Enantioselective Nucleophile-Catalyzed Synthesis of Tertiary Alkyl Fluorides via the α-Fluorination of Ketenes: Synthetic and Mechanistic Studies

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1021/ja5044209

Publisher
American Chemical Society (ACS)

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/97493

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Enantioselective Nucleophile-Catalyzed Synthesis of Tertiary Alkyl Fluorides via the α-Fluorination of Ketenes: Synthetic and Mechanistic Studies

Sarah Yunmi Lee,‡ Stefan Neufeind,† and Gregory C. Fu‡†

ABSTRACT: The catalytic asymmetric synthesis of alkyl fluorides, particularly α-fluorocarbonyl compounds, has been the focus of substantial effort in recent years. While significant progress has been described in the formation of enantioenriched secondary alkyl fluorides, advances in the generation of tertiary alkyl fluorides have been more limited. Here, we describe a method for the catalytic asymmetric coupling of aryl alkyl ketenes with commercially available N-fluorodibenzenesulfonimide (NFSI) and C$_6$F$_5$ONa to furnish tertiary α-fluoroesters. Mechanistic studies are consistent with the hypothesis that the addition of an external nucleophile (C$_6$F$_5$ONa) is critical for turnover, releasing the catalyst (PPY*) from an N-acylated intermediate. The available data can be explained by a reaction pathway wherein the enantioselectivity is determined in the turnover-limiting transfer of fluorine from NFSI to a chiral enolate derived from the addition of PPY* to the ketene. The structure and reactivity of the product of this proposed elementary step, an α-fluoro-N-acylpyridinium salt, have been examined.

Because of properties such as the high electronegativity and the small size of fluorine, as well as the relative stability of the C–F bond, the incorporation of fluorine into organic molecules, including stereoselective processes, has become a widely used method in medicinal chemistry for altering the bioactivity of drug candidates. The catalytic enantioselective α-fluorination of carbonyl compounds has been a subject of particular interest, and an array of versatile methods have been described for the generation of such secondary alkyl fluorides. In contrast, except in the case of doubly activated molecules, there has been limited progress in the development of effective processes that furnish tertiary α-fluorocarbonyl compounds, and we are not aware of any methods that directly afford esters, with the exception of kinetic resolutions. Here, we establish that a planar-chiral nucleophilic catalyst (PPY*) can achieve the coupling of a ketene, an electrophilic fluorine source, and an alkoxide, thereby providing such tertiary alkyl fluorides with high enantioselectivity (eq 1). We also present mechanistic studies that help to illuminate the reaction pathway.

In an earlier study, we reported that PPY* can catalyze the asymmetric chlorination of ketenes by 2,2,6,6-tetachlorocyclohexanone to produce tertiary α-chloroesters. When we attempted to extend this halogenation strategy to an analogous enantioselective fluorination of ketenes, building in part on the pioneering work of Lectka on the cinchona alkaloid/palladium/LiClO$_4$-catalyzed synthesis of secondary alkyl fluorides from acid chlorides and N-fluorodibenzenesulfonimide (NFSI; commercially available), we obtained discouraging results (eq 2).

We postulated that our failure to achieve the desired catalytic asymmetric fluorination might be due to the stability of a potential N-acylpyridinium intermediate (e.g., 1) toward (SO$_2$Ph)$_2$N$. Consequently, we decided to determine if the addition to the reaction mixture of a stoichiometric quantity of a more reactive nucleophile might be beneficial. We were, of course, cognizant of the possibility that the nucleophilic additive might react directly with the ketene to generate an achiral enolate and racemic product; fortunately, however, we were able to identify a nucleophile that allowed us to achieve our objective (Table 1).

Whereas the addition of MeOH or PhNH$_2$ did not result in a significant amount of the desired tertiary alkyl fluoride (Table 1, entries 1 and 2), the use of alkoxides led to a substantial quantity (entries 3–5). In the case of sodium tert-butoxide, the product...
was racemic (entry 3); on the other hand, sodium phenoxide furnished good enantioselectivity (entry 4), and a less nucleophilic phenoxide, sodium pentafluorophenoxide, provided excellent yield and ee (entry 5).

Our optimized method is effective for the catalytic enantioselective synthesis of tertiary α-fluoroesters from an array of aryl alkyl ketenes (Table 2). The alkyl group of the ketene can vary in size from Me to cyclopentyl (entries 1−5; lower ee is observed with larger alkyl groups), and the aromatic substituent can be electron-poor, electron-rich, para-substituted, or meta-substituted (entries 6−9), as well as naphthyl or heteroaryl (entries 10 and 11). On a gram scale, the fluorination illustrated in entry 2 of Table 2 proceeded in 99% ee and 90% yield.

Although our other chiral 4-((dimethylamino)pyridine (DMAP)-catalyzed reactions of ketenes have generally not been effective for dialkyl ketenes, in the case of this asymmetric fluorination process, we have observed a promising level of enantioselectivity (eq 3).

Table 1. Catalytic Asymmetric Synthesis of Tertiary Alkyl Fluorides: Effect of Added Nucleophile

<table>
<thead>
<tr>
<th>entry</th>
<th>Nu−M</th>
<th>yield (%)<sup>b</sup></th>
<th>ee (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeOH</td>
<td><5</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>PhNH−H</td>
<td>54</td>
<td><2</td>
</tr>
<tr>
<td>3</td>
<td>t-BuO−Na</td>
<td>79</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>PhO−Na</td>
<td>98<sup>c</sup></td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>C₂F₅O−Na</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>C₂F₅O−K</td>
<td>98</td>
<td>99</td>
</tr>
</tbody>
</table>

^aAll data are the averages of two experiments. ^bDetermined through GC analysis with the aid of an internal standard. ^cYield of purified product.

Table 2. Catalytic Asymmetric Synthesis of Tertiary Alkyl Fluorides^a

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>R</th>
<th>ee (%)<sup>b</sup></th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Et</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>98</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>i-Bu</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Bn</td>
<td>78</td>
<td>96</td>
</tr>
<tr>
<td>5<sup>c</sup></td>
<td>Ph</td>
<td>cyclopentyl</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>4-ClC₆H₄</td>
<td>Et</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>4-MeC₆H₄</td>
<td>Et</td>
<td>97</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>4-(OMe)C₆H₄</td>
<td>Et</td>
<td>97</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>3-MeC₆H₄</td>
<td>Et</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>10</td>
<td>3-naphthyl</td>
<td>Et</td>
<td>94</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>3-thiophenyl</td>
<td>i-Bu</td>
<td>98</td>
<td>94</td>
</tr>
</tbody>
</table>

^aFor the reaction conditions, see eq 1. All data are the averages of two experiments. ^bYield of purified product (contains ≤5% of the non-fluorinated ester). ^cCatalyst loading: 10%.

The enantioenriched α-fluoroesters that are generated in this catalytic asymmetric C−F bond-forming process can be transformed in good yield into a variety of other tertiary alkyl fluorides (Figure 1).

Two of the possible pathways for the PPY[*]-catalyzed enantioselective fluorination of ketenes to generate enantioenriched tertiary α-fluoroesters are illustrated in Figure 2. In one mechanism, a PPY[*]-derived chiral enolate (2) is a key intermediate (top), and in the other a PPY[*]-derived chiral fluorinating agent (4) is critical (bottom). To gain insight into the operative pathway, we determined the rate law for the reaction of phenyl ethyl ketene, which is first order in PPY[*], and zeroth order in the ketene and in C₆F₅ONa. The rate of product formation does vary with the identity of the ketene, suggesting that the ketene is involved in the rate-determining step.

These observations are consistent with a “chiral enolate” pathway (top of Figure 2); but not with a “chiral fluorinating...
agent” pathway (bottom of Figure 2)\(^\text{19}\) wherein nucleophilic addition of PPY\(^*\) to the ketene affords enolate 2, this enolate is the resting state of the catalytic cycle\(^2\text{0}\) and, in the turnover-limiting step, enolate 2 is fluorinated by NFSI to provide enantioenriched N-acylpyridinium salt 3. Reaction with the phenoxide then furnishes the tertiary \(\alpha\)-fluoroester and regenerates the catalyst, PPY\(^*\).

In view of our earlier inability to achieve PPY\(^*\)-catalyzed asymmetric fluorination of ketenes with NFSI in the absence of an added nucleophile (eq 2), we hypothesized that N-acylpyridinium salt 3 (Figure 2) might be isolable. Indeed, reaction of PPY\(^*\), phenyl benzyl ketene, and NFSI (1:1:1) provided \(\alpha\)-fluorinated acylpyridinium salt 5 (eq 4).\(^\text{21,22}\) This ion pair is stable at room temperature under nitrogen for at least 6 months.

Although we were not able to obtain X-ray-quality crystals of the sulfinamide salt of the N-acylpyridinium ion, anion exchange of \(N(SO_2)\text{Ph}_2\) for a carborane through treatment with \(\text{CsCB}_{11}\text{H}_{12}\) furnished a suitable crystal (Figure 3).

![Figure 3. ORTEP diagram of N-acylated (+)-PPY*. Thermal ellipsoids are illustrated at the 35% probability level. For clarity, the carborane counterion, the hydrogen atoms, the solvent, and the second molecule in the asymmetric unit are omitted, and only the major component of the disorder in the \(Cp^*\) group is shown.](image)

Figure 3. ORTEP diagram of N-acylated (+)-PPY*. Thermal ellipsoids are illustrated at the 35% probability level. For clarity, the carborane counterion, the hydrogen atoms, the solvent, and the second molecule in the asymmetric unit are omitted, and only the major component of the disorder in the \(Cp^*\) group is shown.

Although we were not able to obtain X-ray-quality crystals of the sulfinamide salt of the N-acylpyridinium ion, anion exchange of \(N(SO_2)\text{Ph}_2\) for a carborane through treatment with \(\text{CsCB}_{11}\text{H}_{12}\) furnished a suitable crystal (Figure 3).

In conclusion, we have described a method for the catalytic enantioselective coupling of aryl alkyl ketenes (and a dialkyl ketene) with NFSI and \(\text{CsF}_2\text{ONa}\) to produce tertiary \(\alpha\)-fluoroesters, a family of target molecules that have rarely been directly accessed via asymmetric catalysis. The addition of \(\text{CsF}_2\text{ONa}\) was critical to the success of this effort, as it enables regeneration of the catalyst (PPY\(^*\)) from a relatively stable N-acylated intermediate, which we have synthesized and investigated independently. Our mechanistic studies are consistent with a catalytic cycle wherein PPY\(^*\) adds to the ketene and generates a chiral enolate which, in the stereochemistry- and rate-determining step, reacts with NFSI to furnish the enantioenriched N-acylpyridinium salt.

REFERENCES

1. For example, see: (a) Fluorine in Pharmaceutical and Medicinal Chemistry; Gouverneur, V., Müller, K., Eds.; Imperial College Press: London, 2012. (b) Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; John Wiley & Sons: Chichester, 2009.

3. For pioneering examples of catalytic, asymmetric \(\alpha\)-fluorinations of aldehydes, see: (a) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaergaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44,
3703. (b) Steiner, D. D.; Mase, N.; Barbas, C. F., III. Angew. Chem., Int.
(4) (a) Paull, D. H.; Scerba, M. T.; Alden-Danforth, E.; Widger, L. R.;
(5) For a pioneering example, see: Hintermann, L.; Togni, A. Angew.
Chem., Int. Ed. 2000, 39, 4359.
(6) For examples of oxindoles, see: (a) Shibata, N.; Kohno, J.; Takai,
(6) For examples of ketones, see: (a) Beeson, T. D.; MacMillan, D. W. C.
(6) For examples of ketones, see: (a) Bélanger, É.; Cantin, K.; Messe,
(b) Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 1268.
(c) Yang, X.; Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc. 2014, 136,
(6) For a few examples of the catalytic enantioselective synthesis of
other families of tertiary alky fluorides, see: (a) Phipps, R. J.; Hiramatsu,
K.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 8376. (b) Shunatona, H. P.;
Früh, N.; Wang, Y.-M.; Rauniyar, V.; Toste, F. D. Angew. Chem., Int.
Ed. 2013, 52, 7724. (c) Wu, J.; Wang, Y.-M.; Drljevic, A.; Rauniyar, V.;
(9) For an example of a bioactive tertiary α-fluoroester, see: Yasuhara,
A.; Nakamura, M.; Sakagami, K.; Shimazaki, T.; Yoshikawa, R.; Chaki,
(10) For examples, see: (a) Schlosser, M.; Michel, D.; Guo, Z.-w.; Shi,
C. J. Tetrahedron 1996, 52, 8257. (b) Tengejii, A.; Shina, I. Molecules
2012, 17, 7356.
(11) For reviews of catalytic asymmetric reactions of ketenes, see:
Organocatalysis; List, B., Maruoka, K., Eds.; Georg Thieme: Stuttgart,
2012; Vol. 1, p 455.
(12) For a review of electrophilic N−F fluorinating agents, see:
2007, 46, 977.
(14) When C6F5OH was employed in place of C6F5ONa, essentially
none of the desired product was observed.
(15) Notes: (a) Under our optimized condition, solutions of the
ketene and the nucleophile are added dropwise via a syringe pump to a
solution of the catalyst and NFSI; Selectfluor reagent is not a suitable
substitute for NFSI; the ee of the product is constant during the course
of the reaction; an ω-tolyl-substituted and a tert-butyl-substituted ketene
were not effective reaction partners. (b) Both enantiomers of PPY* are
available from Strem Chemicals.
(16) For the exception, see: Wilson, J. E.; Fu, G. C. Angew. Chem., Int.
Ed. 2004, 43, 6358.
(17) We have hypothesized that planar-chiral DMAP derivatives can
serve both as enantioselective nucleophilic catalysts (e.g., Fu, G. C. Acc.
Chem. Res. 2004, 37, 542) and, in protonated form, as enantioselective
Brønsted-acid catalysts (e.g., Dai, X.; Nakai, T.; Romero, J. A. C.; Fu, G.
C. Angew. Chem., Int. Ed. 2007, 46, 4367). The catalytic cycle for the
Brønsted-acid mode of reactivity parallels the chiral fluorinating agent
pathway (substitution of F-catalyst* with H-catalyst* at the bottom of
Figure 2).
(18) PPY* and t-BuONa react with phenyl ethyl ketene in THF-d8 at
−78 °C, whereas C6F5ONa does not.
(19) In THF-d8 at −78 °C, no reaction is observed when PPY* is
mixed with NFSI.
(20) We have not yet been able to identify the resting state of the
catalyst under our standard fluorination conditions.
(21) The yield was determined by 1H NMR spectroscopy with the aid
of an internal standard.