Application of Critical Chain to Staged Software
Development

by
Ronald Pepin

Master in Business Administration, University of Hartford, 1990
B.S. Electrical Engineering, Western New England College, 1983

Submitted to the System Design and Management Program in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management
at the
Massachusetts Institute of Technology

Janpary 1999
[F.f.’b)'ua*':) 1’999]
© 1999 Ronald Pepin. All rights reserved
The author hereby grants to MIT permission to reproduce aid to distribute
publicly paper and electronic copies of this thesis document in whole or in
part

Signature of Author

System Design amagémcnt
January 15, 1998

Certified by: .
Steven D. Eppinger, Associate Professor
Sloan School of Management
Thesis Advisor

Accepted by: _

Thomas L. Magﬁanti, 6-Director
System Design and Management Program

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

APR 1 2 1999 SROMIVES
LIBRARIES

Application of Critical Chain to Staged Software Development

by
Ronald Pepin

Submitted to the System Design and Management Program in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

One in three IT projects are canceled before they are completed. Of the projects that are
completed, over 75% are late, over budget or are released with reduced functionality.
Average cost overruns are 189%; average schedule overruns are 222% (The Standish
Group). The software development process and the project management techniques are
critical components in completing a development project on time and on budget. Critical
Chain Project Management techniques and a Staged Development process were designed
to address issues that contribute to the large number of schedule and cost overruns.

Critical Chain is based on Theory of Constraint principles developed by Eliyahu Goldratt.,
Critical Chain offers practical methods for planning, scheduling, tracking and mitigating
schedule risk in a development program.

Staged Development, a form of an incremental product development lifecycle, is
considered to be a software development best practice. Staged Development promises
faster development schedules, increase progress visibility and higher quality.

In this study the author researches, applies and analyzes the Critical Chain and Staged
Development methodologies. The combination of the two methodologies created a
process that served to increase likelihood of project success.

Thesis supervisor:

Steven D. Eppinger, Associate Professor, Sloan School of Management

January 1999 - © 1999 Ronald Pepin 2

Acknowledgments

I would like to acknowledge the following ¢ rganizations and people for their
contributions to my learning effort:

¢ The Systems Design and Management (SDM) Program for the opportunity. The
SDM program provided me with the knowledge and the tools to understand and
manage the complexity of defining and leading technical organizations.

e My SDM Classmates for pushing me to set higher goals.

e The leadership at the Otis Engineering Center, specifically Pat Hale and Mick
Maurer, for the courage to nourish change within our organization. Pat opened my
eyes to the importance of “systems thinking” and Mick provided me with the
freedom, the support and the guidance required to implement leading edge concepts.

e The NMS Development Team for their openness to unfamiliar concepts and their
unending dedication to the development effort. I am fortunate to be surrounded by
peers with the drive to succeed.

e My thesis advisor, Steve Eppinger. Steve provided me with direction and guidance in
formulating the concepts presented in this work.

¢ My wife, Maureen, for her encouragement and understanding over the last two years.
Maureen helped me weather the lows and encouraged me to recognize and celebrate
the highs.

e My children, Maura, Colin, Brian and Bridget, for the daily cheer they bring to my
life.

January 1999 - © 1999 Ronald Pepin 3

Table of Contents

1 CRITICAL CHAIN FUNDAMENTALS......cciccinimirninisinississinsssimsnminiomseiiiisiasesnsssssenns 7
L.l INTRODUCTION tteeisueestesteesssessesseesssssseeaseesssessessnssnsassesessanesaasesasesasesstesssaetssssnssssesssssesstenssesssanss 7
1.2 CrITICAL CHAIN: KEY CONCEPTS AND DEFINITIONS ..cuuviiiiiiiniiinieciiereniesseenssnestnssnasssssessesnenanes 8

002 R 6 11 1ol 1 I O 1T+ 7 T RO 8
L.2.2 SAELY oottt e et 8
L.2.3 BUJTS oottt ettt e et 12
1.3 PROCHAIN™ PROJECT SCHEDULING. 1v-vsevecvsesrsessesssssssssssesssssssssssesssnssessssassssesssnssesssanesessesssessnss 16
1.3.1 Creating the SCHedule.............cccueeicieevceiiiiiriiiiiiiiiiiec st e 16
132 Updating ProChain™ SCREUIES.oveveueeereneeriinrcerirescreneesesesssisesesssssesssssnsssnees 19
1.3.3 Tracking the Schedule with PrOCHAIN™ ..ottt a s 20

2 STAGED SOFTWARE DEVELOPMENT . Ceteeesesssieetonnesessastessarssasassnesantsssananeitsaaasane 23

20 B N5 1270)0) 604 1 (0) [PO OO 21
2.1.1 Summary of Staged Developmentcccccvvinviiiiiiiiiiiniiiniiiii s 21
2.1.2 Phases of a Staged Development CYCle ... 22
2.1.3 Determining Stage OFder...........oceeueeveereiiniiiiniiniiciinisie it 23

2.2 STAGED DEVELOPMENT VS WATERFALL DEVELOPMENT MODEL ..e.vcviiriiininniineneeeeine e 23
2.2.1 Benefits to the Waterfall Modelccocoiiiviniiiiiiniiniiicienicse e 25
2.2.2 Benefits of Staged Development:ccccoviiiiiiiiiiiiniiineinenies s 26

3 THE PROJECT teetesssressateesnesiatteatereeshteeitesteseaa s terareR et se b ar bR bnebnes 27
3.1 INTRODUCTION.teceuveeeteeeteteeeeressasssessasesssseassnsassesaaaastanseeesstsioseesasesessesssssessansasssesnssnssssnasensaransnes 2
3.2 PROJECT EXPLANATION «eeeitieeererertriseeeseeesntenaseeoseseaessenbtasssssassssasssssnssanssaanessansssbessnsnnensassessns 27

4 APPLYING THE CRITICAL CHAIN AND STAGED DEVELOPMENT.cccconenunsensaaranns 3
4.1 INTRODUGCTION -eeeeteetrersreeassesiseeessasasserassesaasesaseeesassssnsessnsesasanessersmsntesssessssessnsessntessesssansenassenins 33
4.2 TRAINING .etteeteesirerarererrerereresseerssrsrasassasasssssssssssnsessssessessssssessesssssnsassmesieiomiiimsisesisesissssasssssnsssnnnes 34
4.3 DEVELOPING THE STAGE PLAN vttt ettt sab s st s e sab e e bn e e nnn e 35
4.4 PROJECT SCHEDULING .uveevvtrseersesrsessessanessessasssseesseessesssessssesstassesastsseesatesssssssssssssesssssssnsssssessesions 36
4.5 PROJECT TRACKING ..etvereeteeetirrereeeeaetteatesssssiaanessessaaassnnetsaesaasstesesssessnsnsassssssassssssesassssnsssnssssns 40

5 THE RESULTS “ . CeeeersessustersnersanteranteesaeesseeseteesheaesratesNeIaNsIesRsessOreasaeesatasssnanessstnas 45
S.1 WHAT WORKED «.eveeerveeteeeineesiteessseesstsasssesaesesenseesastessesesssssssnesssessonsrsmisssssesastasssssssraseessseenassasas 47

5.1.1 Staged DevelopMmENt PrOCESScoviviviiiiininriiiiniiisissstsisssse s e s ssessansens 47
S.LLL Early LEarming.....cccoeicciiciiitiiriiieseene ettt s sae st sttt e 47
S5.1.1.2 Staged SChedulingcccovrvueuciiiriiiiiniiiiins it e e 47
S5.1.1.3 Early “Working Code™ ...ttt s 47
5.1.1.4 Clear and Concise Short Term GOals ...c..coiiviiiiiiininmumemmenen s e e e s s ssa e 48

I 7 O 1 1o M 6117 1, OO TR 48
5.1.2.1 Program Status Method.......cccciviiininiinnininnesss e 48
5.1.2.2 Development Team FOCUScoiiiiiiiiiiniiiiiinine st 49
5.1.2.3 GOId-PIAUNEG c.vectiuiinieiitiriin it it bbb s s 49
5.1.2.4 Stabilizing the Critical ChaiN......cocieeiriiiieeniinieer et e 50

5.2 WHAT DID NOT WORK vt veerriereerieesterseetesstessseeseseesesseesseesssessessssesseesnsssesssssssasssssssesassssssensssenss 51
V20 B O 11 Tat7 1 A O V7 11, B OO 51

S5.2. 1.1 509 Task DUTALOMN .veeteeunreeeieeinrrerresssraeeesesasnmreesssssessssnarrenesssesssasessssssnssesssassnnssessssnnssssanssnsnns 51
5.2.1.2 Modifying the SCheduleeoviueiiiieeiiieiin e 52
5.2.1.3 ReSOUICE PIANMINE ccvvvvviirciierie ittt s b e a et st a e et 52
5.2.1.4 Starting Task As Late As PosSibleccuevviiiemininncs e 52
5.2.1.5 Tracking Out-of-Order TasK........c.ccvemrirmrnimimniinrcrer 53
5.2.2 Staged DevelOPmENLccocemveieeiiciriinicciii e e 54

January 1999 - © 1999 Ronald Pepin 4

5.2.2. 1 REIWOTK ruireeeeueeeiettniieseiiernnseseeresstssressssmnssseesasessnsssssstesnsssssensssssresmssssssssmasssssentrnssstenssssteserassmmeanse 54

6 CONCLUSION

6.1 CONCLUSION cccititirieeriiereerersesassennnrensesesssenessssessannens
6.2 AREAS OF FURTHER RESEARCH AND DEVELOPMENT
6.2.1 Estimating Aggressive Dates..................o...

6.2.2 ObjectiComponent Consistent Scheduling Processcouvneinenincniiinnnnnnenee

7 REFERENCES..........cccvnirnraranns

January 1999 - © 1999 Ronald Pepin

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Probability of Completion CUIrVe.oounieeiiitiei e e ae e
The Student SYNATOMIE. ... veeernie et e e e e ee e

Early Finishes..........ccoeuevenans

The Project Buffer......................

The Feeding Buffer.......ccooo i e
Buffer Warm'ngRanges

Buffer Report...
Building The Network Flrst Pass
ProChain™ Scheduling Options. ..

ProChain"™ Scheduling Optlons— Butter Sm:

ProChain™ Task Update...
Staged Development Process .
Watertall Development Proccss. e

Service ManagementSystem..

REM 2000 System...
NMS 2000 System Archltecture
NMS 2000 Multi-tiered Archltecture

Stage Development Order
Complete Project Schedule.couiuiiiii i
Estimate Convergence CUIVE.eiveieiiuii ittt aieerieeieaae et ra e e e e
Staged Development PrOCESS.covviirieiuiiie et ee et

Detailed Critical Chain Schedule.....
Task Update Sheet..

Task Update Screen .

Stage 2 Project Butter Report

Stage 2 Project Task Report. ..

NMS 2000 Development Pace
Days to Complete VS, TiIMe. . .o.eeeun ettt e i e e e e e
Tasks Out of Order — Buffer Effect.........cccccovviiiiiiiiiii i

January 1999 - © 1999 Ronald Pepin

10
1

11

12
12
13
14
16
17
18
19
21

23
26
28
29
30
35
36
37
38
39
40
41

42
43
44
48
52

1 Critical Chain Fundamentals

i.1 Introduction

Schedule, cost and performance are key metrics in all product development programs.
Research conducted by The Standish Group compiled the following, not so encouraging
statistics on development programs: (Standish Group)

e 30% of IT projects are canceled before they are completed.

e Of those projects that are completed 75% are late, over budget, and/or are
implemented with reduced functionality.
The average cost overrun is 189%

e Average schedule overrun is 222%

Traditional program management practices are not working. Traditional practices
encourage bad habits such as individual task padding, multitasking, the Student
Syndrome, frequent schedule updates and fire fighting. (Lynch, 1998). Critical Chain
techniques were specifically design to address these issues.

The Critical Chain program management methodology is based on practical principles
that were developed and applied in manufacturing environments. The underlying
fundamental principle is called The Theory of Constrains (TOC). The Theory of
Constraints is based on five basic steps (Goldratt, 1992). The five steps are:

Identify the constraint

Decide how to EXPLOIT the constraint
SUBORPINATE everything else to the above decision
ELEVATE (if necessary) the constraint

GO BACK to step 1.

N

Critical Chain applies the 5 basic steps of TOC to program management. Critical Chain
replaces individual task padding with strategically placed buffers that protect the critical
path. Critical Chain minimizes multitasking by the use of strong resource loading
guidelines and reduces the Student Syndrome effect by using 50/50 task duration
estimates. Critical Chain techniques also allow the program to accumulate early finishes
and to avoid frequent critical path and schedule modifications.

January 1999 - © 1999 Ronald Pepin 7

1.2 Critical Chain: Xey Concepts and Definitions

An understanding of the Critical Chain terminology is required to understand the Critical
Chain method. The Critical Chain terminology that is hereafter presented was adapted
from Robert Newbold’s text on the subject (Newbold, 1998).

1.2.1 Critical Chain

The Critical Chain is the series of tasks that determine the overall duration of a project.
The development pace of the project is determined by the completion rate of the tasks on
the Critical Chain. The Critical Chain, which takes resource capacity into account, is
typically regarded as the constraint or leverage point of the project (Newbold, 1998). The
tasks on the Critical Chain are the focal point in a Critical Chain schedule.

The manufacturing process analogy to the Critical Chain is a bottleneck. Goldratt
(Goldratt, 1992) defines a bottleneck as the process (task) that regulates the throughput of
the complete manufacturing system. In program management, the tasks on the Critical
Chain regulate the speed in which the project completes. The Critical Chain is the
program constraint. A one-day gain/slip on the Critical Chain equates to a one-day
gain/slip to the project delivery date. A project manager’s focus must be on the Critical
Chain. All non-Critical Chain tasks and resources are subordinated to the Critical Chain
tasks.

1.2.2 Safety

Safety is the excess time that is inserted into a project schedule to protect the project from
uncertainty.

Developers, in an effort to protect themselves, have intuitively learned to insert safety by
providing pessimistic (conservative) estimates. The net effect of pessimistic estimates is
amplified by the lognormal shape of the probability of completion vs. time to complete
curve (see figure). Goldratt observed (Goldratt, 1997) that a typical developer will
provide an estimate that carries an 80% probability that the task will be completed on
time. On a lognormal time scale, the 80% completion time estimate is double the 50%
completion time estimate. Therefore, the typical developer provides estimates that are
double the time in which there is a 50/50 probability of completing the task. The result:
traditional schedules contain significant levels of safety distributed in all of the tasks.

January 1999 - © 1999 Ronald Pepin 8

Probability of Conpletion Curve

8 .
b5) :
E «— Safety —>:
8 o E
5 : :
z : :
2 :
£ : :
A } Tirme Estirrete
Task Duration X Task Duration 2X
Median Completion Pessimistic Completion
Estimate Estimate
50% Point 80% Point

Figure 1: Probability of Completion Curve.
Adapted from Newbold (Newbold, 1998)

First line managers compound the safety adding effect of the individual developers. First
line managers add additional safety to prepare for the ever-present threat of upper
management’s unilateral schedule cuts. In summary, developers add safety to every task
and first line managers add additional safety to the end of the schedule.

Along with adding safety, traditional project management techniques also encourage
behaviors that waste safety. Traditional project management techniques track and manage
programs by the use of milestone dates. Managing projects by milestones wastes safety
by encouraging the Student Syndrome and by neglecting potential schedule gains due to
early finishes.

The Student Syndrome (see figure) , the behavior in which people do not start a task until
they feel they have a 50% probability of completing a task, is a leading factor in safety
consumption. Because of the Student Syndrome, even tasks with large amounts of safety
built in still may only have 50% chance of meeting the milestone. The Student Syndrome
consumes a large portion of the safety that was inserted by the developers pessimistic
estimate.

January 1999 - © 1999 Ronald Pepin 9

Effort
Level

ERXAMARIRXDWND XS

Scheduled Scheduled Time
Start _— Completion

. Milestone
fime

Figure 2: The Student Syndrome. Adapted from Goldratt (Goldratt,
1997).

The second negative effect of managing to milestones is that delays accumulate but gains
do not. Simple statistical laws of average indicate that in any reasonably large project
there are tasks that finish late and tasks that finish early. For example, Case 1, in the
following diagram, demonstrates the net effect of a late finish. In Case 1, the 1-day late
finish of task A is directly reflected in a 1-day program schedule delay. All task delays
are accumulated in a similar manner.

In Case 2, task A finishes 1-day early. Unlike the delay, an early finish is not
automatically reflected in project schedule. The reasons for this phenomenon are based
on cultural norms, the overall milestone mentality and hurnan nature. On the cultural
front, developers never want to be caught “sandbagging” an estimate. General perception
is that early finishes are the result of over estimation. Therefore, from a developer
perspective, an early finish will bolster management’s suspicion of estimate inflation and
will serve to increase the probability and the severity of the heretofore mentioned global
cut.

A second milestone factor that prohibits the accumulation of early finishes is the
scheduling of start dates. Milestone start dates are hard dates in which a task is to start.
Developers coordinate their schedules around these start dates. Therefore, even if task A
completes early, there is a high probability that task B is not ready to start until the
milestone date.

Early finishes also fall victim to developer's perfectionist characteristics. Developers
take ownership and pride in their work. This pride in their work encourages developers,
upon finishing early, not to announce the early completion but to continue enhancing the
task deliverable until the milestone completion date. This process, which is called Gold-

January 1999 - © 1999 Ronald Pepin 10

plating, is a major reason that an early task completion is not reflected in the project
completion date.

Qigingl
Schedde

Caset:
Task Delayed

]
&
L
%
-
¥
2
]
E]

Ealy ?rish toA

Case2:
Earty Finish

A does not repart the early finish or Bnat reedly to stait

Figure 3: Early Finishes — Adapted from Goldratt (Goldratt, 1997)

Multitasking is also responsible for safety consumption. By definition, multitasking is the
practice of giving people more than one task to do at the same time, without having a
clear and consistent priority amount among the tasks (Newbold, 1998). Tasks that are
multitasked take longer to complete (see figure). A task that has been started, then put on
hold is work in process. All work in progress demands some level of attention and serves
to distract the developer from the task that should be focused on. This distraction causes
the task to take longer to develop. Multitasking also requires the developer to frequently
switch between tasks. Switching between tasks carries a time penalty that is similar to the
set-up time penalty in a manufacturing environment. Simply stated, if the task is on the
Critical Chain is multitasked, the task and the project take longer to complete.

January 1999 - © 1999 Ronald Pepin 11

No
Multitasking

Task A Total Duration = 20 days

Task B Total Duration =20 days

Task C Total Duration = 20 Days
Project Camplete :60 Days

10 10 10 10 10 10

Mhititasking

Task A Total Duration = 43 days

. Task B Total Duration =43 days
Indicates! day Task C Total Duration = 43 Days

Task Switching Delay Project Complete :65 Days

Figure 4: Multitasking — Adapted from Goldratt (Goldratt, 1997)

1.2.3 Buffers

A buffer is time put into a Critical Chain schedule to systematically protect against
unanticipated delays and in order to allow for early task starts. Buffers are not slack: they
are essential parts of the schedule (Newbold, 1998). At least two types of task buffers
exist in the Critical Chain methodology: project buffers and feeding buffers.

By definition, a project buffer is placed at the end of a project schedule. The purpose of
the project buffer is to protect the project completion date from delays along the Critical
Chain. The project buffer, which is the redistribution of the safety in individual tasks,
accumulates all of the safety at the end of the project. The project buffer is nominally set
to be 50% of the length of the Critical Chain.

January 1999 - © 1999 Ronald Pepin 12

Critical < 80%Est—]
Path .
Method

Critical
Chain
Method

0%
Est.

Figure 5: Project Buffer — Adapted from Goldratt (Goldratt, 1997)

Feeding buffers are inserted to ensure non-Critical Chain tasks do not delay the start of a
Critical Chain task. Feeding buffers are inserted at the point in which a non-Critical task
feeds a critical task. The length of the feeding buffer is generally half the length of the
complete chain of non-critical chain of tasks.

Qitical Chain

-

L
\

Project Buifer:
Protects the Customer

Projecis the
Qttical Chein

Figure 6: Feeding Buffers — Adapted from Goldratt (Goldratt, 1997)

January 1995 - © 1999 Ronald Pepin 13

Along with protecting the schedule completion date, the task buffers are used to track the
project. Monitoring the amount of the buffer that has been consumed allows the program
manager to identify and track the tasks that are slipping the schedule. Each buffer can be
separated into three zones.

The first zone, the “OK Zone”, indicates that less than a third of the buffer has been
consumed. The second zone, the “Warning Zone”, indicates that one third to two thirds of
buffer has been censumed and the third zone, over two thirds expended, is the “Act
Zone”.

X days
BUFFER | st

 Warning

1/3 X 2/3 X X Days

Figure 7: Buffer Warning Ranges — Adapted from Goldratt (Goidratt, 1997)

Path delays that result in delays that are less than 1/3 of the buffer are in the OK Zone
should not cause program management concem. Path delays between 1/3 and 2/3 of the
buffer are in the Warning Zone and should be on a daily watch list. Path delays above 2/3
of the buffer need immediate program management attention to avoid a schedule delay.

In the Critical Chain methodology, the Buffer Report servers as a concise and complete
view of the status of the program. A sample buffer report (ProChain, 1998) is as follows:

Janvary 1999 - © 1999 Ronald Pepin 14

FB: 8/24/98 10 Test Plan
Implement Development
Test

PB: 11/13/98 19 68% 6.08 46 Design
Implement

Sub-System

Test

FB: Unit 10/12/98 6 0% 6 34

Integration

Figure 8: Buffer Report

Buffer Name: The name ProChain™ assigns to the buffer. PB = Project Buffer, FB =
Feeding Buffer. Note: The buffer name is determined by the last task in the task path.
Buffer End: The original end date for the buffer.

Buffer Length: The original length of the buffer.

% Of Buffer Used: The percent of the buffer that has been consumed. % Buffer Used is
the key metric.

Buffer Left: The number of days left in the buffer

Chain Left: The number of days left to complete the chain of tasks that preceded the
buffer.

Check Task: Identifies the task that is most likely causing the buffer consumption.

January 1999 - © 1999 Ronald Pepin 15

-

- == 5 ™= g~

1.3 ProChain™ Preject scheduling.

The ProChain™ Users Guide (ProChain, 1998) was used as the source of information
for this section.

1.3.1 Creating the Schedule

ProChain™ Project Scheduling is an add-on feature to Microsoft Project. ProChain™ is
designed to help the program manager follow the principles of the Critical Chain. The
ProChain™ software was designed and developed by Creative Technology Labs
(www.prochain.com). ProChain™ imposes the following six steps to developing a
project schedule (ProChain, 1998).

Create the initial project network

Level Load the schedule

Identify the Critical Chain

Create the Buffers

Insert the Buffers into the network.

Review Resultant Schedule — Go to step 1 if necessary

s

All of the above steps are implemented in ProChain™ except Step 1 and step 6.

A well thought out project network is fundamental to developing a solid program
schedule. The key tasks in developing a project network are:

Establishing the Program Deliverable

An Analysis of the Required Tasks
Establishing the Inter-Task Dependencies
Allocation of Resources

Estimation of the Task Durations

The initial step in creating the network is to ensure that there is a clear and concise
definition o the program’s final deliverable. The program deliverable is the reason for
doing the program. Once the end point is established, the network building process is laid
out from right to left, with the rightmost task being the final deliverable. Task
identification phase starts by asking, “What tasks are absolutely necessary to meet the
deliverable?” The first pass through the network development stio’ild be kept at a high
level. Detailed tasks identification occurs in the second or third pass of the network. An
example of the first pass of building the project network is shown below.

January 1999 - © 1999 Ronald Pepin 16

Building The Project Network: First Pass

Build Right to Left

G

Figure 9: Building the Network — First Pass

Building the network establishes a list of the required tasks and the task dependencies.
All tasks and the dependencies should be carefully reviewed to ensure that they are
absolutely necessary. The next step is to assign resources to the tasks. For proper leveling
loading can only be accomplished if each task has resources allocated to it. In order for
ProChain™ to level load the network each task must have resources assigned to it.

Task estimation is the last step before the network is entered into Microsoft Project.
Ideally, the resource(s) assigned to the task provide the task duration estimates. The
estimator must understand that they are being asked to provide estimates based on
Critical Chain principles. Task estimates must adhere to the following guideline in mind:

e Estimate the duration as if it is the only task to work on (no
multitasking)
Assume all proceeding tasks will complete on time
Estimate the duration such that there is a 50% probability of
successfully completing the task in the estimated time.

e Late Finishes will not be punished.

ProChain™ requires that the tasks, task dependencies, resource allocations and task
estimates be entered into a Microsoft Project schedule.

January 1999 - © 1999 Ronald Pepin 17

ProChain Projec
- .

Figure 10: ProChain™ Scheduling Options (ProChain, 1998)

Level loading is the first feature in the ProChain™ Scheduling process. The ProChain™
level loading feature uses the information entered in to Microsoft Proj.ct to load the
project such a way that there is no planned multitasking and/or task dependency
violations.

The second ProChain™ stage is the identification of the Critical Chain. ProChain™
analyzes the all of the task flows to determine which thread is the longest. The longest
thread is identified as the Critical Chain.

Once the project is level loaded and the Critical Chain is identified, the project is ready
for the third ProChain™ stage of creating the buffers. ProChain™ allow the operator to
determine the size (% of chain) of the buffers. ProChain™ defaults to the Goldratt
recommended 50% of the linked chain. ProChain™ , upon activation, creates the project
buffer and all of the required feeding buffers. The last state in the ProChain'™ schedule
creation process is to insert the buffers. Initiating the “Insert Buffer” feature instructs
ProChain™ to move tasks forward to allow for feeding buffers to be inserted. The project
buffer is attached to the end of the schedule.

January 1999 - © 1999 Ronald Pepin 18

Figure 11: ProC hain™ Scheduling Options — Buffer Size (ProChain, 1998)

The last step in the process is to review the resultant schedule for opportunities,
feasibility and correctness. ProChain ™ allows the operator to return to the appropriate
step to modify the schedule.

1.3.2 Updating ProChain™ Schedules.

ProChain™ facilitates the process to update the project schedule. Initiation of the
“Update Task” feature will cause ProChain ™ to present, one by one, all of the active
tasks to the operator. The operator simply has to update the expected remaining du.atlon
for all of the active tasks. When all of the active task durations are updated, ProChain™
automatically updates the schedule to reflect buffer consumption and updated start and
end dates.

January 1999 - ©® 1999 Ronald Pepin 19

543, T

Figure 12: ProChain' " Task Update Screen (ProChain, 1998)

1.3.3 Tracking the Schedule with ProChain™
Tracking the schedule is accomplished by monitoring the ProChain™™ Non-Resource

Buffer Report. The Non-Resource buffer report provides information that is critical to
tracking a Critical Chain program.

January 1999 - © 1999 Ronald Pepin 20

2 Staged Software Development

If you ask a software developer the status of something he's working
on, his answer might be correct, but if it is, that’s just a coincidence.
(McCarthy, 1995)

In today’s turbulent business environment, more and more companies
need a development process that embraces change — not one that
resists it. (Iansiti and MacCormack, 1997)

Staged delivery is not a panacea. But, on balance, the additional
overhead it demands is a small price to pay for the significantly
improved status visibility, quality visibility, flexibility, estimation
accuracy, and risk reduction it provides. (McConnell, 199%).

2.1 Introduction
2.1.1 Summary of Staged Deveiopment

A Staged Software Development Process is a specific instance of a larger class of
Incremental Product Development processes. The Staged Software Development Process
defines the steps and the development order of a project. Staged development evolves the
product in stages. Each stage represents a complete deliverable segment (feature) of the
final product. In staged development the product can, theoretically, be released at the end
of any stage.

Staged development has become popular with the emergence of modem software
technologies. Technologies, such as Object Orientated Software development and
Component based development, provide natural interfaces to cleave clusters of features
into development stages.

An illustration of a Staged Software Development Process is shown below.

January 1999 - © 1999 Ronald Pepin 21

Software
Concept

equirements
Analysis

System
Architecture

Figure 13: Staged Development Process - Adapted from McConnell (McConnell,
1996, 1998)

2.1.2 Phases of a Staged Development Cycle

Staged Software Development can be divided into three development phases. The first
phase contains the concept generation and requirement analysis activities. Clear and well-
understood concepts and requirements are imperative to determining the scope of the
program. The challenge of the requirement analysis phase is to define the right level of
detail. Up front requirements have to be detailed enough to allow proper scope and
understanding of the complete program, but open enough to allow for creativity and
innovation during the implementation process. The initial requirements must also allow
considerable feature flexibility. This is essential in development environments in which
new competitors and technologies appear overnight. (Iansiti and MacCormack, 1997).
The initial requirement analysis process must be designed to allow the requirements to
evolve with the staged progress while providing the system architects and programs
planning people the information required to scope and plan the program.

The second phase in the process is the development of the system architecture. The
purpose of the architecture is to provide a consistent framework into which the staged
features can be integrated. Architectural consistency not only helps the product take on a
singular form, but also helps to ensure system simplicity, component reuse and
minimized development effort. Shortcomings in the initial system architecture will likely
cause upstream rework when downstream features do not fit into the architecture.

January 1999 - © 1999 Ronald Pepin 22

The third phase in the process is the staging cycle. The staging cycle contains all of the
activities that are required to synthesize and implement the features. The staging cycle is
repeated many times in the development process. The deliverable at the end of each stage
is verified software that can be reviewed (early stages) or releasca later stages) to the
customer. The staged deliveries provide the most reliable form of project status available.
(McConnell, 1998)

2.1.3 Determining Stage Order

Implementation of a Staged Software Development Process requires careful stage
planning. Some of the parameters used to determine the features that are clustered in each
stage are; level of risk, functional dependencies, skill set requirements and customer
feature roliout preferences. The following guidelines can be used to set priorities on the
staged features:

High-risk features should be developed first.

Features that are important to the customer should be done early
Dependent features should be clustered into a stage.

Stages should be no longer than three months.

bl ol e

2.2 Staged Development Vs Waterfall Development Model

The pure waterfall model is the most widely used product development model
(McConnell, 1596). The pure waterfall model is a sequential development model that
requires the preceding phase to be completed before the succeeding phase can be
initiated. An illustration of the waterfall model is as follows:

January 1999 - © 1999 Ronald Pepin 23

Software
Concept

equirement
Analysis

c :
Architectural
Design i

“Downstream” phases
nominally sequential.

Figure 14: Waterfall Development Process — Adapted from McConnell
(McConnell, 1996)

A major downfall of the waterfall model is the non-iterative nature of the process. In the
waterfall model each phase is declared complete at the end of the phase. Once a phase

has been declared complete it is difficult to return to that phase. The adverse effect of the
non-iterative approach is amplified by the large time gap between defect creation and
defect detection. In a serial process a defect inserted early in the design activity may
remain undetected until the design is completed and implementation is started. In a staged
development cycle, functional tasks are evolved in complete lifecycle stages. Iterating on
the complete development cycle in small stages closes the time gap between defect
insertion in upstream analysis task and defect detection in a downstream implementation
task. The result is a shortened defect discovery time, which limits the overall level of
rework. Undiscovered rework is the single most important source of project and schedule
risk. (Cooper and Mullen, 1993). Therefore, staged development helps to expose the level
of undiscovered rework earlier in the development cycle.

The waterfall model also assumes that the assumptions made at the start of the program
hold true for the complete program. In the sofiware development world, the pace of
technology, frequently upgraded development tools and system capabilities, and the
requirements flexibility require assumptions to be challenged throughout the program.
The staged development process contains frequent break points, between stages, in which
the team can take advantage of to challenge assumptions and take action on the lessons
learned. Frequent cycling of the complete development process provides the development
team with the opportunity to improve their productivity and development speed
throughout the program.

January 1999 - © 1999 Ronald Pepin 24

Visibility of progress also differentiates the waterfall and staged development models.
The only true means of tracking a software project is the measurement of working code
(McConnell, 1998). In the waterfall mode! “working code” is not delivered until late in
the development process. The delay in the production of “working code” makes it
difficult to get an accurate read on the project status. In staged development, working
code is developed and added to in every stage.

Staged development also provides a pipeline for increased customer involve ment. The
working code that is generated provides an efficient conduit for customer feedback. The
primary conduit with the customer is in the staged software deliveries. Staged deliveries
allow the customer the ability to see, touch and feel the system before the design is
complete. In the waterfall model, the primary conduit with the customer is written
material. The customer is forced to develop an image of the product from words and
pictures until such time in which implementation is complete. At that point, when the
design is complete, the customer can provide design feedback. The lack of customer
feedback violates a well-known software development best practice; Customer
involvement throughout the project is a critical to the project survival (McConnell, 1998).

2.2.1 Beneéfits to the Waterfall Model

Even with all of it’s shortcomings, the waterfall model has stood the test of time and has
been proven to work well for projecis that (McConnell, 1996);

1. Are well understood but complex.
2. Have quality requirements that dominate cost and schedule.
3. Have a technically weak development staff.

Well understood but complex projects benefit from the orderly and structured process
flow of the waterfall model. The end to end thoroughness of each stage minimizes the
complexity effect, while the deep understanding of the project minimizes the early
learning benefits of a staged development process.

The quality improvements are due to the waterfall model’s inability to accept additional
requirement changes mid-stream. The openness of the staged process exposes the risk of
including high-risk requirement changes late in the project.

The structured waterfall process also benefits weak development teams. The process
allows the team the time to strengthen their skills in each functional area before they have
to move to the next phase. Staged development requires a strong team that is open to
learning and improving at a rapid pace.

January 1999 - © 1999 Ronald Pepin 25

2.2.2 Benefits of Staged Development:

The benefits of staged development have been documented by Steve McConnell
(McConnell, 1998) and in a white paper produced by Microsoft Corporation (Microsoft,
1998). The following list is a combination of the benefits listed by the heretofore-
mentioned sources:

1.

2.

10.

Critical Functionality is Available Earlier: Important features and functions are
delivered first.

Risk Is Reduced Early: High-risk items are designed and tested first. Having a
potentially deliverable product at the end of each stage reduces schedule risk.
Problems Become Evident Early: Completing the development lifecycle early
draws out process issues. Early customer feedback, efficient program planning and
risk reduction.

Status-Reporting Overhead is Reduced: Progress is measured in working code.
Therefore, developers do not have to spend a lot of time on status reports.

Makes More Options Available: The process provides the option to release the
software at any stage.

Reduces the Possibility of Estimation Errors: productivity of the team in the early
stages can be used to estimate the productivity in the later stages.

Flexibility and Efficiency: detailed design decisions can be delayed until
implementation time.

Promotes Frequent and Honest Communication between the Team and the
Customer:; Working software is the most honest means of communicating status,
features and interactions.

Sets Clear and Motivational Goals for All Team Members: each stage provides
clear attainable short-term goal. The development team can see and understand the
goal.

Rapid Learning: Staged development allows the developers to learn the complete
development cycle early in the process.

January 1999 - © 1999 Ronald Pepin 26

3 The Project

3.1 Introduction

The project that is being used as the subject of this research is the Network Management
Sub-System (NMS 2000) for the Remote Elevator Monitoring (REM® 2000) system at
Otis Elevator Compzny. The REM® 2000 system is a major sub-system of a Service
Management System (SMS). Two other major sub-systems of SMS are the Service
Dispatch System and the Maintenance Planriing System.

3.2 Project Explanation

Service Management System

Elevator

Elevator
Mechanic

Figure 15: Service Management System

A primary purpose of the Service Management System is to provide information to
elevator mechanics. The primary purpose of the REM® 2000 System is to provide
information to the Service Dispatching System and the Maintenance Planning System.
The REM® 2000 System provides information that is associated with elevator shutdowns
and elevator performance.

Elevator shutdowns are system failures that result in an elevator out of service condition.
By definition, an elevator shutdown requires a mechanic to be dispatched to site to

January 1999 - © 1999 Ronald Pepin 27

correct the problem. Elevator shutdowns can occur with or without passengers in the
elevator car. The REM® 2000 system is designed to detect elevator shutdowns and to
indicate if passengers are in the car. Once a shutdown is detected, the REM® 2000 system
communicates the shutdowns tc the Service Management System. Shutdowns with
passengers are allocated the highest priority and the system establishes a “voice link”
with the trapped passenger in the elevator car. The Service Dispatching System is
designed to forward the REM® 2000 dispatch messages to the Mechanic. The Mechanic
reacts to the dispatch message by traveling to the site to perform corrective action.

A second primary function of the REM® 2000 system is to monitor, collect, store and
analyze elevator performance information. The REM® system combines new data with
historical data to formulate performance statistics. Door open time is ari example of a
measured performance parameter. The REM?® system monitors the leagth of time from
when the doors are commanded to open until the doors are fully open. A statistical trend
of the door open times is calculated. An increase in the door open time indicates that the
elevator door requires service. This “on-demand” service information is transmitted to the
Maintenance Planning System. The Maintenance Planning System uses the information
to schedule a mechanic to perform the required service.

The REM® 2000 system is divided into two major sub-systems: the REM® Resident Sub-
system (RRS) and the Network Manager Sub-System (NMS). The RRS is an embedded
microprocessor system that is installed at the elevator site. The RRS interfaces directly
with the elevator to collect the required information. In the event of an elevator shutdown
the RRS immediately alerts the Network Management System (NMS), via a dial-up
modem connection, of the detected shutdown

January 1999 - @ 1999 Ronald Pepin 28

REM 20040 System

Dispatching
System

Maintenance

NMS 2000 ystem
System P

REM
Resident
System

Figure 16: REM® 2000 System

The Network Manager System is the central repository for REM® data. All the data that
are collected by the RRS system are periodically transmitted and stored in the NMS. The
NMS adds value by performing real-time and post processing functions. Real-time
processing is performed on shutdowns. On a shutdown, the NMS attaches fault isolation
information to the shutdown message. The additional fault isolation information helps the
mechanic locate and correct the failure promptly. The value in the post processing of
historical data is to detect trends in the performance parameters. Detecting trends in the
data aids efficient scheduling of elevator maintenance tasks.

The NMS is also responsible for providing the REM® 2000 interfaces to the outside
world. The NMS user interface allows an operator to interrogate and analyze the REM®
data. The external system interface allows external systems to communicate information

to and from the REM® 2000 system. The Dispatching System and the Maintenance
System are two examples of external systems that interface with the NMS. A high level
architectural diagram of the NMS is shown below:

January 1999 - © 1999 Ronald Pepin 29

9

" e e

NMS 2000 System Architecture

External Interface

11S Web
Server/
NMS Web

NMS Clients / Web Browser

Figure 17: NMS 2000 System Architecture

From a software development technology perspective, the NMS 2000 system is a multi-
tier-distributed Internet application. A graphical representation of the multiple tiers is as
follows:

January 1999 - © 1999 Ronald Pepin 30

NMS 2000 Multi-tiered Architecture

Windows NT Server with MTS

Business Component

DCOM Interface, Stored Procedures

SQL

Server

Figure 18: NMS 2000 Muliti-tiered Architecture

In a multi-tier architecture the business components are implemented separately from the
presentation and data components in order to enhance the scalability, reusability and
robustness of the solution (Dolgicer, 1998). The key technologies in the Business
Component tier are Microsoft Transaction Server (MTS) and Microsoft’s Component
Object Model (COM). MTS is a distributed runtime environment for COM objects. Max
Dolgicer’s description of MTS is as follows (Dolgicer, 1998):

“MTS provides a sophisticated infrastructure for activating and running
objects across a network. MTS provides automatic transaction management,
database connection pooling, process isolation, automatic thread-pooling,
automatic object instance management, resource sharing, role-based
security, transaction monitoring within a distributed application and much
more. The services are necessarily for scaling server side components and
supporting a substantial number of concurrent client requests. MTS
performs all of these services automatically, without the need for
application developers to write special code. A developer can therefore
develop server-side components with a single client in mind.”

MTS is designed to facilitate component-based development. Component based

development is really nothing more than modular programming with defined interfaces
(Bear, 1998). Microsoft’s Component Object Model (COM) defines the standard on how

January 1999 - © 1999 Ronald Pepin 31

component based applications inter-operate. COM also defines how to build components
that can be dynamically interchanged. The benefits of component based development are
(Rogerson, 1997):

o Application Customization. Each component can be easily replace with
a different component that meets the specific need.
Component Libraries: Well-constructed components are reusable.
Distributed Components: Components can be distributed anywhere in
a high bandwidth network.

The NMS 2000 Business Components were developed using Visual Basic 6.0. The User
Interface was developed using VB Script and Java Script (both from Microsoft). The
client side User Interface is Microsoft’s Internet Explorer 4.0. Microsoft’s SQL Server
7.0 is the technology used in the database tier. Microsoft SQL is a relational database that
is designed to support high volume transaction processing on Microsoft’s NT server
based networks. The Dial-up communication applications are internally developed
executables developed in Java and C++.

January 1999 - © 1999 Ronald Pepin 32

4 Applying the Critical Chain and Staged Development

4.1 Introduction

The application of Critical Chain to a Staged Software Development project presented an
array of challenges. The initial challenge was to scope the method of training and amount
of training that would be required to introduce the development team to the concepts. The
second challenge was to develop a process in which to select the features and functions
that would be implemented in each stage. The third challenge was to develop the process
to estimaie and schedule the stages and a process to track the program was also
developed.

Diversity in the team member backgrounds nourished the training challenge. Team
membership consisted of eight direct employees, four newly hired software contractors, a
software contractor with prior NMS experience and two technology specialists from
Microsoft Corporation. The diversity in backgrounds made it difficult to gauge the level
of training that would be required. The political environment created by recent company
wide training initiatives also complicated the training issue.

In the past three years, many of the company employees were part of an aggressive
initiative to train all development engineers on the “standard” product development
processes. The goal of the initiative was to reduce the time to develop a product by fifty
percent. The initiatives were developed to establish common frameworks and standards
for all development projects. Many of the direct company employed NMS 2000 team
members had been recently been trained on:

Product Development “Best Practices”
The Otis Software Development Process
The Systems Engineering Process

The Program Management Process

N

The company invested a lot of time and money to train the development staff on these
four processes. At the start of the NMS 2000 project the only process that still had
momentum was the Otis Software Development Process. The other initiatives had
perished due to lack of support. The Otis Software Development process (OSP) is
modeied after the process developed by the Carnegie Mellon Software Engineering
Institute (http://www.sei.cmu.edu/). The Otis Software Development process provides
guidelines on the following topics:

Project Initiation

Software Project Management
Software Product Development
Software Quality Assurance

January 1999 - © 1999 Ronald Pepin 33

Application of Critical Chain with a Staged Development process affected standard
processes in most of the OSP segments.

On the positive side, the diversity in team membership helped to ensure that there was not
team wide consensus on a single development process. The lack of an existing process
eased the resistance to adoption of Critical Chain and Staged Development.

4.2 Training

The purpose of this section is to explain the training method that was employed to
introduce the concepts. As previously mentioned, the training effort was constrained by
the investment the company made in the just completed, relatively unsuccessful, process
training initiative. In this difficult environment, the author felt it was best to incorporate
Critical Chain and Staged Development training into the standard project review sessions.
The author took on the complete responsibility to train all of the project internal
stakeholders: the team, the REM® 2000 Program Director, peers and engineering senior
management on the fundamentals of Critical Chain and Staged Development.

The Critical Chain and Staged Development concepts were first presented to the team
members in a two-hour meeting. The goal of the initial presentation was to develop a
team wide understanding of the fundamentals and to generate discussion. The Critical
Chain training continued with a number of ad-hoc discussions between interested team
members. The team members were concerned with their ability to accurately estimate the
tasks and the Goldratt fifty percent task time reductions. The next formal training step
was to apply the techniques in the first stage of the development cycle. The team was
asked to develop the network and estimate to 50% task times. Each subsequent stage was
then used to continue team training. The relatively short duration of the staged releases
limited the risk of the informal training technique and allowed the team to learn the
techniques rapidly. The training effort was eased by a few of the team members taking
the initiative to read The Critical Chain (Goldratt, 1997) and Software Project Survival
Guide (McConnell, 1998). The incremental training approach was consistent with the
Staged Development approach.

The effort to training the REM® 2000 Program Director was minimal due to his previous
study of the fundamentals presented in The Goal (Goldratt, 1992). The effort to train the
Program Director was limited to his reading The Critical Chain (Goldratt, 1997) and a
short follow-up discussion.

Members of the Engineering Senior Management team were introduced to the concepts in
the first NMS 2000 quarterly project review. The first senior management review was
held four months after the initial CC schedule was put into place. In that review the
author scheduled a thirty-minute time slot to present a brief overview of the concepts.
The senior management presentation was focused establishing the fact that buffers are not
slack and progress will be extremely visible through the staged releases.

January 1999 - © 1999 Ronald Pepin 34

A summary of the team training effort is as follows:

e The majority of the team training was accomplished by the actual application
of the techniques. The frequent pace of the stages allowed the team to leamn
the process incrementally. The project leader had previously studied the
concepts and held a solid understanding of the concepts.

e Direct management was self-trained by reading the appropriate material and
discussing the concepts with the project leader.

e Other stakeholders were familiarized with the concepts by inclusion of brief
explanations of the methods in normal program review meetings.

4.3 Developing the Stage Plan

The initial step in a Staged Development process is the task of identifying the features
and functions to include in each development stage. A guideline, that the NMS 2000 team
decided to follow, was to put all of the components that could be associated with one
feature in a stage. A feature can be viewed as subset of components that allows the user
to perform a function. Each stage represents the complete development cycle for that
particular feature. The staging design goal was to cleave the complete system into
independent features that could theoretically be developed independently without
affecting the development of other, previous and future, stages. The artifact at the end of
each stage is working code that could be (if required) released at any time.

Development and analysis of the staging process identified natural boundaries in which to
cleave the system. The boundaries were drawn on functional and application vectors. The
functional vectors segregated the system into five core functions. The application vectors
segregated the system into three distinct user applications of the NMS 2000 system. The
intersection of the two vectors defined the stages.

The order of development for the stages was determined by blending three decision
parameters. The first parameter was the customers wants. When asked, the customer was
quick to identify the features (stages) that they would like to have developed first. The
second parameter was risk (technoiogy and requirements). High-risk items were
scheduled as early as possible. The third factor used to determine order was the natural
flow of development tasks. Viewed from a development perspective some features had
to be developed before other features. Violation of the natural order created inefficiencies
in the development process.

The definition of the stages and the order of the stages was captured and communicated
in table format. The left-hand column of the table defined the core functions, the top line
defined the use perspectives and the boxes identified the stages. The number in the boxes
indicated the implementation order. Each box in the table represents a development stage.

January 1999 - © 1999 Ronald Pepin 35

Application 1 | Application 2 | Application 3
Core Function 1 1 9 3
Core Function 2 2 10 4
Core Function 3 7 11 5
Core Function 4 8 12 A
Core Function 5 13 14 (15)
Figure 19: Stage Development Order Stage
Number
and Order

44 Project Scheduling

Software estimation and scheduling is difficult (McConnell, 1996). McConnell indicates
that accurate software estimation is a “process of gradual refinement”. Understanding the
difficulty drove the author to investigate an estimation process that allowed the team to
quickly learn their productivity level without getting bogged down in stifling estimation
details. The process developed was an iterative scheduling process. The iterative
scheduling process, which was consistent with the staged development process, provided
a quick estimate of the scope of the program, the first level of schedule detail on next
stage and low level detail on the current stage.

The first step in the iterative scheduling process was to estimate, on a high level, the
resources and time that would be required to complete each stage. The development time
for each stage was entered into a non_Critical Chain Gantt Chart to determine the
aggregate scope of the project. The complete project Gantt chart was purposely kept
simple and easy to update. The author felt that these high-level estimates were the most
efficient and accurate estimates that could be provided, at the start of the program with a
reasonable amount of effort, for the complete program. This feeling was based on the
industry wide estimation statistics and the developer low level of knowledge of the
software technology that was being applied. As time marched on and the developers
gained experience the complete program schedule estimates would became more and
more accurate. A simplified example of the initial complete system schedule is as
follows. All stages contained a development and validation phase. The “+” in the task
name indicates which tasks have been rolled-up.

January 1999 - © 1999 Ronald Pepin 36

AEE RN K
Sep T v 1t | o L7

Figure 20: Complete Project Schedule

At the completion of each development stage the planning/estimation process was re-
initiated. Using what was just learned; the complete schedule was re-evaluated for
validity. The next two staged were detailed out and a Critical Chain schedule was
developed for the next stage. This process was repeated at the end of every stage. As the
project progressed more and more productivity data was collected and factored into the
future estimates. As time progressed the uncertainty in the estimates are expected to
decrease. Steve McConnell has label this phenomena as the “Estimate Convergence
Graph” (McConnell, 1996).

January 1999 - © 1999 Ronald Pepin 37

Estimate Convergence Graph

Project Cost Project Schedule

43 ' . e i iex
2X
2!
! 0
[~]
H
S5X
Under Estimated
25X _—1.6X

Adapted from Royce, 1998
and McConnell, 1996

Figure 21: Estimate Convergence Graph

After the overall scope of the project was reevaluated the developers were asked to
develop the first level of detailed work breakdown structures and task estimates for the
next two staged releases. The synergy between the first level detailed estimates and the
high-level estimates was used to validate the complete program high-level estimates. A
more detailed Critical Chain schedule was only developed for the current stage.
Developing a Critical Chain schedule for only the current stage helped to reduce the
complexity and needless detailed re-estimation of the complete schedule as the program
progressed.

The initial step in creating the Critical Chain schedule was an analysis of the detailed
WBS (tasks), project network (dependencies) and task estimates (durations). The analysis
included:

The process of eliminating unnecessary tasks

. Adding of tasks that were forgotten

3. Establishing which tasks that had to be serial and which could be done in
parallel

4. Establishing which resources had the skills to complete the task

5. Determining the 50% confidence level of the task estimates.

[\ I

The resulting information from the analysis was entered into a Critical Chain schedule for
that specific stage. Once the Critical Chain scheduled was developed, the team ignored
the complete program schedule (until the stage was complete) and focused their energy

January 1999 - © 1999 Ronald Pepin 38

on implementation the features and functions for that stage as quickly as possible. Each
stage was tracked as an independent project.

A pictorial of the staged scheduling process that was implemented is as follows:

Staged Scheduling Process

Start
Every Monday & Wednesday
Stage Start
Complete Stage
Dev.

Figure 22: Staged Scheduling Process

The detailed Critical Chain Schedule that is developed for each stage is a reasonably
complex schedule with over 100 dependent and independent tasks. A snapshot of that
contains about 25% of a detailed schedule for one of the stages is as follows:

January 1999 - © 1999 Ronald Pepin 39

o8 208k AKTW 2 hrepeon 1133

Feeding Buffers

7

Critical
Chain

o

[ERREEEEEEEREEREEEREEZEEEREEERECEEEEREECRRERED

Figure 23: Detailed Critical Chain Schedule

4.5 Project Tracking

The project tracking process that was implemented was designed to allow an efficient
method for the development team to communicate task status to program management
and for program management to communicate program status back to the team and to
other stakeholders. The program was tracked on two levels. The first tracking reference
point was the complete program target end date. The second tracking reference point was
the current stage end date.

As stated above, the validity of the program end date was only checked at the end of each
stage. When a stage was completed, the developers used their knowledge from
developing previous stages to re-estimate the remaining work in the program. The
complete program was tracked at a high-level in a straight Microsoft Project schedule.

Tracking within a stage development cycle was a much tighter loop. The development
team used a spreadsheet on a shared harddrive as their means to communicate task status
to program management. The developers were required to update the spreadsheet with
the “number of days to complete” th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>