18.440: Lecture 11
Binomial random variables and repeated trials

Scott Sheffield

MIT
Outline

Bernoulli random variables

Properties: expectation and variance

More problems
Outline

Bernoulli random variables

Properties: expectation and variance

More problems
Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k}/2^n$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k}p^k(1-p)^{n-k}$.
- Writing $q = 1 - p$, we can write this as $\binom{n}{k}p^kq^{n-k}$.
- Can use binomial theorem to show probabilities sum to one:
 - $1 = 1^n = (p + q)^n = \sum_{k=0}^{n} \binom{n}{k}p^kq^{n-k}$.
- Number of heads is **binomial random variable with parameters** (n, p).
Examples

- Toss 6 fair coins. Let X be number of heads you see. Then X is binomial with parameters (n, p) given by $(6, 1/2)$.

- Probability mass function for X can be computed using the 6th row of Pascal’s triangle.

- If coin is biased (comes up heads with probability $p \neq 1/2$), we can still use the 6th row of Pascal’s triangle, but the probability that $X = i$ gets multiplied by $p^i(1 - p)^{n-i}$.
Other examples

- Room contains n people. What is the probability that exactly i of them were born on a Tuesday?
- **Answer:** use binomial formula $\binom{n}{i} p^i q^{n-i}$ with $p = 1/7$ and $q = 1 - p = 6/7$.
- Let $n = 100$. Compute the probability that nobody was born on a Tuesday.
- What is the probability that exactly 15 people were born on a Tuesday?
Outline

Bernoulli random variables

Properties: expectation and variance

More problems
Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?
- Direct approach: by definition of expectation,
 $$E[X] = \sum_{i=0}^{n} P\{X = i\}i.$$
- What happens if we modify the nth row of Pascal’s triangle by multiplying the i term by i?
- For example, replace the 5th row $(1, 5, 10, 10, 5, 1)$ by $(0, 5, 20, 30, 20, 5)$. Does this remind us of an earlier row in the triangle?
- Perhaps the prior row $(1, 4, 6, 4, 1)$?
Useful Pascal’s triangle identity

Recall that \(\binom{n}{i} = \frac{n \times (n-1) \times \ldots \times (n-i+1)}{i \times (i-1) \times \ldots \times 1} \). This implies a simple but important identity: \(i \binom{n}{i} = n \binom{n-1}{i-1} \).

Using this identity (and \(q = 1 - p \)), we can write

\[
E[X] = \sum_{i=0}^{n} i \binom{n}{i} p^i q^{n-i} = \sum_{i=1}^{n} n \binom{n-1}{i-1} p^i q^{n-i}.
\]

Rewrite this as \(E[X] = np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{(i-1)} q^{(n-1)-(i-1)} \).

Substitute \(j = i - 1 \) to get

\[
E[X] = np \sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{(n-1)-j} = np(p + q)^{n-1} = np.
\]
Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.

Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Write $X = \sum_{j=1}^{n} X_j$, where X_j is 1 if the jth coin is heads, 0 otherwise.

In other words, X_j is the number of heads (zero or one) on the jth toss.

Note that $E[X_j] = p \cdot 1 + (1 - p) \cdot 0 = p$ for each j.

Conclude by additivity of expectation that

$$E[X] = \sum_{j=1}^{n} E[X_j] = \sum_{j=1}^{n} p = np.$$
Let X be binomial (n, p) and fix $k \geq 1$. What is $E[X^k]$?

Recall identity: $i \binom{n}{i} = n \binom{n-1}{i-1}$.

Generally, $E[X^k]$ can be written as

$$\sum_{i=0}^{n} i \binom{n}{i} p^i (1 - p)^{n-i} i^{k-1}.$$

Identity gives

$$E[X] = np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1 - p)^{n-i} i^{k-1} =$$

$$np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1 - p)^{n-1-j} (j + 1)^{k-1}.$$

Thus $E[X^k] = E[(Y + 1)^{k-1}]$ where Y is binomial with parameters $(n - 1, p)$.

Interesting moment computation
Computing the variance

- Let \(X \) be binomial \((n, p)\). What is \(E[X] \)?
- We know \(E[X] = np \).
- We computed identity \(E[X^k] = E[(Y + 1)^{k-1}] \) where \(Y \) is binomial with parameters \((n - 1, p)\).
- In particular \(E[X^2] = npE[Y + 1] = np[(n - 1)p + 1] \).
- So \(\text{Var}[X] = E[X^2] - E[X]^2 = np(n - 1)p + np - (np)^2 = np(1 - p) = npq \), where \(q = 1 - p \).
- Commit to memory: variance of binomial \((n, p)\) random variable is \(npq \).
- This is \(n \) times the variance you’d get with a single coin. Coincidence?
Compute variance with decomposition trick

- $X = \sum_{j=1}^{n} X_j$, so
 $E[X^2] = E[\sum_{i=1}^{n} X_i \sum_{j=1}^{n} X_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$

- $E[X_i X_j]$ is p if $i = j$, p^2 otherwise.

- $\sum_{i=1}^{n} \sum_{j=1}^{n} E[X_i X_j]$ has n terms equal to p and $(n - 1)n$ terms equal to p^2.

- So $E[X^2] = np + (n - 1)np^2 = np + (np)^2 - np^2$.

- Thus
Outline

Bernoulli random variables

Properties: expectation and variance

More problems
More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?

- In a 100 person senate, forty people always vote for the Republicans’ position, forty people always for the Democrats’ position and 20 people just toss a coin to decide which way to vote. What is the probability that a given vote is tied?

- You invite 50 friends to a party. Each one, independently, has a 1/3 chance of showing up. That is the probability that more than 25 people will show up?