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Moment generating functions

Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e™X].

» When X is discrete, can write M(t) = > e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [* e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

> If b> 0 and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |¢|
as |t| = oo.
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Moment generating functions

Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].

> Then M'(t) = 4 E[eX] = E[£(e)] = E[Xe™].

» in particular, M’'(0) = E[X].

> Also M"(t) = L M'(t) = L E[Xe™X] = E[X2eX].

» So M”(0) = E[X?]. Same argument gives that nth derivative
of M at zero is E[X"].

> Interesting: knowing all of the derivatives of M at a single
point tells you the moments E[X*] for all integer k > 0.

» Another way to think of this: write

eX =14 X+ 88 8¢ 4

» Taking expectations glves ,
E[eX] =1+ tmy + £ 4 & 3 + ..., where my is the kth
moment. The kth derivative at Zero is my.
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Moment generating functions

Moment generating functions for independent sums

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[e%X]
and My(t) = E[etY] and Mz(t) = E[e%*].

» If you knew Mx and My, could you compute M,?

» By independence, Mz(t) = E[etX+Y)] = E[eXetY] =
E[eX]E[etY] = Mx(t)My(t) for all t.

> In other words, adding independent random variables
corresponds to multiplying moment generating functions.
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Moment generating functions

Moment generating functions for sums of i.i.d. random
YEUEDIES

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)My(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M7?

» Answer: Mg. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Moment generating functions

Other observations

» If Z = aX then can | use Mx to determine M;?

> Answer: Yes. Mz(t) = E[e’] = E[e?X] = Mx(at).

» If Z =X+ b then can | use Mx to determine Mz?

> Answer: Yes. Mz(t) = E[e*’] = E[eX+P!] = ePtMx(t).

» Latter answer is the special case of Mz(t) = Mx(t)My(t)
where Y is the constant random variable b.
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Moment generating functions

SEIES

» Let's try some examples. What is Mx(t) = E[e?X] when X is
binomial with parameters (p,n)? Hint: try the n =1 case
first.

» Answer: if n =1 then Mx(t) = E[eX] = pe! + (1 — p)e®. In
general Mx(t) = (pet +1— p)".

» What if X is Poisson with parameter A>07

» Answer: Mx(t ) E[e™] =32, ¢ Te A

n!

e Ay Do) — amhghe’ — eyp[A(ef — 1))

n!

» We know that if you add independent Poisson random
variables with parameters A\; and )\, you get a Poisson
random variable of parameter A1 + A». How is this fact
manifested in the moment generating function?
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Moment generating functions

More examples: normal random variables

» What if X is normal with mean zero, variance one?

- (0 = [ e
ﬁ fioo exp{— g}dx — et’/2,

» What does that tell us about sums of i.i.d. copies of X7
> If Z is sum of n i.i.d. copies of X then Mz(t) = e""/2.
» What is Mz if Z is normal with mean p and variance 2?7

> Answer: Z has same law as o X + p, so
242
Mz(t) = M(ot)e!t = exp{%5- + ut}.
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Moment generating functions

More examples: exponential random variables

» What if X is exponential with parameter A > 07

> Mx(t) = fooo eP e Mdx = )\fooo e—(A—tx gy — ﬁ
» What if Z is a I distribution with parameters A > 0 and

n> 07

» Then Z has the law of a sum of n independent copies of X.
So Mz(t) = Mx(t)" = (ﬁ)n

» Exponential calculation above works for t < A\. What happens
when t > A? Or as t approaches A from below?

> Mx(t) = [;° e®Ae™dx =\ [T e” (A "Xdx = oo if t > .
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Moment generating functions

More examples: existence issues

» Seems that unless fx(x) decays superexponentially as x tends
to infinity, we won't have Mx(t) defined for all t.

» What is My if X is standard Cauchy, so that fx(x) = EEEl

» Answer: Mx(0) =1 (as is true for any X) but otherwise
Mx (t) is infinite for all t # 0.

» Informal statement: moment generating functions are not
defined for distributions with fat tails.
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Characteristic functions

Characteristic functions

» Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢x1y = dxPy, just as Mxy = MxMy.
» And ¢.x(t) = ¢x(at) just as M,x(t) = Mx(at).
> And if X has an mth moment then E[X™] = i"¢{"(0).

» But characteristic functions have a distinct advantage: they
are always well defined for all t even if fx decays slowly.
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Continuity theorems and perspective

Perspective

> In later lectures, we will see that one can use moment
generating functions and/or characteristic functions to prove
the so-called weak law of large numbers and central limit
theorem.

» Proofs using characteristic functions apply in more generality,
but they require you to remember how to exponentiate
imaginary numbers.

» Moment generating functions are central to so-called /arge
deviation theory and play a fundamental role in statistical
physics, among other things.

» Characteristic functions are Fourier transforms of the
corresponding distribution density functions and encode
“periodicity” patterns. For example, if X is integer valued,
bx(t) = E[e™] will be 1 whenever t is a multiple of 27.
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Continuity theorems and perspective

Continuity theorems

» Let X be a random variable and X,, a sequence of random
variables.

» We say that X, converge in distribution or converge in law
to X if limp00 Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» Lévy’s continuity theorem (see Wikipedia): if
limp— 00 @x,(t) = &x(t) for all t, then X, converge in law to
X.

» Moment generating analog: if moment generating
functions My, (t) are defined for all t and n and
limp—oo Mx, (t) = Mx(t) for all t, then X, converge in law to
X.
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