 4, the loops up to and including
the first ones separating z from w, and use Cauchy-Schwarz, as in (2.9.18), but
without first expressing Y; and Yy, as sums:

1/2
E

|]E[]?z}?w]' <E[E[Y:|%:0)|  E[E[Y| zz,w]z]u2 : (2.9.22)

By Lemma 2.9.6, we have

£

Cc
o 2 <
E[E[Y; |Z0]%] <C (m'm(|z — w|,CR(Z;D))) : (2.9.23)
Integrating over {(z,w) € K x K : € < |z — w|} gives (2.9.14). a

2.10 Properties of Sobolev spaces

In this section we provide an overview of the distribution theory and Sobolev
space theory required for the proof of Theorem 2.6.1. We refer the reader to [78] or
[79] for a more detailed introduction.

Fix a positive integer d. Recall that the Schwartz space S(R?) is defined to be
the set of smooth, complex-valued functions on R? whose derivatives of all orders
decay faster than any polynomial at infinity. If B = (f1,B2,...,B4) is a multi-
index, then the partial differentiation operator 9 is defined by 3% = 95192 ... 9%,
We equip S(R?) with the topology generated by the family of seminorms

{||(p||n,ﬁ := sup |x|"|9Pp(x)| : n >0, Bis amulti—index} )

xeR4

The space S’ (R?) of tempered distributions is defined to be the space of continuous
linear functionals on S(IR?). We write the evaluation of f € S'(R?) on ¢ € S(R?)
using the notation (f, ¢). For any Schwartz function ¢ € S(R?) there is an asso-
ciated continuous linear functional ¢ + [ g(x)¢(x) dx in S'(R?), and S(R?) is a
dense subset of S’(R?) with respect to the weak* topology.

For ¢ € S(RY), its Fourier transform ¢ is defined by
(&) = /Rd e~ Sp(x)dx for& € RY.
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Since ¢ € S(RY) implies ¢ € S(R?) [78, Section 1.13] and since
(1, ¢2) = // ¢1(x)e™ Yy (y) dx dy = (¢n, $2)

forallgpy, ¢ € S (Rd), we may define the Fourier transform f of a tempered distri-
bution f € §'(R%) by setting (f, ¢) := (f, $) for each ¢ € S(R?).

For x € RY, we define (x) := (1 + |x|?)1/2. For s € R, define H*(R?) C S'(R9)
to be the set of functionals f for which there exists R} € L%(R%) such that for all

¢ € S(RY),
(Fo) = [, Ry ©(0) ) de. @10

Equipped with the inner product

(f &) s (may = /Rd R} (E)R5(E) d¢, (2.10.2)

H*(R?) is a Hilbert space. (The space H*(RY) is the same as the Sobolev space
denoted W52(R?) in the literature.)

Recall that the support of a function f : R — C is defined to the closure of the
set of points where f is nonzero. Define T = [—x, n] with endpoints identified, so
that T4, the d-dimensional torus, is a compact manifold. If M is a manifold (such as
R4 or T?), we denote by C°(M) the space of smooth, compactly supported func-
tions on M. We define the topology of C*°(M) so that ¢, — v if and only if there
exists a compact set K C M on which each v, is supported and 0%y, — %y uni-
formly, for all multi-indices a [78]. We write C2°(M)’ for the space of continuous
linear functionais on C°( M), and we cali elements of C°(M)’ distributions on M.
For f € C®(T?) and k € Z4, we define the Fourier coefficient f(k) by evaluating
f on the element x — =¥ of C°(T*%). For distributions f and g on T¢, we define
an inner product with Fourier coefficients f(k) and g(k):

(f, &) userey = X (P F(K)Z(K).- (2.10.3)

kezd

If f € S'(R?) is supported in (—, )%, i.e. vanishes on functions which are sup-
ported in the complement of (—, )¢, then f can be thought of as a distribution
on T¢, and the norms corresponding to the inner products in (2.10.2) and (2.10.3)
are equivalent [79] for such distributions f.

Note that H*(R%) can be identified with the dual of H*(R%): we associate with
f € H™%(R¥) the functional g — (f,g) defined for ¢ € H*(R?) by

(f.8) = [ RFEOREE) .

This notation is justified by the fact that when f and g are in L%(R?), this is the

same as the L2(RY) inner product of f and g. By Cauchy-Schwarz, g s (f,g) is a
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bounded linear functional on H*(R?). Observe that the operator topology on the
dual H*(R?) coincides with the norm topology of H=5(R?) under this identifica- -
tion.

It will be convenient to work with local versions of the Sobolev spaces H*(R?).
If h € S'(R?) and y € C(R?), we define the product wh € S'(R%) by (wh, f) =
(h,wf). Furthermore, if 1 € H*(R?), then wh € H*(R%) as well [2, Lemma 4.3.16].
For h € CZ®(D)', we say that h € H} (D) if yh € H*(R?) for every w € C®(D).
We equip Hj, (D) with a topology generated by the seminorms || - || s (ga), which
implies that h, — h in Hj (D) if and only if yh, — wh in H*(R?) for all y €
C(D).

The following proposition provides sufficient conditions for proving almost
sure convergence in H;9~%(R%).

Proposition 2.10.1. Let D C R? be an open set, let § > 0, and suppose that (fu)sen
is a sequence of random measurable functions defined on D. Suppose further that
for every compact set K C D, there exist a summable sequence (4, ),¢en of positive
real numbers such that for all n € N, we have

S @) = o) @) ~ a0 dxdy < a3 @10.4)

Then there exists f € H.9~®(R?) supported on the closure of D such that f, — f

in Hk_)f“s (D) almost surely.

Before proving Proposition 2.10.1, we prove the following lemma. Recall that
. a sequence (K;),en of compact sets is called a compact exhaustion of D if K, C
Ky+1 C Dforalln € Nand D = yen Ku-

Lemma 2.10.2. Let s > 0, let D C R? be an open set, suppose that (K;)jen is a

compact exhaustion of D, and let (f4)nen be a sequence of elements of H~*(R?).

Suppose further that (y;);cn satisfies y; € C°(D) and 11/,-’ ¢, = Lforallj e N.If
7

for every j there exists f¥i € H5(R?) such that y;f, — f¥ asn — oo in H~*(R?),
then there exists f € H;3(D) such that f, — f in H._3(D).

loc

Proof. We claim that for all w € C®(D), the sequence ¥ f, is Cauchy in H=*(R?).
We choose j large enough that supp ¢ C K;. Forall g € H? (RY),

(W fn &) — (Wfm, ) = Kwij(fu — fmn) W) -

By hypothesis w;f, converges in H~* (R?) as n — o0, 50 we may take the supre-
mum over {g : [|g||gsrey < 1} of both sides to conclude || fu — ¥ fmll gg-s(rey = O

as min(m,n) — oco. Since H—*(R?) is complete, it follows that for every ¥ €
C(D), there exists f¥ € H=5(R?) such that yf,, — f¥ in H~5(R%).
We define a linear functional f on C°(D) as follows. For ¢ € C°(D), set

(f.8) == ("8, (2.10.5)
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where 1 is a smooth compactly supported function which is identically equal to 1
on the support of g. To see that this definition does not depend on the choice of v,

suppose that ¢ € C°(D) and y, € C®(D) are both equal to 1 on the support of
g. Then we have

(f",8) — (f¥%,¢) = lim ((y1 —w2)fu,8) =0,

n—o0

as desired. From the definition in (2.10.5), f inherits linearity from f¥ and thus

defines a linear functional on CZ°(D). Furthermore, f € H_$(D) since yf = fV €
H™*(R?) for all y € C°(D). Finally, f, — f in H.3(D) since yf, — vf = f¥in

H™S(RY). O

Proof of Proposition 2.10.1. Fix w € CZ°(D). Let Dy, be a bounded open set contain-
ing the support ¥ and whose closure is contained in D. Since Dy, is bounded, we
may scale and translate it so that it is contained in (-7, 7)?. We will calculate the
Fourier coefficients of ¥(f,41 — f) in (==, 7)?, identifying it with T¢. By Fubini’s
theorem, we have for all k € Z4

Elwfor1 — wfalk)]? (2.10.6)
. R 2
—E | ([ fn@wixle ot - [ fu(xuimear) |
¥y [ [Elfsr(x) = fule) Fasay) = fuly))]| dx dy

Dy xDy

< ”Wll%oo(Rd) a:f,,

IN

by (2.10.4). By Markov’s inequality, (2.10.6) implies

B [[0fart — a2 k)22 < ) 00D

The right-hand side is summable in k and #, so by the Borel-Cantelli lemma, the
event on the left-hand side occurs for at most finitely many pairs (7, k), almost
surely. Therefore, for sufficiently large ng, this event does not occur for any n > ng.
For these values of n, we have

lwfn — wf”‘””il“d“&('ﬁ‘d) = lwfn— an+1(k)|2(k)_2(d+5)
kezd

< Z a%<k>d+5<k>—2d—26
kezA
= O(a;,/85),
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Applying the triangle inequality, we find that for m,n > ng
n—1
19 fm — wfallg-a-5(qay = O (5—1/ 2y a,-) : (2.10.7)
j=m

Recall that the H~-%(T¥) and H~%~%(R?) norms are equivalent for functions sup-
ported in (—m, 7)? (see the discussion following (2.10.3)). The sequence (& )yen is
summable bgr hypothesis, so (2.10.7) shows that (¥ f )nen is almost surely Cauchy
in H=47%(R%). Since H%~%(R?) is complete, this implies that with probability 1
thefie g:xis:gs h¥ € H%-%(R?) to which wf, converges in the operator topology on
H™*7%(R%).

Applying Lemma 2.10.2, we obtain a limiting random variable f € H;-?~%(R¢)

loc

to which (fy),en converges in H 770 (R9). a

2.11 Convergence to limiting field

We have most of the ingredients in place to prove the convergence of the centered
e-nesting fields, but we need one more lemma.

Lemma 2.11.1. Fix C > 0, @ > 0,and L € R. Suppose that F, F;, and F, are real-
valued functions on (0, o) such that
(i) F; is nondecreasing on (0, ),
(ii) |F2(x + 8) — F2(x)| < Cmax(6%,e~**) forallx > 0and § > 0,
(iii) F = F; + F, and
(iv) For all § > 0, F(n8) — L as n — oo through the positive integers.
Then F(x) — L as x — oo.

Proof. Let € > 0, and choose § > 0 so that C6% < &. Choose xg large enough
that Ce™®* < ¢ and |F(nd) — L| < e forall n > x¢/8. Fix x > xg, and define
a = 6|x/6|. Foru € {F,F,F}, we write Au = u(a + 6) — u(a). Observe that
|AF,| < by (ii). By (iii) and (iv), this implies

|AF)| = |[AF — AF| < |AF| + |AR| < 3e.

Since F; is monotone, we get |Fi(x) — Fi(a)| < 3e. Furthermore, (ii) implies
|F2(x) — F2(a)| < e. It follows that

[F(x) = L| < [Fi(x) = Fi(a)] + |F2(x) — F2(a)| + |[F(a) — L| < 5e.
Since x > xp and € > 0 were arbitrary, this concludes the proof. O

Theorem 2.11.2. Let h,(z) be the centered weighted nesting of a CLE, around the
ball B(z,¢), defined in (2.6.2). Suppose 0 < a < 1. Then (hsn),en almost surely
converges in ngf‘5(D).

Proof. Immediate from Theorem 2.9.1 and Proposition 2.10.1. O
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Proof of Theorem 2.6.1. We claim that for all g € C®(D), we have (h;, g) — (h,g)
almost surely. Suppose first that the loop weights are almost surely nonnegative
and that ¢ € CZ(D) is a nonnegative test function. Define F(x) := (h,-x,g),
Fi(x) = (Sz(e7*),8), and F(x) := —(E[S:(e7¥)],g). We apply Lemma 2.11.1
with @ as given in Lemma 2.7.2, which implies

lim (he,g) = (h,g) for g€ C(D),g 0. (211.1)
£

For arbitrary g € C®(D), we choose § € C°(D) so that § and g + § are both
nonnegative. Applying (2.11.1) to § and g + g, we see that

lirr&(he,g> =(h,g) for geCZ(D). (2.11.2)
e—

Finally, consider loop weights which are not necessarily nonnegative. Define loop
weights ¢ = (¢£)*, where x* = max(0,x) and x~ = max(0, —x) denote the
positive and negative parts of x € R. Define h* to be the weighted nesting fields
associated with the weights ¢£ (associated with the same CLE). Then (if,g) —
(h*,g) almost surely, and

(he,8) = (hE,8) — (he,8) = (h*,8) — (h™,8) = (hg8),
which concludes the proof that (., g) — (h,g) almost surely.

To see that the field & is measurable with respect to the o-algebra X generated
by the CLE, and the weights (&) ecr, note that there exists a countable dense
subset F of C°(D) [78, Exercise 1.13.6]. Observe that /1,-» is Z-measurable and # is
determined by the values {h,-»(g) : n € N, g € F}. Since I is an almost sure limit
of hy-», we conclude that % is also Z-measurable.

To establish conformal invariance, let z € D and € > 0 and define the sets of
loops

= loops surrounding B(¢(z),e|¢’(z)|), and
= loops surrounding ¢(B(z,€))

[l [ [
w N =)
Pk ek

where A denotes the symmetric difference of two sets. Since either =1 C Z; or

=y C Eyq, )
he(z) - he}«p'(z)]((p(z)) =% Z $c-

{€E;

Multiplying by ¢ € C°(D), integrating over D, and taking € — 0, we see that by
Lemma 2.7.3 and the finiteness of E[|¢/|], the sum on the right-hand side goes to 0
in L and hence in probability as ¢ — 0. Furthermore, we claim that

[ e (@(2) ~ he(o(2)] g(2)dz = 0
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in probability as £ — 0. To see this, we write the difference in square brackets as

ﬁe|<p'(z)|(¢(z)) - ECE((p(Z)) + flce((p(Z)) - hg((p(Z)),

where C is an upper bound for |¢/(z)]| as z ranges over the support of g. Note that
Ip [fce(9(z)) — he(p(z))] §(z) dz — 0 in probability because for all 0 < ¢’ < € and
w € C*(D), we have

Ellwhe = yhefa-say = 3 Elyhe — yhe (k) (k) 720+
(T4)

kezd
< 3 1oy [, [Ellhe(x) = her(x)) (re(y) — ha ()] dx dy )20+
kez4 v
< £2) /6;

see (2.10.6) for more details. The same calculation along with Theorem 2.9.1 show

that ) ’
/D [fice(9(2)) — hej () (9(2))] 8(2) dz — 0, |

in probability. It follows that (h,g) = (ho ¢, g) forall g € C°(D), as desired. O

2.12 Step nesting

In this section we prove Theorem 2.6.2. Suppose that D is a proper simply con-
nected domain, and let I be a CLE, in D. Let p be a probability measure with
finite second moment and zero mean, and define

bn(z) = kz fck(z), neN.
=1

We call (h,)qen the step nesting sequence associated with T and (¢é2) zer-

Lemma 2.12.1. For each x € (8/3,8) there are positive constants 3, ¢3, and ¢3
(depending on «) such that for any simply connected proper domain D ¢ C and
points z,w € D, for a CLE, in D,

CR(z; D)

Pr | Nz w > c1log |Z—

— ] +c2j + c3| < exp[—j].

Proof. Let X; be i.i.d. copies of the log conformal radius distribution, and let T, =

Pr[T, < t] < E[eX]%*
gCR(Z,’D)

Pr[T, < log(CR(z; D)/|z — w])] < E[e~¥] ]
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If T, > log(CR(z D)/|z — w|), then ] < 0 But MVzp < ]zc,lz—w|’ and by

z,|z—w|

Corollary 2.3.3, |5 J0 has exponential tails. a

Jz—w| ~ Jz,|z—w|

Proof of Theorem 2.6.2. We check that (2.10.4) holds with f, = b,. Writing out each
difference as a sum of loop weights and using the linearity of expectation, we cal-
culatefor0 <m <mnandz,w € D,

Bl(hn(2) = 0u(2) (1) = hu(@)] = o* S PN > ).
=m-+1

Let §(z) be the value for which ¢ log(CR(z; D)/6(z)) + c3 = k, where ¢ and c3
are as in Lemma 2.12.1. Let K be compact, and let § = max,ex 6(z). Then

& < exp[—0(k)] x sup dist(z,0D) (212.1)
zeK
and
// Pr[N;w > k] dzdw < exp(—k) x area(K)?. (2.12.2)
KxK
|z—w|>6

The integral of P[N 4, > k] over z, w which are closer than § is controlled by virtue
of the small volume of the domain of integration:

/ / P[N:qw > k] dzdw < 6% x area(K). (2.12.3)

KxK
|z—w|<6

Putting together (2.12.1), (2.12.2) and (2.12.3) establishes

//]P’ [Nzw > k] dzdw < exp[—0(k)] x Cxp (2.12.4)
KxK

as k — oco.

Having proved (2.12.4), we may appeal to Proposition 2.10.1 and conclude
that b, converges almost surely to a limiting random variable b taking values in
H2~%(D).

Since each b, is determined by I and () zer, the same is true of §. Similarly,
for each n € N, b, inherits conformal invariance from the underlying CLE,. It

follows that b is conformally invariant as well. a

The following proposition shows that if the weight distribution p has zero
mean, then the step nesting field h and the usual nesting field / are equal.

Proposition 2.12.2. Suppose that D C C is a simply connected domain, and let z be

a probability measure with finite second moment and zero mean. Let I be a CLE,
in D, and let (£.) zer be an ii.d. sequence of p-distributed random variables. The
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weighted nesting field & = h(T, (¢) zer) from Theorem 2.6.1 and the step nesting
field b = b(T, ({£) cer) from Theorems 2.6.1 and 2.6.2 are almost surely equal.

Proof. Let g € C¥(D), e > 0and n € N. By Fubini’s theorem, we have

E[((he,8) = (bu.8))’] 2.12.5)
_// [(he(2) = bn(2)) (he(w) — bu(w))] 8(2)g(w) dz dw.

Applying the same technique as in (2.9.2), we find that the expectation on the
right-hand side of (2.12.5) is bounded by o? times the expectation of the number
N;(n,€) of loops L satisfying both of the following conditions:
1. £ surrounds B;(¢) or £ is among the n outermost loops surrounding z, but
not both.
2. L surrounds By(¢) or £ is among the n outermost loops surrounding w, but
not both.
Using Fatou’s lemma and (2.12.5), we find that

E[((h,8) — (9,8))2] = E [lim lim ((he, 8) — (B, 8))?]

QgHn—re0

< hm lnfhm ninfE[((ke, g) — (bn, 27
< hmmfhm mf// E[Nzw(n,€)] g(z)g(w) dz dw

< limsup limsup //z;xDE[NZ’w n,€)] g(z)g(w)dzdw.

£—0 n—oo

If z # w, then NV, < oo almost surely, so E[N;,(n,€)] tendstoOase — Oand n —
oo. Furthermore, the observation N4 (n,£) < Nz implies by Theorem 2.6.3 that
E[N;(n, €)] is bounded by vipica1 log |z — w|~! + const independently of n and
e. Since (z,w) > E[N.u(n,€)]g(z)g(w) is dominated by the integrable function
(Veypica1 l0g |z — w|™ + const)g (w)g (w), we may apply the reverse Fatou lemma to
obtain

E[((h,g) — (h,8))?] < // lim sup lim sup E[N,(n, )] g(z)g(w) dz dw

gm0 oo

which implies
(h,g) = (b,8) (2.12.6)
almost surely. The space CZ°(C) is separable [78, Exercise 1.13.6], which implies
that C°(D) is also separable. To see this, consider a given countable dense subset
of CX(C). Any sufficiently small neighborhood of a point in C(D) is open in
C2(C), and therefore intersects the countable dense set. Therefore, we may apply
(2.12.6) to a countable dense subset of C¢°(D) to conclude that 1 = f almost surely.
a
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Chapter 3
CLE, and the Gaussian free field

This chapter presents joint works with Scott Sheffield and Hao Wu. Much of this content
appears in [68].

In this chapter, we establish a coupling between a zero-boundary Gaussian free
field and a CLE4 growth process in which the boundaries of explored regions in
the growth process correspond to level loops of the GFF. Sections 3.1 through 3.5
cover prerequisite tools involving conformal loop ensembles in doubly connected
domains. Sections 3.6 through 3.8 describe the GFF/CLE4 coupling, and the re-
mainder of the chapter is devoted to proving a property of the CLE4 growth pro-
cess: the dynamics are determined by the CLE, loops.

3.1 Introduction

In [70], CLEs in simply connected domains are constructed from Brownian loop
soup. The authors proved that CLE for x € (8/3,4] are the only random col-
lections of curves satisfying conformal invariance and the restriction property (see
Section 3.2.3 for more details). They also showed that CLE is closely related to SLE:
each loop in CLE, for x € (8/3,4] is an SLE,-type loop. In [25], nested CLE in the
Riemann sphere is defined and shown to be invariant under Mobius transforma-
tions.

In this section, we study CLE in doubly connected domains. By the theory of
conformal maps [53], every doubly connected domain is conformally equivalent
to exactly one of the following standard domains:

(i) an annulus {z € C : r < |z| < 1} for some r € (0,1),

(ii) the punctured disk D \ {0}, or

(iii) the punctured plane C \ {0}.
We construct CLE in each of these domains. We construct CLE in an annulus using
the Brownian loop soup, and show that invariant under conformal maps from
the annulus onto itself. We consider a limit as the inner radius of the annulus
tends to 0 to construct CLE in the punctured disk, and we consider a limit of CLEs
in punctured disks of radii tending to infinity to construct CLE in the punctured
plane. We show that CLE in the punctured disk is also rotationally invariant, and
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we show that CLE in the punctured plane is invariant under scalings, rotations,
and inversion. Having constructed CLE in standard doubly connected domains,
we define CLE in an arbitrary doubly connected domain as the image of CLE under
a conformal map from the standard domain to which it is conformally equivalent.
The aforementioned invariances ensure that the resulting law does not depend on
the choice of conformal map.

The main results about CLE in an annular domain, which we call annulus CLE,
can be summarized as follows:

e The law of annulus CLE is conformally invariant and satisfies the restriction
property.

e Annulus CLE and CLE in a simply connected domain are closely related:
given a CLE in simply connected domain, consider the loop containing a
given interior point. The collection of loops between this particular loop and
the boundary of the domain has the same law as an annulus CLE.

CLE in the punctured disk satisfies the following properties.

e The law of CLE in the punctured disk is conformally invariant and satisfies
the restriction property.

e CLE in the punctured disk may be regarded as a CLE in the unit disk condi-
tioned on the event that no loop surrounds the origin (this event has proba-
bility zero; nevertheless this conditioning can be defined via a limiting pro-
cedure).

e If the loops that we are interested are far from the origin, then these loops

are almost the same ag the lr\npc in CIE in Slmp;_{ connected domain (SGG

Proposition 3.4.5 for a precise statement).

Finally, CLE in the punctured plane satisfies the following properties.

e The law of CLE in the punctured plane is conformally invariant and satisfies
the restriction property.

e CLE in the punctured plane may be viewed as CLE in the Riemann sphere
conditioned on the event that neither 0 nor oo is surrounded by a loop.

For CLE in the punctured plane, invariance under inversion z — 1/z is true
by construction. By contrast, reversibility for nested CLE in the whole plane is
nontrivial—it is the main result in [25].

In [70], the authors described a procedure to discover the loops in a CLE by ex-
ploring in small steps from the boundary. See Figure 3-1 for an illustration of this
exploration process in the case x = 4. The construction of this exploration proce-
dure makes extensive use of conformal invariance and the restriction property of
CLE. We use the same procedure to explore the loops for CLE in doubly connected
domains, and we prove a quantitative relation between the CLE explorations in
simply and doubly connected domains.
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Figure 3-1: A CLE, exploration process in D \ {0}, sampled at times 0 < #; <
.-+ < tg. For 1 < k < 6, the gray region in frame k shows the origin-containing
component of the region unexplored at time #;. The color of each loop indicates
the its time of discovery: the earliest loops are blue, the latest loops are green, and
the ones in between are red.
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3.2 Preliminaries

3.2.1 Notation

For 0 < r < Rand x € C, we define the following subsets of C:

D={zeC:|z| <1}, B(x,r)={z€C:|z—x| <r},
Cr={ze€C:|z| =1}, C(x,r) =9B(x,71),
A={zeC:r<|z]| <1}, A(r,R)={z€C:r < |z] <R}

Throughout the paper, we fix the following constants:

x € (8/3,4], ’6:2_1, a:(S—KgéiK—S)’ C:(6—1<)2(31<—8)

. (321)

We write f < g to mean that f/g is bounded from above by some constant, and
we write f < gtomean that f S gand g < f.

3.2.2 Brownian loop soup

We now briefly recall some results from [33]. We define forall t > 0 and z € C the
law g (z,z) of the two-dimensional Brownian bridge of duration ¢ that starts and
ends at z. We define the infinite, o-finite measure ,u1°°P on unrooted loops modulo
time reparametrization by

loo * i (Zr Z)
M P__/; ) —ZHT-dtdA(Z),
where dA denotes area measure on C (see Chapter 5 of [30] for a rigorous construc-
tion of the integral of a measure-valued function). Then, p'°%P inherits a striking
conformal invariance property. More precisely, define for all D C C the Brownian
loop measure pl°°P(D) as the restriction of %P to the set of loops contained in D.
It is shown in [33] that
(i) for two domains D’ C D, sampling from p!°°P(D) and restricting to the set
of loops contained in D’ is the same as sampling from u!°°P(D’), and
(i) for two connected domains D1, Dy, the image of ul°P (D7) under a conformal
map @ : D; — D has the same law as p°P(D,).
The restriction property is an apparent consequence of the definition of pl°P (D),
and conformal invariance is inherited from the conformal invariance of planar
Brownian motion.
We denote by A(Vj, V,; D) the measure under leOP of the set of loops contained
in a domain D that intersect both V; C Cand V, C C.

Proposition 3.2.1. [28, Lemma 3.1, equation (22)] Suppose that 0 < r < 1 and
R > 2. Then

1
A(C1,Cr;C\D,) = 2/ s~1p(R/s)ds
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for some function p : (0,0) — R satisfying the following estimate: there exists a
universal constant C < oo such that, for u > 2, we have

C
~ ulogu’

1
2logu

.p(u) -

For a fixed domain D C C and a constant ¢ > 0, a Brownian loop soup with
intensity c in D is a Poisson point process with intensity cu!°P (D). The following
property of the Brownian loop soup follows from properties of the Brownian loop
measure: fix a domain D and a constant ¢ > 0, and suppose D’ is a subset of D and
that £ is a Brownian loop soup in D. Let £; be the collection of loops in £ that are
contained in D’ and let £, = £\ £;. Then £, has the same law as Brownian loop
soup in D/, and £, and £, are independent. In fact, this assertion also holds for
certain random domains D. In particular, we have the following proposition.

Proposition 3.2.2. Let £ be a Brownian loop soup in D with intensity ¢ € (0,1],
and let (D;):>0 be a (deterministic) decreasing family of subdomains of D. For
t > 0, define D} to be the domain obtained by removing from D the closures of
clusters of loops in £ which are not contained in D;. Let 7 be a stopping time for
the process (Df )>0. Then the conditional law of L restricted to D7 given D is that
of a Brownian loop soup in Dj.

Proof. The proof is a straightforward modification of the proof of Lemma 9.2 in
[70], but for completeness we review it here. For D C D and n > 1 we define
F.(D) to be the union of all squares in 2~"Z? contained in D. Then for all such
unions-of-squares V. C D, the event {F,(D}) = V} depends only on the loops
intersecting D \ V and is therefore independent of the loop configuration in V.
This shows that for all n > 1, the loop configuration in F,(D?) is a Brownian loop
soup in F,(D3). Since Uy Fy(D;) = Dy, this shows that the configuration in DJ is a
Brownian loop soup. O

3.2.3 CLEin a simply connected domain
Definition and properties of CLE

Let us now briefly recall some features of the conformal loop ensembles for x €
(8/3,4] — we refer to [70] for details and proofs of these statements. A simple CLE
I in D is a random loop configuration (y;,j € J) in I, measurable with respect to
F, whose law possesses the following two properties:

o Conformal invariance. For any Mobius transformation ® of D onto itself, the
laws of T and @(T') are the same. Thus, for any simply connected domain
D, we may define CLE in D as the distribution of ®(I'), where ® : D — D
is a conformal map. Note that Mobius invariance implies that the resulting
measure does not depend on the choice of conformal map ® from D onto D.
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e Restriction. For any simply connected domain D C D), define the set D* =
D*(D,T) obtained by removing from D all the loops (and their interiors) of
I" are not contained in D. Then, conditionally on D*, and for each connected
component U of D*, the law of those loops of I that do stay in U is that of a
CLE in U.

In [70], the authors show that for each CLE, there exists a real number x €
(8/3,4] so that all the loops in the CLE are almost surely SLE.-type loops. Further-
more for each such value of x, there exists exactly one CLE distribution that has
SLE-type loops.

As explained in [70], a construction of these particular families of loops can
be given in terms of outermost boundaries of clusters of the Brownian loops in a
Brownian loop soup with intensity ¢(x) € (0,1], where

(6—1<)(31<—8)‘

c=c(x)= o

Throughout the paper, we will denote the law of simple CLE in simply connected
domain D as u?).

Exploring CLE

Consider a simple CLE in the unit disk and a small disk B(x, €) of radius ¢, where
x € dD. Let ¥¢ be the loop that intersects B(x, €) with largest harmonic measure as
seen from the origin. Define the quantity

u(e) := P[y* surrounds the origin]

1

(3.2.2)

As € — 0, we have u(e) = £#t°(), where g = % —1[70, Corollary 4.3]. We say that
a loop is pinned at x € 9D if the loop contains x and is contained in D U {x}. We
refer to a loop which is pinned at some x € dD as a bubble.

Proposition 3.2.3. [70, Section 4] The law of y° normalized by 1/u(e) converges
as ¢ — 0 to a o-finite measure on the set of loops pinned at x, which we denote
vP?(D; x) and call the SLE bubble measure in D rooted at x. Furthermore,
(i) the v?*/(D; x)-measure of the set of loops surrounding the origin is 1, and
(i) for  small enough, v***(D; x)(R(y) > r) < r~ where R(y) is the smallest
radius r such that y is contained in B(x, 7).

Now we describe the discrete exploration process. Suppose we have a simple
CLE loop configuration in the unit disk D. We draw a small semi-disk of radius €
whose center is uniformly chosen on the unit circle. The loops that intersect this
small semi-disk are said to be discovered on the first step. If we do not discover
the loop containing the origin, we call the connected component of the remain-
ing domain that surrounds the origin the to-be-explored domain. We define the
conformal map ff from the to-be-explored domain onto the unit disk normalized
at the origin (meaning that 0 maps to 0 and the derivative of the conformal map
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at 0 is positive). We also define y{ to be the loop we discovered with largest har-
monic measure as seen from the origin. Because of the conformal invariance and
restriction property of simple CLE, the image of the loops in the to-be-explored do-
main under the conformal map f§ has the same law as simple CLE in the unit disc.
Thus we can repeat the same procedure to the image of the loops under ff. We
draw a small semi-disk of radius € whose center is uniformly chosen on the unit
circle. The loops that intersect the small semi-disk are the loops we discovered at
the second step. If we do not discover the loop containing the origin, define the
conformal map f; from the to-be-explored domain onto the unit disk normalized
at the origin. The image of the loops in the to-be-explored domain under f5 has
the same law as simple CLE in the unit disk, and we may repeat. With probabil-
ity 1, there is a finite step N at which we discover the loop containing the origin,
and we define v5; to be the loop containing the origin discovered at this step and
stop the exploration. We summarize the properties and notations for this discrete
exploration below.

e Before time N, all the steps of discrete exploration are i.i.d.
e The random variable N has a geometric distribution:

P(N > n) = P(y*does not contain the origin)” = (1 — u(¢))".

e We define the conformal map
@° = fy-10---0faofr.

The discrete exploration converges as € — 0 to a Poisson point process of bubbles
with intensity measure given by

bub _ bub (.
vP (D) _/anv (D; x) dx.

In fact, this Poisson point process of bubbles can be used to recover the CLE loops.
More precisely, let (y:,t > 0) be a Poisson point process on the Cartesian product
of the set of bubbles and the nonnegative real line with intensity v®*P(ID) times
Lebesgue measure. Define 7 = inf{t > 0 : y; surrounds the origin}. Then for
each t < 1, y; does not contain the origin, so we may define f; to be the conformal
map from the connected component of D \ y; containing the origin onto the unit
disk and normalizing at the origin. For this Poisson point process, we have the
following properties [70, Sections 4 and 7]:
e 7 has exponential law: P(7 > t) = ¢~
e For r > 0 small, let t;(r), t2(r), ..., t;(r) be the times t before 7 at which the
bubble y; has diameter greater than r. Define ¥" = ft],(,) o---0 f; ) Then

¥ almost surely converges as r goes to zero to some conformal map ¥ with
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respect to the Carathéodory topology seen from the origin. We write ¥ =
Or<r ft-

e More generally, for each t < 7, we can define ¥y = os<;fs. Then (L; =

w7 1(y;),0 < t < 1) is a collection of loops in the unit disk, and L, surrounds
the origin.

The relationship between this Poisson point process of bubbles and the discrete
exploration process we described above is given via the following proposition.

Proposition 3.2.4. ¢ converges in distribution to ¥ with respect to the Carathéodory
topology seen from the origin. Furthermore, L; has the same law as the loop in
simple CLE containing the origin.

Denote D; = ¥ }(D) for t < 7. We call the sequence of domains (D;, t < 7) the
uniform CLE, exploration process in D, targeted at the origin.

3.2.4 Conformal radius

A proper simply connected domain D is an open subset of C such that D and
its complement in C are both nonempty and connected . From Riemann Mapping
Theorem, we know that for any proper simply connected domain D and an interior
point z € D, there exists a unique conformal map ® from D onto the unit disk D
such that ®(z) = 0 and ®'(z) > 0. We define the conformal radius of D seen from
z by
CR(D;z) = 1/¥(2).

We abbreviate CR(D) := CR(D;0).

Consider a closed subset K of D such that D \ K is simply connected and 0 € D'\
K. There exists a unique conformal map ®x from D\ K onto D which is normalized
at the origin: ®x(0) = 0, ®%(0) > 0. By the Schwarz lemma, we have ®}(0) > 1,
from which it follows that

CR(D\K) =1/9%(0) < 1.
The Schwarz lemma and the Koebe one quarter theorem imply that
d < CR(D\K) <44, (3.2.3)

where d = dist(0, K) is the distance from the origin to K.
Define the capacity of K in D seen from the origin as

cap(K) = —log CR(D \ K) > 0.

We adopt the convention that CR(D \ K) = 0 and cap(K) = o« if 0 € K. When K is
small, for example when the radius R(K) of K is less than 1/2, we have that

cap(K) < R(K)2.
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An annular domain A is a connected open subset of C such that its complement
in the Riemann sphere has two connected components and both of them contain
more than one point. If A is an annular domain, then there exists a unique constant
r € (0,1) such that A can be conformally mapped onto the standard annulus A, =
{z : 7 <1 |z| < 1}. We define the conformal modulus of A, denoted by mod(A),
tober™.

The following standard lemma describes the relationship between the confor-
mal radius of simply connected domain and the conformal modulus of an annular

domain.

Lemma 3.2.5. Suppose K is a closed subset of D such that D \ K is simply connected
and 0 € D\ K. Clearly A, \ K is an annular domain for r small enough. We have

lim mod (A, \ K)

r—0 mod(A,) = CR(D\K).

3.2.5 Overshoot estimates for compound Poisson processes

Recall that the total variation distance between two probability measures p; and
p2 on a common measurable space is defined by

llp1 — p2|ltv := sup{|p1(A) — p2(A)| : A measurable}.

For any coupling (X3, X) of p; and p; (i.e. for any coupling (X;, X») where the
marginal law of X; is p;, i = 1,2,), we have

lp1 — p2lltv < P[X; # X3],

and there exists coupling (X3, X») such that the equality holds (see [36, Proposition
4.7]).

Suppose (o(t),t > 0) is a compound Poisson process starting from 0 with jump
measure I that is supported on (0,o0) and satisfies

/ (1 A x)I(dx) < oo,
where a A b denotes the minimum of two real numbers g and b. The process can be
written as

o(t)= > As forallt >0,

0<s<t

where (A, s > 0) is a Poisson point process with intensity measure I1. The Camp-
bell formula states that the Laplace transform of o is given by

Elexp(—Aa(t))] = exp (—t/(l - e‘“)l‘[(dx)) forallA >0,t > 0.
Define the local time process (Ly,x > 0) and the first passage process (Dy, x > 0)
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of (o(t),t >0) by
Ly :=inf{t >0:0(t) > x}, Dy=o0(Ly) fort>0.

We have the following estimates of the overshoot Dy — x:

Proposition 3.2.6. Suppose that IT is absolutely continuous with respect to Lebesgue
measure and that there exists a constant 1g > 0 such that

/ (e™* — 1)T1(dx) < oo.
Then there exists C € (0, o) such that
PDy—x>y] < Ce ™Y, forall x > 0,y > 0. (3.2.4)

If we define p, to be the law of Dy — x, then there exist C € (0,o0) and § > 0 such
that p, converges exponentially fast in total variation to some measure poo:

lpx — poollTv < Ce™% forall x > 0. (3.2.5)

Proof. For finite measures II, the result is established in [46, Lemma 2.12, Lemma
3.5]. This result implies the result for the case I1((0,00)) = +o0. To see this, define
for all ¢ > 0 a compound Poisson point process o¢ by aggregating each sequence
of consecutive jumps of size less than ¢ into a single jump. Then with probability
tending to 1 as € — 0, the overshoot of 0 equals the overshoot of o. a

3.3 Annuius CLE
3.3.1 Definition and properties of annulus CLE

We say that a family of measures

{1y : D C Cis an annular or simply connected domain }

is an annulus CLE if (i) u(D) is a measure on the set of configurations of simple
loops whose exteriors are contained in C \ D, (ii) the family of measures satisfies
conformal invariance, and (iii) the family of measures satisfies the restriction prop-
erty. In this section, we will for each x € (8/3,4] construct an annulus CLE with
SLE-type loops.

Our construction proceeds by first defining random loop configurations in the
standard annuli A, for r € (0,1). We will do so by constructing simple CLE in D
from the Brownian loop soup as in [70]. For x € (8/3,4], let L(A,) be a Brownian
loop soup with intensity ¢(x) in A,. Define the event E(L(A,)) that there is no
cluster of £L(A,) that disconnects the inner boundary from the outer boundary.

On the event E(L(4A,)), let T'(A,) be the collection of outermost boundaries
of clusters of L{A,), so that I'(A,) is a collection of disjoint simple loops in A,.
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The event E(L(A,)) contains the event that the loop surrounding the origin for
CLE in the disk has inradius less than 7, and this event has positive probability—
indeed, the conformal radius of the loop surrounding the origin has a distribution
whose density with respect to Lebesgue measure is positive on (0,1) [62]. There-
fore, E(L(A,)) has positive probability and we may define annulus CLE, in A, as
the law of I'(A,) conditioned on the event E(L(4A,)).

For any annular domain A with conformal radius r, let ¢ be a conformal map

from A, onto A and define /.ti1 to be the law of the loop configuration ¢(I') where

T is an annulus CLE, in A,.

We denote by p(A) the probability of the event E(L(A)) and abbreviate p(A,)
as p(r). The following lemma summarizes the asymptotic behavior of p(r) as r
goes to zero. Recall the definition of @ in terms of x in (3.2.1).

Proposition 3.3.1. [52, Lemma 7, Corollary 8] The function p is nondecreasing, and
there exists a universal constant C < oo such that, for0 < r, 7 < 1,

%P(’)P(T'/C) < p(rr') < p(n)p(r'). (3:3.1)

Furthermore, ;
1. There exists a constant C > 1 such that, for r small enough, r* < p(r) < Cr®.
2. For any constant A > 0, the limit of p(Ar)/p(r) exists as r goes to zero and

lim, 0 p(Ar)/p(r) = A%,

Proposition 3.3.2. For 7 in(0,1), the law of CLE, in A(r, 1) is invariant under rota-
tions z — €%z and under the map z — 1/z.

Proof. The result follows directly from the conformal invariance of the Brownian
loop soup. . O

Annulus CLE, also satisfies the restriction property:

Proposition 3.3.3. Suppose I is an annulus CLE in A, and that D is an open subset
of A,. Let D* be the set obtained by removing from D all the loops (and their
interiors) in I' that are not contained in D.
(i) If D is simply connected, then conditionally on D*, for each connected com-
ponent U of D*, the conditional law of the loops in I that stay in U is that of
a CLEx in U.
(ii) If D is an annular region, then conditionally on D*, for each connected com-
ponent U of D*, the conditional law of the loops of I that are contained in U
is that of a CLE in U.
Furthermore, the loop configurations in different components U are independent.

Remark 3.3.4. Note that in case (i), U is necessarily simply connected. In case (ii),
U may be simply connected or annular.

Proof. Let £ be a Brownian loop soup in A,. We define £ to be the Brownian
loop configuration obtained by sampling £, determining D*, and then sampling
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independent Brownian loop soups in each connected component of D*. By Propo-
sition 3.8.9, £ has the same distribution as L. N

Similarly, define I to be a CLE in A, and define I' to be the loop configuration
obtained by sampling I' and then independently resampling the loop ensembles in
each connected component of D*. The proposition statement is equivalent to the
assertion that I' and T have the same law.

Let B € F (recall that we defined the o-algebra F on the space of loop config-
urations in Section 3.2.3). Let E be the set of simple loop configurations in A, with
no loops surrounding C,, and write ﬁk for the law of . Then by the definition of
annulus CLE, we have

P[I'(L£) € BNE]
P[I(L) € E]
P[T(£) € BNE]

Pr(£) € E] ’

i [B] =

where in the second line we have used the fact that I'(£) and I'(£) have the same
law.

Define the event E; that there are no loops in T(£) which intersect A, \ D and
surround C,, and let E, be the event that there are no loops in T'(£) which are con-
tained in D and surround C,. Since E; is measurable with respect to the o-algebra
generated by the set £L* of loop clusters intersecting A, \ D and E; is measurable
with respect to the loops in D*, we conclude that the following two procedures
give a loop configuration with the same law:

(i) Sample £* and the loop configuration inside D* from their joint law, and

condition on the event E; N E;.
(ii) Sample £* from its marginal distribution conditioned on E;, and then sample
the loop configuration inside D* from its conditional law given £* and E,.
Since L* determines D*, this gives

P[I(£) € BNE]
PI(Z)cE] '™ (B,

which concludes the proof. a

Propositions 3.3.5 and 3.3.6 describe two ways to find annulus CLE in CLE in a
simply connected domain.

Proposition 3.3.5. Suppose I' is a CLE, in D and D C D is an annulus. Let D*
be the set obtained by removing from D all the loops in T the closure of whose
interiors that are not contained in D. Then conditionally on D*, for each connected
component U of D*, the conditional law of the loops in I’ that stay in U is that of a
CLE in U. Furthermore, the CLEs in different components U are independent.

Proof. Realize I as the set of outermost clusters of a Brownian loop soup £ in D.
We define the following procedure for finding D*: denote by D} the complement
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of the union of the loop clusters not contained in D. By Proposition 3.8.9, the law
of the Brownian loops contained in D is that of a Brownian loop soup in Dj.

Figure 3-2: The first panel shows the domain Dj, where D = D\
{a union of two slits}. The second panel shows the exploration process we use
to discover the innermost cluster surrounding the inner boundary of D: we choose
a ray whose endpoint is on the interior slit and define 77 to be the first time the ray
hits the boundary of Df, and from 7(11) we explore outward along the ray 1 until
we exit D or discover the first loop cluster C winding around the annulus, which
happens in the diagram above at time 7. We define Dj to be the intersection of D
and the unbounded component of the complement of C. We continue in this way
to define a random sequence of domains Dj, D3, ..., Di.

Observe that D* and Dj are not necessarily equal, because, with positive prob-
ability, D] has an annular component U containing one or more loop clusters sur-
rounding the inner boundary of U (and so the interior of the corresponding CLE
loop would not be in D-see Figure 3-2). We will discover any such clusters as fol-
lows. Choose an arbitrary ray emanating from an arbitrary point in the bounded
component of C \ D and let (5; : ¢ > 0) be a parameterization of the ray. For t > 0,
denote by L; the set of loop clusters of £ not contained in D \ 5[0, ¢]. Define

71 = inf{t > 0 : 5(t) € D}}.

Define the (possibly empty) set of random times 75,...,7g. to be the sequence of
times at which the growing cluster £; acquires a cluster K; surrounding the inner
boundary of D. Here R is a random variable taking values in {1,2,...,00}. Define
D} to be the intersection of Di_; and the unbounded component of C \ Ki_1 (see
Figure 3-2).

Proposition 3.8.9 implies that the law of the configuration of loops in D} is
distributed like a Brownian loop soup in D}. This shows that R < oo almost surely,
because at each step there is a positive probability (indeed, a probability tending
to 1in j) that there are no clusters surrounding the inner boundary of D
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Since R is the least index j for which the Brownian loop soup in D7 has no
loops surrounding the inner boundary, our exploration may be viewed as a re-
jection sampling procedure which conditions on the event that no loop clusters
surround the inner boundary. Therefore, the loop configuration in D} has the law
of a Brownian loop soup in D} conditioned to have no loop clusters surrounding
the inner boundary. Since D} = D*, this concludes the proof. O

Proposition 3.3.6. Let I be a CLE, in D, and let y(0) be the loop in T that surrounds
the origin. Let D* be the subset of D obtained by removing from D the loop y(0)
and its interior. Then conditioned on D*, the loop configuration I' \ {y(0)} is dis-
tributed as an annulus CLE, in D*.

Proof. The idea of this proof is to apply Proposition 3.3.5 to A, and let 7 — 0. Let T
be a loop configuration obtained by sampling y(0) and then sampling an annulus
CLEx in D*; our goal is to show that the law of I' is that of a CLEx.

For each r > 0, define T, to be the loop configuration obtained as follows:
sample the loops in I whose interiors are not contained in A, C D, define D} = D\
{¥(0) and its interior}, and resample a CLE in D} in such a way that if D} = D*,

then I, = I. Since 0 & 7(0) almost surely, we have lim,_,o I, = T almost surely.
Therefore, dominated convergence gives us

P[T € B] = im P[T, € A] = lim u},[B] = uh[B]

for all measurable sets B € F of loop configurations. O

3.3.2 Uniform annulus CLE exploration

Let I', be an annulus CLE, in A,. Fix x € dD and consider the loops in I', that
intersect B(x,€). Suppose y: is the largest of these loops, according to harmonic
measure seen from the origin. Then we have the following counterpart of Propo-
sition 3.2.3 (recall the definition u(¢) := P[y* surrounds the origin| from (3.2.2)):

Proposition 3.3.7. The law of yZ normalized by 1/u(e) converges as ¢ — 0 to a
measure on loops in A, pinned at x, which we denote by vPub(A,:x) and call SLE
bubble measure in A, rooted at x. Furthermore, the Radon-Nikodym derivative
of vP'P(A,; x) with respect to v?"P(DD; x) is given by

dvPub(A,; x A,
W(Y) = 1{int(y) cAr} p(p(AE)Y) exp(cA(rD, y; D)).

For a proof, we refer the reader to [68, Proposition 3.6].
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3.4 CLE in the punctured disk

3.4.1 Existence and properties of CLE in D \ {0}

Lemma 3.4.1. There exists a universal constant C < oo such that for all 0 < 7/ <
r < 82 < 1and D C A; an annular domain, there exists a coupling between a
CLE I'y in A, and a CLE, I'y in A, such that

log(1/6)
log(1/r)’

where Dy (resp. Dy) is the set obtained by removing from D all loops (and their
interiors) of I’y (resp. I'y/) that are not contained in D, and that on the event {D; =

%}, the collection of loops of T, restricted to Dj is the same as the collection of
loops of I',s restricted to Dj).

P[D; # Dy <C

Proof. Suppose L is a Brownian loop-soup in A,.. Denote by £, the collection of
loops of L that are contained in A,, and define £, = L\ £;. Note that £, and £,
are independent. On the event E(L), define T (resp. I'1) as the collection of outer
boundaries of outmost clusters of £ (resp. £1). Note that, conditioned on E(L), T
(resp. I'1) has the same law as CLE, in A,/ (resp. A,). Let D* (resp. D7) be the set
obtained by removing from D all loops (and their interiors) of T (resp. I'1) that are
not contained in D. Then by construction, we have D* C D C As.

Note that on the event E(L£), if no loop in £; intersects D, then we have D* =
Dj. Define S(£3,As) to be the event that some loop in £; intersects As. Let E; be
the event that no loop of I'; disconnects C, from C;; and let E; be the event that £
that no cluster contained in A(r,7’') disconnects C,» from C,. We have

P[{D* # DI} NE(L)]/p(r")
< P[S(L2,As) NE(L)]/p(r")
< P[S(L2,A5) NEyNE]/p(r')

Since they are measurable with respect to disjoint sets of loops, E1, Ez, and S(£L3, As)
are independent events, and the probabilities of E; and E; are p(r) and p(r' /), re-
spectively. Thus we have

P[S(EZr At?)r E,, E2] /p(?‘,)
< P[S(L2, As)]p(r)p(r' /1) /p(r)
5 P[S(‘CZI A\é)],

where the implied constant can be expressed in terms of the constant in Proposi-
tion 3.3.1 and is universal. So we only need to show that

log 61
logr—1°

P[S(L2,As)] S
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Note that S(L;, As) is the same as the event that there exists loop in £ intersecting
both C, and Cs. The latter event has the probability

1 —exp(—cA(C,, Cs; Ay)).
From Proposition 3.2.1, we have that

P[S(L2,As)] = 1 —exp(—cA(Cy, Cs; Ay))
< A(Cr, C5;Arl)

~y

= A(C,,C5;C\ D) — A(C,,C1; C\ VD)

1 o) 1
=2 rfz("(z)"’(z))ds
< r log(l/6gdS
" s (log3)
< log(1/9)

~ log(1/r)" -

Theorem 3.4.2. For x € (8/3,4], there exists a unique measure on collections of
disjoint simple loops contained (along with their interiors) in D \ {0}, which we
call CLE, in D\ {0}, to which CLEy in A, converges as r — 0 in the following
sense. There exists a universal constant C < oo such that for any § > 0 and any
annular region D C A, a CLE, I'f in D\ {0} and a CLE, T, in A, can be coupled

so that log(1/6)
1% ) < 0g
PID™ # D] < Clog(l/r)'

where D'* (resp. Dj) is the set obtained by removing from D all the loops of I'f
(resp. I'y), along with their interiors, that are not contained in D, and such that on
the event {D'* = D} } the collection of loops of I'' restricted to D'* is the same as
the collection of loops of I', restricted to D;.

Proof. Fork € N, definery =1/ ¢ Fork > 1, suppose I'y is an annulus CLE in A,
and Dy is the set obtained by removing from D all loops of Ty that are not contained
in D. From Lemma 3.4.1, I'y and I’y can be coupled so that the probability of

{D; # D;_,}is at most
Clog (%) ek,

and on the event Df = Dy_,, the collection of loops of I'y restricted to Df is the
same as the collection of loops of T restricted to Dy, ;. Suppose that, for each
k > 1, T’y and T4 are coupled in this way. Then with probability 1, for all but
finitely many couplings, we have that D = Dj_,, so suppose that this is true for
all k > I, and define, for k > I,

D'* = Dj,

and define I'* restricted to D** to be the collection of loops of T restricted to Dj.
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Then, for any ko > 1, the probability of D** # D} is at most

1Y -k < 1Y ok
ZClog(6)e ~log(6)e .

k>ko

For any r > 0, suppose Tky ST < g1, annulus CLE, I', in A, can be coupled with
I', so that the probability of {D; # Dj } is at most

log(1/6)
log(1/7)’

where D} is the set obtained by removing from D all loops of I', that are not con-
tained in D. And on the event {D} = Dj }, the collection of loops of I', restricted
to Dy is the same as the collection of loops of I'y, restricted to Df . Therefore, the

probability that D* = D} is at most

log(1/5) _ log(1/9)
log(1/r) ~ log(1/r)"

This completes the proof. a

Clog(1/8)e™ ™ +C

Clearly, CLE, in D\ {0} is invariant under rotations z — ¢?z. We define CLE,
in any domain conformally equivalent to a punctured disk as the conformal image
of CLEx in D \ {0}. The rotational invariance ensures that the resulting law does
not depend on the choice of conformal map.

Propositions 3.4.3 and 3.4.4 describe the restriction property of CLE, in D\ {0}.

Proposition 3.4.3. Let D C D be domain which is either simply connected or an-
nular, the closure of which does not contain the origin, and let T * be a CLE, in
D \ {0}. Define D'* to be the set obtained by removing from D all loops of I'* that
are not contained in D. Then, conditionally on D'*, for each connected component
U of D'*, the conditional law of the loops in I'* that stay in U is that of a CLE, in
u.

Proof. The conclusion is direct consequence of the construction of conditioned CLE,
in Theorem 3.4.2 and the restriction property of annulus CLE, in Proposition 3.3.3.
a

Proposition 3.4.4. For any simply connected domain D C D such that 0 € D, let
D'* be the set obtained by removing from D all loops of a CLE, I't in D \ {0} that
are not contained in D. If we denote by U the connected component of D'* that
contains the origin, the conditional law given D* of the loops in I't that stay in U
is the same as a CLEy in U \ {0}.

Proof. For r > 0 sufficiently small, define D, := D N A,, and define D} to be the set
obtained by removing from D, all loops of I't that are not contained in D,. Note
that with probability tending to 1 in 7, I'" has no loop intersecting both D \ D and
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rD. Suppose there is no such loop and let U, be the connected component of D}
that is contained in U (see Figure 3-3). From Proposition 3.4.3, the collection of
loops of I't restricted to U, has the same conditional law given U, as a CLE, in
U,. To complete the proof, it suffices to note that mod(U,) — oo almost surely as
r—0. a

(a) The first panel shows a domain D containing the origin. The second panel depicts a sample
of CLE, in D\ {0}. The third panel shows the corresponding set D*, and the last panel shows
the connected component L.

(b) The first panel shows the set D, = D N A,;. The second panel de-
picts the corresponding set D;. The last panel shows the connected
component U,.

Figure 3-3: Restriction property of CLE, in D\ {0}.

The following proposition describes the relationship between CLE, in H \ {i}
and CLEy in H: loops very far from the singular point i are look similar.

Proposition 3.4.5. Define D = DN H, and let y > 0. There exists a universal
constant C < oo such that a CLE, I"; in H\ {yi} can be coupled with a CLE, T in
H so that

P[D'* # D*] < C/logy,

where D* (resp. D;;'*) is the set obtained by removing from D all loops of T (resp.
r ;), along with their interiors, that are not contained in D. And on the event

{D;'* = D*}, the collection of loops of T} restricted to D;’* is the same as the
collection of loops of T restricted to D*.

Proof. Suppose I' is a CLEin H and y(yi) is the loop in T’ that contains the point yi.
We write y(yi) to denote the union of the loop and its interior. We fix a constant
n>1/p, and set R = y/(logy)".
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From Proposition 3.3.6, we know that, given y(yi), the collection of loops in
I restricted to H \ y(yi), denoted as I'y, has the same law as annulus CLE. Given
y(yi) and on the event that y(yi) N Ck = @, we have D* = D3 where D* (resp.
D7) is the set obtained by removing from D all loops of ' (resp. I'1) that are not
contained in D.

With an idea similar to the one used in the proof of Lemma 3.4.1, annulus CLE,
I'y can be coupled with annulus CLE, T in H \ B(yi, 1) so that

P[D; # D3] < CA(y(yi), Cy;H \ B(yi, 1)),

where D3 is the set obtained by removing from D all loops of T that are not con-
tained in D. On the event {y(yi) N Cr = @}, this quantity is less than

CA(CR, Ci; H)
And, by [28, Lemma 4.5], we have that
A(Cg,Cy;H) <1/1ogR.

From Theorem 3.4.2, an annulus CLE I'; can be coupled with CLE, I' ; in H \
{yi} so that
P[D; # D}”] < C/logy.

So we see that a CLE, I in Hand a CLE, I} in H \ {yi} can be coupled so that

P[D* £ D!*] < C (5)_ﬁ+°(l)+L+ L )<1/10 O
y - y logy logR ) ™ &Y.

3.4.2 Uniform exploration of CLEin D\ {0}

We will explore CLE, in D\ {0} in a manner similar to the uniform exploration
of CLE, in . Suppose I'f is a CLE, in D \ {0}. We choose x € 9D and explore
the loops of I' that intersect B(x, £). Let y' be the largest of these, in the sense of
harmonic measure as seen from the origin. We have the following counterpart of
Proposition 3.2.3 (recall the definition of u(¢) in (3.2.2):

Proposition 3.4.6. The law of y!# normalized by 1/u(e) converges to a measure,

which we denote by v**®(D \ {0}; x) and call the SLE bubble measure in D \ {0}

rooted at x. The Radon-Nikodym derivative of v**?(D \ {0}; x) with respect to
vPUP(DD; x) is given by

bub X
a2 (r) = ey CRDAD ™,

where E(7) is the event that y does not surround the origin.
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Proof. A combination of Proposition 3.3.7 and Lemma 3.2.5 implies the conclusion.
O

Suppose v is a loop in D \ {0} U 0D rooted at x € 9D, recall the definition of
R(y) as the infimum of all values of r > 0 such that y is contained in the disc
centered at x with radius r. Recall the constants defined in (3.2.1); we have the
following quantitative result for v>?"*(D\ {0};x):

Lemma 3.4.7. Whenever n > 8, we have

[ R R(DA {0} ) (dy) < co.

Furthermore, since g € [1,2), we have

[ R (D {0};2)(dy) < co.

Proof. The conclusion is direct consequence of Proposition 3.4.6 and Proposition 3.2.3.
O

Now, we can describe the uniform exploration process of CLE, in D'\ {0}. Most
of the proofs are similar to the proofs in [70] for CLEy in simply connected do-
mains. For completeness we rewrite the proofs in the present setting.

Suppose (y],t > 0) is a Poisson point process with intensity

EDA {0}) = [ (D {0} x) dx.

For t > 0, let f be the conformal map from D\ y{ onto D and is normalized at the
origin. For any fixed T > 0 and r > 0, let t;(r) < ... < t;(r) be the times ¢ before T
at which R(y}) is greater than . Define

.|.
‘PT *ft 0 o
Then W1 converges as r — 0:

Lemma 3.4.8. ‘I’:}" converges almost surely in the Carathéodory topology seen
from the origin to some conformal map, denoted by W1, as r goes to zero.

Proof. Lemma 3.4.7 guarantees that

El > Cap(YDlR(ﬁ)Slﬂ]
t<T

= TV°(D\ {0}) (cap (") 1g(yry<1/2)
S Tvbub(D \\ {O}) (R(Y+)21R(y?)§1/2) < oco.
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Since there are only finitely many times ¢ before T at which R(y{) > 1/2, we have
that, almost surely,

>~ cap(r}) < oo,

t<T
and this implies the convergence in Carathéodory topology (see [70, Stability of
Loewner chains]). O

Define Df = (¥])~1(D) for t > 0. Then (D}):>0 is a decreasing family of
simply connected domains containing the origin, which we call the uniform CLEx
exploration process in D \ {0}. We define L] = (¥!)~1(y]) for t > 0. It is clear
that

Df =(\Di, Df,:=UD{=Dj\Lf.
s<t s>t

Suppose (y:,t > 0) is a Poisson point process with intensity v**®(ID) and that
(Dy, t < 1) is the uniform CLE, exploration process in D defined from the process
(7:,t > 0) in the manner described in Section 3.2.3. Define, for n > 0,

6(n) == [ (1M —1)15,) V>0 (D) (ay), (3.4.1)

where E(y) is the event that y does not surround the origin. Then the relation-
ship between the process (D},t > 0) and the process (D;,t < ) is described in
Proposition 3.4.11 below. First, however, we show that 8(«a) is finite and positive.

Lemma 3.4.9. The quantity 6(n), which is defined in Equation (3.4.1), is finite
whenever 11 < 1 — x/8. In particular, () is finite.

Proof. The integral may blow up when R(y) is small or when 7 is close to the
origin. We will control the two parts separately.

To handle the integral over the set of loops y for which R(y) is small, we calcu-
late

[ @0 — 1)1z 1,29 (D) (1)
< [ epMrp<i 2™ () @)

S [ ROV Irgy<r/ /P @) () < oo,

For the set of loops passing near the origin.

/(e"capm — D1{rp)>1/23 15" (D) (dy) < /CR(D\7)—nl{R(y)>l/2}1E(y)Vbub(D)(d7)°

Conditioned on {R(y) > 1/2} N E(y), we can parameterize y clockwise by the ca-
pacity seen from the origin starting from the root and ending at the root: (y(¢),0 <
t < T). Suppose S is the first time that y exits the ball B(x,1/2) where x € 0D is
the root of y. Then we know that, given y[0, S, the future part of the curve y[S, T]
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has the same law as a chordal SLE in D\ [0, S] from y(S) to the root of y. Thus we
only need to show that the integral is finite when we replace the curve by chordal
SLE curve.

Precisely, suppose ¥ = (y1,+ > 0) is a chordal SLE in the upper-half plane H
from 0 to co (parameterized by the half-plane capacity), we only need to show that

E[CR(H \ y;i)**!] < o0 (3.4.2)

where CR(H \ ;1) is the conformal radius of H \ y seen from i. Suppose g; is the
conformal map from H \ y[0, t] onto H normalized at infinity, so that (g:(z) —z)z —
2t as z — co. And let W; be the image of the tip y(t) under g;. Define

Zy=g(i)— W, ©,=argZ;, S; =sin®;.

And define
M; = CR(H\ y[0,#];i)*/8~1 x s¥/*~1,

Then M; is a local martingale (see [80, Proposition 6.1]). Denote P* as the law
of chordal SLE weighted by the martingale M. We also know that E*[S]78/%] is
bounded from above by some universal constant C (see [80, Equation (6.9)]). Thus

E[CR(H\ ;i)**'] < C,
which completes the proof. O

Corollary 3.4.10. The quantity
J(@PdD —1)vR(D7 {0}) (dr) (3.43)
is finite as long as n < 2/x — x /32.

Proof. The combination of Proposition 3.4.6 and the proof of Lemma 3.4.9 gives the
result that the quantity in Equation (3.4.3) is finite aslongasn+a <1 —-«/8. 0O

Proposition 3.4.11. For any t > 0, the law of (y!,s < t) is the same as the law of
(ys,s < t) conditioned on (r > t) and weighted by M; where

M; = exp (aanp(ys) — 9(a)t> i (3.4.4)
s<t

In particular, for any ¢ > 0, the law of Df is the same as the law of D; conditioned
on (r > t) and weighted by

CR(Dy) %0},

Proof. We first note that the process (ys,s < t) conditioned on (7 > t) has the
same law as a Poisson point process with intensity 1z, vPub (D) restricted to the
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time interval [0,t). Suppose (¥s,s > 0) is a Poisson point process with intensity
1g(;) V""" (D), and define

M; = exp (a > cap(¥s) — H(a)t) .

s<t

So we only need to show that, for any function f on the set of bubbles such that
both of the following integrals are finite,

s<t

E {exp (_ Zf(?s)) A’/ftjl = exp (—t/(l - e_f(Y))e“caP(Y)IE(Y)Vb“b(D) (dy)) .
This can be obtained by direct calculation:

—logE

exp(— zf(?s))l/w\t}

s<t

+0(a)t

= —logE {exp (— Z(f(%) - acap()?s))>

s<t

=t / (1 — e /=P )1 VPO (D) (dy) + O(a)t

= t/(] —e=fN)e cap(")lg(y)vb“b (D) (dy). a

The following proposition describes the transience of the uniform exploration
process of CLE, in D \ {0}.

Proposition 3.4.12. Suppose (D/,t > 0) is a uniform CLE, exploration process in
D\ {0}. Denote by R(D{) the least value of R such that D} is contained in RD.
Then, almost surely,

R(D}) = 0, ast — oo.

Proof. Suppose (Dy,t < 1) is a uniform CLE exploration process in the unit disk.
From Proposition 3.4.11, we have that

P[@D}, NaD = @] > P@DL NaD = @] > e 9@TP@Dr NaD = @ |7 > T] > 0.
Define D] = D}, ; then there exist 7 € (0,1) and p > 0 such that
P[D} c D] > p.

For k > 1, define
Tk = kT, D; = D}‘k+/

and let ¢ be the conformal map from D} onto I normalized at the origin: ¢¢(0) =
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0,¢;(0) > 0. For k > 1, the events {¢y(D}, ) C rD} areiid. Thus
Xk:P[w(DZH) C D] = co.

Thus, almost surely, there exists a sequence Kj — oo such that
¢k, (Dk 1) C 7D, forall j.

Since D}, C D}Qj +1, we have that
(ij(D}],H) crD, forallj.

Then we can prove by induction that D}(]_ C r/~1D: Suppose it is true for some j >
1. Since ¢k; is the conformal map from D;r(]_ C "D onto D, let w1 be the conformal
map from D;Qj onto #/~!D normalized at the origin and let v, be the conformal

map from 7/~ onto I normalized at the origin (in fact, ¥2(z) = z/#/~1). Then
¢k; = W2 0y1. Thus

Dk, C (k)7 (D) = 97 093 (D) = y7'(¥'D) C /D

The last relation follows from the inequality |y (z)| > |z] for all z.
We have proved that, almost surely, there exists a sequence K; — oo such that
D}}j C 7/D. Since the sequence of domains (D}, t > 0) is decreasing, this implies

BN R -y mM
LIC CuliCiudliull. -

We conclude this section by explaining how the loops (L}, ¢ > 0) obtained from
the point process of bubbles (y{,t > 0) (the Poisson point process with intensity
vP®(D\ {0})) correspond to the loops in a CLE. We first remove from D all loops
L} (with their interiors) for t > 0, and then, in each connected component, sample
independent CLEs. We will argue that the collection of these loops from CLE to-
gether with the sequence (L},t > 0) has the same law as the collection of loops in
aCLEin D\ {0}. The idea is very similar to the one used in [70, Section 7] to show
that the loops obtained from the bubbles have the same law as the loops in CLE in
D.

Suppose I't is a CLE in D \ {0}. Fixa pointz € D\ {0}. Let L(z) be the loop
in I'* that contains z. We will describe a discrete exploration of I'" for discovering
L*(z). Fix e > 0 small and § > £ small. Sample x; € 9D uniformly from the
circle. The loops of I'" that intersect B(xy, ) are the loops we discovered. Call
the connected component of the remaining domain that contains the origin the
to-be-explored domain and let f;* be the conformal map from the to-be-explored
domain onto the unit disc normalized at the origin. Let y;"e be the discovered loop
with largest harmonic measure seen from the origin. The image of the loops in the
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to-be-explored domain under f;* has the same law as CLE. Thus we can repeat
the same procedure, define f; £ y;’e etc. For k > 1, define

te _ gte . t,e
O =fit oo fi”

We also need to keep track of the point z: let zx = ®(z), and let K be the
largest k such thatz € (d),‘:'f )~Y(D). Define another auxiliary stopping time K’ < K
as the first step k at which either |z;|] > 1 —68 or k = K. If K’ < K, this means
that the point z is conformally far from the origin and is likely to be cut off in
the discrete exploration. We first address the case that z is discovered at the step
K + 1. Note that @};‘ will converge in distribution to some conformal map ¥} (for
reasons analogous to those given in the proof of Proposition 3.2.4) obtained from
the Poisson point process (y],t > 0). This implies that L*(z) has the same law as
(P1)~1(rl), as we expected.

Next we deal with the case that z is cut off from the origin: we stop the dis-
crete exploration at step K’ — 1. At the step K/, instead of discovering the loops
intersecting the ball of radius ¢, we discover the loops intersecting the circle with
radius /8. After this step, we continue the discrete exploration (of size €) by tar-
geting the image of the point z, following the discrete CLE exploration procedure.
We discover the point z at some step. Letting € and § tend to zero appropriately,
we can also prove the conclusion for L(z) in this case.

More generally, for fixed z3,..,zx € D\ {0}, we also need to demonstrate the
conclusion for the joint law of (L¥(z1), ..., LT (z¢)). The argument is almost the same
as above and is omitted.

3.5 CLE in the punctured plane

3.5.1 Existence and properties of CLE in the punctured plane

In this section we discuss CLE in the final standard doubly connected planar do-
main: the punctured plane. The following lemma is analogous to Lemma 3.4.1.
For a proof, we refer the reader to [68, Lemma 5.1].

Lemma 3.5.1. There exists universal constant C < co such that the following is
true. Forany § € (0,1),0 < ' < r < 82, and annular region D C A(§, }), there
exists a coupling between an annulus CLE, T, in A(r, %) and an annulus CLE, T’/
in A(7', 1) such

log(1/9)

* — *, < - ANk

PID; ’l < Clog(l/r)'

where D (resp. Dy) is the set obtained by removing from D all loops (and their
interiors) of I'; (resp. I'y) that are not contained in D. And on the event D} = Dj},,

the collection of loops of I'; restricted to D; is the same as the collection of loops of
I, restricted to Dj).
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The following theorem, analogous to Theorem 3.4.2, establishes the existence
of CLE in the punctured plane.

Theorem 3.5.2. For x € (8/3,4], there exists a unique measure on collections of
disjoint simple loops in C \ {0}, which we call CLE, in C\ {0}, to which CLE in
A(r, %) converges in the following sense. There exists universal constant C < o0
such that for any § > 0 and for any annulus D C A(J, %), one can couple a CLE,
I''inC\ {0} and a CLE, I'; in A(r, 1) so that

log(1/6)

t,% *

where D (resp. D}) is the set obtained by removing from D all loops of I'* (resp.
I,) that are not contained in D, and so that on the event { D'* = D} }, the collection
of loops of T restricted to D'* is the same as the collection of loops of T, restricted
to Dy.

It is clear that CLE, in C \ {0} can also be viewed as the limit of CLE in RD \
{0} as R — oo or the limit of CLE, in C\ rD as ¥ — 0. Theorem 3.5.2 may be
proved by making small modifications to the proof of Theorem 3.4.2.

The following proposition is a direct consequence of the construction given in
Theorem 3.5.2.

Proposition 3.5.3. CLE, in C\ {0} is invariant under the conformal maps
1l.z+— Az, forall A € C, and
2.z 1/z.

3.5.2 Uniform exploration of CLE in the punctured plane

For R > 1,suppose (D%, t > 0) is a uniform CLE, exploration process in RD\ {0}
with DS’R = RD. For s € R, define

TR = inf{t : CR(D{{’) < e}, DI(R) = Dz, (3.5.1)

We abbreviate TR := T{ and DY(R) := D}(R).

Lemma 3.54. For all s € R, there exists a decreasing function §(R) such that
8§(R) — 0as R — oo and that

P[D!(R) c RD] >1—8(R) aslongas R >R

Proof. Without loss of generality, we may assume s = 0. From the scale invariance
and the transience of the uniform exploration process (Proposition 3.4.12), there
exists a decreasing function 81 (R) such that §;(R) — 0 as R — co and that

P {D*(R) - %R]D)} >1-61(R). (3.5.2)
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Let R > 1, and choose R > R?. Suppose (Df,t > 0) is a uniform CLE, exploration
in RD \ {0}. Define

T =inf{t: CR(D},) <R},

p LN % 5
D _DT+’ and
R = CR(DY).

And let ¢ be the conformal map from RD onto D} normalized at the origin so that
¢(0) =0and ¢'(0) = 1.

Let (Df,t > 0) be an independent uniform CLE, exploration in RD \ {0}, and
define D*(R) as in (3.5.1) with respect to (D}, t > 0). Then we have that

¢(D'(R)) £ D'(R).

To show the conclusion, we only need to control the domain ¢(D'(R)).

The process (—log CR(D}),t > 0) is a compound Poisson process starting from
— log R. Furthermore, its jump distribution is absolutely continuous with respect
to Lebesgue, because by Proposition 3.4.6 its jump distribution is absolutely con-
tinuous with respect to the log conformal radius jump distribution for the uniform
CLE exploration in the disk. Therefore, by Proposition 3.2.6 and Corollary 3.4.10,
there exists a positive constant > 0 such that

P[R >pR]>1—p", forall pec[0,1/2], R >R2 (3.5.3)

We will fix p later. Set
E; =[R > pR].
From (3.5.2), we have that on E1,
P [D*(R) C %’RD] >1-61(pR) forall R. (3.5.4)
Set 1
E; = {D*(R) C Z’R]D)} .

By Corollary 2.2.16,

lo(z) —z| < 4|z|*/R, forall z| < R/4. (3.5.5)

Thus, on E2 we have '
¢(D'(R)) C RD.

Combining (3.5.3) and (3.5.4), we have that
P[D'(R) C RD] > P[E; N Ey] > 1 — p” — 81(pR).
The conclusion is proved by setting p = log R/R, and §(R) = p" + 81(pR). O

141



Lemma 3.5.5. For all s € R, there exists a decreasing function §(R) such that
6(R) — 0as R — oo and that the following is true. There exists a coupling
between uniform exploration processes in R1D and R, with corresponding do-
mains D{ (R;) and D! (R;) such that the conformal map v from D} (R;) onto D} (R,),
normalized at the origin so that y(0) = 0 and ¥/(0) > 0, satisfies

P [y —id]le < 1/R] > 1— 8(R), (3.5.6)

where || f — g||w is the supremum norm for two conformal maps defined on the
closure of D = DI (R;):

If = 8lleo = sup{|f(2) — 8(2)| : z € D}.
Proof. Without loss of generality we assume s = 0. Suppose Ry, Ry > R®, where
R > 128. Set R = R Fori € {1,2},let (D}, > 0) be a uniform CLE, exploration

process in R;D \ {0}. Define

T' = inf{t : CR(D}{) < R},

ti _ nyti
D' = DTiJr, and
R; = CR(D').

Let ¢; be the conformal map from R,;ID onto D'/ normalized at the origin so that
9i(0) = 0and ¢(0) = 1.

By Proposition 3.2.6, there exists n > 0 such that there is a coupling between
R1 and R, satisfying
P[R1 =R;]>1—-R™ (3.5.7)

We couple (D}7},0 <t < T') and (D}2,0 < t < T?) so that (3.5.7) is satisfied, and
we define E; = {Rq = R,}. On E1, denote R = Ry = R;. Set p = 64/R and

E; = {R > pR}.
We also have that

P[E)] > 1 — p". (3.5.8)

On E; N Ey, let (Df,t > 0) be an independent uniform CLE, exploration in R \
{0}, and let D*(R) be the domain defined in (3.5.1) with respect to the exploration
(D}, t > 0). We couple (D], > T1) and (D]?,¢ > T2) so that each is the confor-
mal image of (D}, > 0) on the event E; N E, and we couple them as independent
explorations on the complement of E; N E;. Set

Es = [D'(R) C RD).
From Lemma 3.5.4, there exists a decreasing function §1(R) such that §
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to zero as R — oo and, on E; N E;, we have
P[Es] > 1—81(R), (3.5.9)

since pR > R?. Fori € {1,2},
d
¢i(D'(R)) = D'(Ry).

Set ¥ = ¢y 0 @7 . Then v is the conformal map from D*? onto D*? normalized at
the origin and

¥(91(D'(R))) = p2(D'(R)).
Thus we only need to show that v satisfies (3.5.6).
First, on E; N E; N E3, since

lp1(z) —z| < 4]z|*/(pR), forall |z| <R,

we know that
¢1(DY(R)) C 2RD.

Second, on E; N E; N E3, by the Koebe 1/4 Theorem, we have that
D' > %pR]D) = 16R3D.
By (3.5.5), we have

4lz)?

-1—6_1—{3 for all |Z| S 2R.

[y (z) —z| <
Combining these, we have that
lw(z) —z| <1/R, forall z € ¢1(DY(R)).
Finally, we combine (3.5.7), (3.5.8), and (3.5.9) to obtain
P(lw(z) —z| <1/R Vz € ¢1(D'(R))] = P[EyNE;NE3] > 1— R™"— p" — 81(R),
which completes the proof. a

Theorem 3.5.6. There exists a coupling of a CLE, I'in C\ {0} and a random family
of domains (D;);cg, which we call the uniform exploration of CLE in the punc-
tured plane, such that
(i) for all t € R, the restriction I'|Dt is a CLE, in Dy,
(ii) (Dt+s)s>0 is a uniform exploration of T ID: in Ds, and
(iii) CR(D;) < lifand onlyift > 0.

Remark 3.5.7. Conditions (i) and (ii) in Theorem 3.5.6 determine the law of (D;);cr
up to translations of the form (D;);er — (Di+4)ter for to € R, and condition (iii)
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is included to remove this ambiguity.

Proof. Suppose §(R) is the decreasing function in Lemma 3.5.5. For k > 1, define
Ry inductively so that §(Ry) < 27%, Ry > 25, and Ryy1 > R§.

By the proof of Lemma 3.5.5, for all k > 1 there exists a coupling between
a uniform exploration in Rx;1ID) and a uniform exploration in Ry, so that the
probability of the event Ey is at least 1 — 27, where E is the intersection of the
events

e D' (Ryyq) C 2R, and

o there exists a conformal map v defined on 16R;°;]D, normalized at the origin,
that maps DT (Ry,1) onto DT (Ry,,) and satisfies

le(z) —z| <R forall |z < 2Ry

Since 337 4 2=% < oo, the Borel-Cantelli lemma implies that there almost surely
exists a positive integer I such that Ex holds for all k > 1. For m > I, define

Fm:wmo...ou/l.

Clearly, for m > I and n > 1 we have

|Fm(z) —z| <2/R;, foralijz|j <2R;D, and
|Ep4n(2) — Fm(z)] <2/Ry, forall |z| < 2R/D.

Thus F,, converges uniformly to a map Fx on 2R;D. Set
Do := D*(c0) 1= Foo(D"(Ry41))-

Our coupling is consistent in that Dy does not depend on the choice of I. For t > 0,
define (D;);>¢ to be the image of the exploration in Dy under Fe.

To define D; for negative values of t, we choose a monotone sequence s, tend-
ing to —oo and repeat the above construction (using the same coupling) with D}
in place of D!. In this way we obtain for each n > 1 a domain D;n (o0) and an
exploration process (D;;"),>0 therein. The aforementioned consistency of our cou-
pling ensures that Dy appears as one of the domains in each of these exploration
processes. In other words, for all # > 1, we have Dy = D" for some sequence
of real numbers u,. By Lemma 3.5.4, u, — ccasn — oco. We set D_; = Dj:_t,
where 7 is chosen to be large enough that u, > t. This completes the construc-
tion of the domains (Dy);cgr, and conditions (i)-(iii) follow immediately from the
construction. O
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3.6 A coupling of the GFF and the CLE exploration
process

3.6.1 The topographic map of the Gaussian free field

Let D C Cbe a domain, and leth : D — R be a continuous function. One natural
way to encode F is to specify the collection of all level sets {z : h(z) =t} fort € R,
in the same way that cartographers use a topographic map to represent terrain.
We will construct such a collection of all level sets of the zero-boundary Gaussian
free field (GFF) h, a conformally invariant random generalized function which is a
fundamental object in the study of two-dimensional statistical physics models.

Since h is a generalized function but not a function, some work is required to
make the notion of a level set precise. One approach, carried out in [59], is to project
the GFF onto the space of functions piecewise affine on a triangulation of small
mesh size § > 0. The image h° of h under this projection is a continuous function,
so its level sets are well-defined. Although our construction works directly in the
continuum setting and does not make reference to the discrete GFF (as in [60]), it is
nevertheless instructive to begin by considering the level sets of the discrete GFE.

For simplicity, we let D = [—1,1]%, n € N, and 6 = 2/n. We triangulate D by
tiling D with § x § squares and dividing each square into two right triangles with
lines of slope —1 (so each tile looks like N). For each face F in this triangulation, #°
is almost surely non-constant along all three edges of F, which means that the level
sets of h’ | ¢ are line segments. It follows that the level loops of h® are polygonal
curves which we may equip with a natural orientation, specified by the rule that
we trace out the loop so that the values of & immediately to the right of the curve
are larger than the values of # immediately to the left of the curve. In other words,
the values of # infinitesimally outside a counterclockwise oriented loop are larger
than the values of 1 infinitesimally inside the loop, and vice versa for a clockwise
loop. In Figure 3-4, we show a surface plot of a GFF sample!, along with the
collection of level loops surrounding the origin, with the colors red and blue used
to indicate counterclockwise and clockwise orientation, respectively.

We are particularly interested in the outermost blue loop surrounding the ori-
gin, as well as the collection I’ of all the outermost blue loops. We will show that
the continuum analogue of I'®, which we denote T, is a CLE,4 (for more details
regarding the conformal loop ensemble, see Section 3.6.2). We will also give an in-
terpretation of the red loops in Figure 3-4, relating them to a uniform exploration
of T’ using a Poisson point process of SLE bubbles, introduced in [84].

3.6.2 The uniform CLE exploration and the GFF

The Schramm-Loewner evolution (SLE) processes were introduced by Oded Schramm
[58] as candidates for the scaling limits of discrete statistical physics models in

1To simulate the GFF height gap, we add A = v/7/8 to the values of  on the boundary of the
square. This has the effect of specifying the orientation of the boundary of the domain.
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Figure 3-4: Panel (a) shows a surface plot of a discrete GFF h° on a 250 x 250
grid. Panel (b) shows the level lines of h° surrounding the origin. Red loops are
oriented counterclockwise (with the values of & larger outside than inside), and
blue loops are oriented clockwise (with values of  larger inside). Observe that the
loops surrounding a given point appear in an alternating sequence of red and blue
bands, where each band consists of a nested progression of loops of the same color.
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Figure 3-5: A picture of all the clockwise loops which are surrounded by no other
clockwise loop, colored from blue to red to green in decreasing order of height.
The continuum analogue of this height-indexed collection of loops is a uniform

CLE, exploration process in [—1,1]%.
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two dimensions. A chordal SLE is a random non-self-traversing curve in a simply
connected domain, joining two prescribed boundary points of the domain. SLE
curves, indexed by x > 0, are the only random planar curves that satisfy confor-
mal invariance and the domain Markov property. SLE processes have been proved
to be the scaling limits of many discrete models. For example, SLEy is the scaling
limit of a level line of the discrete GFF with certain boundary conditions [59].

The conformal loop ensembles (CLE) were introduced as candidates for the
scaling limit of the collection of all of the interfaces in the discrete model, in con-
trast to the single-interface model SLE. A CLE is a countable random collection of
simple loops that are disjoint and non-nested. CLEs, indexed by x € (8/3,4], are
defined and studied in [66, 70]. The CLEs are the only collections of simple loops in
a simply connected domain that satisfy both conformal invariance and the domain
Markov property: if I is a CLE in the unit disk, then I satisfies

e conformal invariance: Let ¢ be any conformal map from DD onto itself, ¢(I')
has the same law as I'. This makes it possible to define CLE in any simply
connected domain D via conformal images.

¢ the domain Markov property: For any simply connected domain D C D, let
D* be the set obtained by removing from D all loops of I that are not totally
contained in D. Then, given D*, for any simply connected component U of
D*, the conditional law of the loops of I contained in U is the same as the
law of CLE in U.

Each loop in CLEy is an SLE-type loop. This implies, for example, that the Haus-
dorff dimension of each loop is 1 + § almost surely [4].

The original construction of CLE, [65] involves choosing a root R € aD and
considering an exploration tree, which is a collection {nR =% : z € D} of SLE,(x — 6)
processes (a variant of SLE,), each starting from R and targeted at a point z €
D. The collection of processes is coupled in such a way that for every z,w € D,
the processes n%7% and nR =% agree (up to time change) until the first time 7 that
z and w lie in different connected components of D \ n%87?[0,7]. The loops are
constructed using branches of the exploration tree. We refer the reader to [65] for
more details. Observe that, because of the choice of root, the exploration tree is not
invariant under any map that does not fix the root.

In [84], the authors constructed a more symmetric exploration process for x €
(8/3,4]. Loosely speaking, they define n®~% as follows: (1) choose a root R ac-
cording to harmonic measure on dD, and (2) after each time 71 closes a loop, re-
sample a fresh starting point for the next loop according the harmonic measure
on the boundary of the unexplored component containing z. Such a process car-
ries two natural time parameterizations: (1) log conformal radius time, for which
t = —log CR(D \ 7*—%[0, ], z) + log CR(D, z), and (2) the local time of the log con-
formal radius time, which is obtained from log conformal radius time by excising
each interval during which a loop is traced.

For x = 4, this exploration process is target invariant in the sense that it is
possible to couple a collection of such processes n% 77 targeted at every point z €
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D. Furthermore, in this coupling, the local time associated with each loop in I is
independent of the target point z used to define it [84]. We encode this process by
associating with each loop £ € I the local time ¢, when that loop was added. We
refer to this process as the uniform exploration of CLE,.

3.6.3 Statement of coupling theorems

Our first result establishes the existence of a coupling of the type described in Sec-
tion 3.6.1, in which the CLE,4 loops may be viewed as level loops of the Gaussian
free field. In this coupling, the height of each level loop L corresponds to its time
t(L£) in the uniform exploration. We write int £ to denote the bounded region en-
closed by L.

Theorem 3.6.1. There exists a coupling between a zero-boundary GFF k in the
unit disk and a uniform CLE, exploration process ((£,#(L£)), £ € T) such that the
following is true. Given the exploration process ((L, t(L)), £ € I'), the conditional
law of k|, is that of a GFF with boundary value 2A(1 — ¢(£)). Furthermore,
the family (k| : £ € I) is conditionally independent given the exploration
process.

We will also show that level loops and heights are deterministic functions of the
free field in this coupling. This result is what one would expect from the discrete
motivation, since level loops of a random continuous function are determined by
the function.

Theorem 3.6.2. In the coupling of Theorem 3.6.1, the CLE loops and the explo-
ration process are deterministic functions of the field.

We also prove a whole plane version of Theorems 3.6.1 and 3.6.2. Let I be a
nested CLE, in C [25, 49]. We define a subset I C I', which we call the origin-
nested whole plane CLE, as follows. Let £y be the outermost loop £ € I sur-
rounding the origin for which CR(L,0) < 1, and let (£x : k € Z) be the doubly-
infinite sequence of all loops surrounding the origin arranged in nested order (so
that £; surrounds L; for all j < k). Denote by Ty the union of (£ : k € Z) and the
set of all loops K € T such that no loop with the same orientation as X surrounds
K and is surrounded by the innermost loop in (L : k € Z) surrounding K. We say
that (t : L € Tg) is an exploration of T if for all k € Z, either ((—1)¥(t; —tc,) :
L € int Ly \ int[,k+1) or ((—1)k+1 (tﬁ - th) : L € intL; \ int£k+1) is a CLE4
exploration process in int £;. We denote by o(L) € {—1,1} the orientation of a
level loop L of a GFF, where o(£) = —1 if £ is clockwise and o (L) = +1if L is
counterclockwise.

Theorem 3.6.3. There exists an origin-nested whole plane uniform CLE4 explo-
ration process (t(£) : £ € Tp) and a coupling of this process with a whole plane
Gaussian free field h with the property that for all k € Z, the field hl;,,, and
the exploration (o(Ly)(tz —tz,) : £ C int Ly \ int L11) are coupled as in Theo-
rem 3.6.1. Furthermore, in this coupling the exploration is a deterministic function
of the-field.
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3.6.4 Comparison with a symmetric GFF/CLE4 coupling

In this section, we relate our coupling between GFF and CLE4 to a coupling be-
tween CLE,4 and the Gaussian free field introduced in [42]. We begin by reviewing
a standard result about Brownian motion.

Consider a one-dimensional standard Brownian motion (B(t),t > 0), and de-
fine the reflected Brownian motion Y (t) = |B(t)| for ¢ > 0. Then Y can be decom-
posed into countably many Brownian excursions (a Brownian excursion (e(t),0 <
t < 1) is a Brownian path with e(0) = 0,e(r) = Oand e(t) > 0 for0 < t < 7).
We define the local time process (L(t),t > 0) of the Brownian motion, which is a
nondecreasing function which is constant on the interior of each excursion. If we
parameterize these Brownian excursions by the local time process of the Brownian
motion, then we obtain a Poisson point process of Brownian excursions (e, u > 0).

We can also reverse this procedure. There are two ways to construct a Brownian
motion from a Poisson point process of Brownian excursions (ey,u > 0).

(i) Sample i.i.d. coin tosses o, for each excursion ¢,, multiply the excursion by
the sign o, and concatenate these signed excursions. The process we getis a
Brownian motion.

(ii) Concatenate all the excursions to obtain a reflected Brownian motion (Y(t), ¢ >
0). Define the local time process (L(t),t > 0) of Y. Then the process (Y (t) —
L(t),t > 0) has the same law as a Brownian motion.

The coupling in [42] is defined as follows. We let I be a CLE, in ID. For each loop
L € I, sample an independent random variable o (L) to be +24 or —21 with equal
probability. We think of o(L) as the orientation of £, that is, o(£) = +2A (resp.
o(L) = —2A) corresponds to £ being oriented clockwise (resp. counterclockwise).
The law on the obtained sample ((£,0(L)), £ € T) is called CLE4 with symmetric
orientations. The following theorems are analogous to Theorems 3.6.1 and 3.6.2
for the GFF/CLE4 exploration coupling.

Theorem 3.6.4. There exists a coupling between zero-boundary GFF # in the unit
disk and CLE, with symmetric orientations ((£,0(L)), £ € T) in the unit disk
such that the following is true. We denote the restriction of # inside the loop £ by
h|,. Given the loop configuration with orientations ((£,o(L)), L € T), for each
loop L, the conditional law of k|, is that of a GFF with boundary value 240 (L).
Furthermore, the family (k| : £ € T) is conditionally independent.

Theorem 3.6.5. In the coupling given by Theorem 3.6.4, the loop configuration
with orientations ((£,o (L)), £ € T') is a deterministic function of the field 4.

Because of the additional randomness of the signs o (L), the coupling between
the GFF and CLE4 given in [42] is analogous to construction (i) of Brownian mo-
tion from the It6 excursions. The uniform exploration coupling is analogous to
construction (ii).

Acknowledgements. We thank Wendelin Werner and Jason Miller for helpful dis-
cussions.
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Remark 3.6.6. In this paper, we focus on x = 4. The necessary and sufficient condi-
tion for 7 to have positive probability to hit the interior of the interval (xR, x/+1.R)
(resp. (x/*LE, xi'L))is

i, i .
S R € (=2,0) (resp. Y ot e (-2,0)),
i=0 i=0

with the convention p%L = pO0R =0, x0L = 0—, 1L = —co, x0R = o+, x™+1R —
o0. See [13, Lemma 15].

3.6.5 The Gaussian free field

The zero-boundary Gaussian free field & on a domain D ¢ C is a random distri-
bution, or generalized function, on D. Loosely speaking, this means that # is too
rough for h to be defined pointwise, but it is possible to integrate / against suffi-
ciently regular test functions. More precisely, & is a random element of the space of
continuous linear functionals of the space C¢°(D) of smooth functions compactly
supported in D. We use the notation (k, p) for the evaluation of h at p € CX(D).
We refer the reader to the survey articles [64] and [37] for more details about the
construction of the GFF.

The law of the zero-boundary GFF on D is characterized by its covariance ker-
nel, which is the function Gp : D x D — R for which

COV[(hr Pl)/ (h,pz)] = /D/DPI(X)Pz(y)GD(x,y) dx dy

In fact, the GFF covariance kernel Gp is the Green’s function of the Dirichlet Lapla-
cian on D, which may be written as

1 ~
Go(x,y) = —5-log|x —y| + Gp(x,9),

where for each x € D, y — Gp(x,y) is the harmonic extension of the restriction
of the function y — —zlog|x —y| to aD. Alternatively, y — Gp(x,y) can be
expressed as the density of the occupation measure of Brownian motion started
at x € D, which assigns to each measurable set B C D the expected amount of
time spent in B by a Brownian motion started at x and stopped upon exiting D. By
the conformal invariance of planar Brownian motion, Gp is conformally invariant,

and therefore the zero-boundary GFF is also conformally invariant.
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3.7 Coupling between the GFF and radial SLE,

3.7.1 Level lines of the GFF

SLE4 curves can be viewed as level lines of the GFF, but since the GFF is not a
function, some care is required to make this notion precise. The results in this
subsection collected from [59, 60, 42, 40].

Theorem 3.7.1. Fix weights (p’; p) and corresponding force points (x*; x*). De-
note by (K;)i>0 an SLE4(p"; p®) process. There exists a coupling (K, ¢) where ¢ is
a zero boundary GFF on H such that the following is true. Let 7 be any stopping
time which is almost surely less than the continuation threshold of K. Let k; be the
harmonic function in H with boundary values:

-4 (1 & ip“) i x € [fi(x*h), fi(x1),

i=0

i=0

+A (1 + Z}: pi’R) it & E Lff(xj'R),ft(xf'H,R))’

where pOL = p0R = 0, 0L = 0, ¥+l = o0, x0R = 0%, x"*+1R = oo (see Figure
3-6). Then the conditional law of & 4 kg restricted to H \ K; given K; is equal to the
law of ¢ o fr + by

n([0,7])

—A(L+pME) A QL+ptR) =AL+pM) A A A A A+
a0 R fe@) £07) 0 {07} fo(=")

Figure 3-6: The function #; in Theorem 3.7.1 is the harmonic extension of the
boundary value in the right panel.

Denote by 7 the curve generating the Loewner chain in the coupling of Theo-
rem 3.7.1. The height of the field on the left and right sides of 7 are not the same,
but in fact differ by 2A. This height gap is a reflection of the fact that the GFF is a
distribution rather than a function. Nevertheless, since the heights of the field on
the two sides of 1 are constant and average to zero, we may interpret 77 as a height-
zero level curve of ¢&. Another feature of level curves we expect 7 to satisfy is the
property of being determined by the field:

Theorem 3.7.2. Suppose 7 is an SLE4(p’; p®) and ¢ is a zero-boundary GFF on H.
In the coupling (7, ¢) of Theorem 3.7.1, n is almost surely determined by ¢.
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By Theorems 3.7.1 and 3.7.2, we may say that in the coupling (n, ¢), the curve n
is the zero level line of ¢ + hy. In particular, if we let { be a zero-boundary GFF on
H and a € (—1, +1), then the level line of ¢ with height a is a chordal SLE4(—a —
1;a — 1) curve with force points at (0~;0%"). Note that whena € (—1,1), both —a —
1and a — 1 are above the continuation threshold, so the curve can be continued all
the way to .

The following results describe the interaction behavior of several level lines (see
Figure 3-7). For simplicity, we only state the results in zero-boundary GFF. They
can be generalized to the GFF with piecewise constant boundary values.

m

A-g;d ¥

VY
0 0 —maA A-aA 0
p1{z2) - -
0 0 0 —ay—-1  as-1 a-a1-2 ar—am az—1
Ez P Wl(xﬂ N -

(a) Let ¢ be a zero-boundary GFE Fix x; > x7. 1); is the level line
of & with height ;4 starting from x; targeted at o0, a; € (—1,1), for
=12

(b) If ag > ay, then 1, stays to (c) If a = ay, then ny merges (d) If a; < ay, then 0,
the left of ;. with n7; upon intersecting.  crosses 71 upon intersecting
and never crosses back.

Figure 3-7: Let ¢ be a zero-boundary GFFE. Fix x1 > x3. 7; is the level line of ¢ with
height a;A starting from x; targeted at co, a; € (—1,1), fori € {1,2}.

For proofs of the following two propositions, see [81].

Proposition 3.7.3. Suppose that ¢ is zero-boundary GFF on H, fix x; > xp, and let
ay,a2 € (—1,1). Let n; be the level line of ¢ with height ;A starting from x; targeted
at oo, fori € {1,2}.
1. If ap > a, then 1, almost surely stays to the left of n;.
2.1f a; = a,, then 77, may intersect 17, and upon intersecting, the two curves
merge and never separate.
3. If a3 < ay, then 72 may intersect 777, and upon intersecting, crosses and never
crosses back.
In particular, if x; = x, that is the two level lines starting from the same point,
then 17, almost surely stays to the left of 7; when az > a; and 7, almost surely stays
to the right of 71 when az < a;.
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The following result describes the conditional law of one level line given the
other level lines (see Figure 3-8).

Proposition 3.7.4. Let ¢ be a zero-boundary GFFon H. Fix -1 <a<b<c <1,
and let n,, 1y, 1c be the level lines of ¢ starting from 0 targeted at oo with height
ad,bA, cA respectively. Then the conditional law of n; given 7, and 7, is chordal
SLEs(c—b—2;b—a—2).

Figure 3-8: Fix —1 < a < b < ¢ < 1, the conditional law of n;, given n,, 7. is
SLE4(c—b—2;b—a—2).

From Theorems 3.7.1 and 3.7.2, the GFF level line starting from 0 and targeted
at co is well-defined and is a deterministic function of the field. By conformal
invariance, we can define the level line of the GFF in any simply connected domain
starting from a boundary point and targeted at another boundary point. In this
section, we describe a level line of the GFF starting from a boundary point and
targeted at an interior point.

We let I be a zero-boundary GFF in the upper half plane, and we fix a starting
point x € R, a target point z € H, and a constant 2 € (—1,1). The level line of
h starting from x targeted at co with height aA is a chordal SLE4(—a — 1;a —1).
In particular, this chordal curve is target independent, which means that we can
construct the level line n = 1,7 * targeted at z in the following way: Run the curve
starting from x targeted at co until the first time ¢; that 7([0, #1]) disconnects z from
o0, and denote by H; the connected component of H \ 1([0, #1]) containing z. We
choose any point x; on the boundary of H;, and continue the curve by targeting at
x1 until the first time t, that n([t1, t2]) disconnects z from x; in Hj. Denote by Hj
the connected component of Hy \ n([t1,t2]) containing z. We choose any point x>
on the boundary of H; and continue the curve by targeting at x; until the first time
t5 that n([t2, t3]) disconnects z from x, and so on. This procedure can be continued
until we reach the continuation threshold: at some time tg, the boundary value on
Hg is constant and is either A — aA or —A — aA; see Figure 3-9 and recall Remark
3.6.6.

Once we reach the continuation threshold, we can no longer continue the level
line towards z. We define n¥™* to be [0, ty] and reparameterize the curve by
the capacity seen from z, yielding the curve (n}7%(t),0 < t < 7;7°%). Note that,
although (#, Hy, k € N) depends on the choice of the target points (x, k € N), the
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process n57% does not. We call the curve (n27%(t),0 < t < 737°%) the level line of
h with height aA starting from x targeted at z.

Denote by H = H,(x,z) the connected component of H \ 7;7* containing z.
Note that, when we complete the level line 77 with height aA targeted at z, there
are two possibilities for the boundary value of & on the interior side of dH: either
A —ak or —A — aA. In the former case we say that H is a plateau, and in the latter
case we say H is a valley. We may also say that z is an a plateau or in a valley,
if x and a are clear from the context. The level line 7} 7% has the following basic
properties.

(a) Run the level line with (b) Choose any point x; on (c) At some time f,, we meet
height aA starting from x tar- the boundary of Hj. We the continuation threshold:
geted at oo until the first time continue the level line with the boundary values of h on
t; that n disconnects z from height ad from 7(t;) inside the inside of H, are constant,
co. We denote by Hj the con- Hj by targeting at x| until the equal to either A —al or —1 —
nected component of H \ 7 first time f; that n disconnects aA.

containing z. z from x1.

Figure 3-9: The construction of the level line with height aA starting from x € R
targeted at z € H. If we reparameterize the curve by capacity seen from z, then this
level line does not depend on the choice of target points (x;, k € N) in the process
of the construction.

Lemma 3.7.5. Suppose k is a zero-boundary GFF in H and fix x € R, z € H, and
€ (=1,1). The level line of i with height aA starting from x and targeted at z
satisfies the following properties:

e Itis a continuous curve up to and including the continuation threshold.

e Itis a deterministic function of the field.

e The probability that H;(x,z) is a plateau is (1 +a)/2.
Proof. The first two properties are immediate from the construction. The third
property follows from the optional stopping theorem and the fact that (h(z)):>0 is

a martingale, where /; is defined as in the statement of Theorem 3.7.1. See [67] for
details. a

By target independence, we also have the following.
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Lemma 3.7.6. Suppose h is a zero-boundary GFF in D and fixa € (—1,1). The level
line of & with height aA starting from 1 and targeted at the origin has the same law
as radial SLE4(—a — 1;a — 1) from 1 to the origin with two force points (1*;17),
up to the first closing time 71:

71 = mf{t >0: W = Vt+ = Vt_} (3.7.1)

where W is the driving function, and the processes V*t and V~ track the evolution
of the force points under the Loewner flow

Next we describe the relationship between the GFF and radial SLE after the first
closing time. Suppose # is a zero-boundary GFF in D and fixa = —1 + 2e fore > 0
small. The level line of k starting from 1 and targeted at the origin with height aA
has the same law as radial SLE4(—a — 1;4 — 1), and we denote it by 1([0, 71]). Let
D; be the connected component of I \ 7([0,71]) containing the origin. Note that
the probability of the event that the origin is on a plateau is . If this is true, we stop
the curve. If not, given 7([0, 71]), the law of % restricted to D; is the same as GFF
in D; with boundary value —2¢1. We continue the curve in D; by the following
the level line of height —2¢A + aA of the field in D; starting from 7n(71) targeted at
the origin until the continuation threshold is hit, and denote this part of the curve
by 1([r1,72]). Let D, be the connected component of D1 \ ([r1, 72]) containing the
origin. If the origin is not on a plateau, then we continue the curve by the level line
of height —4¢A + al, and so on. At some finite step N the origin is on a plateau,
and we stop. See Figure 3-10. We call the path (7(t),0 < t < 7y) the e-exploration
process of i starting from 1 and targeted at the origin stopped at the discovery
time 7. It follows from the construction that N has a geometric distribution:

PIN>n]=(1—¢)" forall n>0.

Recall that Dy is the connected component of D \ 7([0, T5]) containing the origin.
In Section 3.8, we show that Dy converges in distribution as ¢ — 0 to the CLE,
loop containing the origin.

From the domain Markov property, we know the existence of the entire radial
SLEy(—a—1;a—1):

Corollary 3.7.7. Fixa € (—1,1). Radial SLE4(—a — 1;a — 1) starting from 1 with
force points (1%;17) is generated by a continuous curve (n(t),t > 0) which is
transient in the sense that
Lim |n(t)| = 0.

Proof. We only need to show the transience of the path. Suppose a € (—1,0] and
a = —1+ 2¢. Let be a radial SLE4(—a — 1;a — 1) and (1, k > 1) be its successive
closing times. Let N be the random index for which 7y is s discovery time. For
t > 0, denote by H; the connected component of I \ ([0, t]) containing the origin,
and define g; to be the conformal map from H; onto I) normalized at the origin so
that ¢;(0) = O and g/(0) = ¢'.
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(a) Given 7 up to time 7y, if (b) Given n up to time 7y, if (c) Given 5 up to time 7, the
the origin is in a valley, the the origin is in a valley, the mean height of the field at the
mean height of the field at the mean height of the field at the origin is —2Ned + 24.

origin is —2&A. origin is —4¢1.

Figure 3-10: Fixa = —1 + 2¢, where € > 0 is small. We start the radial SLE4(—a —
1;a — 1) by the level line of the field with height a, denoted as 7([0,71]). If the
origin is in a valley. We continue the curve by following the level line of height
—2¢eA + al. If the origin is still in the valley, we continue the process until at some
finite step N, the origin is on a plateau.

We claim that for T > 0 sufficiently large, we have
P[@HTNoD = @] > 0. (3.7.2)

Define n = |1£2| + 1. Clearly, for T large enough, the probability of the event
{T > t,and N > n} is positive. On this event, the conditional law of boundary
of H;, given n([0, 7,]) is the law of the level line of zero-boundary GFF in D with
height —2Ane + aA. Since

—2Ane +al < —A,

the probability that this level lines hits o) is zero by Remark 3.6.6. This implies
(3.7:2).

From (3.7.2), there exist r € (0,1) and p € (0,1) such that
P[Hr C D] > p.
Denote
Di = Hir, @k = 8kt Ex = [px(Diya) C D], for k>1.

From the conformal invariance and domain Markov property of 7 we know that
the events (Ex, k > 1) are i.i.d. Thus ¥x P[Ex] = co, which implies that there almost
surely exists a sequence nj — co such that for all j, the event E,, holds. We will
show by induction that forall j > 1,

Dy, C 117D, (3.7.3)
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which implies the transience of the path.
Suppose (3.7.3) is true for j > 1. Note that

We only need to show ’
(p;jl(rl])) c r'D. (3.7.4)

We know that Pn; is the conformal map from Dn]. C 1D onto D normalized at
the origin. Let 1 be the conformal map from D, onto #7~1D normalized at the
origin and let ¥>(z) = z/r/~1. Then ¥n; = Y2 0¥y, and (3.7.4) follows by noting
that |y1(z)| > |z| for all z. O

3.8 Exploration of the GFF

3.8.1 The boundary-branching GFF exploration tree

In this section we describe a way of exploring the GFF which is closely related to
the uniform CLE,4 exploration from Section 3.2.3. To this end, we first construct an
object we call the boundary-branching GFF exploration tree.

Suppose h is a zero-boundary GFF in D. Fix a = —1 + 2¢ with € > 0. The
level line of h starting from 1 targeted at —1 with height aA has the same law as
chordal SLE4(—a — 1;a — 1) with force points (17;1%). Given two target points
Y1, Y2 € 9D; the relationship between the level line targeted at y; and the level line
targeted at y; is the following: the two curves coincide up to the first time that
y1,Y2 are disconnected. After this time, the two paths evolve towards their target
points respectively. We denote by Y54 the union of all level lines starting from
some x € 0D and targeted at some y € dD. We call Y57 the boundary-branching
exploration tree of GFF with height al.

Lemma 3.8.1. Let 2 be a zero-boundary GFF in the unit disk. Fixa € (—1,1). The
boundary-branching exploration tree Y34 with height al of h has the following
properties:

e Y54 is almost surely a deterministic function of h.

e The law of Y24 is conformal invariant, that is, for any conformal map ¢ from
D onto itself, ¢(Y?#) has the same law as Y24,

e YB4 separates D into countably many connected components. Given Y?#, the
conditional law of & restricted in these components are independent GFF’s;
some of these GFF’s have boundary value A(1 — 2) and the others have bound-
ary value A(—1 — a). We call the components with boundary value A(1 — a)
plateaux and the other components valleys.

o The probability of the event that the origin is in a plateau is (1 +4)/2.

158



In fact, the connected component of D \ Y3 containing the origin has the same
law as the connected component of D \ 7([0, 71]) containing the origin, where 7 is
radial SLE4(—a — 1;2 — 1) and 17 is its first closing time. Recall that a = —1 + 2¢
with £ > 0 small. Given Y24, let ¢ be the plateau with largest harmonic measure
seen from the origin.

Lemma 3.8.2. The law of y* normalized by 1/ converges vaguely to M, the SLE;-
bubble measure in D uniformly rooted over the circle, with respect to the Haus-
dorff metric.

Proof. By conformal invariance, it suffices to show that the law of y* conditioned
on the event that y* contains the origin converges to

M(- | y contains the origin).

Leta = —1 + 2¢, and suppose Y24 is the boundary-branching exploration tree of
the zero-boundary GFF in D. Define D¢ to be the connected component of D \ Y34
containing the origin. Denote by 7 the corresponding radial SLE4(—a — 1;a — 1)
started at point chosen uniformly at random on the boundary of the disk.

We condition on the event that D? is a plateau, and let ¢ and 7 be the ran-
dom times for which 7[o, 7] is the excursion of 7 which surrounds the origin. For
all 5 > 0, we can sample a curve with the same law as 7[o, 7] by first sampling
1[0, o + 8] and then sampling an SLE, curve in D \ 5[0, o + 6] from n(o + &) to n(o)
conditioned to surround the origin. Since the conformal map from D \ 5[0, 0 + §]
to D converges on compact subsets of DD to the identity as €,6 — 0, we see that
the law of D? conditioned on 7(¢) converges to the SLE4 bubble measure rooted at
n(o). By symmetry, however, (o) is uniform on dD. Therefore, D¢ conditioned to
be a plateau converges to M(- | y contains the origin), as desired. a

Now we can describe the discrete GFF exploration process. Suppose h is a
zero-boundary GFF in D. Fix a = —1 + 2¢, where ¢ > 0 is small. Let Y} be the
boundary-branching exploration tree for & with height aA. And define D; to be
the connected component of D \ Y? containing the origin. Let f; be the conformal
map from D; onto D normalized at the origin, and denote by y; the plateau with
largest harmonic measure seen from the origin. If D; is a plateau (in other words
y1 = D), we stop. Otherwise, let h; be the image of & restricted to D; under f1-
Then h has the same law as a GFF with boundary value —2¢1. Let Y2 be the
boundary-branching exploration tree for h; with height —2¢A + aA. Denote by D,
the connected component of D \ Y5 containing the origin. Let f, be the conformal
map from D; onto D normalized at the origin, and y; be the plateau with largest
harmonic measure seen from the origin. If D; is a plateau, we stop. If not, we
continue, etc. At some finite step N, Dy =7ynisa plateau, and we stop. Note that,
when the origin is in the plateau, the mean height of the field in Dy is —2NeA + 2A.

We summarize notation and properties of the discrete GFF exploration GFF
below:
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e The steps of discrete exploration are i.i.d. In particular, ((fu, yx), 7 < N) have
the same law.

o The first step N when the origin is in some plateau has a geometric distribu-
tion:
P(N > n) = P(The origin is in some valley)” = (1 —¢)".

e We define the conformal map
@ = f10- 0 ffoff.

Recall the terminology in Section 3.7; in fact, Dy := (®°)~!(yn) has the same
law as the connected component of D\ n([0, T]) where 7 is a radial SLE4(—a —
1;a — 1) and T is the discovery time time.

By arguments analogous to those for Theorem 3.8.2 and Proposition 3.2.4, we
have the following conclusions. Suppose (y;,t > 0) is a Poisson point process with
intensity M. Define T = inf{f : y; contains the origin}. For each t < 7, let f; be the
conformal map from the connected component of D \ y; containing the origin onto
D normalized at the origin. And, for each t < 7,set ¥; = o5« fs, Ly = (%) Yyq).

Lemma 3.8.3. The relationship between the discrete exploration of GFF and the
Poisson point process of bubbles is the following:

e @° converges in distribution to ¥; in Carathéodory topology seen from the
origin as € — 0.

e Dy = (®¢)~!(yn) converges in distribution to L;, the loop in CLE4 contain-
ing the origin, in Carathéodory topology seen from the origin as € — 0.

e Given (YE,1 < n < N), the mean height of the field on Dy = (®°)!(yn),
which is 24(1 — N¢), converges in distribution to 2A(1 — 7).

Corollary 3.8.4. Set a = —1 + 2¢ with € > 0. Suppose 7 is a radial SLE4(—a —
1;a — 1) and T is its discovery time. Define L* to be the connected component of
D\ n([0, T]) containing the origin. Then L? converges in distribution to the loop in
CLE4 containing the origin in the Carathéodory topology seen from the origin.

3.8.2 The GFF exploration and proofs of main theorems

We first explain the relationship between the GFF e-exploration process and &/2-
exploration process (starting from 1 and targeted at the origin), introduced in Sec-
tion 3.7.

Suppose h is a zero-boundary GFF in D. Fix n € Nand £ = 27". Let " be the
e-exploration process of h starting from 1 targeted at the origin, and 77 be its first
closing time. Denote by D} the connected component of D \ #”([0, 7%]) containing
the origin. Let n"*! be the £/2-exploration process of h starting from 1 targeted

at the origin, and let 71 and 747 be its first and second closing times. Define
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D!*! to be the connected component of D \ 7"*1([0, 7/*!]) containing the origin,
fori e {1,2}.
On the event that DY is a valley, Proposition 3.7.3 implies that almost surely,

Dot = p¥ . O, (3.8.1)

(a) D} is a plateau. (b) Case 1. Di’“ is a plateau. (c) Case 2. D{‘“ is a valley.

Figure 3-11: On the event that D} is a plateau, there are two cases for D™, Dj*1.

On the event that D7 is a plateau, there are two cases for Dy ™, Dy 1. (i) If Di !
is a plateau, then almost surely, (see Figure 3-11)

D1 c DY, (3.8.2)

(i) If DI is a valley and D3*1 is a plateau, then almost surely, we have (see
Figure 3-11)
DI = Pl DI, (3.8.3)

Now suppose # is a zero-boundary GFF in D. Fix ¢ = 27" for some n € N. Let
n" (resp., ") be the e-exploration process (resp. &/2-exploration process) of h
starting from 1 targeted at the origin, and (z},k > 1) (resp., (7711, k > 1)) be its
successive closing times, and N (resp., N"*1) is the integer for which

n n+1 n+1
T" =1fm (resp,. T""' =1}1h)

is its discovery time. Also, denote by L" (resp. L"*1) the connected component of
D\ 7" ([0, T"]) (resp. D \ n"*1([0, T"*1])) containing the origin.
From (3.8.1), (3.8.2), and (3.8.3), we have that, almost surely,

gl ol (3.8.4)

and
N"*+l ¢ [2N",2N" —1}. (3.8.5)

To complete the proof of Theorems 3.6.1 and 3.6.2, we introduce the full branching
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GFF exploration tree. Fix € > 0 small and 2 = —1+ 2¢. Suppose h is a zero-
boundary GFF in D. Recall the construction of e-exploration process of the field
starting from 1 targeted at the origin, introduced in Section 3.7. This construction
can be easily generalized to the exploration process starting from any point on the
boundary targeted at any interior point. Note that, if x € dD and y;,y; € D, the
relation between the exploration process 7, starting from x targeted at y; and the
exploration process 7, starting from x targeted at y; is the following: the two paths
coincide up to the first time that y; and y, are disconnected. After this time, the
two paths evolve toward their respective target points (stopped at their discovery
times respectively). Now we define full branching GFF e-exploration tree of the
field to be the union of all e-exploration trees starting from all x € 0> and targeted
atallz € D.

Lemma 3.8.5. Let k be a zero-boundary GFF in D. Fix € > 0. The full-branching
g-exploration tree Y of h has the following properties:

e YF# is almost surely a deterministic function of A.

e The law of Y/ is conformal invariant, that is for any conformal map ¢ from
D onto itself, ¢(Y!#) has the same law as Y,

e Define L?(z) to be the connected component of D \ Y/ containing z € D.
Then L?(0) is, almost surely, the same as the connected component of D \
([0, T]) where 7 is the e-exploration process of h starting from 1 targeted at
the origin and T is its discovery time.

e Given Y%, the conditional law of & restricted to L£(0) is the same as a GFF
with mean height #°(0) = 2A(1 — eN?) for some integer N° determined by
YFe.

Proof of Theorems 3.6.1 and 3.6.2. Suppose h is a zero-boundary GFF in D. For any
n € N, set e = 27", Run the full-branching exploration tree YE™ of h. Note that YF
is a deterministic function of h. For any z € D, define L"(z) to be the connected
component of D \ Y/ containing z. Denote by N"(z) the integer such that, given
YF", the mean height of & restricted to L"(z) is

h"(z) :== A(1 — 27"N"(z)).
From (3.8.4) and (3.8.5), for any fixed z € D, we have almost surely,
L"(z) C L"(z), |W"TY(z) — KW' (z)| < 27"A. (3.8.6)
Note that L"(z) and h"(z) are deterministic functions of k. Fix some countable
dense subset D of D.
On one hand, almost surely, (3.8.6) holds for all z € D. On this event, define

YFe — LnJYF,n, and h‘”(z) = 11;11‘\ h" (Z)
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Define L®(z) to be the connected component of D \ Y*° containing z € D. Note
that ((L*(z),h*°(z)),z € D) is almost surely determined by h. From Lemma 3.8.5,
we know that, given Y, for all z € D, the conditional law of / restricted to L"(z)
is a GFF with mean height #"(z). In fact, h" (resp. h*) can be defined almost
everywhere by setting h"(w) = h"(z) (resp. h®(w) = h*(z)) when w € L"(=z)
(resp. w € L®(z)). Fix a smooth function p, compactly supported in D. We know
that (h", p) plus an independent Gaussian with mean zero and variance E"(p) has
the same law as a Gaussian with mean zero and variance E(p), where

E(p) = //,‘) _p(x)p(y)Gp(x,y) dxdy, and

o) = [ _p(x)p(y)G"(x,y)dxdy, G'(xy) = > Gur(x)

Here Gp is the Green’s function of the Dirichlet Laplacian on the domain D, and
the sum ¥ 1» is taken over all connected components of D \ Y. From (3.8.6),
(K", p) converges to (h°, p) almost surely. Furthermore, E"(p) is decreasing in n
thus has a limit, which we denote by E®(p). Then (h*, p) plus an independent
Gaussian with mean zero and variance E®(p) has the same law as a Gaussian
with mean zero and variance E(p). This implies that #* plus independent zero-
boundary GFF’s in each connected component of D \ Y/ has the same law as a
zero-boundary GFF in D. And given YF*°, the conditional law of  restricted to
L*(z) is the same as a GFF with mean h*(z) for any z € D.

On the other hand, from Lemma 3.8.3, we know that L"(z) converges in distri-
bution to the loop in CLE4 containing z in the Carathéodory topology seen from
z. Thus L®(z) has the same law as the loop L(z) in CLE4 containing z. Moreover,
h*(z) has the same law as 2A(1 — t(L(z))) where t(L(z)) is the time parameter of
the loop L(z) in CLE, with time parameter.

Combining these two observations, we conclude the proof of Theorem 3.6.1.
Since ((L*(z), h*°(z)),z € D) is almost surely determined by h, we have also
proved Theorem 3.6.2. O

Remark 3.8.6. If we consider the setting of Lemma 3.8.3, the proof of Theorems 3.6.1
and 3.6.2 actually gives the almost sure convergence of Dy = (®¢)~!(yy) along
the subsequence €, = 27",

We conclude by proving Theorem 3.6.3.

Proof of Theorem 3.6.3. Let I be a nested CLE in C, and denote by (L : k € Z)
the sequence of loops surrounding the origin as defined in Section 3.6.3. Choose
o(Lg) uniformly at random from the set {+1, -1}, and let o(L;) = (—1)*o(Lo)
for all k € Z. For each k € Z, we sample an annulus CLE4 exploration process

(t’}: : L isbetween L and Lyy1)

in int £y \ int £yy1. We define (t;, : k € Z) inductively by t;; = Oand t;, , =
te, + (—l)a(ck)t’kkﬂ. For every CLE, loop £ between Ly and L, we define t; =
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Figure 3-12: To show that the level lines are determined by the free field in the
whole-plane exploration coupling, we sample an outside-in exploration (D;)cr
(from oo to 0) and an inside-out exploration (from 0 to co) with the same GFF k,
conditionally independent of one another. Each level loop L surrounding the
origin for the inside-out process is equal to D; for some t € R. To see this, we run
the outside-in process until it hits £; at some point x and some time 7, and we
then run a level line of the GFF inside D, starting at x and with height equal to the
height of L;. By pathwise uniqueness of level lines, this level line equals Lj.

te, + (—1)7F)tk Tt is clear from the construction that the resulting process satisfies
the definition of an origin-nested CLE4 exploration.

For each loop L in the origin-nested CLE,, we define an independent Gaussian
free field h,; with boundary conditions corresponding to the height {; and the
orientation of £. Then h = ¥ h, considered as a tempered distribution modulo
global additive constant, has the law of a GFF on C because the restriction of h to
the interior of £; has the law of a zero-boundary GFF (modulo additive constant),
and zero-boundary GFFs on a sequence of domains tending to C converge in law
to the whole plane GFF [43, Proposition 2.10].

To show that the level loops are determined by / in this coupling, we couple &
with an exploration process from oo to 0 and an exploration process from 0 to co in
such a way that the exploration processes are conditionally independent given #,
following [14]. This is possible since & conformally invariant and in particular is in-
variant under the inversion z — 1/z. We claim that the two exploration processes
are in fact equal, which implies that each is determined by h.

To see this, let £y be one of the loops surrounding the origin for the inside-
out process, and let t;, be the height corresponding to £;. Encode the outside-in
process as a nested progression (D;);cg of domains as defined in Theorem 3.5.6
in [68]. Let T = sup{t € R : Ly C D;} be the hitting time of £ for the process
(0D} )ser; see Figure 3-12. Since level lines cannot cross one another except at the
boundary of the domain, dD; and L touch rather than crossing. Since dD; and
L; touch, they have the same orientation and heights which differ by less than A.
Let x € dD; N Ly, and consider the level line in D; starting from x of height t.,.
By pathwise uniqueness of GFF level lines, this level line traces out L. It follows
that every loop surrounding the origin for the inside-out process is equal to D; for
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some t € R. Since k € Z was arbitrary, the result follows from Theorem 3.6.2. [

In the remainder of the thesis, we will prove the following theorem.

Theorem 3.8.7. In a conformally invariant exploration process of non-nested CLE,4
in a simply connected domain D C C, the exploration is a deterministic function
of the CLE4 loops.

We use Theorem 3.8.7 to construct a conformally invariant metric on CLE,.

Theorem 3.8.8. There exists a conformally invariant metric on the collection of
CLEj4 loops in D. ' '

Proposition 3.8.9. Let £ be a Brownian loop soup in D with intensity ¢ € (0,1],
and let (D;)s>o be a decreasing family of subdomains of D. For t > 0, define Df
to be the domain obtained by removing from ID the closures of clusters of loops in
L which are not contained in D;. Let 7 be a stopping time for the process (D} )>.
Then the conditional law of L restricted to D} given Dj is that of a Brownian loop
soup in Dj.

Proof. The proof is a straightforward modification of the proof of Lemma 9.2 in
[70], but for completeness we review it here. For D C ID and n > 1 we define
F,(D) to be the union of all squares in 2~"Z? contained in D. Then for all such
unions-of-squares V C D, the event {F,(D}) = V} depends only on the loops
intersecting D \ V and is therefore independent of the loop configuration in V.
This shows that for all n > 1, the loop configuration in F,(D}) is a Brownian loop
soup in F,(D?). Since Uy F;(D;) = Dy, this shows that the configuration in DJ is a
Brownian loop soup. a

3.9 The loops determine the exploration process

In this section we show that the conformally invariant CLE4 exploration process
is a deterministic function of the CLE4 loops. Our strategy is inspired by the one
used by Dubédat in [13, 14] to prove that the Gaussian free field determines the
SLE trace in the usual GFF/SLE coupling. The idea is to explore from dD to the
loop y surrounding the origin and from y to dD, with these explorations sampled
conditionally independently given the CLE4 loops. We show that the amounts of
exploration time in each direction in this coupling are almost surely equal. This
implies that the discovery time of y is determined by the CLE, loops.

Denote by K the set of compact subsets of C. For K,K' € K, we define the
Hausdorff metric

N . _ i _
dHausdorff(KzK)—max{i‘é};ylglg,lx yls sup inf |x yl},
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We regard a CLE4 I' as a compact set by considering its gasket, which is the set of
points surrounded by no loop of T'. Denote by 7 the space of processes (D;)>¢ of
nested domains, and we define

dr(D,D) = 51;103 Atausdortt(Dt, Dt).
1>

and equip 7 with its Borel o-algebra. The metric d7 inherits completeness and
separability from the Hausdorff metric [50], so T is Polish. Theorem 9.2.1 in [77]
establishes the existence of regular conditional probability distributions for Polish
space valued random elements, and we will use this theorem implicitly when we
sample random elements from their conditional laws given certain o-algebras.

3.9.1 Annulus CLE exploration

Proposition 3.9.1. Let U C I be an open set containing the origin, and let (D;);>¢
be a uniform CLE4 exploration in ) with associated CLE4 I'. Define

Tu :inf{t 20 : Ug Dt}

Then, given the loops of I intersecting D \ U, the loops of I contained in U and the
exploration (D;)o<:<T, are conditionally independent.

Proof. Denote by I';; the loops of T contained in U. We couple (D;)o<i<7, and T
as follows: sample (D;)o<i<T, from the law of a CLE4 exploration stopped upon
hitting U. Then sample I' by sampling independent CLEs in the components unex-
plored by (D;)o<:<T,;- By the domain Markov property of CLE, I'; is distributed as
a CLE4 in the origin-containing complementary component of I' \ T'y;. In particuiar,
I'y is conditionally independent of (Dy)o<;<71, given '\ T'y;. a

Proposition 3.9.2. Let (D;);cg be a uniform CLE4 exploration in D with associated
CLE I. Suppose that K is a random simply connected subset of I) coupled with
a CLE; in such a way that K contains the origin and almost surely no loop of T
intersects both K and its complement. Then the conditional law of the exploration
up to the hitting time of K is conditionally independent given I' of the loops of T
inside K.

Proof. For n € N, define the random domain U, to be the simply connected open
set of minimal area which contains K whose closure is a union of closed squares
in the grid 27"Z2. Denote by A, the exploration up to Ty;,, by B, the loops of T
inside Uy, and by C, the loops of I not inside U,. Applying Proposition 3.9.1 to
each domain U such that P[U,, = U] > 0, we find that for all bounded continuous
functions f and g,

E[f(An)g(Bn)|Cn] = E[f(An)|Cu] E[g(Bn)|Cul- (3.9.1)

Asn — oo, we have A, — A almost surely, where A is the exploration until the
hitting time of K. Similarly, we have B, — B and C,;;, — C, where B denotes
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Figure 3-13: Define a loop ensemble by first sampling a pinned loop y surround-
ing the origin, and then inside of y sample an exploration until just before the loop
surrounding the origin is discovered at time T. This procedure is a reversal of the
CLE, exploration process in D, wherein we explore loops not surrounding the ori-
gin for an exponential amount of time and then sample a pinned loop surrounding
the origin. Proposition 3.9.3 says that loops discovered by the exploration along
with dD7_ (shown in purple) along with an independent CLE4 outside y (shown
in cyan) form a CLE4 in D (Proposition 3.9.3).

the loops of I inside K and B denotes the loops of I not inside K. Hunt’s lemma
[10, Theorem 5.45] states that if (X,),en is an L!-dominated sequence of random
variables almost surely converging to X and (Fy)uen is a monotone sequence of
o-algebras with F = o (Upen F), then E[X,, | ;] — E[X | F] almost surely (and
in L!). Applying this lemma to take # — oo on both sides of (3.9.1), we obtain the
desired result. O

Proposition 3.9.3. Let y be a loop sampled from the bubble measure v***(D) re-
stricted to loops surrounding the origin. Let (D;)¢>o be an independent CLE, ex-
ploration inside y with T the associated CLE4, and let T be the time when the loop
containing the origin is discovered. Define I'; to be the loops of T outside of Dr_,
as well as dDr_. Sample an independent CLE4 I'; in the simply connected region
between y and dD. Then the union I of I'; and I'; is a CLE, in D.

Proof. Consider two consecutive CLE4 loops £; and L4 surrounding the origin in
an origin-nested CLE, coupled with a whole-plane Gaussian free field, as defined
in Theorem 3.6.3 (see Figure 3-14). Define £1 and L3 to be the exploration frontiers
just before the discovery times of £1 and L3, respectively. We will refer to touching
pairs of oppositely-oriented loops, such as (L1, L2), figure eights. The proposition
is equivalent to the claim that £3 along with the loops between £; and L3 are
distributed as a CLE;.

By inversion invariance of the GFF, loops L3 and £ are consecutive CLE4 loops
surrounding oo in the exploration of & from 0 to co. Therefore, the loops between
L3 and L, are distributed as an annulus CLE. Furthermore, £3 has the law of the
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Figure 3-14: Consider two consecutive figure eights in a whole-plane Gaussian free
field. The CLE;4 loops are illustrated with solid lines, and the exploration frontiers
just before the discovery time of each CLE, loop are shown dashed. The loops are
colored according to their orientation as GFF level lines.

origin-surrounding loop for a CLE; in £; by the inversion invariance of CLEy,
which is proved in [26]. O

3.9.2 The two-way annulus exploration

Let £ be a CLE4 loop surrounding the origin in an origin-nested whole plane CLE,,
sample a CLE4 I'g inside £, and let K be the CLE4 loop surrounding the origin. De-
note by Q the annular region between £ and K, and denote by I' the loop ensemble
in Q obtained by removing £ from I'y. By Proposition 3.3.6, I' is an annulus CLE
in Q. We sample an outside-in annulus exploration (D;)o<;<p of I from its con-
ditional law given T, and conditionally independent of (Ds)o<s<s we sample an
outside-in exploration (E;)o<;<T from its law given I'. Denote by u the resulting
law of (Q, (Ds)o<s<s, (Et)o<t<T). Denote by p the measure on quintuples

(©, (Ds)o<s<s, (Et)o<t<T, 0, T)

obtained by (1) sampling (Q, (Ds)g<s<s, (Et)o<i<t) from Sdu/u(S), (2) choosing o
from the uniform distribution on [0, S] (and conditionally independent given S of
everything else), and (3) defining

ti=sup{t =0 E: ¢ Q\ Dy}
We define y; similarly except that 7 is selected uniformly from [0, T| and
o:=sup{s >0: D; £ Q\ E;}.
Lemma 3.9.4. The marginal laws of
(€, (Ds)o<s<o, (Er)o<t<r)
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under y and p; are equal.

Proof. We begin by describing a way to sample (Q, (Ds)o<s<o, (Et)o<t<:) from its
p law. Sample the region Q and exploration (D;)g<s<s from its law under y.
Choose o uniformly in [0, S, and note that conditioned on 9D, and dDg, the CLE,4
loops between dD,; and dDs are distributed as an annulus CLET in that region. By
Proposition 3.9.3 and 3.9.2, we may sample an annulus CLE exploration from dDg
to 0D, from its conditional law given I'. If we denote this exploration by (E;)o<t<z,
then by Proposition 3.9.2 the law of (Q, (Ds)o<s<o, (Et)o<t<r) is the same as its p3-
law.

Define (L1, £3), (£3,L4), and (L5, Lg) to be three consecutive figure eights
in a whole-plane GFF, numbered outside-in. Define a measure v on triples (Q,
(Ds)o<s<o, (Et)o<t<r) by letting Q be the annular region between £; and Ls, let-
ting (Ds)o<s<o be the GFF exploration from £; to L3, and letting (E;):<; be the GFF
exploration from L5 to £4. In the following paragraph we argue that the y;-law of
(Q, (DS)OSSSGI (Et)OStS‘l’) is equal to v.

The p-law of S is a unit mean exponential random variable, so the u;-law of
S is te~tdt. Thus the yy-law of g, which is uniformly distributed from 0 to S, is
also a unit mean exponential and is therefore the same as the p-law of S. Thus
the y1- and v-laws of the exploration (D;)g<s<¢ agree. Furthermore, the v and g
conditional laws of the inner boundary of Q given D, are both given by Q(dD,,),
where Q = £ — K denotes the transition kernel mapping a loop £ surrounding
the origin to the law of the loop K surrounding the origin for a CLE4 in K. This is
true by definition for v, and for y; it may be seen by noting that the yy-law of S — o
given ¢ is a unit mean exponential independent of o. Finally, the conditional laws
of the explorations (E;);<; given (9D;)p<s<o and 0Ds are both given by annulus
explorations from dDg to dD,.

By inversion invariance of the whole-plane Gaussian free field, the law of (Q,

(Ds)o<s<or (Et)o<t<r) under gy is also equal to v. This concludes the proof. a

Lemma 3.9.5. p1(S) = 1 (T)
Proof. We will abbreviate D<s := (Dy)u<s and similarly for E. We claim that

(8|9, T, D<o, E<:] = ;[T |, T, D<o, E<c]. (3.9.2)

The lemma follows from (3.9.2) and Lemma 3.9.4.
For s € R, we define the function

8(Q,T,D<s) = p[S |2, T, D<)

Then the left-hand side of (3.9.2) equals p1[S | Q,T, D<c], since E is conditionally
independent of S. This in turn equals p[S | Q,T, D<g], because the p- and p;-laws
of the evolution of D after time ¢ are the same. Thus the left-hand side of (3.9.2)
equals ¢(Q,T, D<,).

The right hand side can be written as

ﬂ][T | QIFIDSO'/EST] = ﬂ[T |QIFIDSUIEST] = #[T I Q/rl DIUIEST]°
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because the forward exploration is conditionally independent of S given Q and T..
We define for t > 0

M; == [T |Q,T,D,0,E<ipr] = 8(((Q, T, E<y)), (3.9.3)

where ¢ denotes the inversion z — 1/z. Since (3.9.3) holds for all ¢, it holds for all
stopping times taking countably many values. Note that M is a nonnegative mar-
tingale, which by Doob’s upcrossing lemma implies that M; has a most countably
many discontinuities. Since the conditional law of 7 given Q, T', and E is absolutely
continuous with respect to Lebesgue measure (by Lemma 3.9.4), 7 is almost surely
a continuity point of M;. Therefore, we may define 7, = 27"|72" |, apply (3.9.3)
with ¢t = 7, and take n — oo to conclude that the right-hand side of (3.9.2) is the
same as g(1(Q,T, E<7)). The result then follows from Lemma 3.9.4. d

Theorem 3.9.6. We have S = T almost surely.

Proof. From Lemma 3.9.5, u(S?) = p1(S) = 1 (T) = p(ST). By symmetry, u(S?) =
p(T?). Therefore, by the Cauchy-Schwarz inequality, S = AT almost surely for
some A € R. Since p(S?) = u(T?), we have S = T almost surely. O

3.10 The CLE; metric

In this section we use result that the CLE4 loops determine their exploration to
define a metric on CLE,4 loops. In this metric, the balls of radius ¢ correspond to
the set of loops discovered by the exploration up to time . We begin by describing
a simple way to recover a metric from its metric balls.

3.10.1 An alternate metric space axiomatization

If (X,d) is a metric space, then for every x € X and r > 0, the closed d-ball of
radius r centered at x is defined by

By(x) ={yeX :d(xy) <r}.

The collection {B,(x) : x € X,r > 0} satisfies the following properties:
(i) (identity of indiscernables) Bg(x) = {x},
(ii) (nesting) B,(x) C Bs(x) whenever 0 <r <s,
(iii) (symmetry) for all x,y € X, sup{r > 0 : vy € B,(x)} = sup{r >0 : x ¢
B,(y)} < o0, and
(iv) (triangle inequality) forall x,y € X and r,s > O such thatr +s < sup{t > 0 :
y & Bi(x)}, we have B,(x) N Bs(y) = @.
It is straightforward to verify that if {B,(x) : x € X,r > 0} is a collection of sets
satistying these properties, then there exists a unique metric d on X such that for
all x € X and r > 0, the closed d-ball of radius r centered at x is B,(x).
The following proposition establishes a sufficiency condition for a collection of
subsets of X to satisfy the metric ball properties enumerated above.
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Proposition 3.10.1. Let X be a nonempty set, and suppose that {B,(x) : x € X,r >
0} is a collection of subsets of X satisfying properties (i) and (ii). Also, suppose that
forallx,y € Xandforall0 < r <sup{t >0 : x ¢ B;(y)}, we have

r+sup{s >0: B, (x)NBs(y) =@} =sup{t >0: y € By(x)} € R. (3.10.1)

Then there exists a unique metric on x with respect to which the closed ball of
radius r centered at x is B, (x).

Proof. We define d(x,y) = sup{t > 0 : y ¢ B;(x)}. Note that (3.10.1) implies
d(x,y) <r+sup{s : By(x) NBs(y) =D} <r+d(y,x)

for r > 0 arbitrary. This establishes d(x,y) < d(y, x). Reversing the roles of x and
y shows that d(y, x) < d(x,y), so property (iii) is satisfied.
To demonstrate property (iv), we note that if  +s < d(x,y), then (3.10.1) im-
plies that
s <sup{s > 0 : B,(x) NBs(y) = D}.

By property (ii), this implies that B,(x) N Bs(y) = @. a

3.10.2 The CLE; metric space

By Theorem 3.9.6, the discovery time of the loop containing the origin in a CLE, in
the disk is a deterministic function of the CLE4 loops. By conformal invariance, the
discovery time of every loop, and hence the entire exploration, is a deterministic
function of the CLE4 loops.

The boundary of D plays a privileged role as the loop from which we explore
in the CLE exploration process. However, it is also possible to explore from any
CLE loop. When used to describe a loop, the term shape will be defined to be its
equivalence class modulo scalings of the form z — Az, where A > 0. We say thata
loop 7 is stationary of the law of its shape is equal to the law of the shape of a loop
in a nested CLE, in C (note that by scale-invariance, all such loop shapes have the
same law). The construction in the following definition is illustrated in Figure 3-15.

Definition 3.10.2. LetI'be a CLE;in D. For t > 0 and £ € I', we define B;(£) C T
as follows. Let y be a stationary loop, independent of I', and conformally map T
to the interior of y. Choose a point zj in the interior of the image of £, apply the
inversion z + 1/(z — zp). Finally, conformally map the resulting configuration
to the unit disk ID. Since this loop ensemble is a CLE, in D, we may define an
exploration process from 0D which is determined by the CLE4 loops. We define
B:(L) to be the preimage under this composition of conformal maps of the set of
loops discovered up to and including time ¢ in this exploration process.

By conformal invariance, the resulting set B;(£) does not depend on v, the
choice of zg, or the two choices of conformal map between D and a stationary loop
(the first and third maps illustrated in Figure 3-15).
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Figure 3-15: To define the ball of radius ¢ centered at £ in terms of the CLE ex-
ploration, we apply a series of conformal maps to obtain a CLE configuration with
(the image of) £ as the outer boundary. The first map sends the configuration to the
interior of an independent, stationary loop. The second map is an inversion that
positions the image of the £ as the outermost loop in the configuration. Finally, we
conformally map to ID.

Proposition 3.10.3. There exists a metric § on I' whose closed ball of radius r cen-
tered at £ is equal to B,(L), forallr > 0, L € T.

Proof. 1t suffices to show that {B,(L) : r > 0,L € T'} satisfies the hypotheses of
Proposition 3.10.1. Conditions (i) and (ii) are immediate from the construction.

Let (Ds>g) be the exploration from aD to the loop £ surrounding the origin,
and let (E;);>¢ be the exploration from £ to dD. Define

F(s) =inf{t > 0 : 0E; £ D;}.

By Theorem 3.9.6, F(0) = S and F(T) = S. Furthermore, by Lemma 3.9.4, the
conditional laws of o and F(o) given I are both the uniform distribution on [0, S].
It follows that F(s) = S — s, which implies (3.10.1). O
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