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Abstract

Random (dr, d,)-regular LDPC codes (where each variable is involved in d, parity
checks and each parity check involves d, variables) are well-known to achieve the Shan-
non capacity of the binary symmetric channel (for sufficiently large d, and d,) under
exponential time decoding. However, polynomial time algorithms are only known to
correct a much smaller fraction of errors. One of the most powerful polynomial-time
algorithms with a formal analysis is the LP decoding algorithm of Feldman et al.
which is known to correct an Q(1/d,) fraction of errors. In this work, we show that
fairly powerful extensions of LP decoding, based on the Sherali-Adams and Lasserre
hierarchies, fail to correct much more errors than the basic LP-decoder. In particular,
we show that:

" For any values of d, and de, a linear number of rounds of the Sherali-Adams LP
hierarchy cannot correct more than an O(1/d,) fraction of errors on a random
(dr, de)-regular LDPC code.

" For any value of d, and infinitely many values of de, a linear number of rounds
of the Lasserre SDP hierarchy cannot correct more than an O(1/d,) fraction of
errors on a random (dr, d,)-regular LDPC code.

Our proofs use a new streching and collapsing technique that allows us to leverage
recent progress in the study of the limitations of LP/SDP hierarchies for Maximum
Constraint Satisfaction Problems (Max-CSPs). The problem then reduces to the
construction of special balanced pairwise independent distributions for Sherali-Adams
and special cosets of balanced pairwise independent subgroups for Lasserre. Our (al-
gebraic) construction for the Lasserre hierarchy is based on designing sets of points in
Fq (for q any power of 2 and d = 2,3) with special hyperplane-incidence properties -
constructions that may be of independent interest. An intriguing consequence of our
work is that expansion seems to be both the strength and the weakness of random
regular LDPC codes.
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Our techniques are more generally applicable to a large class of Boolean CSPs
called Min-Ones. In particular, for k-Hypergraph Vertex Cover, we obtain an im-
proved integrality gap of k - 1 - c that holds after a linear number of rounds of
the Lasserre hierarchy, for any k = q + 1 with q an arbitrary prime power. The best
previous gap for a linear number of rounds was equal to 2-E and due to Schoenebeck.

Thesis Supervisor: Madhu Sudan
Title: Adjunct Professor
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Chapter 1

Introduction

Low-density parity-check (LDPC) codes are a class of linear error correcting codes

originally introduced by Gallager [131 and that have been extensively studied in the

last decades. A (d,, dC)-LDPC code of block length n is described by a parity-check

matrix H E F"lX' (with m < n) having d, ones in each column and d, ones in

each row. It can be also represented by its bipartite parity-check graph (L U R, E)

where L corresponds to the columns of H, R corresponds to the rows of H, and

(u, v) E E if and only if He, = 1. For a comprehensive treatment of LDPC codes,

we refer the reader to the book of Richardson and Urbanke 1271. In many studies

of LDPC codes, random LDPC codes have been considered. For instance, Gallager

studied in his thesis the distance and decoding-error probability of an ensemble of

random (dr, de)-LDPC codes. Random (dr, d,)-LDPC codes were further studied in

several works (e.g., [31, 21, 26, 22, 8, 20, 17]). The reasons why random (de, d)-

LDPC codes have been of significant interest are their nice properties, their tendency

to simplify the analysis of the decoding algorithms and the potential lack of known

explicit constructions for properties satisfied by random codes.

One such nice property that is exhibited by random (dv, d,)-LDPC codes is the

expansion of the underlying parity-check graph. Sipser and Spielman [31] exploited

this expansion in order to give a linear-time decoding algorithm correcting a constant

fraction of errois (for dv, de = 0(1)). More precisely, they showed that if the under-

lying graph has the property that every subset of at most 6n variable nodes expands
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by at least a factor of 3d,/4, then their decoding algorithm can correct an Q(6) frac-

tion of errors in linear-time. Since, with high probability, a random (dv, d,)-LDPC

code satisfies this expansion property for some 6 = Q(1/d,), this implies that the

linear-time decoding algorithm of Sipser-Spileman corrects Q(1/d,)-errors on a ran-

dom (dr, d,)-LDPC code. A few years after the work of Sipser-Spielman, Feldman,

Karger and Wainwright [12, 10] introduced a decoding algorithm that is based on a

simple linear programming (LP) relaxation, and a later paper by Feldman, Malkin,

Servedio, Stein and Wainwright [11] showed that when the underlying parity-check

graph has the property that every subset of at most 6n variable nodes expands by

a factor of at least 2d,/3 + Q(1), the linear program of Feldman-Karger-Wainwright

corrects Q(6) errors. Again, since with high probability, a random (dr, dc)-LDPC code

satisfies this expansion property for some 6 = Q(1/de), this means that the LP of [12]

corrects Q(1/dc)-errors on a random (dr, de)-LDPC code.

However, the fraction of errors that is corrected by the Sipser-Spielman algorithm

and the LP relaxation of [12] (which is O(1/dc)) can be much smaller than the best

possible: in fact, [13] (as well as [22]) showed that for a random (dr, dc)-LDPC code,

the exponential-time nearest-neighbor Maximum Likelihood (ML) algorithm corrects

close to H1 -1(d/de) probabilistic errors, which by Shannon's channel coding theo-

rem is the best possible'. Note that, for example, if we set the ratio d/de to be a

small constant and let d, grow, then the fraction of errors that is corrected by the

Sipser-Spielman algorithm and the LP relaxation of Feldman et al. decays to 0 with

increasing de, whereas the maximum information-theoretically possible fraction is a

fixed absolute constant !2 The belief propagation (BP) algorithm also suffers from the

same limitation [4, 17]. In fact, there is no known polynomial-time algorithm that

approaches the information-theoretic limit for random (dr, d,)-regular LDPC codes.

'More precisely, the fraction of errors corrected by the ML decoder is bounded below H7 1 (d,/d)
for fixed d, but gets arbitrarily close to H 1 (d/dc) as d, gets larger.

21n fact, not only is the fraction of probabilistic errors that is corrected by the ML decoder
an absolute constant, but so is the fraction of adversarial errors [13, 5]. More precisely, for say
d, = 0.1d,, Theorem 11 of [5] implies that the minimum distance of a random (dv, d,)-regular
LDPC code is at least an absolute constant and it approaches the Gilbert-Varshamov bound for rate
R = 1 - d/dc = 0.9 as dc gets larger.
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In the areas of combinatorial optimization and approximation algorithms, hier-

archies of linear and semidefinite programs such as the Sherali-Adams [291 and the

Lasserre [18]4 hierarchies recently gained significant interest. Given a base LP relax-

ation, such hierarchies tighten it into sequences of convex programs where the convex

program corresponding to the rth round in the sequence can be solved in time no(r)

and yields a solution that is "at least as good" as those obtained from previous rounds

in the sequence. For an introduction and comparison of those LP and SDP hierar-

chies, we refer the reader to the work of Laurent [19] where it is also shown that the

Lasserre hierarchy is at least as strong as the Sherali-Adams hierarchy.

Inspired by the Sherali-Adams hierarchy, Arora, Daskalakis and Steurer [2] im-

proved the best known fraction of correctable probabilistic errors by the LP decoder

(which was previously achieved by Daskalakis et al. [7]) for some range of values of

d, and d,. Both Arora et al. [2] and the original work of Feldman et al. [12, 10] asked

whether tightening the base LP using linear or semidefinite hierarchies can improve its

performance, potentially approching the information-theoretic limit. More precisely,

in all previous work on LP decoding of error-correcting codes, the base LP decoder of

Feldman et al. succeeds in the decoding task if and only if the transmitted codeword

is the unique optimum of the relaxed polytope with the objective function being the

(normalized) 11 distance between the received vector and a point in the polytope. On

the other hand, the decoder is considered to fail whenever there is an optimal non-

integral vector 5. The hope is that adding linear and semidefinite constraints will help

"prune" non-integral optima, thereby improving the fraction of probabilistic errors

that can be corrected.

In this work, we prove the first lower bounds on the performance of the Sherali-

Adams and Lasserre hierarchies when applied to the problem of decoding random

3We point out that for some ensembles of irregular LPDC codes [25] as well as for the recently
studied spatially-coupled codes [17], belief propagation is known to have better properties. In this
work, our treatment is focused on random regular LDPC codes.

4We note that the Lasserre hierarchy, also known as the Sum of Squares hierarchy, was also
independently proposed by Shor [30], Nesterov [23] and Parrilo [24].

'Such an optimal non-integral vector is called a "pseudocodeword" in the LP-decoding literature.
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(d, d,)-LDPC codes. Throughout this work, by a random (dr, de)-LDPC code, we

mean one whose parity-check graph is drawn from the following ensemble that was

studied in numerous previous works (e.g., [31, 26, 22, 20, 5, 17]) and is very close to

the ensemble that was originally suggested by Gallager [13]. Set M := ndv = mde

where n is the block length and m is the number of constraints. Assign d, (resp. d,)

sockets to each of n (resp. m) vertices on the left (resp. right) and number them

1, ... , M on each side. Sample a permutation 7r : {1, .... , M} -+ {,.. . , M} uniformly

at random, and connect the i-th socket on the left to the ir(i)-th socket on the right.

Place an edge betwen variable i and constraint j if and only if there is an odd number

of edges between the sockets corresponding to i and those corresponding to j. This

construction is illustrated in Figure 1-1.

dd

d, d,

n variables M = nd, - mde m constraints

- rows of H sockets d- columns of H

dd

Figure 1-1: Construction of a random (dr, d)-LDPC code.

Our main results can be stated as follows:

Theorem 1 (Lower bounds in the Sherali-Adams hierarchy). For any d, and d, 5,

there exists q > 0 (depending on dc) such that a random (dr, de)-LDPC code satisfies

the following with high probability: for any received vector, there is a fractional so-

lution to the rn rounds of the Sherali-Adams hierarchy of value 1/(d, - 3) (for odd

de) or 1/(d, - 4) (for even d). Consequently, qn rounds cannot decode more than

a ~ 1/dc fraction of errors.

Theorem 2 (Lower bounds in the Lasserre hierarchy). For any dv and d, = 3 2' +3

with i > 1, there exists 7 > 0 (depending on de) such that a random (d, d,)-LDPC
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code satisfies the following with high probability: for any received vector, there is a

fractional solution to the qn rounds of the Lasserre hierarchy of value 3/(d, - 3).

Consequently, 77n rounds cannot decode more than a~ 3/d, fraction of errors.

We note that Theorems 1 and 2 hold, in particular, for random errors. We point

out that as in all previous work on LP decoding of error-correcting codes, Theorems 1

and 2 assume that a decoder based on a particular convex relaxation succeeds in the

decoding task if and only if the transmitted codeword is the unique optimum of the

convex relaxation. Note that the decoder based on the LP (resp. SDP) corresponding

to n rounds of the Sherali-Adams (resp. Lasserre) hierarchy is the nearest-neighbor

maximum likelihood (ML) decoder.

We note that our LP/SDP hierarchy O(1/d,) lower bounds for random LDPC

codes hold, in particular, for any check-regular code with good check-to-variable ex-

pansion. Moreover, the fact that the base LP corrects Q(1/de) errors follows from the

(variable-to-check) expansion of random LDPC codes'. In that respect, it is intrigu-

ing that expansion constitutes both the strength and the weakness of random LDPC

codes.

Some of our techniques are more generally applicable to a large class of Boolean

Constraint Satisfaction Problems (CSPs) called Min-Ones where the goal is to satisfy

each of a collection of constraints while minimizing the number of variables that are

set to 1. In particular, we obtain improved integrality gaps in the Lasserre hierarchy

for the k-uniform Hypergraph Vertex Cover (k-HVC) problem. The k-HVC problem

is known to be NP-hard to approximate within a factor of k -1- E [9]. This reduction

would give the same integrality gap only for some sublinear number of rounds of the

Lasserre hierarchy, whereas the best integrality gap for a linear number of rounds

remains at 2 - c [28]. We prove that an integrality gap of k - 1 - c still holds after a

linear number of rounds, for any k = q + 1 with q an arbitrary prime power.

6We note that Feldman et al. [11] first proved that LP decoding corrects an Q(1/d,) fraction of
errors on expanding graphs. Their proof was recently simplified by Viderman [33] who also slightly
relaxed the expansion requirements. Both works assumed that all variable nodes have the same
degree but the proof readily extends to the case where variable nodes can have degree either d, or
d, - 2, which is the typical case for random (do, dc)-LDPC codes.

17



Theorem 3. Let k = q + 1 where q is any prime power. For any c > 0, there exist

3,,q > 0 (depending on k) such that a random k-uniform hypergraph with n vertices

and m = On edges, simultaneously satisfies the following two conditions with high

probability.

" The integral optimum of k-HVC is at least (1 - c)n.

" There is a solution to the rn rounds of the Lasserre hierarchy of value k 1n.

1.0.1 Proof Techniques

The LP of Feldman et al. [12, 10] is a relaxation of the Nearest Codeword problem,

where given a binary linear code (represented by its parity-check matrix or graph) and

a received vector, the goal is to find the codeword that is closest to it in Hamming

distance. The Nearest Codeword problem can be viewed as a particular case of a

variant of Constraint Satisfaction Problems (CSPs) called Min-Ones, where the goal

is to find an assignment that satisfies all constraints while minimizing the number of

ones in the assignment (see [16] for more on Min-Ones problems). In this Min-Ones

view, each codeword bit corresponds to a binary variable that the decoder should

decide whether to flip or not.

Recently, there has been a significant progress in understanding the limitations

of LP and SDP hierarchies for CSPs (e.g., [14, 28, 32, 6]); in these works, the focus

was on a different variant of CSPs called Max-CSPs, where the goal is to find an

assignment maximizing the number of satisfied constraints. These results construct

fractional solutions satisfying all constraints and that are typically balanced in that

any coordinate of the assignment is set to 1 with probability 1/2 in the case of a

binary alphabet. Therefore, they yield a fractional solution where half the variables

are fractionally flipped.

In order to construct a fractional solution with a smaller number of (fractionally)

flipped variables, we introduce the technique of stretching and collapsing the domain.

Given an instance of the Nearest Codeword problem, we stretch the domain into a

finite set G via a map #$: G -+ {0, 1}. The new CSP instance has the same set V of

18



variables but each variable now takes values in G (as opposed to {0, 1}). A constraint

in the new instance on variables (vi, . . . , Vk) is satisfied by an assignment f : V -+ G if

and only if it is satisfied in the original instance by the assignment 0 o f : V -+ {0, 1}.

Assume that the map # satisfies 10#1(1)1 = 1 and that the previous results for Max-

CSPs yield a fractional solution over alphabet G such that each variable v takes any

particular value g E G with probability 1/fGf. If we can transform this fractional

solution into one for the original instance by collapsing 0-1(i) back to i for every

i E {0, 1}, we would get a fractional solution to the original (binary) instance of

the Nearest Codeword problem with value 1/f G. In Chapter 3, we show that this

stretching and collapsing idea indeed works. This technique can be generalized to

any Min-Ones problem (e.g., k-HVC) and is illustrated in Figure 1-2.

{o, 1} 0: G -+ {O, 1}; 10-1(1)= 1 alphabet G

MinOnes(P) Stretching (SP(P')

-1 -biased solution balanced solution

for MinOnes(P) Collapsing for CSP(P')

Figure 1-2: Diagram of the stretching and collapsing technique.

To apply the known constructions for Max-CSPs between our stretching and col-

lapsing steps, we need to construct special structures that are required by those

results. For the Sherali-Adams hierarchy in the case of the Nearest Codeword prob-

lem, we need to construct two balanced pairwise independent distributions on Gk:

one supported only on vectors with an even number of 0 coordinates and the other

supported only on vectors with an odd number of 0 coordinates. 7 For the Lasserre hi-

erarchy, we need to construct two cosets of balanced pairwise independent subgroups:

one supported only on vectors with an even number of 0 coordinates and the other

supported only on vectors with an odd number of 0 coordinates.

Constructing the desired balanced pairwise independent distributions in the Sherali-

Adams hierarchy can be done by setting up systems of linear equations (one variable

7Here, we are assuming WLOG that 0 E G. In fact, we can consider any fixed element of the set
G.
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for each allowed vector (x1,... , Xk) modulo symmetry) and checking that the re-

sulting solution yields a valid probability distribution (see Section 4.0.3 for more

details). Constructing the desired cosets of balanced pairwise independent subgroups

in the Lasserre hierarchy is more involved and our algebraic construction is based

on designing sets of points in Fd (for q any power of two and d = 2, 3) with special

hyperplane-incidence properties. One example is the construction (for every power q

of 2) of a subset E of q +2 points in F2 containing the origin and such that every line

in the IF-plane contains either 0 or 2 points in E. See Section 4.0.4 for more details.

Finally, random (dr, de)-LDPC codes typically have check nodes with slightly dif-

ferent degrees whereas in the CSP literature, it is common to assume that all the

constraints contain the same number of variables. Since our algebraic constructions

of cosets of balanced pairwise independent subgroups for Lasserre hold only for spe-

cific arity values, we need an additional technique to obtain the required predicates

for both arity d, and arity d, - 2 (which are with high probability the two possible

check-degrees in a random (dr, d,)-LDPC code). We construct such predicates by

taking the direct-sums of pairs and triples of previously constructed cosets, at the

expense of multiplying the value of the fractional solution by an absolute constant.

1.0.2 Organization

Chapter 2 provides background on the problems and hierarchies that we study in this

work. Chapter 3 introduces the stretching and collapsing technique and shows how

to leverage previous results for Max-CSPs to reduce our problem to the construc-

tion of special distributions and cosets. This general result holds for any Min-Ones

problem. Chapter 4 provides the desired constructions for the problem of decoding

random (d,, dc)-LDPC codes, proving Theorem 1 in Section 4.0.3 and Theorem 2 in

Section 4.0.4. The proof of Theorem 3 about k-Hypergraph Vertex Cover can be

found in Chapter 5.
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Chapter 2

Preliminaries

Constraint Satisfaction Problems (CSPs) and Min-Ones. Fix a finite set G.

Let P = {P1, . . . , P} be such that each P is a subset of Gki where ki is called the arity

of P. Note that unlike the usual definition of CSPs, we do not allow shifts, namely:

for bi, ... , bki E G, P + (bi, . . , bki) is not necessarily in P. Furthermore, predicates

are allowed to have different arities. Let kmax := maxz ki and kmin := mini ki. An

instance of CSP(P) is denoted by (V, C) where V is a set of n variables taking values

in G. C = {C1, ... , Cm} is a set of m constraints such that each Ci is defined

by its type ti E {1, 2,... , l} (which represents the predicate corresponding to this

constraint) and a tuple of kt, variables Ei = (e, 1 , ... , ei,kt ) E Vkt . In all instances

in the work, each variable appears at most once in each constraint. We sometimes

abuse notation and regard Ei as a subset of V with cardinality kt,. We say that

(V,C) is (s, a)-expanding if for any set of s' < s constraints {Ci,..., Cs,,} C,

I Ul , :' Eij ;> (EZijg8, EI3 1) - a - s'. It is said to be (s, a)-boundary expanding

if for any set of s' < s constraints {ci1,... , cis, } C, the number of variables

appearing in exactly one constraint is at least (EZ 1  ,8 IEi3 I) - a - s'. Note that

in both definitions, a smaller value of a corresponds to a better expansion. It is

easy to see that (s, a)-expansion implies (s, 2a)-boundary expansion. An assignment

f : V -+ G satisfies constraint Ci if and only if (f(ej),... , f(eis,~)) E Pt. When

G = {0, 1}, any instance of CSP(P) is an instance of Min-Ones(P), where the goal is

to find an assignment f that satisfies every constraint and minimizes If -1(1). The k-
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Uniform Hypergraph Vertex Cover (k-HVC) problem corresponds to Min-Ones({Pv})

where PV(X 1,1 , Xk) = 1 if and only if there is at least one 1 < i < k with xi = 1.

Balanced Pairwise Independent Subsets and Distributions. Let G be a finite

set with IGI = q and k be a positive integer. Let P be a subset of Gk and p be a

distribution supported on P. The distribution p is said to be balanced if for all

i = 1, 2,... , k and g E G, Pr( 1 ,. ,x)~[xi = g] = I.- It is called balanced pairwise

independent if for all i $ j and g, g' E G, Pr(x1,...,Xk)~A[xi = g and x3 = g'] = -.

The predicate P is called balanced (resp. balanced pairwise independent) if the

uniform distribution on P induces a balanced (resp. balanced pairwise independent)

distribution on pk.

Nearest Codeword. Fix the domain to be {0, 1}. The Nearest Codeword problem

is defined as Min-Ones({Podd, Peven}), where x = (x 1 , ... , xk) E {0, 1}k belongs to

Podd (resp. Peven) if and only if I{i E [k] : xi = 1}1 is an odd (resp. even) integer.

We slightly abuse the notation and let Podd (resp. Peven) represent the odd (resp.

even) predicates for all values of k. Let B = (L U R, EB) be the parity-check graph

of some binary linear code with ILI = n and IRI = m. Let s E {0, 1} be the

received vector (i.e., the codeword which is corrupted by the noisy channel). Denote

R :={1,..., m}. The instance of the Nearest Codeword problem given s is given

by V = Land for each 1< i m,Ei = {v E L : (v,i) E E}, andti =odd

if Ev:(v,i)EEB s = 1 (summation over F2 ) and ti = even otherwise. In an integral

assignment f : L -+ {0, 1}, f(v) = 1 means that the v-th bit is flipped. So if all the

constraints are satisfied, (sv+f(v))EL is a valid codeword and If- 1(1)1 is its Hamming

distance to s. We say that B is (s, a)-expanding or (s, a)-boundary expanding if the

corresponding Nearest Codeword instance is so.

Sherali-Adams Hierarchy. Given an instance (V, C) of CSP(P) and a positive in-

teger t < IVI, we define a t-local distribution to be a collection {Xs(a) E [0, 1]}SCV,IS<;t,a:S-+G

22



satisfying X0 = 1 and for any S C T C V with ITI < t and for any a : S -+ G

Z XT(co ) = Xs(a),
:T\S-+G

where a o # denotes an assignment T -+ G whose projections on S and T \ S are

a and # respectively. Given t > kmax, a solution to the t rounds of the Sherali-

Adams hierarchy is a t-local distribution. It is said to satisfy a constraint Ci if for

any a : Ei -÷ G, (a(ei,),... , a(eik)) 0 P implies that XE, (a) = 0 (i.e., the local

distribution is only supported on the satisfying partial assignments). The solution is

balanced if for any v E V and g E G, X,(g) :=X}(v -+ g) = 1. If G = {0, 1}, we

say that the solution is p-biased if for any v E V, X,(1) = p.

Given an LDPC code, let d a' be the largest degree of any check node. The

following claim shows that a small number of rounds of the Sherali-Adams hierarchy

is at least as strong as the base LP of Feldman et al.

Claim 1. The LP corresponding to d aX rounds of the Sherali-Adams hierarchy is at

least as strong as. the LP of Feldman et al.

Before proving Claim 1, we fix recall the base LP relaxation of Feldman et al. Fix

a code represented by its parity-check graph G = ([n] U [m], E), and let N(j) be the

set of all neighbors of check node j. The LP relaxation of Feldman et al. is given by:

min -fi
i=1

subject to:

Vj E [m], wj,s=1
SEE

V(i, j) EE, wj,s= f
SEE,SEi

Vi E [n], 0 < fi < 1

Vj E [m], VS E E, wj,s > 0
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where Ej is the set of all subsets of N(j) of even (resp. odd) cardinality depending

on whether the received vector has an even (resp. odd) number of l's in N(j).

Proof of Claim 1. To prove the claim, it is enough to map any feasible solution to

the LP corresponding to d' rounds of the Sherali-Adams hierarchy into a feasible

solution to the LP of Feldman et al. with the same objective value. The map is the

following:

" For every i E [n], let fi = X{i(1).

" For every j E [m] and every S C N(j), let wj,s = XN(i)(as) where as E

{0, 1}N(j) is the partial assignment defined by as = 1 if i E S and as = 0 if

i E N(j)\S. El

Lasserre Hierarchy. Given an instance (V, C) of CSP(P) and an integer t < lVI, a
solution to the t rounds of the Lasserre hierarchy is a set of vectors {Vs(a)}scv,isis!t,a::s-+,

such that there exists a 2t-local distribution {Xs(a)} with the property: for any

S, T C V with SI, TI t and any a: S -+ G and 3 : T -+ G, we have that

(Vs(a), VT(a)) = XSUT(a o ,),

if a and 3 are consistent on S n T, and (Vs(a), VT(a)) = 0 otherwise. The solution

satisfies a constraint or is balanced if the corresponding local distribution is so.
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Chapter 3

Solutions from Desired Structures

In this chapter, we show how to construct solutions to the Sherali-Adams / Lasserre hi-

erarchy for Min-Ones(P) from desired structures. Given an instance of Min-Ones(P)

where P = {P1 , . . . , P} is a collection of predicates with Pi c {0, 1}k, we want

to construct a solution to the Sherali-Adams / Lasserre hierarchy with small bias.

However, in order to obtain a solution to the Sherali-Adams / Lasserre hierarchy for

general CSPs, most current techniques [28, 14, 32, 6] need a balanced pairwise inde-

pendent distribution, and the resulting solution is typically balanced as well. Since

the domain G is fixed to {0, 1}, a !-biased solution seems to be the best we can hope

for; in fact, this is what Schoenebeck [28] does for k-Hypergraph Vertex Cover in the

Lasserre hierarchy thereby proving a gap of 2 (for any k > 3).

To bypass this barrier, we introduce the technique of stretching and collapsing the

domain. Let G' be a new domain with IG' = q and fix a mapping #: G' {, 1}

(in every stretching in this work, l#-'(1) = 1). For each predicate P, let Pj' be the

corresponding new predicate PFl := {(gi,... , gk) E (G')ki : (0(gi),... , # (gk)) E P}.

Let P' = {P1, ... , Pj'}. Any instance (V, C) of Min-Ones(P) can be transformed to the

instance (V, C') of CSP(P') where variables in V can take a value from G' and each

predicate P is replaced by the predicate Pi'. The next lemma shows that any solution

to the Sherali-Adams / Lasserre hierarchy for the new instance can be transformed

to a solution for the old instance by collapsing back the domain. For /3: S 0 {, 1},

let 0-1(#3) be {a : S -+ G', O(a (v)) = /3(v) for all v E S}.
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Lemma 1. Suppose that {X(a)} (resp. {Vj(a)}) is a solution to the LP (resp. SDP)

corresponding to t rounds of the Sherali-Adams (resp. Lasserre) hiearchy for (V, C')

and that satisfies every constraint. Then, {XS(#3)}S 1 t,O:S-{0,1} (resp. {Vs( 3 )}|sijt,3:S-+{,1})

defined by

Xs(/) = Xb(a) (resp. Vs(O) = V(a))-

is a valid solution to the t rounds of the Sherali-Adams (resp. Lasserre) hiearchy for

(V, C) that satisfies every constraint. Furthermore, if the solution to the new instance

is balanced, the obtained solution to the old instance is '-biased.

Proof. First, we prove the statment for the Sherali-Adams hierarchy.

Sherali-Adams. By definition, we have that X0 = X = 1, and Xs(a) ;> 0.

Moreover, for any S C T C V with TI t and for any / : S - {0, 1}, we have that

E XT(# o -y) = EE XT(a) = EEE XTI(' 1 0 ')
-y:T\S-+{0,1} y:T\S-+{0,1} aE4- (00-y) j8'E4O-(0) y:T\S-÷{0,1} 'E- 1 (Y)

-0 /07 S X(0() =o'-"(=)XT# o') = E Xs(#)=X()
,8'EO-'(,8) y':T\s-+G' #'E4-1(0)

Furthermore, if {Xb(a)} is balanced, then for any v, X,(1) = Zge_1(1) X'(g) =

= .. This concludes the proof for the Sherali-Adams hierarchy.
q q

Lasserre. Given a solution {V((a)}1 s1 t,a:SG to the t rounds of the Lasserre hi-

erarchy, let {X((a)}1 SI 2t,a:S-+G be the 2t-local distribution associated with {Vj(a)}.

Let the 2t-local distribution {XS()}ISI2t,:S+{0,1} be obtained from {Xb(a)} as done

above for the Sherali-Adams hierarchy. It is a valid 2t-local distribution. We claim

that {Xs(#)} is the local distribution associated with {Vs(#)}. Fix S, T such that

Sj TI ,T t, / : S -+ {0, 1} and y : T -+ {0, 1}. By the definition of Vs(/) and VT(Y),

(Vs(3),VT(7)) = ( 5 V(3'), 5 ('y')) = 5 5 (VS(/'), V,'y')).
O'EO- 1(,3) O'413 'EO-'()) 7'EO- 1('Y)
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If / and -y are inconsistent, then any 0' E 0'(0) and -' E #-'(7) are inconsistent,

and hence the RHS is 0 as desired. If they are consistent, then the RHS is equal to

(VS(/'), V(7'))= S X'SUT(o -- XsUT( o -).
3'E4- 1 (i),y' -i) consistent a'E4- 1(8o-y)

If {Vs(a)} is balanced, by definition {X'(a)} is balanced, so the same proof for the

Sherali-Adams hierarchy shows that {Vs(a)} and {Xs(a)} are L-biased. E3
q

By Lemma 1 above, it suffices to construct a solution to the stretched instance.

Theorems 4 and 5 below show that if the predicates P1,..., P satisfy certain desired

properties and the instance is sufficiently expanding, there exists a balanced solution

to the Sherali-Adams / Lasserre hierarchy. The proof is close to [14] for the Sherali-

Adams hierarchy and to [28, 32, 6] for the Lasserre hierarchy. Compared to their

proofs for Max-CSPs, we have to deal with 2 more issues. The first is that unlike

usual CSPs, our definition of Min-Ones(P) allows to use more than one predicate, and

predicates can have different arities. The second is that for our purposes, the solution

needs to be balanced (i.e., X,(g) = - for all v, g). We handle those differences by

natural extensions of their techniques. The proofs are in Appendix A.

Theorem 4. Let G be a finite set, kmin 3, and P = {P1 ,... , P} be a collection

of predicates such that each P C Gki supports a balanced pairwise independent dis-

tribution pti. Let (V, C) be an instance of CSP(P) such that C is (s, 2 + 3)-boundary

expanding for some 0 < 6 < 1. Then, there exists a balanced solution to the 6'

rounds of the Sherali-Adams hierarchy that satisfies every constraint in C.

We point out that the updated version [3] of [14] shows that their construction

also works in the Sherali-Adams SDP hierarchy which is stronger than the original

Sherali-Adams hierarchy but weaker than Lasserre. Both Theorems 4 and 1 hold for

the Sherali-Adams SDP hierarchy as well. In the proofs of Theorems 4 and 1, we

focus on the original Sherali-Adams hierarchy to make the presentations simple.

Theorem 5. Let G be a finite abelian group, kmin 3 and P = {P1,... , P} be a

collection of predicates such that each P is a coset of a balanced pairwise independent
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subgroup of Gki. Let (VC) be an instance of CSP(P) such that C is (s,1 + 6)-

expanding for 6 ; .. Then, there exists a balanced solution to the -2 rounds of the

Lasserre hierarchy that satisfies every constraint in C.
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Chapter 4

Decoding Random (d,, de)-LDPC

Codes

In this chapter, we apply Theorems 4 and 5 to random (dr, d,)-LDPC codes. In

Section 4.0.3, we construct balanced pairwise independent distributions supported on

even and odd predicates for different arity values and complete the proof of Theorem 1

for Sherali-Adams. In Section 4.0.4, we show that both even and odd predicates con-

tain cosets of balanced pairwise independent subgroups and introduce an additional

technique based on taking the direct-sum of cosets of subgroups to conclude the

proof of Theorem 2 for Lasserre. We will need the next two lemmas which show that

with high probability, a random (dr, dc)-LDPC code is almost regular and expanding.

Their proofs use standard probabilistic arguments and appear in Appendix B.

Lemma 2. Consider the parity-check graph of a random (dr, d,)-LDPC code. With

high probability, every vertex on the left (resp. right) will have degree either dv or

d, - 2 (resp. d, or d, - 2).

Lemma 3. Given any 0 < 6 < 1/2, there exists 77 > 0 (depending on de) such that

the parity-check graph of a random (dv, d,)-LDPC code is (rn, 1 + 6)-expanding with

high probability.
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4.0.3 Distributions for Sherali-Adams

To construct a solution for the Sherali-Adams hierarchy using Theorem 4, we need

each Pj' ; (G')ki to support a balanced pairwise independent distribution. For any

q > 2 and k = q+ 1, let G' {0,1,..., q - 1} and #: G' - {0,1} be defined by

#(0) = 1 and 0(g) = 0 for every g # 0. The odd and even predicates P'dd and Peven

are defined by: y E P'dd (resp. Pe'ven) if and only if I{i E [k] : yj = 0} is an odd

(resp. even) integer. The choice of k = q + 1 is optimal since, as shown in Lemma

16 in Appendix C, if k = q, there is no balanced pairwise independent distribution

that is supported on the even larger predicate {y E (G')k : yj = 0 for some i} which

contains Po'dd. Set p := 1/q. To construct a distribution on y E (G')k, we will show

how to sample x E {0, 1}k. Given x, each y is set to 0 if xi = 0 and uniformly

sampled from {1, . . . , q - 1} otherwise. It is easy to see that when this distribution

on x is (1 - p)-biased (i.e. Pr[xi = 0] = p for all i) and pairwise independent (i.e.

Pr[xi = xj = 0] = p2) for all i = j), y becomes balanced pairwise independent.

Furthermore, x and y have the same number of O's. Therefore, it suffices to show how

to sample a (1 - p)-biased pairwise independent vector x.

Odd predicate, Odd k > 3, q= k -1. Let 0:= (0,...,0), 1 = (1,...,1) and ej

be the i-th unit vector. Sample x E (G')k from the distribution with probability mass

function: Pr[x = 0] = p2 and Pr[x = 1-ei] = 1- for each i. Each support-vector hask

an odd number of O's. For any i, Pr[xi = 0] = Pr[x = ei] + Pr[x = 1] = 1- +p 2

For any i # j, Pr[xi = xj = 0] = Pr[xi = 1] = p2 . This simple construction is

optimal: If k = q + 1 is even, Lemma 17 (in Appendix C) shows that there is no such

balanced pairwise independent distribution supported in P'dd.

Even Predicate, k > 3, q = k - 1. Sample x E (G')k from the distribution

with probability mass function: Pr[x = 1 - ej - ej] = p2 for each i = j and Pr[x =

1] = 1 - p2(k) -. Each support-vector has an even number of O's. For any i,

Pr[xi = 0] = Pr[j / i : x = 1 - ej - ej] = p2 (k - 1) = p. For i 5 j, Pr[xi =x =

0] = Pr[x = 1 - ej - e-] = p 2 .
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Arity d, odd (q=d,-3)
Type k = d, k = d, - 2
Odd Lemma 4 (ii) Section 4.0.
Even Lemma 4 (ii) Section 4.0.

3
3

d, even (q = d, - 4)
k = dc k=d,-2
Lemma 4 (iii) Lemma 4 (i)
Lemma 4 (iii) Lemma 4 (i)

Table 4.1: Distributions for Sherali-Adams

Other values of k and q. If k > 4 is an even integer, we show in Lemma 17 of

Appendix C that for q = k -1, there is no balanced pairwise independent distribution

that is supported in the odd predicate. However, it is still possible to have such a

distribution when q = k - 2 for both odd and even predicates. In Lemma 4 below

(whose proof appears in Appendix C), we prove the existence of pairwise independent

distributions supported in the odd and even predicates for slightly smaller values of

q (in terms of k). These distributions will be used to handle instances where the

constraints have different arities.

Lemma 4. Let G = {0, 1, ... , q - 1} be a finite set. For the following

of arity values k and alphabet size values q, each of the odd predicate

predicate supports a balanced pairwise independent distribution on Gk:

integer k > 4 with q = k - 2, (ii) Any odd integer k > 5 with q = k - 3

even integer k > 6 with q = k - 4.

combinations

and the even

(i) Any even

and (iii) Any

The constructed distributions for the Sherali-Adams hierarchy are summarized in

Table 4.1.

Proof of Theorem 1. Consider a random (dr, d,)-LDPC code and fix 6 = 1/8.

Lemma 2 and Lemma 3 ensure that with high probability, the degree of each check

node is either d, or d, - 2 and there exists r7 > 0 such that the code is (7n, 1 + 6)-

expanding, and hence (rjn, 2 + 26)-boundary expanding. For any received vector, let

(V, C) be the corresponding instance of Nearest Codeword. Let q = d,-3 (resp. d,-4)

if d, is odd (resp. even). Stretch the domain from {0, 1} to G' := {0, 1,... q - 1}.

The above constructions show that for any k E {de, dc - 2} and type E {even, odd},

Ptype C (G')k supports a balanced pairwise independent distribution. Theorem 4
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gives a balanced solution to the = 6- rounds of the Sherali-Adams hierarchy6d, 24d,

that satisfies every constraint in the stretched instance. Lemma 1 transforms this

solution to a k-biased solution to the same number of rounds for the original Nearest

Codeword instance.

4.0.4 Subgroups for Lasserre

As in the Sherali-Adams hierarchy, to find a good solution in the Lasserre hierarchy,

it suffices to construct a stretched instance. To construct a solution in the Lasserre

hierarchy via Theorem 5, we need the stretched domain G' to be a finite abelian group

and each stretched predicate P' to be a coset of a balanced pairwise independent

subgroup of (G')k. We will first construct such predicates for q being any power of 2

and k =q + 1. For such q and k, let G' :=(F,+) and :G' -+ {0, 1} be defined by

0(0) = 1 and 0(g) = 0 for every g # 0. As for Sherali-Adams, the predicates P' and

are defined in the natural way, namely: (x1,... , x,) E , (resp. P,'en) if and

only if I{i E [k] : xi = 0} is an odd (resp. even) integer. We show that each of P'dd

and P'ven contains a coset of a balanced pairwise independent subgroup of (G')k.

Odd Predicate, k = 2i + 1, q = k -1. For the odd predicate P'ad, we actually

show that it contains a balanced pairwise independent subgroup of (G')k. Let {ax+

#Y}a,3EF, be the set of all q2 bivariate linear functions over Fq. Let E := {(0, 1)} U

{(1, a)}aEFq be the set of q + 1 = k evaluation points. Our subgroup is defined by

H' := {(ax+ 3 Y)(x,y)EE a,6EFq. Note that H' is a subgroup of (G')k. In general, there

are q + 1 distinct lines passing through the origin in the F2 -plane; our set E contains

exactly one point from each of those lines. The balanced pairwise independence of

H' follows from Lemma 5.

Lemma 5. Let d E N and E C IF \ {O} contain at most one point from each line

passing the origin. Then, the subgroup { (I 1 axi)(x1. xd)E is balanced

pairwise independent.

Proof. Let (bi, ... , bd) # (ci,... , cd) E E be two points not on the same line passing
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through the origin. For balanced pairwise independence, we need (Ei aibi, Ei aici)ai,..,adEFq

to be the uniform distribution on F2. Since there are exactly qd choices for the tuple

(al, ... , ad), for any E, E Fq, it suffices to show that there exists qd- 2 choices of the

tuple (ai, ... , ad) E Fq such that Ej aibi = 0, Z2 aici = y. Since the two points are

not on the same line through the origin, there must be two indices i = j such that

bicj = bjci. Without loss of generality, assume that i = 1 and j = 2. For any choice

of (a3,... ,ad), there is exactly one solution (a,, a2) to the system:

d

alb1 + a2b 2 = / - aibi
i=3

d

a1 c 1 + a 2c2 = - aici
i=3

n

The next lemma concludes the analysis of the odd predicate.

Lemma 6. Each element of H' has an odd number of 0 coordinates.

Proof. Recall that k = q + 1 with q a power of 2 and G' := Fq. Our set of evaluation

points is defined by

E := {(0, 1)} U {(1, a)}aEFq

and our subgroup H' of (G')k is defined by

H' := {(aX + /y)(x,y)EE a,0EF

Let h,,,3 :=

h,, has an

three cases:

(aX + y)(x,y)EE be any element of H' (where a, # E Fq). The fact that

odd number of 0 coordinates can be seen by distinguishing the following

= # = 0: h, = (,0, ... ,0), which has k

odd integer.

0 coordinates, and k is set to

* For / = 0 and a 5 0: (0, 1) is the unique zero of the function ax + /y in E.
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9 For # = 0: (1, a/0) is the unique zero of the function ax + /y in E.

Even Predicate, k = 2' + 1, q = k - 1. Dealing with P,,, is more difficult,

since Pe'ven will not contain any subgroup: this can be seen by observing that the zero

element (0, 0, .. . , 0) E (G')k has an odd number of 0 coordinates and should be in

any subgroup. Instead, we show that Peven will contain a coset of a balanced pairwise

independent subgroup. As in the above case of the odd predicate, our subgroup H' will

be of the form {(ax+#y)(x,y)EE'}a,,8EFq, for some subset E' C F of q+1 = k evaluation

points. As before, the set E' will contain exactly one non-zero point on each line

passing through the origin and hence balanced pairwise independence will follow from

Lemma 5. Moreover, the set E' will have the property that H' - (1, 1, . .. , 1) 9 Pe'ven;

i.e, for any a, # E Fq, there is an even number of points (x, y) E E' satisfying the

equation ax + /y = 1. For example, if a = # = 0, no point satisfies this equation. If

at least one of a, # is nonzero, then {ax+3y = (a,)nsists of all (q 2 -

distinct lines not passing through the origin. Thus, we set E' := E \ {O} where E is

the set which is guaranteed to exist by Lemma 7.

Lemma 7. For every q that is a power of 2, there is a-subset E C F 2 containing the

origin (0,0) such that IE = q + 2 and every line in the F2-plane contains either 0 or

2 points in E.

Proof. Consider the map h : F -+ Fq given by h(a) = a2 + a. Since h(a) = h(a + 1)

for all a E F, we can see that h is two-to-one. Hence, there exists q E Fq such that

the polynomial g(a) = a2 + a + r7 has no roots in Fq. Fix such an r7. Define the map

f : Fq -+ IFq by f(a) = (g(a))' for all a E Fq. Note that since g has no roots in Fq, f is
well defined and non-zero on Fq. Now let E := {(0, 0)}U{(0, 1)}U{f(a)(1, a) : a E Fq}.

We next argue that every line 1 inF2 contains either 0 or 2 points in E. We distingish

several cases:

e 1 contains the origin (0, 0): If 1 is a vertical line, then it has the form 1 : (x = 0)

and (0, 1) is the only other point of E that lies on 1. Henceforth, assume that
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1 is non-vertical. Then, it has the form 1 : (y = ax) for some a E Fq. In this

case, the unique other point of E that lies on 1 is f(a)(1, a).

* 1 doesn't contain (0, 0) but contains (0, 1): Thus, it is of the form 1 : (y = ax+ 1)

for some a E Fq. Then, a point f(a)(1, a) lies on 1 if and only if af(a) = af(a)+1

which is equivalent to a = a+g(a). This means that a is a root of the polynomial

g(a) + a - a = a2 + q + a. By Lemma 8 below, this polynomial has a unique

root (of multiplicity 2) in Fq. So 1 contains exactly 2 points in E.

* 1 contains neither (0, 0) nor (0, 1): If 1 is a vertical line, then it has the form

1 : (x = #) for some # E F \ {0}. Then, a point f(a)(1, a) lies on 1 if and only

if f(a) = /, which is equivalent to g(a) = 3-1 (since /3 # 0). This means that a

is a root of the polynomial g(a) - #-1 = a2 + a + y - /-1. By Lemma 8 below,

this polynomial has either 0 or 2 roots in Fq. Hence, 1 contains either 0 or 2

points in E. Henceforth, assume that 1 is non-vertical. Then, it has the form

1 : (y = ax + /) for some a E Fq and # E F, \ {0, 1}. Then, a point f(a)(1, a)

lies on 1 if and only if af(a) = af(a) + /, which is equivalent to a = a + /g(a).

This is equivalent to g(a) = a/# - a/0. This means that a is a root of the

polynomial g(a) - a/0 + a/ = a2 + a(1 - 1/) + 71 + a/0. By Lemma 8 below

and since # / 1, this polynomial has either 0 or 2 roots in Fq. So 1 contains

either 0 or 2 points in E. 0

Lemma 8. Let q be a power of 2. Then, a quadratic polynomial p(a) = a2 + c1a + co

over Fq has a unique root (of multiplicity 2) if and only if c1 = 0.

Proof. If p(a) has a unique root A E Fq, then (a - A) divides p(a) and hence p(a) =

(a - A)2 = a2 - 2Aa+ A2. Since Fq has characteristic 2, we get that p(a) = a2 + A2 and

we conclude that ci = 0. Conversely, assume that p(a) = a2 + c0 for some co E Fq.

Since Fq has characteristic 2, the map r, : Fq -+ Fq given by i'(a) = a2 is a bijection.

Hence, there exists A E Fq such that r,(A) = A 2 = co. Using again the fact that Fq

has characteristic 2 , we conclude that p(a) - a2 _ A2 = (a - A)2 and hence p(a) has

a unique root (of multiplicity 2) in Fq.
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Even Predicate, q = 2i, k = 2q. Since a check node in a random (d,, d,)-LDPC

code has degree d, or dc - 2, we need to construct even and odd predicates for both

arities dc and dc - 2 and over the same alphabet. We first construct an additional

even predicate with arity k = 2q based on trivariate linear forms.

Lemma 9. Let q be a power of 2 and k = 2q. There exists a subgroup of Fk such

that every element in the subgroup contains an even number of 0 coordinates.

Proof. Our subgroup H' will be of the form {(ax+fy+7)(x,y,z)EE}a,,,YEFq, for some

subset E C F' of 2q = k evaluation points. The set E C F is given by

E := {(1,a, a) : a E Fq} U {(0, b, b+ 1) : b E Fq}.

Clearly, |El = 2q. The lemma follows from Claim 2 and Claim 3 below. E

Claim 2. Every trivariate linear form (ax + #y + -yz) has either 0, 2, q or 2q roots

in E (which are all even integers).

Proof. Let 2a,4, be a fixed trivariate F-linear form, for some a, , 7 E Iq. Let

El1 {(1, a, a) : a E Fq} and E2 := {(0, b, b + 1) : b E Fq}. We distinguish two cases:

* Case 1: # + -y 4 0 in F'q. Then, ,(1, a, a) = 0 if and only if a(+ ) = -a,

which is equivalent to a = -(3 + -y)'a. Hence, , has exactly one root

in E1 . Moreover, 4a,,(0, b, b + 1) = 0 if and only if b(o + -) = -- y, which is

equivalent to b = -(#3 + -y)-a 3 . Hence, 0c,,,y has exactly one root in E 2 . So

we conclude that in this case @a,6,, has exactly 2 roots in E = E1 U E2 .

* Case 2: 0 + -t = 0 in Fq. Then, 4'e,p,(1, a, a) = 0 if and only if a(,3 + -y) = -a,

which is equivalent to a, = 0. Hence, 0,,, has either 0 roots in E1 (if a $ 0)

or q roots in E1 (if a = 0). Moreover, 4 a,,,o(0, b, b + 1) = 0 if and only if

b(# + y) = -y, which is equivalent to -y = 0. Hence, 0,,-, has either 0 roots in

E2 (if -y 5 0) or q roots in E2 (if 7= 0). So we conclude that in this case b,,,y

has either 0, q or 2q roots in E = E1 U E 2 .

Dj
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Claim 3. H' is a balanced pairwise independent subgroup of Fq.

Proof. Applying Lemma 5 with d = 3, it is enough to show that any two distinct

vectors in E are linearly-independent over Fq. To show this, assume for the sake of

contradiction that there exist v, / v2 E IF, and a scalar / E Fq such that v 2 = #&1.

We distinguish three cases:

* vi, v2 E El. Then, v= (1, ai, a+1) and v 2 = (1, a2, a2 +1) for some a, l a2 E

F.. Then, v 2 = jv implies that # = 1 and hence a2 = a1, a contradiction.

" v1,v 2 E E2. Then, vi = (0, bi, b, + 1) andv 2 = (O,b2, b2 + 1) for some b, i b2 E

Fq. Then, v 2 = /vi implies that # = 1 and b1 = b2 , a contradiction.

* vi E E1 and v2 E E2. Then, v 1 = (1, a, a) and v2 = (0,b,b + 1) for some

a, b E Fq. Then, v 2 = /v 1 implies that # = 0 and hence that both b = 0 and

b + 1 = 0, a contradiction.

Direct sums of cosets of subgroups For any q = 2', we constructed 3 cosets of

subgroups: H1 g Fq+1 contained in the odd predicate, H2 C Fq+1 contained in the

even predicate, H3 C F 2 contained in the even predicate. Any direct sum of them

gives a coset of a subgroup of F with k being the sum of the individual arities. If we

add one coset contained in the even predicate and one contained in the odd predicate,

the direct sum will be contained in the odd predicate. On the other hand, if we add

two cosets that are contained in the same (even or odd) predicate, the direct sum

will be contained in the even predicate. For d, = 3q + 3, we use such direct sums to

construct the desired even and odd predicates for arities d, and d, - 2 as follows:

* H1 e H1 e H1: A coset of a subgroup of F3q+3, contained in the odd predicate.

" H 1 E H1 E H2 : A coset of a subgroup of Fq contained in the even predicate.

* H1 e H3 : A coset of a subgroup of 1 iq+1, contained in the odd predicate.

" H2 @ H3 : A coset of a subgroup of Fq+1, contained in the even predicate.

The constructed subgroups for the Lasserre hierarchy are summarized in Table 4.2.
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q 1 2q de-2=3q+1 dc=3q+3
Type
Odd Lemma 6 (H) H E H3 1 H 1  H 1

Even Lemma 7 (H2) Lemma 9 (H3) H2 D H3  H 1 e H1 E H 2

Table 4.2: Subgroups for Lasserre

Proof of Theorem 2. Consider a random (dv, dc)-LDPC code when dc = 3 -2'+3

and fix 6 = 1/8, q = 2' = 3. Lemmas 2 and 3 ensure that with high probability,

each check-degree is either d, or dc - 2 and the code is (rjn, 1+ 6)-expanding for some

rq > 0. For any received vector, let (V, C) be the corresponding instance of Nearest

Codeword. Stretch the domain from {0, 1} to G' := Fq. The above constructions

show that for any k E {de, dc - 2} and type E {even, odd}, Ptype g (G')k is a coset of

a balanced pairwise independent subgroup. Theorem 5 gives a balanced solution to

the M rounds of the Lasserre hierarchy that satisfies every constraint in the stretched

instance. Lemma 1 transforms this solution to a !-biased solution to the same number

of rounds for the original Nearest Codeword instance.
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Chapter 5

Lasserre Lower Bound for

Hypergraph Vertex Cover

The Lasserre lower bound for k-Hypergraph Vertex Cover will follow from the ma-

chinery and predicates that we constructed in Chapters 3 and 4. We first restate

Theorem 3.

Theorem 6 (Restatement of Theorem 3). Let k = q + 1 where q is any prime power.

For any c > 0, there exist 3, 71 > 0 (depending on k) such that a random k-uniform

hypergraph with n vertices and m = On edges, simultaneously satisfies the following

two conditions with high probability.

* The integral optimum of k-HVC is at least (1 - E)n.

* There is a solution to the qn rounds of the Lasserre hierarchy of value kn.

In the rest of this section, we prove Theorem 6. Fix k such that q = k - 1 is a

prime power. Given an instance of k-HVC, which is an instance of Min-Ones({Pv}),

we stretch the domain from {0, 1} to Fq by the map F -+ {0, 1} with 0(0) = 1,

O(g) = 0 for g 5 0. Then the corresponding predicate p'V Fq is a tuple of k

elements from Fk that has at least one zero. We show that P' contains a pairwise

independent subgroup H' of Fk. Indeed, we use the same H' that was used for the

odd predicate for random LDPC codes, i.e., H' := {(ax + Oy)(x,y)EE}a,jEFq where
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E := {(0, 1)} U {(1, a)}aeF,. In Section 4.0.4, we proved that H' is balanced pairwise

independent and always has an odd number of zeros when k is odd. Here we allow k

to be even so this is not true, but we still have that any element of H' has at least one

zero (indeed, the only element in H that does not have exactly one zero is (0, 0,... , 0),

which has k zeros). This constructs the desired predicate for P'. Given this predicate,

the same technique of stretching the domain, constructing a Lasserre solution by

Theorem 5, and collapsing back the domain using Lemma 1 gives a solution to the

Lasserre hierarchy that is k 1 -1-biased. Lemma 10 below, which ensures that random

k-uniform hypergraphs have a large integral optimum and are highly expanding for

some fixed number of hyperedges, concludes the proof of Theorem 6.

Lemma 10. Let k > 3 be a positive integer and c, 6 > 0. There exists r; B

(depending on k) such that a random k-uniform hypergraph (V, E) with 3n edges,

where each edge ej is sampled from ({) with replacement, has the following properties

with high probability.

" It is (rin, k - 1 - 6)-expanding.

" Every subset of En vertices contains a hyperedge. Therefore, the optimum of

k-HVC is at least (1 - e)n.

Proof. The proof uses standard probabilistic arguments and can be found in previous

works [1, 32]. Fix a subset S C V of size En. The probability that one hyperedge is

contained in S is
(En) (en/k)k

(") (en/k)k

The probability that S does not contain any edge is at most

(1 - (e/e)k)3n < exp(-(c/e)k3n).

Since there are (n) (e/c)n = exp(En(1 + log(1/e))) choices for S, if 3 > (e/ )k,

with high probability, every subset of en vertices contains a hyperedge.
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Now we consider the probability that a set of s hyperedges contains at most cs

variables, where c = k - 1 - 6. This is upper bounded by

n )_(",) . # ,n) .n) s

((e) for fixing variables to be covered, ((")) for assigning them to s hyperedges,

s!(/") for a set of s hyperedges) which is at most

(s/n)"(e2k+1-6 k1 +6/) s (s/ )/5s _ (S0 516 )3.
n

By summing the probability over s = 1,... , rn, the probability that it is not (rjn, k -

1 - 6)-expanding is

SO56 6s

s=1

1n2 n
S0 g516 6s

n
s=1n2 n+1

0 n 2 n) + O((rj 5/1) 1 1n2 n).

The first term is o(1) for large n. The second term is also o(1) for rq < I/(#3 5/ 6 ). E
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Chapter 6

Conclusion

In this work, we showed that fairly powerful extensions of LP decoding, based on

the Sherali-Adams and Lasserre hierarchies, fail to correct much more errors than the

basic LP-decoder. It would be interesting to extend our Lasserre lower bounds for

all values of de, which seems to require some new technical ideas. Finally, it would

be very interesting to understand whether LP/SDP hierarchies can come close to

capacity on irregular ensembles [25] or on spatially-coupled codes [17].
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Appendix A

Proof of Theorems 4 and 5

Theorem 7 (Restatement of Theorem 4). Let G be a finite set, kmin > 3, and

P = {P1,...,P} be a collection of predicates such that each P C G ki supports a

balanced pairwise independent distribution pi. Let (V, C) be an instance of CSP(P)

such that C is (s, 2 + 6)-boundary expanding for some 0 < 6 < 1. Then, there exists

a balanced solution to the 68 rounds of the Sherali-Adams hierarchy that satisfies
6kmax

every constraint in C.

Proof. The proof closely follows Theorem 4.3 of Georgiou, Magen, and Tulsiani [14].

Their result, as a black-box, gives a solution to the Sherali-Adams hierarchy that

satisfies all the constraints. There are two additional things that we need to check:

" More than one predicate: Unlike usual CSPs, our definition of Min-Ones(P)

allows to use more than one predicate, and predicates can have different arities.

" Balanced solution: For our purposes, we need the solution to be balanced (i.e.,

X,(g) = 1 for all v and g).

The main part of their proof (Lemma 3.2) is robust to the two issues described

above. As many technical parts of the proof can be used as a black-box, we sketch the

high-level ideas of the proof and highlight the reason why it is robust to the two issues

discussed above. We give the following additional definitions for a CSP-instance after

removing some variables: Given an instance (V, C) of CSP(P) and a subset S C V,
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let C(S) denote the set of all constraints that are entirely contained in S, namely:

C(S) := {Ci : Ei C S}). Let (V \ S,C \ C(S)) be the instance after removing S,

namely: for each Ci E C \ C(S), the set Ei is replaced by Ei n (V \ S) and its predicate

becomes the corresponding projection of Pti on GIEtn(V\s)I.

Expansion Correction. Let S be a subset of V and C(S) = {Ci = (Ei, ti)}i=1,...,ms

be the constraints induced by S. Each predicate Pt, is associated with a balanced

pairwise independent distribution pIt,. Perhaps the most natural way to combine these

distributions to define a local distribution on the assignments {a : S -+ G} is to take

the (normalized) product of all the distributions, i.e.,

ms

Pr[a] = ( pt (a(ei,1), ... , ce(ei,ki)))/ZsI

Zs = pJt(a(ei,1), . . .,a(e,))
a:S-+G i=1

Call this distribution canonical for S. Clearly, any assignment a that has a positive

probability will satisfy all constraints in C(S).

For any subset S, we can define the canonical local distribution. But generally the

distributions will not be consistent (i.e., for some S C S', the canonical distribution on

S might be different from the marginal distribution on S obtained from the canonical

distribution on S'). Since the canonical distribution on S' induces a local distribution

on any S C S' it might be possible that the canonical distributions of carefully chosen

sets are consistent and induce a local distribution for every set we are interested in.

Georgiou et al. [14] define the canonical distribution on some family S of sets that

satisfies the following conditions:

" Any S E S satisfies I < j.

* For any set S C V with SI 6s/(6kmax), there is an S E S such that S C S.

" For any E 5, the instance (V \ S, C \ C(S)), obtained by removing S and its

induced constraints, is (is, + 6)-boundary expanding. Recall that (V \ 5, C \
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C(S)) is different from the induced instance (V \ 5, C(V \ 5)).

The existence of such an S is shown in Theorem 3.1 of [3].1

Consistent Distributions. The final local distributions {Xs(a)} are defined as

follows: for each S, find S E S that contains S, and use the canonical distribu-

tion defined on S. It only remains to show that for any 5, 5' E S, their canonical

distributions are consistent. The following lemma is the crucial part of [14].

Lemma 11. [Lemma 3.2 of [141] Let (V, C) be a CSP-instance as above and S1 C S2

be two sets of variables such that both (V,C) and (V \ S 1,C \ C(S1)) are (t, 2 + 6)-

boundary expanding for some 6 E (0,1) and IC(S2) I < t. Then for any a1 E GS1,

Pr[a2 ] = Pr[a1].
S2  S1

a2EGS2,a2 (S2)=aS

Applying Lemma 11 two times (once with (Si, S2) <- (5,5 U 5') and once with

(S1, S2) <- (5', SUS')), we conclude that both PrS and Prg, are marginal distributions

of Prgug,, and hence should be consistent.

We check the two issues which are not explicitly dealt in their paper. First, we note

that Prs is defined as long as we have a distribution pj for each predicate P. The proof

of Lemma 11 only depends on the fact that each pi is balanced pairwise independent

and not on any further structure of the predicates. Furthermore, predicates having

different arities are naturally handled as long as we have (t, 2+6)-boundary expansion

and pairwise independent distributions. Therefore, having more than one predicate

with different arities does not affect the statement. Finally, we check that the resulting

local distribution is balanced. Fix any variable v E V and let S E S be a set containing

v. Applying Lemma 11 with S +- {v} and S2 +- S (Pr{j} is the uniform distribution

on G since {v} does not contain any constraint), we get that the canonical distribution

on 9 induces the uniform distribution on G for v.

'The corresponding theorem in the original version [14] seems to have a minor error, so we here
follow the final version of their work.
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Theorem 8 (Restatement of Theorem 5). Let G be a finite abelian group, P =

{P1,..., P} be a collection of predicates such that each P is a coset of a balanced

pairwise independent subgroup of Gki for kmin ;> 3. Let (V, C) be an instance of

CSP(P) such that C is (s, 1 + 6)-expanding for some 6 < 1. Then, there exists

a balanced solution to the -L rounds of the Lasserre hierarchy that satisfies every16

constraint in C.

Proof. The proof closely follows Theorem D.9 of Chan [6], which generalizes the work

of Schoenebeck [28] and Tulsiani [32]. His result, as a black-box, gives a solution

to the Lasserre hierarchy that satisfies all the constraints. There are two additional

things that we need to check:

" More than one predicate: Unlike usual CSPs, our definition of Min-Ones(P)

allows to use more than one predicate, and predicates can have different arities.

" Balanced solution: For our purposes, we need the solution to be balanced (i.e.,

|V(g)II = 1- for all v and g).

Since these are immediate consequences of the previous results, instead of proving

them in details, we describe the high-level ideas of the construction while focusing on

the points that we need to check.

Describing Each Predicate by Linear Equations. Let T be the unit circle in

the complex plane. Given a finite abelian group G, let G be the set of characters

(homomorphisms from G to T). O is again an abelian group (under pointwise mul-

tiplication) with the same cardinality as G. The identity is the all-ones function 1,

and the inverse of X is - = X, where - indicates the complex conjugate.x
Consider GV which is isomorphic to Ov. A character x = (Xv)vev E G is said

to be v-relevant if Xv E G is not the trivial character. The support of a character

x is defined to be supp(X) := {v E V : x is v-relevant}, and the weight of x is

lXi := Isupp(x)I.

A linear equation is a pair (X, z) E $ x T, and an assignment f : V -+ G satisfies

(X, z) if and only if x(f) := ]L X, (f(v)) = z. Given a constraint Ci = (Ei, ti) where
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the predicate Pt, is a coset of a subgroup of Gki, there is a set of linear equations Li

such that an assignment f satisfies Ci if and only if it satisfies all the linear equations

in Li. See Section D.1 of Chan [6] for technical details. Since each predicate is

equivalently formulated by a set of linear equations, having different predicates will

not matter, as long as the linear equations have the desired properties.

Resolution Complexity. Given an instance of Min-Ones (V C) and the set L:=

UjLj of linear equations describing all the predicates, its width-t resolution Lt is the

smallest set satisfying the following:

* L c Lt.

* (X, z), (4', y) E Lt and IX I t => (x0, zq) E Lt. Say (x0, zq) is derived from

(X, z) and (0, y).

Lt is said to refute L if (1, z) E Lt with z = 1, and Lt is said to fix v E V if there

exists (x, z) E Lt with supp(X) = {v}.

Lemma 12. If (V, C) is (s, 1+6)-expanding for J < 1/4 and each predicate is a coset

of a balanced pairwise independent subgroup, then L, 1s can neither refute L nor fix a

variable.

Proof. The proof is identical to that of Theorem 4.3 of Tulsiani, which Theorem D.8

of Chan follows, except that they only prove the lemma for refutation. We give the

high-level ideas of the proof, pointing out that fixing a variable is also impossible.

Assume towards contradiction that Lt refutes L or fixes a variable, and let (x*, z*) E

LI with Ix*i E {0, 1}. Without loss of generality, we can assume that (x*, z*) is de-

rived from {(Xi, zi)I1 < i < m}, where each (Xi, zi) is derived only from Li. Let

S* := {i : Xi $ 1} and s* := IS'I. The crucial property they use is that Xi with

i E S* has weight at least 3, which follows from the condition on predicates: Tulsiani

requires a predicate to be a linear code of dual distance at least 3, and Chan requires

it to be a balanced pairwise independent subgroup, which are indeed equivalent when

G is a finite field.
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If s* < s, since the instance is (s, 1 + 6)-expanding, out of EZes. IEiI constraint-

variable pairs (i, ei,)ies,1 j<ktj, at most (2 + 26)s* pairs have another pair with the

same variable. Since each xi with i E S* has lxii ;> 3 and contributes 3 such pairs, at

least 3s* -(2+26)s* = (1-26)s* variables are covered exactly once by {supp(Xi)}iEs*,

making it impossible to derive any (x, z) with lxI < (1 - 26)s'. It shows that s* > s.

The original argument (Claim 4.4 of [32]) assumed that every predicate is of the same

arity, but the above argument naturally adapted it to irregular arities.

Backtracking the derivations, we must have (x', z') E L,/s, which is derived from

< s' < s nontrivial characters from Li's (Claim 4.5 of Tulsiani). Similar expansion-

minimum weight arguments again ensure that IX'j > 1, which results in a contradic-

tion. El

Solution and Balance. Given that L,s does not refute L, Theorem D.5 of [6]

ensures that there exists a solution {Vs(a)}SI5s/16,a:S+G to the s/16 rounds of the

Lasserre hierarchy that satisfies every constraint. Furthermore, one of his lemmas

also proves that for every v E V and g E G, ||V (g)11 2 = i using the fact that L,8/

does not fix any variable.

Lemma 13 (Proposition D.7 of [6]). For S C V with ISI s/16, let

Hs {|3 : S -+ G and 3 satisfies every (x, z) E L.18 with supp(x) C S}.

For any a: S -+ G,
Z)11 2 - li[a E Hs]

|Hs|

where 1[[-] is the indicator function.

Combining all three parts above, we have a balanced solution to the 2 rounds of

the Lasserre hierarchy that satisfies every constraint. 0
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Appendix B

Properties of Random LDPC codes

Lemma 14 (Restatement of Lemma 2). Consider the parity-check graph of a random

(dr, d,)-LDPC code. With high probability, every vertex on the left (resp. right) will

have degree either d, or d, - 2 (resp. d, or d, - 2).

Proof. Let M := ndv = mde. Fix a vertex v on the left. In order to have at

most d, - 2 neighbors, v needs to either have a neighbor with triple edges or two

neighbors with double edges. The probability of the first event is at most by m - ( 3

(d)c 3! - = 0(4). The probability of the second event is at most by

m 2 . (())2 . 4!. M(M- 1MM-) = 0(4). By taking a union bound over all

v, the probability that there exists a vertex with at most d, - 2 different neighbors is

0(1). The proof for the right side is similar. E

Lemma 15 (Restatement of Lemma 3). Given any 0 < 6 < 1/2, there exists r7 > 0

(depending on dc) such that the parity-check graph of a random (d, dc))-LDPC code

is (rqn, 1 + 6)-expanding with high probability.

Proof. Let k := d,. Fix a set S of s ; rm vertices on the right for some r7 > 0 chosen

later. Suppose that the degree of each vertex in S is given. By the above lemma,

with high probability, each degree is either k or k - 2. Let k be the average degree of

these s vertices, and E = k - 1 - 6. Fix a set F of Es vertices on the left.

For a vertex v E S with degree k', the probability that it has all k' neighbors

from IF is at most (s)k'. If we condition that other vertices in S have neighbors
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in F, this estimate only decreases. Therefore, the probability that the vertices in

S have neighbors only from the F is at most ( ), . Taking a union bound over

n) ( choices of F, conditioned on any degrees of S, the probability of the bad

event conditioned on any sequence of degrees of S is at most

(2Ess 1e,,<n(_1_6)s(ks)(1+6)s(2e)ks.
n Cs

Taking a union bound over (m) < (n) (*")s choices for S, the probability that

some set S of size s becomes bad is at most (1)58(kl+6(2e)k+l)8. Let 3 = kl+6(2e)k+1

so that the above quantity becomes ( =)"#s - (131/6 )s. When we sum this probability

over all s < qn, we have

i 3  
S/6 = +/ < 0Sp/ )( + 

<((q . 1/6)61l2n)

s=1 s=1 s=ln2 n+1

The first term is o(1) for large n. The second term is also o(1) for q < 1/(E1/6). D
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Appendix C

More on Pairwise Independent

Distributions

Lemma 16. Let G = {0,... , k - 1} be a finite set. There is no balanced pairwise

independent distribution v on Gk where every atom (x1,... , Xk) in the support has at

least one 0 coordinate.

Proof. Given x = (x1 ,... , X,) E Gk, let Ixl be the number of O's among x1 ,... ,Xk.

The fact that y is balanced implies Ex~,[Ixl] = 1, but the other requirement implies

lxi > 1 for any x in the support. Therefore, any x in the support satisfies lxj = 1. Fix

any i 5 j. If xi = 0, xj cannot be 0 and xi and x3 are not pairwise independent. E

Lemma 17. Let G = {0,..., k - 2} be a finite set for even k. There is no balanced

pairwise independent distribution v on Gk where every atom (x1 ,... , Xk) in the support

has an odd number of zeros.

Proof. Assume for contradiction that such a ya exists. For odd 1 < i < k - 1, let ai

be the probability that the (x1,..., Xk) sampled from p has exactly i zeros. From

balanced pairwise independence, they should satisfy the following set of inequalities:

" Valid probability distribution: EZ<i<k-1,i odd ai = 1.

* Balance: E1<isk-1,i odd ai , i = T 4* E i_ k-1,i odd iai = k
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* Pairwise independence: E3<i<k-1,i odd ai' - = (k- 2  Z isk-1,i odd (-

1)ai = kk

Subtracting the first equation from the second, we get E3isk-l,i odd(i - 1)a = k1

Subtracting k times this equation from the third equation, we get E3<i<k-1,i odd(i -

1)(i - k)aj = 0, which is contradiction since all ai > 0. D

Lemma 18 (Restatement of Lemma 4). Let G = {0, 1,..., q - 1} be a finite set. For

the following combinations of arity values k and alphabet size values q, each of the odd

predicate and the even predicate supports a balanced pairwise independent distribution

on Gk.

" Even k > 4, q = k - 2.

" Odd k>5, q=k-3.

* Even k > 6, q = k - 4.

Proof. We again construct each distribution by sampling x E {0, 1}k first. y =

(yi,. . . , Yk) E Gk is given

* For each i, if Xi = 0, yj +- 0.

e If xi 4 0, y1 is chosen uniformly from {1, . . . , q - 1}. independently.

If x is q-1-biased and pairwise independent on {0, 1}k, it is easy to check that y isq

balanced pairwise indepedent on Gk. From now on, we show how to sample the vector

x and prove that it satisfies the desired properties.

Even k > 4, q = k - 2. We first deal with the odd predicate. Our strategy

to sample x is the following. Sample r E {1, 3, k - 1} with probabilty a,, a3 , ak-1

respectively. Sample a set R uniformly from ({1,2,...,k}) and fix Xj = 1 if and only if

i E R. The probabilities a,, a3 , ak-1 should satisfy the following three equations.

* Valid probability distribution: a, + a3 + ak_ = 1.

(k-1)
" 2-1-biased: la + .- fla + k ak-1 = 1 * a, - 3a3 + (k - 1)ak_1 = .

q k 1 k3) ka1 -2~a a ( )k k-2
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k-2

Pairwise Independence: Ia3+ -ak_1 - ( 1)2 e 6a3 +(k-1)(k-2)ak_1 =3(k) a+ -kl k-2
k(k-1)
(k-2)2-

a, = -2k3 13k2 +2,k-1 a = 2k2 -k ak-1 = k-6k 2 +12k-8 is the solution to the above

system. They are well-defined and nonnegative for k > 4.

For the even predicate, we can choose x as above, using r E {0, 2, 4}.

* Valid probability distribution: ao + a2 + a4 = 1.

e -- biased: a2 + a4 = 1 * 2a2 + 4a4 = k.
q (kv) a+(kv) k-='2a2 4 k-2

2k-2

* Pairwise Independence: a2 + (k 2) (1)2 * 2a2 + 12a4 = k(k-1)
nupeuece(~ 27 -(- 4  =~k-2) (k-2)2

a0 = 8- 2 +32, a2 = 4k2 -6k+16, a4 = 8k2 -32k+32 is the solution to the above system.

They are well-defined and nonnegative for k > 4.

Odd k>5, q=k-3. We can use the same framework as above, except that in

every equation, the denominator of the RHS is changed from k - 2 to k - 3.

For the even predicate, ao = 2k2-17k+36 a2 k 2 4k+, 44k 2-24k+36 t -12k+18

solution to

k
4k2 -24k+36

ao + a2 + a4 = 1

k
2a2 +4a 4 =

2a 2 + 12a4 = k(k-1)
(k - 3)2

They are well-defined and nonnegative for k > 5.

For the odd predicate, we have that a = k3 -8k 2 +16k a

k 2
410k+27 is the solution to

k4 -10k 3 +36k 2 -54k+27

a, + a3 + ak=1

k
a, + 3a 3 + kak = 3

6a3 + k(k - 1)ak = k(k.-)
(k - 3)2

k2-4k-2 ak
-0k-90

2+27k-27' k
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They are well-defined and nonnegative for k > 5.

Even k > 6, q = k - 4. We can use the same framework as above, except that in

every equation, the denominator of the RHS is changed from k - 3 to k - 4.

For the even predicate, ao = 4k2 -45k+128 ,a4 2- 4k a4 3k + is the
8k2 -64k+128' 4k 2 -32k+64' 4  8k2 -64k+128

solution to

ao + a2 + a 4 = 1

k
2a 2 + 4a4 =

2a2 + 12a 4 = k(k-1)
(k - 4)2

They are well-defined and nonnegative for k > 6.

For the odd predicate, we have a, = 20-2320+75k-48 a 3k2 -19k+16203-2002 +64k--64'a= 203-2402 +96k-1281 k
k2 _13k+48 to

k-14k3+72k 2 -160k+128

a1 + a3 + ak = 1

a, + 3a3 + (k - 1)ak = k
k - 4
k(k - 1)

6a3 + (k - 1)(k - 2)ak = (k -)
(k - 4)w

They are well-defined and nonnegative for k > 6. E
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