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Abstract

The goal of visual inertial odometry (VIO) is to estimate a moving vehicle's trajec-
tory using inertial measurements and observations, obtained by a camera, of natu-
rally occurring point features. One existing VIO estimation algorithm for use with a
monocular system, is the multi-state constraint Kalman filter (MSCKF), proposed by
Mourikis and Li [34, 29]. The way the MSCKF uses feature measurements drastically
improves its performance, in terms of consistency, observability, computational com-
plexity and accuracy, compared to other VIO algorithms [29]. For this reason, the
MSCKF is chosen as the basis for the estimation algorithm presented in this thesis.

A VIO estimation algorithm for a system consisting of an IMU, a monocular cam-
era and a depth sensor is presented in this thesis. The addition of the depth sensor
to the monocular camera system produces three-dimensional feature locations rather
than two-dimensional locations. Therefore, the MSCKF algorithm is extended to use
the extra information. This is accomplished using a model proposed by Dryanovski
et al. that estimates the 3D location and uncertainty of each feature observation by
approximating it as a multivariate Gaussian distribution [11]. The extended MSCKF
algorithm is presented and its performance is compared to the original MSCKF algo-
rithm using real-world data obtained by flying a custom-built quadrotor in an indoor
office environment.
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Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles and mobile robots are commonly used in search and rescue

missions and for exploration of unknown environments. Achieving robust pose esti-

mation and navigation of these vehicles is a challenging problem, especially in GPS

denied environments. Vision has been used for obstacle detection and navigation of

vehicles and robots for many years [36]. Cameras have the advantages of low cost,

weight and power consumption [34]; however, vision also has significant latency, com-

putational complexity and potential robustness issues depending on the environment

[19]. These characteristics make vision a natural supplement to inertial measurement

units (IMUs) in aiding navigation, especially in GPS denied environments [34, 36, 19].

Visual-inertial odomerty (VIO) is the process of estimating a vehicle's trajectory us-

ing both inertial measurements and feature observations from cameras. There are

several different VIO methods; the choice of method for a particular system depends

on computational constraints, performance requirements and the available sensors.

The goal of this thesis is to develop and implement a VIO system on a quadrotor

equipped with a monocular camera, an IMU and a depth sensor. The multi-state

constraint Kalman filter (MSCKF) [34, 29], a sliding window VIO algorithm for real-

time vision-aided inertial navigation, is the basis for the VIO method developed in

this thesis. The main contributions of this thesis are extending the MSCKF to use 3D
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feature measurements and presenting a feature location uncertainty model. Finally,

this thesis analyzes the performance of the extended MSCKF through real-world

experiments of navigating a quadrotor.

1.2 Literature Review

There are several visual-inertial odometry (VIO) methods in the literature that fuse

visual and inertial measurements in different ways. These methods can generally be

described as either "loosely coupled," in which IMU measurements and vision mea-

surements are processed separately (i.e. each sensory system produces its own state

estimate), or "tightly coupled", in which the vision measurements and inertial mea-

surements are directly fused and the state is jointly estimated. Furthermore, tightly

coupled methods can be divided into iterative minimization methods or Extended

Kalman Filter (EKF)-based methods.

EKF-based VIO methods are less computationally expensive and, typically, less

accurate than iterative minimization methods. However, the multi-state constraint

Kalman filter (MSCKF) presented in [29] is an EKF-based method that is proven

to be more accurate and less computationally expensive than iterative minimization

methods. Thus, this thesis will focus on EKF-based VIO methods, and specifically

on the MSCKF. The remainder of this section discusses the aforementioned VIO

methods.

1.2.1 Loosely Coupled VIO

Loosely coupled VIO methods process IMU measurements and vision measurements

separately. These methods are the most computationally efficient; however, when

IMU measurements are processed separately from vision, the state estimates are not

optimal [29]. Loosely coupled methods are commonly used in systems with compu-

tational limitations, such as micro air vehicles (MAVs) [5, 7].

Diel et al. present a loosely coupled VIO method that treats visual measurements

as stochastic constraints on the camera position [9]. The method uses two camera
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poses and a jointly observed feature to define a plane (i.e. an epipolar constraint.)

Out-of-plane violations of this epipolar constraint are converted to residuals that are

fed into a linear Kalman filter. Since the in-plane information is disregarded, this

filter does not use all the feature information. The advantage of this loosely coupled

filtering scheme is that computation and memory requirements scale linearly with the

number of features.

Roumeliotis et al. obtain relative pose measurements of a vehicle using two-frame

feature based motion estimation and then augment the information with inertial

measurements [42]. In the two-frame feature based motion estimation, features are

tracked between two images and the motion of the camera is estimated by solving for

the rigid transformation that transforms the features from the first image into the

features from the second image. The advantage of using only two image frames to

estimate vehicle pose is increased computational efficiency. However, if a feature is

seen in multiple images, additional constraints between multiple poses can be made

[34]. Therefore, by only using two of the image frames to estimate motion, information

from the remaining images is disregarded and motion is only sub-optimally estimated.

Konolige et al. develop a system that fuses visual odometry and IMU data using

an EKF [24]. In this system, each sensory system produces a pose estimate which

gets fused with the other pose estimates in an EKF. The pose estimate is sub-optimal

since the existing cross-corrolations between internal states of the different devices

are unused; however, the RMS error of the vehicle trajectory was reduced by an order

of magnitude when VO was loosely coupled with the IMU measurements.

A more recent work [32] fuses stereo camera sensor data with IMUs and leg odom-

etry on a dynamic legged vehicle. In this system, stereo visual odometry estimates

vehicle translation and orientation by minimizing a non-linear cost function. The

motivation for fusion of the IMU and leg odometry data with the VO pose estimate

(accomplished using an EKF) is to reduce bias introduced by linearization errors

when minimizing the cost function. The loose coupling of the IMU and VO suffi-

ciently reduced drift in the vehicle position estimate.
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Semi-Tightly Coupled VIO

Vision data and IMU data are processed separately, except for scale-factor estimation

in [49] and [13]. The scale factor estimation uses both IMU and camera measurements;

thus these algorithms can be classified as semi-tightly coupled. Observability analysis

of the semi-tightly coupled system, in which IMU data and the map scale-factor are

jointly estimated in an EKF, is presented in [49]. The analysis proves the theoretical

observability of roll, pitch and sensor calibration states (IMU biases and camera-

to-IMU transformation) of the vehicle. The map scale, and therefore, speed of the

vehicle, are also observable in the system; this is crucial since [49] and [13], aim to

robustly control the speed of an MAV in real time.

Real-time, onboard state estimation of an MAV using a single camera and an IMU

is demonstrated in [49]. Similarly, a low-cost quadrotor equipped with an IMU and

two cameras, developed by [13] achieved autonomous navigation. The limited com-

putational platforms lead both [491 and [13] to tailor parallel tracking and mapping

(PTAM) 1 to their systems to process vision measurements. The map-scale estima-

tion, using both vision and IMU data, is more accurate in these algorithms than in

loosely coupled VIO methods. Furthermore, the vehicle speed estimation is suffi-

ciently accurate to robustly control the MAV in both semi-tightly coupled systems.

The main advantage of using loosely coupled (and semi-tightly coupled) VIO

methods is the increased computational efficiency. In computationally constrained

systems, such as [9, 42], the computational efficiency of loosely coupled VIO methods

outweighs the disadvantage, namely, the sub-optimal state estimate. Additionally,

depending on the computational constraints and the performance requirements of a

system, loosely coupled VIO methods may be sufficient. For example, in the sys-

tems presented in [24] and [32], loosely coupling vision and IMU data was sufficient

in improving long term pose estimation by reducing drift. The semi-tightly cou-

pled systems, [49] and [13], achieve more accurate map-scale estimation and are still

1PTAM is presented in [21] to track a hand-held camera in an small, unknown environment by
splitting tracking and mapping into two separate tasks. One thread is tasked with robustly tracking
erratic hand-held motion, while the other thread creates a 3D map of point features from previously
observed video frames.
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computationally inexpensive. The goal of this thesis, however, is to develop a more ac-

curate, tightly coupled VIO method that is still computationally inexpensive enough

to run onboard on a quadrotor. The MSCKF, is ultimately used as the basis for the

VIO method presented in this thesis.

1.2.2 Tightly Coupled VIO

Tightly coupled VIO methods directly fuse inertial and visual data; thereby obtain-

ing more accurate state estimates but at a higher computational cost than loosely

coupled schemes. Tightly coupled methods are further classified as either EKF-based

methods or iterative minimization methods [29]. EKF-based VIO methods include

EKF-SLAM algorithms, sliding window algorithms and hybrid algorithms. Itera-

tive minimization methods more effectively deal with non-linearities in measurement

models because re-linearzation is performed at each iteration; thus, they are typically

more accurate than EKF-based methods, but come at a higher computational cost.

Iterative minimization methods and EKF-based algorithms (including EKF-SLAM,

sliding window and hybrid algorithms) are discussed in the following sections.

EKF-SLAM Algorithms

EKF-SLAM algorithms are tightly coupled EKF-based VIO estimators that jointly

estimate the current camera pose and feature locations [29]. Since the feature loca-

tions are stored in the state vector, the computational cost of EKF-SLAM algorithms

scales with the number of features in the state vector cubed [47]. In typical envi-

ronments, large numbers of features are visible, causing the cost of an EKF-SLAM

algorithm to be unacceptably high [29]. Therefore, in order to keep the computa-

tional cost of the algorithm bounded, features are usually removed from the state

vector when they leave the camera's field of view [29].

Jones and Soatto integrate visual and inertial sensors using a standard EKF-SLAM

framework for ego-motion estimation, localization and mapping [19]. They also ad-

dress camera-IMU calibration, stabilization of the estimation process and handling
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failure modes from each sensing modality. Other EKF-SLAM algorithms are pre-

sented by Kleinert and Schleith, where a camera-IMU system capable of real-time

autonomous navigation and map building is developed [22], and by Pinies et al.,

who augment the algorithm presented by Civera et al.2 with inertial measurements

from a low-cost IMU in order to improve the estimated camera trajectory, map scale

estimation and feature localization [38].

Since EKF-SLAM based algorithms and the MSCKF are both EKF-based es-

timators, they use the same measurement information [29]. Furthermore, Li and

Mourikis prove that EKF-SLAM algorithms and the MSCKF would yield the same,

optimal estimates for IMU pose if the systems were linear-Gaussian [29]. However,

the actual measurement models are nonlinear, which allows the MSCKF to outper-

form EKF-SLAM algorithms in terms of accuracy. This is mainly due to the way

feature measurements are used in the MSCKF, and this will be discussed in more

detail when these algorithms are extensively compared in section 3.3. Additionally,

the MSCKF's computational cost per time step scales linearly, rather than cubicly

(as do EKF-SLAM algorithms), with the number of features [29]. Since the MSCKF

is more accurate and computationally efficient than EKF-SLAM algorithms, it is the

basis for the VIO algorithm presented in this thesis.

Iterative minimization methods

EKF-based estimators are susceptible to a gradual buildup of measurements lineariza-

tion errors, which in VIO problems, causes trajectory estimation errors to continu-

ously accumulate [10]. Iterative minimization methods have been developed to better

handle such nonlinearities. In these methods, the filter maintains a sliding window

of states, comprised of camera positions and feature locations. In order to obtain

estimates of all the states, a nonlinear cost function consisting of feature location

error terms and camera position error terms is minimized using an iterative mini-

2 Civera et al. use standard monocular SLAM framework for real-time motion estimation and
mapping with a hand-held monocular camera [8]. Through the use of an inverse depth parametriza-
tion, in which features are represented as a 6-D state vector, estimates of camera orientation are
significantly improved and camera estimation jitter is reduced.
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mization technique (i.e. iterative Gauss-Newton minimization) [10]. Because of the

relinearization at each iteration, these methods have higher computational cost than

most EKF-based methods.

The iterative minimization method for VIO used in [23] extracts feature locations

from a small number of image frames. This sliding window of image frames, along

with IMU data, is the input to a nonlinear least squares optimization to estimate

the vehicle trajectory. In order to achieve real-time operation, the nonlinear least

squares problem must be solved incrementally as described in [23]. An iterative

minimization algorithm, presented in [10], tracks the motion of a robot by iteratively

re-linearizing robot-to-landmark measurements and odometry measurements over a

window of poses. In order to maintain bounded computational complexity for real-

time operation, this algorithm is forced to marginalize out (i.e. remove) older poses

from the state vector. Similarly, iterative minimization on a window of poses within a

filter is used in [31]. As new poses are added and past observations are removed, the

current window of states being estimated is independent from the previous estimates;

thereby isolating errors in the filter to the region where they occur. The iterative

minimization methods [23, 10, 31] run in real time and usually are more accurate

than typical EKF-based methods.

The iterative minimization method presented by Sibley et al. is a sliding window

bundle adjustment method [45]. Gauss-Newton minimization is used to update state

estimates each time a new image is recorded; then, in order to maintain a constant

computational cost, older states are marginalized out. An extensive comparison be-

tween this method [45] and the MSCKF is given in [29]. It is shown that the MSCKF

algorithm achieves better consistency and accuracy even though the iterative mini-

mization method had approximately fives time longer computation time. Even though

the iterative minimization method better approximated the nonlinear measurement

models by relinearizing at each time step, the MSCKF, which uses a linear model with

appropriate observability properties, 3 yielded better results [29]. Since the MSCKF

is an EKF-based estimator that is proven to achieve more accurate results than the

3The importance of correct observability properties of the MSCKF is discussed in section 3.3
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best iterative minimization methods at a lower computational cost, the focus of this

thesis will be EKF-based VIO algorithms and, specifically the MSCKF, which is the

basis for the VIO algorithm presented in chapter 4 of this thesis.

MSCKF Algorithm

The multi-state constraint Kalman filter (MSCKF), a "sliding window" EKF-based

VIO algorithm for real-time vision-aided inertial navigation, is presented in [34, 29].

The MSCKF is classified as "sliding window" because it maintains a sliding window of

camera poses in the filter state and use feature measurements to impose probabilistic

constraints on the camera poses [29].

This MSCKF differs from standard EKF-SLAM algorithms in the way that feature

observations are used. In the MSCKF, a feature is tracked until it leaves the field of

view of the camera; then all the feature measurements are used to form probabilistic

constraints on the camera poses from which the feature was observed [29]. These

constraints form the residuals used for EKF updates and are independent from the

errors in feature locations. The MSCKF is able to use each feature measurement by

expressing its information in a residual instead of including the feature location in

the state vector. In contrast, EKF-SLAM algorithms inherently make assumptions

that the probability distribution function of the feature's positions is Gaussian; this

results in less accurate state estimates [29].

The MSCKF has two characteristics crucial for accurate state estimation: consis-

tency and correct observability properties [29]. While EKF-SLAM algorithms (and

iterative minimization methods) can be consistent, they do not possess correct observ-

ability properties [29] and the result is a decrease in accuracy. Both characteristics

will be discussed in section 3.3. Finally, the computational complexity of the MSCKF

is linear in the number of features [34]. This makes it more computationally efficient

than EKF-SLAM algorithms and iterative minimization methods.

The accuracy and computational efficiency of the MSCKF make it the most suit-

able VIO method for implementation on a quadrotor. The MSCKF, as originally

proposed, is implemented on a system with only a monocular camera and an IMU.
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These sensors only provide two-dimensional feature locations. The purpose of this

thesis is to extend the MSCKF to use three-dimensional feature measurements, which

are obtained with the additional use of a depth camera. This thesis also presents a

feature depth uncertainty model to use with the extended MSCKF.

Hybrids of the MSCKF and EKF-SLAM estimators

A hybrid estimator that integrates the MSCKF with EKF-SLAM is designed in [27].

This is accomplished by choosing the size of the sliding window, m. If a feature is

lost after fewer than m frames, it is processed using MSCKF. Otherwise, the fea-

ture is initialized into the state vector and used for SLAM. The advantage of this

algorithm, compared to the MSCKF and EKF-SLAM algorithms individually, is the

improvement in computational efficiency. In simulations, the hybrid estimator has

approximately half the runtime compared to each method. Real-world data shows

the hybrid estimator is only slightly less accurate than the MSCKF (the hybrid still

out performs the EKF-SLAM estimator in terms of accuracy). Another work, [50],

uses the MSCKF as a basis filter, but only includes a pose in the state vector if it

has a significant baseline from a previously stored frame. Additionally, the system

keeps a small number of persistent features in the state vector. Similarly to the hy-

brid estimator presented in [27], the estimator in [50] sacrifices accuracy for improved

computational efficiency. Thus, if processing power is limited, a hybrid estimator can

be implemented with only a slight decrease in accuracy compared to the MSCKF.

1.2.3 Summary of VIO Methods

VIO methods can be generally classified as loosely coupled or tightly coupled. Loosely

coupled VIO methods process vision measurements and inertial measurements sepa-

rately; because of this, they are the most computationally efficient. Tightly coupled

methods which, process vision measurements and inertial measurements together, are

more accurate and are more relevant to this thesis.

EKF-based methods and iterative minimization methods are types of tightly cou-
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pled VIO methods. EKF based methods are either EKF-SLAM algorithms, or, like

the MSCKF, sliding window algorithms. Typically, iterative minimization methods

are the most accurate and computationally expensive types of tightly coupled VIO

methods due to the way in which they deal with measurement nonlinearities. The

MSCKF, however, is more accurate and computationally efficient than the best iter-

ative minimization methods and EKF-SLAM algorithms. These characteristics make

the MSCKF the most suitable VIO method to implement on a quadrotor. As was

previously mentioned, the purpose of this thesis is to extend the MSCKF to use three-

dimensional (rather than two-dimensional) feature measurements. A feature depth

uncertainty model is also presented to use with the extended MSCKF.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides an overview of

the visual odometry problem and briefly discusses its key components. Additionally,

SLAM will be introduced and the general EKF-SLAM solution, a framework for EKF-

based VIO, will be summarized. Chapter 3 presents and compares two EKF-based

VIO algorithms: Standard EKF-SLAM and the MSCKF. Chapter 4 explains how the

MSCKF is extended to use 3D feature measurements and presents a feature depth un-

certainty model. Chapter 5 describes the implementation of the extended MSCKF for

a quadrotor and contains experimental results and analysis of the extended MSCKF.

Finally, conclusions and future work are discussed in Chapter 6.
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Chapter 2

Background

2.1 Visual Odometry

Visual odometry (VO) is a process of estimating egomotion, movement of a vehicle in

a static environment, using only the input of a camera (or cameras) attached to the

vehicle. In the early 1980's, Hans Moravec first introduced the problem of estimating

egomotion from visual input and tested his work on a planetary rover equipped with a

single camera sliding on a rail [33]. The term "visual odometry" was coined by David

Nister in 2004 in a landmark paper describing a real-time method for estimating

the motion of a vehicle from video sequences in a previously unknown environment.

The system consists of a feature tracker, in which point features are matched between

pairs of frames, producing feature tracks. The feature tracks are then used to estimate

camera motion using a "geometric hypothesize-and-test architecture" [36].
Visual odometry can be classified as either stereo or monocular. In stereo visual

odometry, the use of two cameras, or the ability to obtain two images from the same

vehicle location, enables direct measurement of the relative 3-D position of features

at every vehicle location. Alternatively, in monocular visual odometry, only a single

camera is used; thus, only bearing information is available. In this case, vehicle

motion can only be estimated up to a scale factor. This means that only the relative

scale between two image frames can be estimated. However, direct measurements,

such as the size of a landmark, motion constraints, or integration with other sensors
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allow the determination of absolute scale for monocular camera systems. Monocular

methods are important because, when the distance from the cameras to the scene is

much greater than the the distance between the two cameras, stereo vision becomes

ineffective and monocular methods must be used instead [43].

Similarly to inertial measurement units (IMUs), visual odometry functions incre-

mentally by dead reckoning and accumulates error over time [36]. However, VO is

not affected by global positioning system (GPS) dropouts, wheel slip or other adverse

conditions; making it a natural supplement to many navigation sensors, such as GPS,

IMUs and laser range scanners [36, 43].

2.1.1 Overview of the VO Problem

As a vehicle moves through an environment, the images produced by the onboard

camera(s) change accordingly. Visual odometry incrementally estimates the pose of

the vehicle based on how the images change. Therefore, in order for VO to work

effectively, sufficient illumination is required in a static environment with rich texture

[43]. The illumination and texture allow multiple features to be extracted from image

frames. A static environment is important because VO operates by tracking the

change in feature locations from frame to frame. If a feature has actually moved

within the environment, treating it as a stationary point of reference will cause an

erroneous estimate of vehicle motion [43]. Additionally, VO requires consecutive

frames to have sufficient scene overlap [43]. This allows features to be seen and

tracked over many different image frames. With these requirements, an illustration

of the VO problem is shown in figure 2-1.

As seen in figure 2-1, image Ik_1 is produced by a camera with pose Ck-1 at time

instant k - 1. At the next time instant, k, the camera has pose Ck and produces

image k. Poses Ck-i1 and Ck can be related by

Ck = Ck1Tk,k-1 (2.1)

where Tk,k-1 E R 4 x4 is a rigid body transformation of the following form:
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Figure 2-1: An illustration of the visual odometry problem. The relative transforma-
tions Tk,k_1 between adjacent camera poses Ck_1 and Ck are computed from visual
features in images Ik-1 and Ik. All transformations are concatenated to get absolute
pose Ck with respect to the initial coordinate frame Co.

Tk,1 = Rk,k_1 tk,k-] (2.2)
0 1

where Rk,k_1 E SO(3) is the rotation matrix and tk,k-1 E R3x 1 the translation

vector [43].

In visual odometry, the goal is to recover the entire camera trajectory by relating

the set of all camera poses, CO:n = {Co,.. ., Cn}, to the initial pose, Co. For example,

C1 = CoT1,o and C2 = CoT1,oT2,1, which can be rewritten as C2 = C1 T2,1. Thus, the

current pose, Cn, is computed by concatenating all the transformations Tk,k_1 where

k = 1. . .n [43], therefore:

Cn = Cn_ 1 Tn,n_ 1  (2.3)

The block diagram in figure 2-2 summarizes the VO process. First, features are

detected in every image Ik and then matched with those from previous frames. Next,
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relative motion Tk between the time instants k - 1 and k is computed. The camera

pose Ck is then computed according to equation 2.1. Finally, local optimization over

the last m frames can be performed to obtain a more accurate estimate of the local

trajectory [43]. Each step will now be discussed briefly.

Image Sequence

Feature Detection

Feature Matching (or Tracking)

Motion Estimation

2-D-to-2-D 3-D-to-3-D 3-D-to-2-D

Local Optimization (Bundle Adjustment)

Figure 2-2: A block diagram showing the main components of a VO system [43].

Feature Detection

A feature is an image pattern that is unique to its immediate surrounding due to

intensity, color and texture. In this first step of the VO process, a feature detec-

tor searches for all the point-features in an image. Point-features, such as blobs

and corners (the intersection point of two or more edges), are useful in VO because

they can be accurately located within an image. There are many different point-

feature detectors; Harris, Shi-Tomasi, Moravec and FAST are examples of corner

detectors [17, 44, 33, 41] while SIFT, SURF, and CENSURE are types of blob detec-

tors [30, 4, 1]. The appropriate choice of feature detector depends on the environment

and computational constraints. Although each detector has its own advantages and

disadvantages, the desirable properties of a feature detector are [14]:
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1. localization accuracy both in position and scale

2. repeatability (many features should be redetected in the next images)

3. computational efficiency

4. robustness to noise, compression artifacts, blur

5. distinctiveness (so features can be accurately matched across different images)

6. invariance to both photometric and geometric changes

Every feature detector has the same general procedure. First, a feature-response

function is applied to the entire image. The type of function used is one element that

differentiates the feature detectors (i.e. the Harris detector uses a corner response

function while the SIFT detector uses the difference-of-Gaussian detector). Next, all

the local minima or maxima of the feature-response function are identified. These

points are the detected features. Finally, the region surrounding each feature is

assigned a descriptor, e.g. pixel intensity, so that it can be matched to descriptors

from other image frames [14].

Feature Matching or Feature tracking

There are many methods to match features between images; the simplest way is

to compare all feature descriptors from one image to all feature descriptors from a

second image using some kind of similarity measure (i.e. sum of squared differences

or normalized cross correlation) [14]. The type of descriptor influences the choice of

similarity measure. Another option for feature matching is to search for all features

in one image and then search for those features in other images. This "detect-then-

track" method is preferable when motion and change in appearance between frames is

small [14]. The set of all matches corresponding to a single feature is called a feature

track.
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Motion Estimation

The goal of the motion estimation step is to use all of the feature tracks to compute

the camera motion from the previous image frame to the current frame. Consider fk,

the set of features in the current frame Ik. The 3D location of the ith feature, fA, is

represented as 3D coordinate points, Xk. Similarly, the ith feature in frame Ik-1 is

represented as 3D coordinate points X 1. Camera motion is computed by finding

the transformation from the set of 3D features from image Ik to the set of 3D features

from image Ik_1. Explicitly, the solution is the Tk,k_1 that minimizes the L2 distance

between the two 3-D feature sets:

Tk,k_1 = arg min Z ||k - Tk,kX1X'l (2.4)
Tk,k-1

These transformations have absolute scale since the features are represented as

3D points [43]. Then, the current pose, Cs, is computed directly by concatenating all

the transformations Tk,k_1 (where k = 1 ... n) as in equation 2.1.

There are two additional ways to represent features. In one case, both fk_1 and fk

are specified using 2-D image coordinates. Alternatively, fk-1 can be specified in 3-D

coordinates and fk as the corresponding 2-D reprojections on the image Ik. If either

of these feature representations are used, slightly different methods for estimating

motion are used. These methods are explained in [43].

Local Optimization (Bundle Adjustment)

The advantage of performing alignment only between the last pair of images is that

the computational complexity of the algorithm has constant time with respect to

path length. The disadvantage is that drift is introduced in the trajectory as small

errors in position and rotation build up over time [11]. One way to alleviate this is

to use windowed bundle adjustment, which optimizes the camera parameters and the

3-D feature parameters simultaneously, for a set of m image frames [14]. Specifically,

windowed bundle adjustment aims to minimize the image reprojection error:
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[k , 1:k] = arg min |1pi - g(Xi, Ck}||2 (2.5)

where n is the number of features, p is the ith image point of the 3-D feature X'

measured in the kth image and g(X , Ck) is its image reprojection according to current

camera pose Ck [14]. Since windowed bundle adjustment uses feature measurements

over m image frames, drift is reduced compared to two-view VO. As m increases,

drift is reduced, but computational expense increases. Thus, the choice of window

size, m, is chosen based on computational requirements [14].

2.1.2 Visual-Inertial Odometry

Visual odometry alone has significant latency, computational complexity and poten-

tial robustness issues depending on the environment [19]. These characteristics make

vision a natural supplement to inertial measurement units (IMUs) in aiding naviga-

tion [34, 36, 19]. Visual-inertial odometry (VIO), the process of estimating a vehicle's

trajectory using both inertial measurements and feature observations from cameras,

is an extension of the VO problem previously described.

Inertial Measurement Units

Inertial measurement units (IMUs) are comprised of accelerometers, which measure

the acceleration of the IMU, and gyroscopes, which measure the angular velocity of

the IMU. From these measurements, position, velocity and attitude of the vehicle

can be calculated using integration. IMUs are self contained and are capable of

providing measurements at high sample rates [25]. IMU measurements are subject to

biases in both the accelerometers and gyroscopes as well as random walk produced

by integration of the intrinsic noise present in the accelerometers and gyroscopes [38].

VIO methods

As discussed in section 1.2, there are several methods for combining visual and inertial

measurements to perform visual-inertial odometry. Loosely coupled methods are
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computationally efficient but are less accurate. Tightly coupled methods, further

classified as either EKF-based or iterative minimization methods, are more accurate.

The MSCKF is the basis for the VIO method presented in this thesis; thus, EKF-

based methods, and the MSCKF in particular, will be described in detail in chapter 3.

2.2 Simultaneous Localization and Mapping (SLAM)

The goal of simultaneous localization and mapping (SLAM) is for a mobile robot in

an unknown environment at an unknown location to incrementally build a consistent

map of the surrounding environment while, simultaneously, localizing itself within

the map. The SLAM problem originated in the late 1980's and then a landmark

paper by Randal Smith et al. showed that estimates of landmarks taken by a robot

in an unknown environments are correlated with each other because of the error in

estimated vehicle location [46]. This implied that a solution to the SLAM problem

requires a joint state, comprised of the robot pose and each landmark position, to be

updated at every landmark observation [12].

The probabilistic formulation of the SLAM problem will be presented in sec-

tion 2.2.1. In this problem, the current vehicle pose and the feature locations are

estimated from all the previous measurements and control inputs. The EKF-SLAM

algorithm will be discussed in section 2.2.2. This algorithm applies the EKF to the

SLAM problem using maximum likelihood data association [48]. It should be noted

that though EKF-SLAM is considered a solution to the SLAM problem at a theoret-

ical and conceptual level, substantial issues still exist in practically realizing general

SLAM solutions [12]. Real-time implementation of EKF-SLAM algorithms, for ex-

ample, might not be possible since the computation time scales quadratically with

the number of landmarks in the map [3, 48]. Additionally, the loop-closure problem

(i.e. the robot recognizing when it has returned to a previously mapped region), is a

major hurdle in solving the SLAM problem [3],[12].
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Distinction from VO

Solving the SLAM problem requires obtaining a global, consistent estimate of the

robot path. In this problem, it is necessary to store a map of the environment so

the robot recognizes when it has returned to a previously visited location. Visual

odometry (and visual-inertial odometry) on the other hand, recovers the robot tra-

jectory incrementally, pose after pose, with the option of locally optimizing trajectory

estimate over the last m poses. Essentially, VO or VIO can be a single step with the

entire SLAM problem [43].

2.2.1 Probabilistic SLAM

The SLAM problem requires a robot to estimate landmark locations and its own

position in a previously unknown environment simultaneously. To solve this estima-

tion problem, the following parameters are defined below [12]. An illustration of the

problem follows in figure 2-3.

List of Parameters

Xk: State vector describing the location and orientation of the robot at time k

Uk: Control vector, applied at time k - 1 to drive the robot to state Xk at time k

mi: Vector describing the location (assumed to be time invariant) of the ith landmark

Zik: Observation of the ith landmark taken from the robot at time k

Zk: Observation of multiple landmarks at time k

XO:k = {xo ... , xk}: History of all robot locations

UO:k = {ui, ... , uk}: History of control inputs

m = {mi, ... , mn}: Set of all landmarks

ZO:k = {Z1 , . .. , zk}: Set of all landmark observations

General SLAM Algorithm

An estimate for the distribution p(xk_1, mIZo:k1, UO:k_1, xo) at time k-1, the control

input Uk, and the observation zk are used to compute the next probability distribution,
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Figure 2-3: The essential SLAM problem. A simultaneous estimate of both robot
and landmark locations is required. The true locations are never known or measured
directly. Observations are made between true robot and landmark locations[12].

p(xk, mIZo:k, UO:k, xo). This describes the joint posterior density of the landmark

locations and vehicle state at time k, given the recorded observations, all control

inputs and the initial state of the vehicle [12].

The SLAM algorithm is a standard two-step procedure consisting of a propagation

step and a measurement update. First, in the propagation step, the distribution of

(Xk, m) given all prior observations (ZO:k-1, UO:k, xo) is calculated. From Bayesian

statistics, the marginal posterior predictive distribution is:

p(xk, mZO:k_1, UO:k, xo) JP(xkxk-1, uk)p(xk_1, mIZo:k_1, UO:k-1, xo)dxkl

(2.6)

where p(xklxk_1, Uk) is the conditional probability distribution of the vehicle state,

Xk, given the previous state Xk_1 and the control input Uk.

The second step of the SLAM algorithm is the measurement update step. In this
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step, Bayes theorem1 is used to calculate the probability distribution:

p(Xk, mIZo:k, UO:k, xo) = p(zklXk, m)p(Xk, mIZo:kl, UO:k, XO) (2.7)
P(ZkIZo:k_1, UO:k)

where p(zkIxk, m) is the conditional probability distribution of a landmark mea-

surement Zk given the vehicle location, Xk, and landmark locations, m.

The probability distribution p(xk, mIZo:k, UO:k, xO) is computed at all times k by

repeating this two step recursive procedure; thereby yielding the solution to the SLAM

problem.

2.2.2 EKF-SLAM

The EKF-SLAM algorithm applies the EKF to the SLAM problem. The inherent

nature of the EKF algorithm requires a Gaussian noise assumption for vehicle motion

and observation [48]. The nonlinear SLAM problem (i.e. vehicle motion and obser-

vations are nonlinear models) is also linearized by applying the EKF. Despite these

assumptions and approximations, the EKF-SLAM algorithm has been successfully

used in many robotic mapping problems [48].

EKF-SLAM Problem Formulation

The goal of the EKF-SLAM problem is to find the best estimates for the current

vehicle state, ik, and the landmark locations, ^:N, using all the measurements, ZO:k.

Specifically, the EKF-SLAM problem requires solving the optimization problem:

[kk, Iil:N = arg maXp(Xk, mI Zo:k) (2.8)
xk,m

By applying Bayes theorem to the optimization problem 2.8, the probabilistic

SLAM problem is recovered.

P(Zk lXk, M)P(Xki MIZO:k-1)
[ick, m1:N = arg max (2.9)

Baye tP(ZkIZo:k,1)

1Bayes theorem states that for events A and B, with P(B) 54 0, then P(AIB) = P(BIA)P(A)
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As in the probabilistic SLAM formulation, the propagation is written as:

p(xk, mIZo:k_1) = JP(xkxk_1, uk)P(xk_1, mIZo:k-1)dxk_1 (2.10)

Now, the Gaussian assumptions for vehicle motion and observations are applied.

Thus, by applying the Gaussian assumption Xk_1 ~ N(kk-l-1, Pk-11k_1) top(XkiXk_1, Uk)

and p(xk_1, mIZo:k_1), it is true that xk is also Gaussian with xk - N(ikkIkl, PkIkl1)

[48]. Similarly, in the measurement update equation the Gaussian assumption zk

N(iIk, Pkak) is applied to p(zklxk, m)

Thus, Xk and Zk can be written in the form [12]:

Xk = f (Xk-1, uk) + Wk (2.11)

Zk = h(xk, m) + Vk (2.12)

where f(-) models vehicle kinematics and where Wk are additive, zero mean un-

correlated Gaussian motion disturbances with covariance Qk. Additionally, h(-) de-

scribes the geometry of the observation and vk are additive, zero mean uncorrelated

Gaussian observation errors with covariance Rk.

EKF-SLAM Algorithm

With the SLAM problem now formulated as equations 2.11 and 2.12, the standard

EKF method [15] can be applied to determine the mean, [kklk Mnk], and covariance,

PkIk, of the joint posterior distribution p(xk, mIZo:k, UO:k, xO) at all times k.

=k~ E Xk I ZO:k] (2.13)

- T-

xPm Pxm k Xk ~ X-kk (2.14)
PMX Pmm I~ ik m-M
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The following equations are the typical propagation equations for a discrete-time

extended Kalman Filter:

kIlk_1 = f(*k-_1k_1, uk) (2.15)

Pxx,klk-1 = VfPxx,k-llk-1Vf T  Qk (2.16)

where Vf is the Jacobian of f evaluated at the estimate kk_11k_1. It is also noted

that during propagation, the estimate of (stationary) landmark locations does not

change [12].

Finally, the measurement-update equations are given as:

=k +Kkr (2.17)

PkIk = Pkak-1 - KkSkKT (2.18)

where
rk = Zk - h(Xklkli, k41)

Sk = HPklk_1HT + Rk (2.19)

Kk = PklakHTSk

In the measurement-update equations above, the measurement residual is rk and H

is the Jacobian of h evaluated at iklk_1 and rnik_.

2.3 Summary

This chapter provided an overview of the VO problem (section 2.1) and the SLAM

problem (section 2.2). The key components of the VO problem, including feature

detection, feature matching and tracking, motion estimation and bundle adjustment,

have all been briefly summarized. The probabilistic SLAM problem has been de-

scribed and the general EKF-SLAM algorithm has been presented. The VO problem

and the EKF-SLAM algorithm provide a framework for EKF-based VIO estimation,

which is discussed in the following chapter.
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Chapter 3

EKF-Based VIO Estimation

The goal of visual inertial odometry is to estimate a moving vehicle's trajectory using

inertial measurements and observations, obtained by a camera, of naturally occurring

point features. In order to accomplish this in real-time, the VIO algorithm must

have bounded computational complexity as a function of both time and trajectory

length [27, 29]. EKF-based VIO algorithms, tightly coupled estimators with bounded

computational cost, are generally divided into two categories: EKF-SLAM and sliding

window. In EKF-SLAM algorithms, the state vector contains the vehicle state and

the feature locations. In order to keep the computational cost bounded, features must

be removed from the state vector once they leave the field of view of the camera [27].
In sliding window algorithms, the state vector maintains a sliding window of camera

poses and uses feature observations to apply probabilistic constraints between the

poses [29].

EKF-SLAM algorithms will be discussed in section 3.1. The multi-state constraint

Kalman filter (MSCKF), a sliding window algorithm, is described in section 3.2. As a

result of two key properties of the MSCKF, correct observability and consistency, the

MSCKF outperforms other EKF-based algorithms in terms of accuracy and compu-

tational complexity. This is discussed when the two types of algorithms are compared

in section 3.3.
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3.1 EKF-SLAM Algorithms

In EKF-SLAM algorithms, the filter state is comprised of the IMU state and the

feature locations. In these algorithms, features that move out of the camera's field of

view are removed from the filter state vector in order to keep the computational cost

of the algorithm bounded [29]. As in typical EKF algorithms, the state estimates

are calculated using a two-step algorithm. First, is a state propagation step, followed

by a measurement update step. The standard EKF-SLAM algorithm given in [29] is

described in this section.

3.1.1 IMU State

The IMU state is defined with respect to a global reference frame {G}. The coordinate

frame {I} is affixed to the IMU and the rotation from the global frame to the IMU

frame at time step f is described by the unit quaternion I7j E R4 . The position

and velocity of the IMU in the global frame are pe E R3 and v E R 3, respectively.

Additionally, the biases of the gyroscope and accelerometer are bg, and ba,, both in

R'. These quantities form the 16 x 1 IMU state vector at time step f:

Xt = [hi pT vT b T b (3.1)

To define the IMU error state, additive error for position (G p Gp P), velocity

and the biases is used. The orientation error is given by the minimal representation

GqT E R3 [29]. Thus, the IMU error state is the 15 x 1 vector:

- [GbT Gp T GiLT  T ]T (3.2)

3.1.2 EKF-SLAM Filter State

In EKF-SLAM algorithms, the filter state contains the current IMU state, x,, and

the feature locations. The feature locations can be represented in different ways.

For example, the location of ith feature, fi, can be represented using traditional 3-D
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Euclidean XYZ parametrization or by the 6-DOF inverse depth parametrization [8].

The choice of parametrization can affect the filter's accuracy [29] and this will be

discussed in more detail in section 3.1.4. Regardless of parametrization choice, each

feature, fi for i = 1, ... , n is included in the state vector at time step t. Therefore,

the complete filter state vector at time-step f is defined as:

- T
x = x fT ... f] (3.3)

3.1.3 Discrete-Time Propagation

In the propagation step of EKF-SLAM algorithms, the inertial measurements from

the IMU's gyroscope and accelerometer are used to propagate the filter state. The

procedure for the state propagation is presented in this section.

System Model

The system consists of the inertial measurement signals and the IMU state evolu-

tion. In continuous time, the gyroscope measurements, wi, and the accelerometer

measurements, am, are given by [6]:

Wm = 1W + bg + fg (3.4)

am = IR(G a_ Gg) + b,, + n,,

where ng and na are zero-mean white Gaussian noise processes modeling measure-

ment noise. Additionally, IR = -GR(Ig) is a rotational matrix from the global to

IMU frame, Gg is the gravity vector in the global frame, Ga is the body acceleration

in the global frame, LO = oW W WZ is the rotational velocity in the IMU frame

and
0 -Wz Wy

L[W x J = W, 0 -WX (3.5)

[tW Y t h a

The IMU state evolution is described by the equations [6]:
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G 2 G2

Gpi(t) = GVI(t)

GVI(t) = Ga(t) (3.6)

bg(t) = ng(t)

ba(t) = na(t)

where fl('w) -
-T 0

Note that the features are assumed to be stationary, so the feature location esti-

mates are not propagated from the inertial measurements.

IMU State Estimate Propagation

The continuous time equations for propagating estimates of the IMU state can eas-

ily be derived by applying the expectation operator to the state propagation equa-

tions 3.6; however, in practice, the signals wm and am are only sampled at discrete

times tt_ 1 and te. Therefore, the signal measurements from time te1 are used to prop-

agate the IMU state estimate, , from time te_1 to time te, thereby producing

the state estimate kj,_ . The discrete-time equations for propagating the estimates

of the time-evolving IMU state are given by [29]:

it n It - 1
Gq = Ie-1 qG q

G G +G +G GgAt2

G G G Ggt (3.7)

Ve8-1b91 = f-

bat bat-,

where q solves the differential equation q = ft (c. (t)) q with t E [t_1, te]

and initial condition Ie2l = [0 0 0 1 with W = Wm - bg. Also, /t = te - te_1,

7_ft =G -(t1), and
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se_1 = -I1f(a,() - a(T))dr
e-i = ] 

ita t- 1 1,-

ye1= J"j '--ft(am(-r) - .(-r))drds
t,-_ t,-1

(3.8)

A complete derivation of equations 3.7 can be found in [26].

IMU Error State Propagation

The IMU state error propagation depends on errors at the previous step. A linearized

equation of the following form is used in the EKF [29]:

Rj,1,_1 ~ 41 ejRejj + Wd,_1 (3.9)

where 4),_- is the IMU error-state transition matrix and wd, is a noise vector

with covariance matrix Qd,_,. , is computed by linearizing the state propagation

equations 3.7 and is given by [29]:
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03

03
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41 vbg

13

03
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#pa
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13

(3.10)
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where

(Gp _ G_ G,2(D~pq = - LGp _ Pei e._.it - -git2) XJ

G G

21-2
(Dvq = _ [(G, e _" -~ gz~t) XJ

__It1 ic It-1Rd

4pbg i J (-1ftdsddw

pa Ie- ,JteJ II Rfdsdr,t _ _te_ J4_

v=J (G - g) X ]jjCiT Ie-d

vbg tIi G 1 G t II-1pd

D 1 
22Jtt I

va~G 1 T d,

A complete derivation of equations 3.10 and 3.11 can be found in [26].

Filter Covariance Propagation

The filter covariance matrix is propagated as [29]:

'e3-1=II11Q11-1 -- de_ 1  It_ 1 PIFi 1 ]w_

L PIFt_jjt_1 I_1 PFFj_jjt_j

where PII,_1 , is the covariance matrix of the IMU state, PFFt_e_ 1

ance of the features and PIF 1 1 _1 the cross-covariance between them.

(3.12)

is the covari-

3.1.4 Observation Update

In EKF-SLAM algorithms, observation updates occur whenever a new image is ob-

tained from the camera. The location of each feature in the image is determined and

compared to the corresponding expected location in the image. Since the measure-

ment function is nonlinear, a linearized approximation is used to obtain a linearized

residual. The set of residuals is then used in a standard EKF update. The observation

update procedure is now presented.
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Feature Residual Calculation

The observation of a feature i at time step f is:

z= h(x,, fi) + ni (3.13)

where ni is the measurement noise vector, modeled as zero-mean Gaussian with

covariance matrix Rif = o.212.

The measurement function h depends on the camera system. For example, in

monocular systems, the measurement of a feature is two-dimensional and the mea-

surement model is [29]:

rCe Xf 1
zi,= I Z + ne (3.14)

Ie eyf L

where the vector cepf- CeX! Ce f c Zf] is the position of the feature with

respect to the camera at time step e.
The residual between the actual and expected feature measurement is:

rit = zi - h(i:,ei_ 1, fi,_) (3.15)

and the linearized approximation is:

rie ~ Hit(^iei_)i_ + nfe (3.16)

where Hie(keiei) is the Jacobian matrix of h with respect to the filter state,

evaluated at the state estimate k1 j_1 . Note that iej_1 and kei_1 are determined

from equations 3.7 and 3.9, respectively, in the discrete-time propagation step.

EKF Update

The residual corresponding to each feature undergoes a Mahalanobis gating test [29]

in order to remove any outliers from being used in the EKF update. If the feature
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passes the test, it is used in the EKF update. The following matricies are formed:

re = [ne ri ... rke]T (3.17)

He= [H ... Hit ... Hke] (3.18)

Rij 0

Re= [ -. ](3.19)

0 Rkt

where 1 < k < n are the accepted features.

Finally, re, He and R are used to perform a standard EKF observation update

[15] as described in section 2.2.2:

ee = iXeIe1 + Kere (3.20)

Pie = Peii - KeStK T (3.21)

where

Se = HePei_1HT + Re (3.22)

Ke = Pie-_HjS f (3.23)

3.2 MSCKF

The multi-state constraint Kalman filter, presented by Mourikis [34, 29], is an EKF-

based VIO algorithm that differs from the standard EKF-SLAM algorithms in the way

feature measurements are used. Like EKF-SLAM algorithms, the MSCKF algorithm

consists of a propagation step followed by a measurement update step; the difference is

that in the MSCKF algorithm, the state vector maintains a sliding window of camera

poses and uses feature observations to apply probabilistic constraints between the

poses rather than keeping feature locations in the state vector [29]. The MSCFK, as
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presented in [29], is described in this section.

3.2.1 IMU state Augmentation

The IMU state of the MSCKF is the same IMU state used in EKF-SLAM algorithms

(given in section 3.1.1) augmented with the pose of the camera with respect to the

IMU.

lrcI = {C17, Cp} (3.24)

where 577j E R4 the unit quaternion describing the rotation from the IMU frame to

the camera frame and Cp1 E R3 is the position of the IMU in the camera frame. By

including the camera-to-IMU transformation in the state vector, the transformation

can be estimated in unknown environments, with no a priori known features; some-

thing EKF-SLAM algorithms are unable to do [29]. The IMU state in the MSCKF

is the 23 x 1 vector:

XI, = E jT G T GT I b, T C p (3.25)

3.2.2 MSCKF Filter State

The key difference between the MSCKF and EKF-SLAM algorithms is that the

MSCKF state vector contains the IMU poses at the times the last N images were

recorded. Thus, the state vector at time step i is:

]TXe = xi 7r[_ 1  T - (3.26)

wher ir= [f32 G* T]T

where-7r- =[qT Gp , for j = f - N,...,I - 1, are the recorded IMU poses at

the times the last N images were recorded.

3.2.3 Discrete-Time Propagation

The propagation step of the MSCFK algorithm is exactly the same as in EKF-SLAM

algorithms [29]. The inertial measurements from the IMU's gyroscope and accelerom-
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eter are used to propagate the filter state. Identical to EKF-SLAM algorithms, the

IMU state, x_1 , is the only part of the filter state that is propagated (i.e. the IMU

poses, irj, remain the same). It is also important to note that the estimate of the

camera to IMU transformation, lrci, (which is included in the IMU state) does not

change during propagation. Thus the state transition matrix is:

13 03 03 (qbg 03 0 3X6

4?pq 13 At1 3 (Dpbg (pa 03x6

= Ivq 03 13 (Ivbg (Dva 0 3x6

03 03 03 13 03 0 3x6

03 03 03 03 13 0 3x6

0 6x3 0 6x3 0 6x3 0 6x3 0 6x3 16

Refer to section 3.1.3 and equation 3.11 for the definitions of the

The filter covariance matrix is propagated as:

(3.27)

terms in WI,_i

Ie iiei_ 1lT __ Qd_1 tIt-iI, gr_
P eie_1 = [ + Q di PiiPeieiP IIrie.j..(3.28)

where PiI,_, _i is the covariance matrix of the IMU state, _ ,_t is the covari-

ance of the IMU poses and Pi,,_,_, the cross-covariance between them. Note that

this is the same covariance propagation as the EKF-SLAM algorithm in section 3.1.3;

but the covariance matrix is of the IMU state and the IMU poses rather than the

IMU state and feature locations.

3.2.4 Observation Update

In the MSCKF algorithm, observation updates occur when a feature is no longer

detected, either because it has left the field of view of the camera, was occluded, or

because the detector failed to find it. First, the location of the feature is estimated

using all the feature's measurements via Gauss Newton minimization [29]. The mea-

surement residuals are then computed from the estimated feature position. Since the

measurement function is nonlinear, a linearized approximation is used to obtain a
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linearized residual. Next, linearized constraints between all the camera poses from

which the feature was observed are formed from the residuals. Finally, these con-

straints, which are independent of the errors in the feature coordinates, are used for

the EKF update. The observation update procedure is now presented.

Estimation of Feature Location

To present the update algorithm, consider feature fi, observed from the N poses in the

MSCKF state vector, used for an update at time step f. Note that the first observation

of fi occurs at time step f - N, and the Nth observation of fi occurs at time step

f - 1. Therefore, observations of fi occur at times j, where j = f - N,... , - 1.

The first step is to obtain an estimate of the feature position Gpyf. In monocular

systems, the measurement of a feature is two-dimensional and the jth observation of

feature fi observed from camera pose Cj is:

_ 1 [Cx
zi = h(x, fi) + ni = c. i + ni (3.29)

where nij is the measurement noise vector, modeled as zero-mean Gaussian with

covariance matrix Rj = a.2 12 .

The position of the feature in the camera frame is:

Ci f

- Ciyf = R,;eiR jiei(Gpi _G Pile__) CPI (3.30)

[C3 Zfi

where Gpf, is the position of the feature in the global frame and is unknown.

Therefore, an estimate Gpfi is obtained using the measurements, zij and the filter

estimates of the camera poses. This can be accomplished using Gauss-Newton mini-

mization [29] or least-squares minimization [34].
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Feature Residual Calculation

This section summarizes the procedure, given in [29], for calculating feature residuals.

The residual (for j = f - N, ... , - 1) between the actual and expected feature

measurement is:

rij = zij - h(jIj_1,* 1c_ 1,G fi) (3.31)

The linearized approximation is

rij ~ H7,,fjjf_1 + Hcj*chI, 1  + HfjGf + nj (3.32)

where kjj_1 and Gfjf are the errors of the current estimate for the jth pose

and the error in the feature position respectively. c is the camera-to-IMU

transformation error.

Hir3 and Hfi, are the corresponding Jacobians evaluated using rjlg1 and Ghfi.

Additionally, Hc, is the Jacobian of the measurement with respect to the camera-

IMU pose evaluated using *cgi_ 1. The Jacobians are defined as [29, 34]:

Hf13  Jtjjk I ifjIfe (3.33)Hra ~ = Vfy-1G j-

H,13 = Hf13 (Gpf G PjIei)XJ -13] (3.34)

Hc3 = Jj [Cftjii-i Lfjg-i (Gfi G fj_i) XJ 13] (3.35)

The measurement Jacobian, Jij is:

1 0
Jij = h(f) 1 0 Zf (3.36)

f f=cj f z 0 1  - c

where the estimate of the feature in the camera frame is:
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Cjf

Cf j C I _1 ' -1(GP - Pjie-i) CP1  (3.37)

Cj f

Formulation of Constraints

The residual given in equation 3.32 can not be used for an EKF update because the

noise vector ni3 and the state RIej1 are not independent [29]. Specifically, Gpfi is

correlated to both *jI_1 and nij because G pf, is computed as a function of rjfie

and zij. Thus, Gpfi must be removed from the residual equations by the following

procedure from [29].

From the N observations of feature fi, N residual equations are formed (i.e. the

jth residual is given in equation 3.32). All N residual equations are combined to form

the vector:

ri eHi(*Ie_1,G Pf )Iej_1 + Hc,(eiti- Pf1,G1l (3.38)

Hf, (ieI_1,G Pf)Gf + ni

where ri and ni are block vectors with elements rij and nij respectively. The ma-

trices H,., Hc, and Hf1 are formed of block rows of H,,,, Hcj, and Hf, respectively.

Note that the error terms ReIe1 appearing in equation 3.38 contain the error terms

*.Y-,1 and *cij,- 1 that appear in equation 3.32.

Next, the residual ri is projected onto the left nullspace of the matrix Hf,. Specif-

ically, the residual vector r? is defined as:

r9 = VTri (3.39)

where Vi is a matrix whose columns form a basis for the left nullspace of Hf .'

Substituting the expression for ri given in equation 3.38 into equation 3.39 yields:

'The matrix Vi does not have to be explicitly calculated. See [34] for an efficient method for
projecting the residual ri onto the left nullspace of the matrix Hf1
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rP=VTr. _-HOilt-e11 P f1 )Xejlf + n9 (3.40)

where H? = VTHF +VTHc, and ni = V7ni. Now, r9 is independent from errors

in the feature locations and can be used for an EKF update. Note that equation 3.40 is

a linearized constraint between the all of camera poses that observed feature fi. These

constraints express all the information provided by the measurements zij [34, 29].

EKF update

The EKF update for the MSCKF algorithm is the same as for EKF-SLAM algorithms.

First, the residuals corresponding to each feature undergo a Mahalanobis gating test

[29] in order to remove any outliers from being used in the EKF update. The features

that pass the test, are used for the EKF update. The following matrices are formed:

r0 = [r ... r ... r] (3.41)

H = H- H9 ... H] (3.42)

Rol 0 ]=.(3.43)
0 Rgk

where 1 < k < n are the accepted features which have left the field of view of the

camera at time step f.

Finally, ro, H0 and R0 are used to perform a standard EKF observation update

[15] as described in section 2.2.2:

ieje = ilI_ + Kjr0  (3.44)

Pil = Pe_- - KeSjKf (3.45)
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where

St = HoPeIt1HOT + RO (3.46)

Kt = Pel1H O T St (3.47)

3.3 Algorithm Comparison

The key difference between EKF-SLAM algorithms and the MSCKF is the way fea-

ture measurements are used. The way the MSCKF uses feature measurements drasti-

cally improves its performance, in terms of consistency, observability, computational

complexity and accuracy, compared to EKF-SLAM algorithms [29].

Accuracy

In EKF-SLAM algorithms, the feature locations are included in the filter state vector;

therefore, the IMU pose and the feature locations are jointly estimated. By nature

of the EKF, the probability distribution functions of the feature's locations are in-

correctly assumed to be Gaussian. Another disadvantage of EKF-SLAM algorithms

is that when too many features are visible, they may not all be included in the sate

vector in order to allow the system to operate in real time [47]. This means that

EKF-SLAM algorithms may not use all the available measurement information.

The MSCKF makes no Gaussianity assumptions because the feature locations are

not included in the filter state vector. Instead, a feature is tracked until it leaves

the field of view of the camera; then all the feature measurements are used to form

probabilistic constraints on the camera poses from which the feature was observed [29].

These constraints form the residuals used for EKF updates and are independent from

the errors in feature locations. The MSCKF is able to use each feature measurement

by expressing its information in a residual instead of including the feature location in

the state vector.
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Observability and Consistency

The consistency of an estimation algorithm is crucial to its accuracy [18]. An estima-

tor is consistent if the estimation errors are zero-mean and if they have a covariance

matrix smaller or equal to the one calculated by the filter [18]. A primary cause of

inconsistency in EKF-SLAM algorithms is due to incorrect observability properties

of the estimator [18]. Observability analysis by Li and Mourikis shows that the non-

linear SLAM system has four unobservable states: the (3-D) global translation of the

state vector is unobservable and the rotation of the vehicle about the gravity vector

(i.e. yaw) is unobservable [29]. These four states should, therefore, be unobservable

in the linearized system models used in EKF-SLAM and MSCKF algorithms [29].

Standard EKF-SLAM algorithms and the originally proposed MSCKF [34] all

erroneously had the property that yaw was observable [29]. This meant that the

estimators underestimated the uncertainty of yaw; thereby yielding inconsistent es-

timators. An improvement for EKF-based estimator consistency, by [18], proposed

evaluating the measurement Jacobian matrix using the feature estimate from the first

time the feature was observed rather than using the current best estimate from all the

feature's observations. Employing this "first estimate Jacobian" method yielded the

correct observability properties and improved the consistency of EKF-based estima-

tors [26]. Furthermore, the MSCKF also includes the camera-to-IMU transformation,

an observable state, in the state vector and avoids introducing any variables that may

be erroneously observable [29].

Though all the EKF-based estimators were more consistent and accurate when

the correct observability properties were achieved using the first estimate Jacobian

method, the MSCKF still out performed the EKF-SLAM algorithms in terms of

accuracy and consistency [29]. Additionally, the correct observability properties of

the MSCKF, despite the measurement Jacobians being computed using slightly less

accurate linearization points, results in better accuracy and consistency than the best

iterative minimization methods [29].

Simulations and real experiments performed in [29] show that the MSCKF algo-
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rithm outperforms EKF-SLAM algorithms (and iterative minimization algorithms)

in terms of accuracy and consistency. Simulation results in Figure 3-1 show the nor-

malized estimation error squared (NEES) and the root mean squared error (RMSE)

of the IMU pose from the MSCKF and three EKF-SLAM algorithms. Note that the

RMSE of the MSCKF is smaller than those of the EKF-SLAM algorithms, which

indicates better accuracy. Additionally, the NEES is a measure of consistency; the

dimension of the pose error is six, so a consistent estimator should have an NEES of

six [29]. The inconsistent estimators have a higher NEES.
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Figure 3-1: The average NEES of the IMU pose and RMSE of the IMU position
and orientation. The MSCKF (red line) is compared to three EKF-SLAM methods
(green, black and blue lines) [29].

Computational Complexity

The computational complexity for standard EKF-SLAM algorithms is cubic in the

number of features in the state vector [47, 29]. The inversion of the mutual informa-

tion matrix in applying the EKF update (i.e. see equation 3.23) is the dominating

computation with a computational cost of O(n3), where n is the number of features
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[47]. This is a huge disadvantage in EKF-SLAM algorithms when an environment

has many features (a common situation), because the run-time of the EKF can be

unacceptably high [29].

Conversely, the computational complexity of the MSCKF algorithm is linear in the

number of features, i.e. O(n). This is because the MSCKF maintains a sliding window

of camera poses in the state vector and only uses the feature measurements to impose

constraints on the poses [29]. The computational cost of the MSCKF algorithm,

however, is driven by the number of camera poses that are included in the state vector;

therefore, the maximum computational complexity of the MSCKF is O(m3 ), where

m is the number of camera poses included in the state vector [34]. The parameter

m is chosen based on computational constraints and accuracy requirements. Finally,

note that m << n so the computational cost of the MSCKF is much lower than that

of EKF-SLAM algorithms; thus making the MSCKF faster than EKF-SLAM [29].
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Chapter 4

MSCKF-3D Algorithm

This chapter presents the MSCKF-3D algorithm which is the main contribution of this

thesis. The basis for this MSCKF-3D algorithm is the MSCKF algorithm presented

in Chapter 3. The MSCKF algorithm is used with monocular VIO systems that are

only capable of obtaining 2D feature measurements. The MSCKF-3D algorithm is

used with VIO systems capable of obtaining 3D feature measurements. This work

specifically uses a monocular camera and a depth sensor to obtain 3D measurements,

so the MSCFK-3D algorithm is presented for this type of system. A stereo system,

for example, also produces 3D measurements and could use a modified version of the

MSCKF-3D algorithm.

The MSCKF-3D algorithm also estimates the time delay between the camera and

the IMU. A time offset, td, between a camera and IMU means measurements that

are simultaneously obtained by the camera and the IMU are time-stamped as if they

were taken td seconds apart. If time delay is not compensated for, unmodeled errors

are introduced into the estimation process that will result in decreased accuracy [28].

The MSCKF-3D algorithm implements a solution proposed by Li and Mourikis to

include the time offset in the filter state so it can be estimated in the EKF [28]. This

modification could be implemented in all EKF-based VIO algorithms.
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4.1 State Parameterization

The IMU state of the MSCKF-3D is the same IMU state used in the MSCKF algo-

rithm (given in section 3.2.1) augmented with the unknown time offset td between

the camera and IMU time stamps. The IMU state in the MSCKF-3D is the 24 x 1

vector:

X = [I G T G T T T CjT CpT T (4.1)

The IMU error state is the 22 x 1 vector:'

- [GT GfT GiT fT fiCT CT CPT ]T (4.2)

The complete MSCKF-3D filter state at time step e is the same as the MSCKF

filter state as presented in section 3.2.2:

Xe = X, ri_1 _2 'r-N

where 3r - i jT GpT], for j = e - N,..., e - 1, are the recorded IMU poses

at the times the last N images were recorded.

4.2 Discrete-Time Propagation

The propagation step of the MSCFK-3D algorithm follows the same procedure as the

MSCKF algorithm and EKF-SLAM algorithms but with the state transition matrix

j,_1 extended to include the camera-to-IMU transformation, -7rC and time offset, td.

Since neither estimate of IrCI nor td changes during propagation, the state transition

matrix is:

'The orientation errors 3II and C4q are given in minimal representations G6T and CbT both
E R3 [29] so the error state is two dimensions less than its state.
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13 03 03 'Iqbg 03 0 3x7

4pq I3 At13 4(pb, (Dpa 03x7

I vq 03 13 'Dvb, (Dva 0 3x7 (44)
03 03 03 13 03 0 3x7

03 03 03 03 13 0 3x7

0 7x3 0 7x3 0 7x3 0 7x3 0 7x3 17

The procedure for discrete-time propagation presented in section 3.1.3 can be

followed using the state transition matrix 'Ii_ given in equation 4.4.

4.3 Observation Update

As in the MSCKF algorithm, the observation updates in the MSCKF-3D algorithm

occur when a feature leaves the field of view of the camera. The first step in the

observation update is to estimate the global location of the feature using all of the

feature observations. Since the measurement system used in this thesis consists of a

monocular camera and a depth sensor, each feature observation is a 3D measurement.

The jth observation of feature fi observed from camera pose C is:

C7 -

zij = h (xj , fi) + nif + ni (4.5)

Ci Zfi

where nij is the measurement noise vector, modeled as zero-mean Gaussian with

covariance matrix Rj3 E R3x3 -

The MSCKF only receives 2D feature observations so the goal of the MSCKF-

3D is to extend the MSCKF to use the 3D observations. This section will present

a model proposed by Dryanovski et al. that is used to estimate the location and

uncertainty of each feature observation. Then the global feature location can be

estimated using each observation location and its corresponding uncertainty in a

weighted least squares estimator. Subsequently, the feature residuals are calculated
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and formed into constraints that are used to perform an EKF update.

4.3.1 Feature Location Uncertainty Model

This section presents a method proposed by Dryanovski et al. for estimating the

uncertainty of the feature location output by an RGB-D camera [11]. Consider the

]Tjth observation of a feature fi is located at pixel qj = v vj dI where uj and v3

are image coordinates (in pixels) and dj is the depth measurement obtained from an

RGB-D camera. The position of the feature in the camera frame is [11]:

C ~ 's (u3 - cX)
C = p C ZfS (vj -cY) (4.6)

P I z d I

where fx and f, are the focal distances of the camera. c, and cy are the image

optical center. Dryanovski et al. represent the feature position cip, as Gaussian

mixture model in order to estimate the depth uncertainty.

Depth Uncertainty Model

The first step to creating the Gaussian mixture model for depth uncertainty is to

treat dj as a random variable with mean pd, and with standard deviation ad, ~ / as

experimentally determined by Khoshelam and Elberink [20]. Also assume the feature

locations uj and vj, which are detected from a feature locator, are independent random

variables distributed according to a normal distribution N(pu, aU,) and N(pv,, ao,).

Let o-u, and ovj inform the approximate Gaussian kernel:

1 2 1

W = 2 4 2 (4.7)
16

_1 2 1]

The second assumption is that the depth uncertainty of the feature depends on

the depth reading of its pixel and its surrounding pixels. Thus, assuming Ci zf1 is

normally distributed, the random variable c, f, is defined as a mixture of the czf
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variables in the local window {k :E [p, - 1,pUj + 1],f :E [pv, - 1,1tj + 1]}. The

mean and covariance of the Gaussian mixture are [11]:

1z1 = I WkeIpdkI (4.8)
k,e

2 =2 + p , - A (4.9)
k,e

where the weights of the mixture, Wk are from the kernel W.

Discussion of the Gaussian Mixture Model

Dryanovski et al. show that the Gaussian mixture model predicts the uncertainty of

feature depth better than a simple model that assumes no uncertainty in uj and v3

measurements [11]. Allowing for uncertainty in u1 and vj results in estimating feature

depth using a "local window" of pixels' depth measurements rather than a depth

measurement of a single pixel. Using a "depth window" for estimation especially

improves a feature's predicted depth and its uncertainty when the feature is around an

object edge [11]. This is because the measurements of the edge pixels produced by the

RGB-D camera tend to jump from background to foreground [11]. This means that

only measuring a single pixel located on the edge of an object will tend to produce

a much lower predicted uncertainty than the true uncertainty. By comparing the

measurements of surrounding pixels, the feature depth uncertainty is better estimated.

3D Uncertainty Model

The mean A,,, of the Gaussian mixture C3 zf, is then used to calculate the means 1-,
and pty., of Cixf, and ciyf, respectively.

Pxj = (P, - cX) (4.10)
fX

Pyi = (PI, - c") (4.11)
fy
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The 3D uncertainty Ej of a point cipf, is estimated as [11]:

22s,,0 0-yz3  (4.12)
UZXj Uz~ U Z

where 2 2 (A2 +&2

2 U,(#" -U _cX)2 + Or,( +dj)
U 3

2 (_ - cV) 2 + 2 (A, + &2.)
yj -

OXz, = = cxj) - c) (4.13)

6 (p= , - cY)

& 2 = II - C ) (~II - C )

Now, the jth observation of the feature has camera coordinates cipf., which is ap-

proximated as a multivariate Gaussian distribution with mean pg = [pX, py, A] T

and with uncertainty Ej

4.3.2 Estimation of Feature Location

When a feature fi leaves the field of view of the camera at time step f there are N

observations of the feature. The set of observations of feature fi in camera coordinates

is CPfi = {_Npfi ... CtI-1 Pi}. Following the procedure from section 4.3.1, Cp1

can be approximated as a set of multivariate Gaussian distributions with means . =

{pe-N ... /->e-1} and covariances E = {Ef-N,... , e-1}- The goal of this section is

to find the best estimate of the feature in global coordinates C f. using t and E.

Consider the jth observation of the feature with camera coordinates C3 pf1 , which is

approximated as a multivariate Gaussian distribution with mean Ai = pX, Py, Azi T

with uncertainty E. The feature position c3 pf, for j = f - N, ... , f - 1 is related to

its position in the global frame by [29]:
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Cip =f RIR_1GR _1 (Gp G i CpI (4.14)

The N observations of the feature can be stacked to form the system:

IRf-Njt-1GRf-Njt-1
CR-jIRt-- 1I G

7Re_1i_1iGRe_ li-

[CP -I Re-Nle-1GRe-Nje-1P-N-1

[ CPI -I R iR -ie-iE-(-l
(4.15)

The best estimate for the global coordinates of the feature, G]5fi is calculated using

a weighted least squares estimate [15].

Gp = (ATE-A)-lAT E-(y - my) (4.16)

where

Re-Nje-1GRNI-1

A =

CRi ie 1 R_ 1 1-1 j

PI -IC Rf-Njt- GR -Njt-1pN-Njf-1

ICp C? Re_1g_11GR _1l_1pe_1|ez_1= PI C Re R

(4.17)

Since jp, is approximated as a multivariate Gaussian distribution with mean pg
and with uncertainty Ej, the measurements are described by:

Cle-Npf1

[Ce-i1 i

FPe-N1
~I:I
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with covariance matrix:

= [ '. ~ ](4.19)

4.3.3 Feature Residual Calculation

The general procedure for calculating the feature residuals in the MSCKF algorithm

presented in section 3.2.4 can be followed to calculate the feature residuals for the

MSCKF-3D. However, the augmentation of the IMU state with time delay, td, and

the new measurement model, h(x,, fi), introduce modifications for calculating the

feature residuals.

The residual (for j = t - N, ... , - 1) between the actual and expected feature

measurement is still:

rij = zij - h(*iu_1,*cI,_,GPfi) (4.20)

The linearized approximation for the MSCKF-3D becomes [28]:

ri - H,j*jjeij + H cj rc e 1 Hf1jGff + Htjd nij (4.21)

The term Hte,,td appears in this linearized residual because the measurement func-

tion h is a function of feature position, which is a function of the time delay. Htij is

defined as [28]:

= JjRIf_,[ LIwJ jR jIf (Gp G Gjei - -tiii Jr] (4.22)Ht, = Jjjji~i_[I x JG _Jf-(Gf _G l_ _ G IjI-1G

Since the MSCKF-3D has a 3D measurement of feature location (equation 4.5),

the measurement Jacobian, Jrj, becomes:
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C-

i C' -

&h(f ) 0 t

0 ---og (4.23)
Cj C315  Cj i2f f=cj pOfi fi

L0 0 1

where the estimate of the feature in the camera frame is still:

[cj:f]

C~ - 3 f =IC RIjel1'1Rj&1(GPfi G' Paje-i) + CPi (4.24)

The equations for the Jacobians Hi, Hfj and Hj are unchanged from the

MSCKF case are defined as [29, 34]:

Hfj = JijRieg-1 -I

He = Hf, [[(Gf G Pi_) X -13] (4.25)

Hce, = Ji [5g_1[I tjel(Gfi _G jle-i) X 13

4.3.4 Formulation of Constraints

Similarly to the MSCKF algorithm, the residual given in equation 4.21 can not be

used for an EKF update in the MSCKF-3D because the noise vector nij and the state

eige are not independent [29]. Specifically, Gfpfi is correlated to both jle_1 and nij

because Gpfi is computed as a function of k*je-1 and zij. Thus, G ff must be removed

from the residual equations using the same procedure as in the MSCKF algorithm

[29]. The procedure for forming constraints in the MSCKF-3D is presented here.

First, all N residual equations are combined to form the vector:

r~ H, (k_,G CfG)ie_1 Hc t(If-1, G fi) ir i - H ~ 1 1 H C ( ̂ ( 4 .2 6 )

Ht((iei_,G (ktj)eele_ + Hf, (eie_1,G ) Gp + (2

where ri and ni are block vectors with elements rij and n j respectively. The
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matrices H, Hc,, Ht, and Hf, are formed of block rows of H,, 3 , Hc, He,j and Hfi,

respectively.

Next, the residual ri is projected onto the left nullspace of the matrix Hfr. Specif-

ically, the residual vector r9 is defined as:

r = VTri (4.27)

where Vi is a matrix whose columns form a basis for the left nullspace of H,-2

Substituting the expression for ri given in equation 4.26 into equation 4.27 yields:

r= VT ri - H9(ite-ielG pfi)kieIel1 + n9 (4.28)

where
H9=VTH r, + VTHc, + VT H(,i i (4.29)

nxi = VTng

Now, r? is independent from errors in the feature locations and can be used for

an EKF update. Note that equation 4.28 is a linearized constraint between the all of

camera poses that observed feature fi. These constraints express all the information

provided by the measurements zij [34, 29].

4.3.5 EKF Update

With the MSCKF-3D definitions of r9 and H9 given in equations 4.28, the EKF

update for the MSCKF-3D algorithm is the same as for the MSCKF algorithm. First,

the residuals corresponding to each feature undergo a Mahalanobis gating test [29] in

order to remove any outliers from being used in the EKF update. The features that

pass the test, are used for the EKF update. The following matrices are formed:

rO r ... r9 ... r (4.30)

2The matrix Vi does not have to be explicitly calculated. See [34] for an efficient method for
projecting the residual ri onto the left nullspace of the matrix Hf,
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T
... H9 ... HO

R R[ 0
R4 '- (4.32)

0 R2k

where 1 < k < n are the accepted features which have left the field of vie

camera at time step f.

Finally, ro, H0 and R' are used to perform a standard EKF update [15]:

keie = ktIe-1 + Kero

Peje = Ptij-1 - KeSeK T

where

Sj = HOPe-i1HO T + RH

Kt = PeIe-HOTS 1

w of the

(4.33)

(4.34)

(4.35)

(4.36)

4.4 MSCKF-3D Algorithm Summary

The MSCKF-3D algorithm presented in this chapter is for a VIO system consisting of

a monocular camera and a depth sensor which produce 3D feature measurements. The

basis for this MSCKF-3D algorithm is the MSCKF algorithm, presented in Chapter

3, which is extended to use the 3D feature observations. This is accomplished using a

model proposed by Dryanovski et al. that estimates the 3D location and uncertainty of

each feature observation by approximating it as a multivariate Gaussian distribution.

Then, using all observations of a feature, a weighted least squares estimate of the

global feature location is obtained. Additionally, the MSCKF-3D algorithm includes

the time offset between the camera and the IMU in the filter state so it can be

estimated in the EKF; this technique can be applied to the MSCKF and other EKF-
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based VIO algorithms. An overview of the MSCKF-3D algorithm is presented in

algorithm 1.

Algorithm 1 Multi-state constraint Kalman Filter (MSCKF)-3D
Initialization:

IMU state x1, = [hT GpT G T bT b Cif CpT td iT

Filter state xe = [xI i rt _ 1rf_ 2 * * * t-N
Propagation: Each time the IMU is sampled:

. Propagate state estimate ke_1e1 to ke_1
- Calculate IMU error state transition matrix b,_
. Propagate error state R&1Ie1 to :Relf1
. Propagate filter covariance matrix Pei1e_1 to Pelit-

Update: Each time a new image is recorded:
* Augment xe with current IMU pose 7r,

* Process image: Extract and match features
" For each completed feature track fi:

- Approximate each feature observation fij as a multivariate Gaussian

distribution with mean p, = [pZ py fzjT] and uncertainty Ej
- Estimate Gpfi using weighted least squares
- Calculate each feature observation residual rij
- Determine r?, the constraint between all camera poses that observed fi
- Perform Mahalanobis gating test

. Perform an EKF update with all accepted features to find iceie and Ptie
State Management: Remove from xe all IMU poses 7rj for which all associated
features have been processed
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Chapter 5

Experimental Results and Analysis

The performance of the multi-state constraint Kalman filter (MSCKF) and the MSCKF-

3D have been evaluated using real-world data obtained by flying a custom-built

quadrotor in an indoor office environment. In this section, the quadrotor system

used for data collection is described. The quadrotor state estimates produced by the

MSCKF and the MSCKF-3D (obtained by post-processing the experimental data) are

then presented and compared to the true quadrotor state. Finally, the performance,

in terms of accuracy and computational time, of the MSCKF and the MSCKF-3D

are compared.

5.1 Experimental Platform

For indoor navigation of an office environment, a quadrotor has been custom-built

and equipped with an IMU, an RGB-D camera and an onboard computer. Size and

weight of the components are important factors since the quadrotor needs to be able

to support the weight during flight and maneuver through hallways. Additionally, the

power consumption of the components will directly affect maximum time of flight of

the quadrotor. In addition to the IMU, RGB-D camera and computer, the quadrotor

frame supports a motor and a battery. The total weight of the quadrotor is approxi-

mately 974g. The quadrotor is shown in figure 5-1 and its components are described

in the rest of this section.
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Figure 5-1: Custom-built Quadrotor

Inertial Measurement Unit

The low-cost, low-weight IMU chosen for the quadrotor is the MPU-6000 [35]. The

IMU is housed in a PX4FMU (which also has a magnetometer and barometer) [39].

Table 5.1 describes the specifications of the IMU, which consists of a gyroscope and

an accelerometer.

Table 5.1: MPU-6000 Specifications
Dimensions (of the PX4FMU) 5 x 3.6 x 0.73 cm

IMU Power consumption < 14 mW
Sample Rate 200 Hz
Power spectral density 400pg/VHz

Accelerometer x axis precision +50mg
y axis precision +50mg
z axis precision 80mg

Gyroscope Total RMS noise 0.05'/s-rms
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RGB-D Camera

The quadrotor is equipped with an Asus Xtion Pro Live camera [2]. This camera

produces RGB and depth images in VGA resolution (640 x 480 pixels) at 30 Hz or

QVGA resolution (320 x 240 pixels) at 60 Hz. It is designed for indoor operation

between 0.8m and 3.5m, making it a suitable choice for data collection in the indoor

office environment. It has been stripped of its original packaging in order to keep the

size and weight as small as possible. Its dimensions are 16 x 2 x 3 cm and it weighs

about 88g. The power consumption is less than 2.5 W.

Onboard Computing System

The computer onboard the quadrotor is the Gigabyte Brix GB-XM1-3537 [16]. This

computer has a dual core 2GHz Intel i7 processor with 8GB RAM. The casing from the

computer has been removed so it weighs 171 grams and the approximate dimensions

are 10 x 10 x 3 cm.

The onboard computer uses the Robot Operating System (ROS) [40] framework to

interface with the IMU and the RGB-D camera. ROS is commonly used in robotics

applications and has many built in packages and libraries that support writing soft-

ware for robot operation.

The onboard computer is currently used to manually control the quadrotor and

store the data that is output by the IMU and the RGB-D camera. The sensor data

is then post-processed (offboard on a desktop computer) using the MSCKF and the

MSCKF-3D in MATLAB.

Truth Data

For analysis of the MSCKF and the MSCKF-3D, the quadrotor state estimates from

the filters are compared to the true quadrotor trajectory obtained from the AprilTag

system [37]. This is a visual fiducial system that allows 6DOF localization of features

from a single image. 51 distinct April tags were posted in the hallways where the

quadrotor was flown. The tag locations were all surveyed so that their relative posi-
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tions in the hallway were known. The AprilTags software post-processes the vision

data stored during the quadrotor flight, and detects the tags and determines the true

vehicle location based on the known tag locations. For more information on AprilTags

and the open source software, see [37].

5.2 Experimental Results

The performance of the MSCKF and the MSCKF-3D have been evaluated experi-

mentally using the custom-built quadrotor. During the experiments, the quadrotor

stores the vision data (in VGA resolution) and the inertial data onboard. Then, the

data is transferred to a desktop computer to be processed by the MSCKF and the

MSCKF-3D. Both filters use the same data to produce state estimates of the quadro-

tor throughout the entire experiment. The position estimates produced by the filters

are compared to the true vehicle location obtained from the AprilTags.

Trajectory Alignment

In order to compare the estimates from both filters, the estimated trajectories are

aligned to the true trajectory by minimizing the mean squared error (MSE) of the

vehicle trajectory over the first few meters of the trajectory. Note that only the

beginning of the estimated trajectory is used for alignment, rather than aligning the

entire estimated trajectory, because the estimation errors build up throughout time.

The beginning of the trajectory is most accurately estimated, and is therefore used

for alignment to the true trajectory.

5.2.1 Walking Datasets

In the following two datasets, the quadrotor was carried through an indoor office. In

the first dataset a single rectangular loop through the building was traversed. This is

a challenging trajectory for the filters to estimate because the environment is poorly

lit and has long regions with blank walls, i.e. few features can be used for vision

updates. Examples of these images are shown in figure 5-2.
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Figure 5-2: Images used for trajectory estimation of the indoor office trajectory.
These are example images of the poorly lit hallways with limited features that make
trajectory estimation using vision challenging.

The true rectangular loop trajectory, about 100 meters in length, and the es-

timated trajectories produced by the MSCKF and the MSCKF-3D are shown in

figure 5-3. The second dataset followed the same path through the building, however,

two rectangularloops were completed. The true and estimated trajectories are shown

in figure 5-4. In both datasets the first 15 meters of the estimated trajectories are

aligned to the true trajectory as was previously described.

71



Trajectory

25-

20-

15-

10-

5-

0- - Truth
-- MSCKF
-- MSCKF-3D

-5 -20 -15 -10 -5 0 5 10
X(m)

Distance from True Location vs. Time
7

-- MSCKF
6- MSCKF-3D

5

E 4-

0
&1 3-w

2

1

0 20 40 60 80 100
Time (s)

Figure 5-3: (Top) Trajectory obtained by walking the quadrotor around an office
building. A single rectangular loop through the hallways is completed (shown in

red). The estimated trajectories produced by the MSCKF and the MSCKF-3D are

shown in blue and green respectively. (Bottom) Distance between the true location

and the estimated location for the MSCKF and the MSCKF-3D.
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Figure 5-4: (Top) Trajectory obtained by walking the quadrotor around an office
building. Two rectangular loops through the hallways are completed (shown in red).
The estimated trajectories produced by the MSCKF and the MSCKF-3D are shown
in blue and green respectively. (Bottom) Distance between the true location and the
estimated location for the MSCKF and the MSCKF-3D.
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The results from figures 5-3 and 5-4 demonstrate that the MSCKF-3D outperforms

the MSCKF in estimating the true trajectory of the vehicle. Notice the two different

size loops estimated by the MSCKF in figure 5-4; this is a result of the MSCKF

struggling to estimate movement during the straight portions of the hallways. This

is easily explained in figure 5-6, which shows the trajectory estimates and the 2-

uncertainty bounds for both filters in the double-loop trajectory. The x and y position

and velocity uncertainties of the MSCKF estimates are much larger than the those of

the MSCKF-3D. The depth measurements used in the MSCKF-3D allow the estimator

to better predict vehicle velocity and recover a more accurate trajectory estimate

through these regions.

Figure 5-6 also shows the error bounds of both filters grow as the quadrotor turns

through corners. This makes sense because as the quadrotor is walked through the

turns, there are very few features to use for vision updates, as shown in figure 5-5.

This makes it very difficult for the filters to estimate the true angle of the turn that

the quadrotor makes. Furthermore, since vision and inertial errors accumulate over

time, when the angle of the turn is incorrectly estimated, the position error increases

as the vehicle continues to move.

Figure 5-5: Image of a turn used for trajectory estimation of the indoor office trajec-
tory. This image has very few features, and makes estimating the angle of the turn
using vision very challenging.
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Finally, figure 5-6 shows the vertical position estimates of the quadrotor. Though

the quadrotor is carried and remains at a nearly constant vertical position, both filters

estimate the vertical position is increasing over time. This is a due to the drift of the

IMU measurements.

--- MSCKF Estimate -- MSCKF 2a bounds - MSCKF-3D Estimate - MSCKF-3D 2a bounds

x position
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Figure 5-6: Estimation of quadrotor position and velocity during double loop walking
trajectory. The blue lines are the MSCKF-3D estimates and the green lines are the
corresponding two-sigma error bounds. The red lines are the MSCKF estimates and
the cyan lines are the corresponding two-sigma error bounds.

The MSCKF and the MSCKF-3D also estimate vehicle orientation; however,

no truth data is available for comparison. To confirm the general correctness, the
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MSCKF-3D estimation of vehicle orientation during the double loop trajectory is

given in figure 5-7. The MSCKF estimation of vehicle orientation is similar and is

not shown here. Since the quadrotor was carried, its pitch and roll remain nearly zero

(the roll estimate is 180 degrees because of the orientation of the quadrotor in the

global reference frame). The yaw estimate corresponds with the turns through the

hallways. Also note that the uncertainty bounds become smaller as the quadrotor

moves and more information is available.

yaw
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Figure 5-7: MSCKF-3D estimation of quadrotor orientation during double loop walk-
ing trajectory. The blue lines are the estimates and the green lines are the two-sigma
error bounds.
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Figure 5-8 shows the MSCKF-3D estimates of the IMU biases. There is no truth

data available for comparison, however, these estimates make sense, as the bias esti-

mates move around during the beginning before settling down. As expected, the bias

estimate error bounds are the same order of magnitude for each axis of the gyroscope.

Conversely, the vertical axis of the accelerometer has much smaller error bounds than

the other two axes because it is aligned with the gravitational axis.
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Figure 5-8: MSCKF-3D estimation of IMU biases during double loop walking trajec-
tory. The blue lines are the estimated biases and the green lines are the two-sigma
error bounds.
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The MSCKF-3D estimation of the transformation between the camera and the

IMU is shown in figure 5-9. The IMU coordinate frame in North-East-Down and the

camera coordinate frame is East-Down-North. The estimated rotation to get from the

camera frame to the IMU frame agrees with these coordinate frames. The translation

between the IMU and the focal point of the camera is also estimated; the camera is

mounted in front of the IMU, and the estimated 10 cm translation in the x direction

is accurate.
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Figure 5-9: MSCKF-3D estimation of camera-IMU transformation during double
loop walking trajectory. The blue lines are the estimates and the green lines are the
two-sigma error bounds.
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Finally, figure 5-10 indicates the MSCKF-3D estimates an approximately 20 ms

timing offset between the timstamps on the IMU measurements and the camera mea-

surements. That means that if measurements are received simultaneously from the

IMU and the camera, the timestamps indicate the IMU measurement occurred 20 ms

before the camera measurement. The MSCKF estimated a similar offset.

Image Timing offset error

40

Cn 20E

*~ 00

-20

0 50 100 150 200
Time (s)

Figure 5-10: MSCKF-3D estimation of camera-IMU time delay during double loop
walking trajectory. The blue line is the estimated timing offset and the green lines
are the two-sigma error bounds.

Two additional datasets, shown in figures 5-11 and 5-12, were taken by walking the

quadrotor though indoor office hallways. Since these hallways did not have AprilTags

to provide truth data, the estimated trajectories are aligned with the outlines of the

building hallways. From the hallway outlines, it is easy to see that the MSCKF-3D

provides better trajectory estimates than the MSCKF. The other state estimates (i.e.

vehicle orientation, IMU biases, camera-IMU transformation and timing offset) are

similar to the state estimates from the double rectangular loop trajectory shown in

figures 5-6 through 5-10.
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Figure 5-11: Trajectory obtained by walking the quadrotor around an office building.
A long, windy path is taken and a loop is completed at the end. The estimated
trajectories produced by the MSCKF and the MSCKF-3D (shown in blue and green
respectively) are aligned with the hallways of the building (yellow).
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Figure 5-12: Trajectory obtained by walking the quadrotor around an office building.
A windy loop is completed. The estimated trajectories produced by the MSCKF and
the MSCKF-3D (shown in blue and green respectively) are aligned with the hallways
of the building (yellow).
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Figure 5-13 shows the trajectory estimated by the MSCKF-3D while the quadrotor

was carried down two flights of stairs. In this dataset, the quadrotor started on the

ground (which corresponds to a height of zero meters in the figure) and was picked

up and held at about one meter above the ground. Then, the quadrotor was carried

about four meters to the beginning of the staircase. Two flights of stairs were then

descended.

Down Stairs Trajectory

E

-MSCKF-3D
Floors

S-- ------

-2 . -....4.-2...2

X(M) y(m)

Figure 5-13: Trajectory obtained by walking down two flights of stairs. The estimated
trajectory produced by the MSCKF-3D is shown in green. The red planes are the
three levels of the building.

The MSCKF-3D overestimates how far down the quadrotor has traveled. No-

tice how the the trajectory ends about one meter below the bottom floor; since the

quadrotor was being held, the true trajectory should end about one meter above the

bottom floor. This is because the accelerometer in the IMU drifts as seen in figure 5-
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8. Since the accelerometer is drifting in the same direction the quadrotor is traveling

(i.e. downward), the total distance descended is slightly overestimated.

It should also be noted that the MSCKF filter was unsuccessful in estimating

the trajectory of the staircase dataset. The staircase was dark and had very few

features, making it very challenging to estimate the trajectory. The additional depth

measurements enabled the MSCKF-3D to estimate the trajectory.

5.2.2 Flying Dataset

The next data set was taken by flying the quadrotor about ten meters to the end of

a hallway, completing a 180 degree turn and flying the quadrotor back to its original

position. Figure 5-14 shows the true trajectory of the quadrotor (from the AprilTags

system) and the MSCKF-3D trajectory estimate and its corresponding error.

Figure 5-15 shows the position and velocity of the quadrotor as a function of time.

In the estimate for the vertical position of the quadrotor, the negative z position cor-

responds to positive height above the ground. The MSCKF-3D accurately estimates

the quadrotor lifting off, however it does not estimate the quadrotor returning to its

position on the ground. This is, again, due to the bias in the accelerometer; the filter

underestimates how much the quadrotor descends at the end of its flight.

The orientation of the quadrotor is shown in figure 5-16. The quadrotor is resting

on the ground for the first 25 seconds of the dataset. As the quadrotor takes off for

flight, notice the error bounds for the pitch and roll estimates clamp down on the

estimates. Since there is more motion in the pith and roll axes, the filter is more

accurately able to estimate the orientation of the quadrotor. The plot of quadrotor

yaw clearly shows the quadrotor turning around in the hallway at about 60 seconds

into the dataset and the returning in the opposite direction.

The IMU biases are estimated during the quadrotor flight and shown in figure 5-

17. Since this dataset was short (only about 100 seconds) and the quadrotor flight

begins at about 25 seconds, the accelerometer biases do not fully settle down as they

did in figure 5-8.
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Figure 5-14: Trajectory obtained by flying the quadrotor in an office building. The
quadrotor flies to the end of a hallway, turns 180 degrees and comes back to the
starting position (shown in red). The estimated trajectory produced by the MSCKF-
3D is shown in green. (Bottom) Distance between the true location and the estimated

location by MSCKF-3D.
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Figure 5-15: MSCKF-3D estimation of quadrotor position and velocity during flying
trajectory. The blue lines are the estimates and the green lines are the two-sigma
error bounds.
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Figure 5-16: MSCKF-3D estimation of quadrotor orientation during flying trajectory.
The blue lines are the estimates and the green lines are the two-sigma error bounds.
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Figure 5-17: MSCKF-3D estimation of IMU biases during flying trajectory. The blue

lines are the estimated biases and the green lines are the two-sigma error bounds.
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Finally, as shown in figure 5-18, the MSCKF-3D estimates an approximately 20

ms timing offset between the timstamps on the IMU measurements and the camera

measurements. This agrees with the timing offset predicted in other datasets.

Image Timing offset error

20

Cln

O -4Q

-60

20 40 60
Time (s)

80 100

Figure 5-18: MSCKF-3D estimation of camera-IMU
tory. The blue line is the estimated timing offset and
error bounds.

time delay during flying trajec-
the green lines are the two-sigma

It is noted that the MSCKF filter was unsuccessful in estimating the trajectory

of the quadrotor during this flight. As opposed to datasets where the quadrotor was

carried, this flying dataset is more challenging because of the vibrations and jitter of

the quadrotor during flight. This directly affects the vision measurements because

the features are more difficult to track from frame to frame since the quadrotor, and

therefore the onboard camera, is jittering and creating image blur. The additional

measurements provided by the depth sensor enabled the MSCKF-3D to use more

information from the few vision measurements to estimate trajectory.
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5.3 Summary of MSCKF and MSCKF-3D

Accuracy

The MSCKF-3D estimates vehicle trajectory more accurately than does the MSCKF.

Table 5.2 summarizes the position errors from both filters for the three data sets with

available truth data. Even though the other datasets do not have truth data available,

it is still easily seen, by comparing the trajectory estimates with the office floorplans

that the MSCKF-3D provides better trajectory estimates than does the MSCKF.

Additionally, only the MSCKF-3D was able to estimate the vehicle trajectory in the

staircase dataset and the flying dataset.

Table 5.2: Accuracy of the MSCKF and the MSCKF-3D
Data Set Trajectory Filter Position Position RMSE

length (m) RMSE (m) (% Total Trajec-
tory Length)

Single Loop- 99.01 MSCKF 4.21 4.31
Walking MSCKF-3D 1.99 2.01
Double Loop- 198.98 MSCKF 16.88 8.48
Walking MSCKF-3D 3.48 1.75
Flying 25.65 MSCKF - -

MSCKF-3D 1.22 4.76

Computational Comparison

Each time a new image is recorded, the filters perform a vision update as described

in sections 3.2.4 and 4.3. Since the MSCKF-3D processes depth data in addition

to the RGB data, each vision update takes longer in the MSCKF-3D than in the

MSCKF. This is driven by the matrix inversions performed in the weighted least

squares estimation of feature location, described in section 4.3. Table 5.3 compares

the average vision update times for the MSCKF and the MSCKF-3D in various data

sets. In summary, the MSCKF-3D takes about 15% longer than the MSCKF per

vision update.
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Table 5.3: Computation time per vision update for various datasets
Data Set Filter Average time % Longer than

per vision up- MSCKF vision
date (ms) updates

Single Rectangular MSCKF 94.9 -
Loop MSCKF-3D 104.4 10.1
Double Rectangular MSCKF 55.6 -
Loop MSCKF-3D 68.5 23.2
Windy Path with end MSCKF 83 -
loop (figure 5-11) MSCKF-3D 97.1 17.0
Z-shaped loop MSCKF 86.3 -
(figure 5-12) MSCKF-3D 99.3 15.1
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Chapter 6

Conclusions

A visual inertial odometry algorithm for a system consisting of an IMU, a monocular

camera and a depth sensor is presented in this thesis. The estimation algorithm,

termed MSCKF-3D, extends the multi-state constraint Kalman filter (MSCKF), pro-

posed by Mourikis and Li [34, 29], to incorporate depth measurements, which en-

able the system to produce three-dimensional feature observations rather than two-

dimensional observations. Each feature observation is approximated as a multivariate

Gaussian distribution, as proposed by Dryanovski et al. [11]. Then the global feature

location is estimated using a weighted least squares estimate with all the feature ob-

servations. The MSCKF-3D also estimates the timing offset between the camera and

the IMU measurements.

The MSCKF-3D algorithm is compared to the original MSCKF algorithm using

real-world data obtained by flying a custom-built quadrotor in an indoor office envi-

ronment. Both the MSCKF and the MSCKF-3D used the same vision and inertial

measurements. The MSCKF-3D, however, also used measurements obtained from a

depth sensor. Processing the depth measurements resulted in the MSCKF-3D taking

slightly longer to perform vision updates. As demonstrated in the experimental re-

sults, the MSCKF-3D consistently outperformed the MSCKF in its estimation of the

vehicle trajectory.
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6.1 Future Work

The performance of the MSCKF-3D can be further improved by integrating mea-

surements from additional sensors into the estimation algorithm. The custom-built

quadrotor is also equipped with an optic flow sensor and a barometer. The next step

is to include measurements from these sensors into the estimator.

Currently, the MSCKF-3D post-processes the vision and inertial data; the next

goal is to run the filter on board the quadrotor for real-time state estimation during

flight. This entails coding the MSCKF-3D filter in C and integrating it into the

ROS framework, which is the onboard computing and operating framework for the

quadrotor. Using the MSCKF-3D for state estimation is one step toward achieving

a fully autonomous quadrotor capable of localization and navigation of unknown

environments.
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