Our first goal for this lecture is to complete the proof of the uniformization theorem, which states that every elliptic curve E/\mathbb{C} is isomorphic to a torus \mathbb{C}/L for some lattice L. Given what we have already proved, it suffices to show that the map that sends a lattice L to its j-invariant $j(L)$ is surjective; every complex number is the j-invariant of some lattice.

18.1 The j-function

Every lattice $[\omega_1, \omega_2]$ is homothetic to a lattice of the form $[1, \tau]$, with τ in the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \text{im} \, z > 0\}$; we may take $\tau = \pm \omega_2/\omega_1$ with the sign chosen so that $\text{im} \, \tau > 0$. This leads to the following definition of the j-function.

Definition 18.1. The j-function $j : \mathbb{H} \to \mathbb{C}$ is defined by $j(\tau) = j([1, \tau])$. We similarly define $g_2(\tau) = g_2([1, \tau])$, $g_3(\tau) = g_3([1, \tau])$, and $\Delta(\tau) = \Delta([1, \tau])$.

Note that for any $\tau \in \mathbb{H}$, the quantities $-1/\tau$ and $\tau + 1$ also lie in \mathbb{H}.

Theorem 18.2. The j-function is holomorphic on \mathbb{H}, and satisfies $j(-1/\tau) = j(\tau)$ and $j(\tau + 1) = j(\tau)$.

Proof. From the definition of $j(\tau) = j([1, \tau])$ we have

$$j(\tau) = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)} = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2}.$$

The series defining

$$g_2(\tau) = 60 \sum_{m,n \in \mathbb{Z}}' \frac{1}{(m+n\tau)^4} \quad \text{and} \quad g_3(\tau) = 140 \sum_{m,n \in \mathbb{Z}}' \frac{1}{(m+n\tau)^6}$$

converge absolutely for any fixed $\tau \in \mathbb{H}$, by Lemma 16.11, and uniformly over τ in any compact subset of \mathbb{H}. The proof of this last fact is straightforward but slightly technical; see [1, Thm. 1.15] for the details. It follows that $g_2(\tau)$ and $g_3(\tau)$ are both holomorphic on \mathbb{H}, and therefore $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2$ is also holomorphic on \mathbb{H}. Since $\Delta(\tau)$ is nonzero for all $\tau \in \mathbb{H}$, by Lemma 16.21, the j-function $j(\tau)$ is holomorphic on \mathbb{H} as well.

The lattices $[1, \tau]$ and $[1, -1/\tau] = -1/\tau[1, \tau]$ are homothetic, and the lattices $[1, \tau + 1]$ and $[1, \tau]$ are equal; thus $j(-1/\tau) = j(\tau)$ and $j(\tau + 1) = j(\tau)$, by Theorem 17.6.

18.2 The modular group

We now consider the modular group

$$\Gamma = \text{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}.$$

As proved in Problem Set 8, the group Γ acts on \mathbb{H} via linear fractional transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d},$$

and Γ is generated by the matrices $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. This implies that the j-function is invariant under the action of the modular group. In fact, more is true.
Figure 1: Fundamental domain \mathcal{F} for the action of $\Gamma = \text{SL}_2(\mathbb{Z})$ on \mathbb{H}, with $\rho = e^{2\pi i/3}$.

Lemma 18.3. We have $j(\tau) = j(\tau')$ if and only if $\tau' = \gamma \tau$ for some $\gamma \in \Gamma$.

Proof. We have $j(S\tau) = j(-1/\tau) = j(\tau)$ and $j(T\tau) = j(\tau + 1) = j(\tau)$, by Theorem 18.2. It follows that if $\tau' = \gamma \tau$ then $j(\tau') = j(\tau)$, since S and T generate Γ.

To prove the converse, let us suppose that $j(\tau) = j(\tau')$. Then by Theorem 17.6, the lattices $[1, \tau]$ and $[1, \tau']$ must be homothetic. So suppose $[1, \tau'] = \lambda [1, \tau]$, for some $\lambda \in \mathbb{C}^*$. Then there exist integers $a, b, c,$ and d such that

$$\tau' = a \lambda \tau + b \lambda$$
$$1 = c \lambda \tau + d \lambda$$

From the second equation, we see that $\lambda = \frac{1}{ca+d}$. Substituting this into the first, we have

$$\tau' = \frac{a \tau + b}{c \tau + d} = \gamma \tau,$$
where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Similarly, using $[1, \tau] = \lambda^{-1} [1, \tau']$, we can write $\tau = \gamma' \tau'$ for some integer matrix γ'. The fact that $\tau' = \gamma\gamma' \tau'$ implies that $\det \gamma = \pm 1$ (since γ and γ' are integer matrices), and since τ and τ' both lie in \mathbb{H}, we must have $\det \gamma = 1$, and therefore $\gamma \in \Gamma$ as desired.

Lemma 18.4. The set \mathcal{F} is a fundamental domain for \mathbb{H}/Γ.

We now wish to determine a fundamental domain for \mathbb{H}/Γ, a set of unique representatives in \mathbb{H} for each Γ-equivalence class. For this purpose we will use the set

$$\mathcal{F} = \{ \tau \in \mathbb{H} : \text{re}(\tau) \in [-1/2, 1/2) \text{ and } |\tau| \geq 1, \text{ such that } |\tau| > 1 \text{ if } \text{re}(\tau) > 0 \}.$$

Lemma 18.4. The set \mathcal{F} is a fundamental domain for \mathbb{H}/Γ.

2
\textbf{Proof.} We need to show that for every \(\tau \in \mathbb{H} \), there is a unique \(\tau' \in \mathcal{F} \) such that \(\tau' = \gamma \tau \), for some \(\gamma \in \Gamma \). We first prove existence. Let us fix \(\tau \in \mathbb{H} \). For any \(\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \Gamma \) we have

\[
im(\gamma \tau) = \nim\left(\frac{a \tau + b}{c \tau + d}\right) = \nim\left(\frac{(a \tau + b)(c \tau + d)}{|c \tau + d|^2}\right) = \frac{(ad - bc) \nim \tau}{|c \tau + d|^2} = \frac{\nim \tau}{|c \tau + d|^2} \quad (1)
\]

Let \(c \tau + d \) be a shortest vector in the lattice \([1, \tau]\). Then \(c \) and \(d \) must be relatively prime, and we can pick integers \(a \) and \(b \) so that \(ad - bc = 1 \). The matrix \(\gamma_0 = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \) then maximizes the value of \(\nim(\gamma \tau) \) over \(\gamma \in \Gamma \). Let us now choose \(\gamma = T^k \gamma_0 \), where \(k \) is chosen so that \(\re(\gamma \tau) \in [1/2, 1/2) \), and note that \(\nim(\gamma \tau) = \nim(\gamma_0 \tau) \) remains maximal. We must have \(|\gamma \tau| \geq 1 \), since otherwise \(\nim(S \gamma \tau) > \nim(\gamma \tau) \), contradicting the maximality of \(\nim(\gamma \tau) \). Finally, if \(\tau' = \gamma \tau \not\in \mathcal{F} \), then we must have \(|\gamma \tau| = 1 \) and \(\re(\gamma \tau) > 0 \), in which case we replace \(\gamma \) by \(S \gamma \) so that \(\tau' = \gamma \tau \in \mathcal{F} \).

It remains to show that \(\tau' \) is unique. This is equivalent to showing that any two \(\Gamma \)-equivalent points in \(\mathcal{F} \) must coincide. So let \(\tau_1 \) and \(\tau_2 = \gamma_1 \tau_1 \) be two elements of \(\mathcal{F} \), with \(\gamma_1 = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \), and assume \(\nim \tau_1 \leq \nim \tau_2 \). Then by (1), we must have \(|c \tau_1 + d|^2 \leq 1 \), thus

\[
1 \geq |c \tau_1 + d|^2 = (c \tau_1 + d)(c \tau_1 + d) = c^2 |\tau_1|^2 + d^2 + 2cd \re(\tau_1) \geq c^2 |\tau_1|^2 + d^2 - |cd|.
\]

We cannot have \(c = d = 0 \), and we must have \(|\tau_1| \geq 1 \), thus the RHS is at least 1. So equality holds throughout and we have \(|c \tau_1 + d| = 1 \), which implies \(\nim \tau_2 = \nim \tau_1 \). We also must have \(|c|, |d| \leq 1 \), and by replacing \(\gamma_1 \) by \(-\gamma_1 \) if necessary, we may assume that \(c \geq 0 \). This leaves 3 cases:

1. \(c = 0 \): then \(|d| = 1 \) and \(a = d \). So \(\tau_2 = \tau_1 \pm b \), but \(\re \tau_2 - \re \tau_1 < 1 \), so \(\tau_2 = \tau_1 \).
2. \(c = 1, d = 0 \): then \(b = -1 \) and \(|\tau_1| = 1 \). So \(\tau_1 \) is on the unit circle and \(\tau_2 = a - 1/\tau_1 \).
 - Either \(a = 0 \) and \(\tau_2 = \tau_1 = i \), or \(a = -1 \) and \(\tau_2 = \tau_1 = \rho \).
3. \(c = 1, |d| = 1 \): then \(|\tau_1 + d| = 1 \), so \(\tau_1 = \rho \), and \(\nim \tau_2 = \nim \tau_1 = \sqrt{3}/2 \) implies \(\tau_2 = \rho \).

\textbf{Theorem 18.5.} The restriction of the \(j \)-function to \(\mathcal{F} \) defines a bijection from \(\mathcal{F} \) to \(\mathbb{C} \).

\textbf{Proof.} Injectivity follows immediately from Lemmas 18.3 and 18.4. It remains to prove surjectivity. We have

\[
g_2(\tau) = 60 \sum_{n,m\in\mathbb{Z}}' \frac{1}{(m+n\tau)^4} = 60 \left(2 \sum_{m=1}^{\infty} \frac{1}{m^4} + \sum_{n,m\in\mathbb{Z}} \frac{1}{(m+n\tau)^4} \right)
\]

The second sum tends to 0 as \(\nim \tau \to \infty \). Thus we have

\[
\lim_{\nim \tau \to \infty} g_2(\tau) = 120 \sum_{m=1}^{\infty} m^{-4} = 120 \zeta(4) = 120 \frac{\pi^4}{90} = \frac{4\pi^4}{3},
\]

where \(\zeta(s) \) is the Riemann zeta function. Similarly,

\[
\lim_{\nim \tau \to \infty} g_3(\tau) = 280 \zeta(6) = 280 \frac{\pi^6}{945} = \frac{8\pi^6}{27}.
\]
Thus
\[
\lim_{\im\tau \to \infty} \Delta(\tau) = \left(\frac{4}{3} \pi^4 \right)^3 - 27 \left(\frac{8}{27} \pi^6 \right)^2 = 0.
\]
(this explains the coefficients 60 and 140 in the definitions of \(g_2\) and \(g_3\); they are the smallest pair of integers that ensure this limit is 0). Since \(\Delta(\tau)\) is the denominator of \(j(\tau)\), the quantity \(j(\tau) = g_2(\tau)^3/\Delta(\tau)\) is unbounded as \(\im \tau \to \infty\).

In particular, \(j\) is a non-constant holomorphic function on the open set \(\mathbb{H}\). By the open-mapping theorem [3, Thm. 3.4.4], \(j(\mathbb{H})\) is an open subset of \(\mathbb{C}\).

We now show that \(j(\mathbb{H})\) is also a closed subset of \(\mathbb{C}\). Let \(j(\tau_j), j(\tau_2), \ldots\) be an arbitrary convergent sequence in \(j(\mathbb{H})\), converging to \(w \in \mathbb{C}\). The \(j\)-function is \(\Gamma\)-invariant, by Lemma 18.3, so we may assume the \(\tau_j\) all lie in \(F\). The sequence \(\im \tau_1, \im \tau_2, \ldots\) must be bounded, since \(j(\tau) \to \infty\) as \(\im \tau \to \infty\), thus the \(\tau_j\) all lie in a compact set \(\Omega \subset F \subset \mathbb{H}\). Thus there is a subsequence of the \(\tau_n\) that converges to some \(\tau \in \Omega \subset \mathbb{H}\). By continuity, \(j(\tau) = w\), thus the set \(j(\mathbb{H})\) contains all its limit points and is therefore closed.

The fact that the non-empty set \(j(\mathbb{H}) \subset \mathbb{C}\) is both open and closed implies that \(j(\mathbb{H}) = \mathbb{C}\), since \(\mathbb{C}\) is connected. It follows that \(j(F) = \mathbb{C}\), since every element of \(\mathbb{H}\) is equivalent to an element of \(F\) (Lemma 18.4) and the \(j\)-function is \(\Gamma\)-invariant (Lemma 18.3). \(\square\)

Corollary 18.6 (Uniformization Theorem). For every elliptic curve \(E/\mathbb{C}\) there exists a lattice \(L\) such that \(E(\mathbb{C})\) is isomorphic to \(\mathbb{C}/L\).

Proof. Given \(E/\mathbb{C}\), pick \(\tau \in \mathbb{H}\) so that \(j(\tau) = j(E)\) and let \(L = [1, \tau]\). Then \(E\) is isomorphic to the elliptic curve corresponding to \(L\), via Theorem 17.2, and therefore \(E(\mathbb{C}) \simeq \mathbb{C}/L\). \(\square\)

18.3 Complex multiplication

Having established the correspondence between complex tori \(\mathbb{C}/L\) and elliptic curves \(E/\mathbb{C}\), we now wish to make explicit the relationship between endomorphisms of \(\mathbb{C}/L\) and endomorphisms of \(E/\mathbb{C}\).

Theorem 18.7. Let \(L\) be a lattice, let \(E/\mathbb{C}\) be the corresponding elliptic curve given by Theorem 17.2, and let \(\Phi: \mathbb{C}/L \to E(\mathbb{C})\) be the isomorphism that sends \(z\) to \((\varphi(z), \varphi'(z))\). For any \(\alpha \in \mathbb{C}\), the following are equivalent:

1. \(\alpha L \subseteq L\);
2. \(\varphi(\alpha z) = u(\varphi(z))/v(\varphi(z))\) for some polynomials \(u, v \in \mathbb{C}[x]\);
3. There exists an endomorphism \(\phi \in \text{End}(E)\) such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{C}/L & \xrightarrow{\phi} & E(\mathbb{C}) \\
\downarrow{\alpha} & & \downarrow{\phi} \\
\mathbb{C}/L & \xrightarrow{\phi} & E(\mathbb{C})
\end{array}
\]

where \(\alpha\) denotes the map \(z \mapsto \alpha z\) on \(\mathbb{C}/L\).

Moreover, every endomorphism \(\phi\) in \(\text{End}(E)\) gives rise to an \(\alpha \in \mathbb{C}\) satisfying (1)–(3), and the map that sends \(\phi\) to \(\alpha\) is a ring isomorphism from \(\text{End}(E)\) to \{\(\alpha \in \mathbb{C}: \alpha L \subseteq L\}\). In particular, the endomorphism \(\phi\) in (3) is unique, and \(\text{N}(\alpha) = \deg \phi = \deg u = \deg v + 1\).
Proof. Properties (1)–(3) clearly hold for \(\alpha = 0 \), so assume \(\alpha \neq 0 \).

(1) \(\Rightarrow \) (2): Let \(\omega \in L \). Then \(\varphi(\alpha(z + \omega)) = \varphi(\alpha z + \alpha \omega) = \varphi(\alpha z) \). Thus \(\varphi(\alpha z) \) is periodic, and \(\varphi(\alpha z) \) is clearly meromorphic, so it is an elliptic function (with respect to \(L \)). It is also even, since \(\varphi(z) \) is, so it is a rational function of \(\varphi(z) \), by Lemma 18.10 below.

(2) \(\Rightarrow \) (1): We have \(v(\varphi(z))\varphi(\alpha z) = u(\varphi(z)) \). Both \(\varphi(z) \) and \(\varphi(\alpha z) \) have a double pole at 0. Thus \(u(\varphi(z)) \) has a pole of order \(2 \deg u \) at 0 and \(v(\varphi(z))\varphi(\alpha z) \) has a pole of order \(2 \deg v + 2 \) at 0, hence \(\deg u = \deg v + 1 \). Thus \(u(\varphi(z)) \) has a pole of order \(2 \deg v + 2 \) at every \(\omega \in L \), so \(\varphi(\alpha z) \) must have a double pole at every \(\omega \in L \). It follows that \(\varphi(z) \) has a double pole at \(\alpha \omega \) for all \(\omega \in L \), and therefore \(\alpha L \subseteq L \).

(2) \(\Rightarrow \) (3): Let \(\phi \) be the rational map

\[
\phi = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} \right),
\]

where \(u \) and \(v \) are given by (2), and \(s = (u'v - v'u) \) and \(t = \alpha v^2 \), so that

\[
\varphi'(\alpha z) = \frac{1}{\alpha} \left(\varphi(\alpha z) \right)' = \frac{1}{\alpha} \left(\frac{u(\varphi(z))}{v(\varphi(z))} \right)' = \frac{s(\varphi(z))}{t(\varphi(z))} \varphi'(z).
\]

To verify that the diagram commutes, we note that going around the square clockwise yields

\[
\phi(\Phi(z)) = \phi((\varphi(z), \varphi'(z))) = \left(\frac{u(\varphi(z))}{v(\varphi(z))}, \frac{s(\varphi(z))}{t(\varphi(z))} \varphi'(z) \right),
\]

and going around the square counter-clockwise yields

\[
\Phi(\alpha z) = (\varphi(\alpha z), \varphi'(\alpha z)) = \left(\frac{u(\varphi(z))}{v(\varphi(z))}, \frac{s(\varphi(z))}{t(\varphi(z))} \varphi'(z) \right).
\]

(3) \(\Rightarrow \) (1). Let \(\phi \in \text{End}(E) \) satisfy (3). For any \(\omega \in L \) we have \(\phi(\Phi(\omega)) = 0 \), and by commutativity of the diagram, \(\Phi(\alpha \omega) = \phi(\Phi(\omega)) = 0 \), thus \(\alpha \omega \in L \). Therefore \(\alpha L \subseteq L \).

We now prove the “moreover” part of the theorem. For any \(\phi \in \text{End}(E) \), the map

\[
\phi^* = \Phi^{-1} \circ \phi \circ \Phi
\]

is an endomorphism of \(\mathbb{C}/L \). By taking a small neighborhood \(U \) of 0 in \(\mathbb{C} \), we obtain a map from \(U \) to \(\mathbb{C} \) that is holomorphic\(^1\) away from 0. Since \(\phi^* \in \text{End}(\mathbb{C}/L) \), we have

\[
\phi^*(z_1 + z_2) \equiv \phi^*(z_1) + \phi^*(z_2) \mod L,
\]

and \(\phi^*(0) \in L \). By replacing \(\phi^* \) with \(\phi^* - \phi^*(0) \) if necessary, we may assume that \(\phi^*(0) = 0 \). By continuity, \(\phi^*(z) \) is arbitrarily close to 0 when \(z \) is close to 0, so by making \(U \) sufficiently small, we have

\[
\phi^*(z_1 + z_2) = \phi^*(z_1) + \phi^*(z_2)
\]

for all \(z_i \in U \). We now use the definition of the derivative to compute

\[
(\phi^*)'(z) = \lim_{h \to 0} \frac{\phi^*(z + h) - \phi^*(z)}{h} = \lim_{h \to 0} \frac{\phi^*(z) + \phi^*(h) - \phi^*(z)}{h} = \lim_{h \to 0} \frac{\phi^*(h) - \phi^*(0)}{h} = (\phi^*)'(0).
\]

\(^1\)An analog of the inverse function theorem holds for holomorphic functions.
Thus the derivative of \(\phi^* \) is equal to some constant \(\alpha = (\phi^*)'(0) \) at all \(z \in U \). Thus \(\phi^*(z) = \alpha z \) for all \(z \in U \). For any \(z \in \mathbb{C} \), we may choose \(n \in \mathbb{Z} \) such that \(\frac{z}{n} \in U \). Thus
\[
\phi^*(z) = n\phi^* \left(\frac{z}{n} \right) = n\alpha \frac{z}{n} = \alpha z.
\]
The map \(\phi^* \) sends lattice points to lattice points, and we have just shown that \(\phi^* \) is the “multiplication-by-\(\alpha \)” map. Thus \(\alpha L \subseteq L \), and \(\alpha \) satisfies the equivalent conditions (1)–(3).

We now show that the map \(\Psi : \text{End}(E) \to \{ \alpha \in \mathbb{C} : \alpha L \subseteq L \} \) that sends \(\phi \) to \(\alpha = (\phi^*)'(0) \) is a ring homomorphism. Clearly, \(\Psi(0) = 0 \) and \(\Psi(1) = 1 \). Let \(\phi_1, \phi_2 \in \text{End}(E) \). Then
\[
(\phi_1 + \phi_2)^* = \Phi^{-1} \circ (\phi_1 + \phi_2) \circ \Phi = \Phi^{-1} \circ \phi_1 \circ \Phi + \Phi^{-1} \circ \phi_2 \circ \Phi = \phi_1^* + \phi_2^*,
\]
which \(\Phi \) is an isomorphism. It follows that \(\Psi(\phi_1 + \phi_2) = \Psi(\phi_1) + \Psi(\phi_2) \), since we have \((\phi_1^* + \phi_2^*)'(0) = (\phi_1^*)'(0) + (\phi_2^*)'(0) \). Similarly,
\[
(\phi_1 \circ \phi_2)^* = \Phi^{-1} \circ (\phi_1 \circ \phi_2) \circ \Phi = \Phi^{-1} \circ \phi_1 \circ \Phi \circ \Phi^{-1} \circ \phi_2 \circ \Phi = \phi_1^* \circ \phi_2^*,
\]
and \(\phi_1 \circ \phi_2 \) is even or odd. We first consider the case that \(\phi \) is even, and we assume that \(f \) is nonzero, since the lemma clearly holds for \(f = 0 \).

Suppose that \(f \) is holomorphic at all points not in \(L \). Then it has a Laurent expansion about 0 of the form
\[
f(z) = \sum_{k=-n}^{\infty} a_{2k} z^{2k},
\]

Corollary 18.8. Let \(E \) be an elliptic curve defined over \(\mathbb{C} \). Then \(\text{End}(E) \) is commutative and therefore isomorphic to either \(\mathbb{Z} \) or an order in an imaginary quadratic field.

Proof. Let \(L \) be the lattice corresponding to \(E \). The ring \(\text{End}(E) \cong \{ \alpha \in \mathbb{C} : \alpha L \subseteq L \} \) is clearly commutative, and therefore not an order in a quaternion algebra. The result then follows from Corollary 14.16.

Remark 18.9. Corollary 18.8 applies to elliptic curves over \(\mathbb{Q} \), and over number fields, since these are subfields of \(\mathbb{C} \), and it can be extended to arbitrary fields of characteristic 0 via the Lefschetz principle; see [2, Thm. VI.6.1].
where $2n$ is the order of f. If $n \geq 0$, then f is holomorphic on \mathbb{C}, and since f is periodic with respect to L it is bounded, so by Liouville’s theorem it is a constant function $f(z) = f(0)$. If $n > 0$, then $f(z) - a_{-2n} \wp^n(z)$ is an even elliptic function of order at most $2(n-1)$ that is holomorphic except at points in L. By repeating the process until $n = 0$, we obtain a function of the form $f(z) - P(\wp(z))$, for some polynomial $p \in \mathbb{C}[x]$, and this function must be equal to a constant $a_0 \in \mathbb{C}$. Thus $f(z) = p(\wp(z)) + f(0)$ is a polynomial in $\wp(z)$.

Now suppose that f has a pole of order n at some $\omega \notin L$. If $2\omega \in L$, we first replace f by a function of the form $g = (af + b)/(cf + d)$, with $a, b, c, d \in \mathbb{C}$ chosen so that $ad - bc \neq 0$, such that g does has neither a zero nor a pole at ω. This transformation is invertible, so if we can write g as a rational function of \wp, then we can write f as a rational function of \wp. After repeating this process up to three times, if necessary, we may assume without loss of generality that $2\omega \notin L$ for every $\omega \notin L$ at which f has a pole.

Consider the function

$$(\wp(z) - \wp(\omega))^n.$$

Since $2\omega \notin L$, we have $\wp'(\omega) \neq 0$, so ω is a simple root of $\wp(z) - \wp(\omega)$ and the function $(\wp(z) - \wp(\omega))^n$ has a zero of order n at ω. This implies that $(\wp(z) - \wp(\omega))^nf(z)$ is holomorphic at ω. After repeating this process for all of the (finitely many) poles of f in a fundamental domain, we obtain a polynomial $v \in \mathbb{C}[x]$ such that $v(\wp(z))f(z)$ is holomorphic at all points not in L. By the argument above, we may write $v(\wp(z))f(z)$ in the form $u(\wp(z))$, for some polynomial $u \in \mathbb{C}[x]$. Thus $f(z) = u(\wp(z))/v(\wp(z))$ is a rational function of $\wp(z)$.

If $f(z)$ is instead an odd function, we may write

$$f(z) = \wp'(z)\frac{f(z)}{\wp'(z)}.$$

The function $f(z)/\wp'(z)$ is even ($f(z)$ and $\wp'(z)$ are both odd), so we may write $f(z)/\wp'(z)$ as a rational function of $\wp(z)$, and $f(z)$ is therefore a rational function of $\wp(z)$ and $\wp'(z)$.

References

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.