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Abstract— In this paper we address the problem of wide-
area control of power systems in presence of different classes
of network delays. We pose the control objective as an LQR
minimization of the electro-mechanical states of the swing
equations, and exploit flexibilities and transparencies of the
communication network such as scheduling policies, bandwidth
to co-design a delay-aware state feedback control law. Hence,
unlike the traditional robust control designs, our design is delay-
aware, not delay-tolerant. A key feature of our method is to
retain the samples of the control input until a desired time
instant using shapers before releasing them for actuation to
regulate the delays entering the controller. In addition, our co-
design includes an overrun management strategy to guarantee
stability of the closed-loop power system model in case of
occasional PMU data losses. This strategy allows dropping
messages with very large delays, reducing resource utilization
during busy network times, and improving overall performance
of the system. We illustrate our results using a 50-bus, 14-
generator, 4-area power system model, and show how the pro-
posed arbitrated controller can guarantee significantly better
closed-loop performance than traditional robust controllers.

I. INTRODUCTION
The wide-area measurement systems (WAMS) technology

using Phasor Measurement Units (PMUs) has been regarded
as the key to guaranteeing stability, reliability, state esti-
mation, control, and protection of next-generation power
systems [1], [2]. However, with the exponentially increasing
number of PMUs deployed in the North American grid,
and the resulting explosion in data volume, the design and
deployment of an efficient wide-area communication and
computing infrastructure is evolving as one of the greatest
challenges to the power system and IT communities. For ex-
ample, according to UCAlug Open Smart Grid (OpenSG) [3],
every PMU requires 600 to 1500 kbps bandwidth, 20 ms
to 200 ms latency, almost 100% reliability, and a 24-hour
backup. With several thousands of networked PMUs being
scheduled to be installed in the United States by 2020, wide-
area control systems will require a significant Gigabit per
second bandwidth. The challenge is even more aggravated
by the fact that utilities are unlikely to establish expen-
sive dedicated communication links, for such system-level
controls, implying that the communication infrastructure
must be implemented on top of their existing subnetworks.
As a result, PMU data used for control will have to be
transported over a shared resource, sharing bandwidth with
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other ongoing applications, giving rise to not only transport
delays, but also significant delays due to queuing and routing.
Figure 1(a), for example, shows an example of a large-scale
spatially distributed power network (a 50-machine Australian
power system, which will be used for our simulations),
consisting of four balancing regions under different utility
companies, each equipped with multiple PMUs; Figure 1(b),
on the other hand, shows the envisioned architecture of
wide-area communication, where PMUs inside any balancing
region send data to their local controllers via a common
virtual private network (VPN), and to remote controllers
in other regions over a multi-hop wide-area network, an
example of which can be a Software Defined Network
(SDN) [4]. Each area is equipped with its own dedicated
VPN server which routes the incoming PMU data-streams
to the respective controllers. Currently, there is very little
insight on how the different protocols for PMU data transport
through this network may lead to a variety of delay patterns,
and how controlling these delays can potentially help wide-
area control designs. Majority of the ongoing NASPI-net
activities are devoted to the hardware planning aspects of the
communication [5], [6]. Only a modest effort has been made
so far to study the impact of delays [7], [8], with the typical
approach being to design a nominal controller and testing its
robustness and sensitivity to the worst-case delays.

Motivated by this challenge, in this paper we propose
a novel cyber-physical WAMS architecture, where wide-
area control designs can be implemented on the top of
a secure distributed computing infrastructure connected by
high-speed wide-area networks that are dynamically pro-
grammable and reconfigurable. Our objective is to develop
a set of optimal control algorithms for damping small-signal
oscillations in power and voltages following disturbances,
and investigate how these controllers can be co-designed
in sync with communication delays in order to make the
closed-loop system resilient and delay-aware, rather than
just delay-tolerant. We formulate the control objective as an
LQR minimization of the electro-mechanical swing states
and excitation voltages of synchronous generators through
excitation control. We present an arbitration approach by
which the flexibilities of the wide-area communication net-
work (such as scheduling policies, bandwidth, etc.) can be
exploited to co-design a delay-aware state feedback control
law [9]–[11]. The approach is basically twofold. First, we
estimate the worst-case delays in the wide-area network
using a predictive network traffic model. Second, we use
these estimates to design our LQR controller. This essentially
means that we regulate the delays entering our controller.



Hence, unlike the traditional robust control designs presented
in the papers referenced above, our design is delay-aware, not
delay-tolerant. They are, therefore, much more reliable and
practical to implement. We assume PMUs to be installed
at the terminal buses of all generators so that all swing
states are available for feedback. An added benefit is that
relatively lower network utilizations are needed to achieve
this high performance. In addition, our co-design includes
an overrun management system to guarantee stability of the
system in case of occasional losses. Such overrun strategy
allows dropping messages with very large delays, which can
reduce resource utilization during busy network times.

The remainder of the paper is organized as follows.
In §II, we state the problem addressed in this paper in more
detail. Dynamics of the systems with delays and design
of our optimal controller are presented in §IV and §IV-B,
respectively. the overrun strategy is presented in §VI. We
illustrate our results using a 50-bus power system model in
§VII. Some concluding remarks are given in §VIII.

II. WIDE AREA CONTROL PROBLEM

Consider a power system network with q buses. Without
loss of generality, classify the first n buses to be generator
buses and the remaining (q−n) buses as load buses meaning
that active and reactive power are extracted from these buses
in the form of loads. The voltage at the ith bus is denoted
as Ṽi =Vi∠θi where Vi is the magnitude (volts) and θi is the
phase (radians). The internal voltage phasor of a synchronous
generator connected to any generator bus is denoted as Ẽi =
Ei∠δi, i= 1 : n. Each synchronous generator may be modeled
by a set of third-order differential algebraic equations [12]

δ̇i = ωi−ωs (1)

2Hiω̇i = Pmi−Di(ωi−ωs)−PG
i (2)

τi Ėi = −xdi

x′di
Ei +

xdi− x′di
x′di

Vi cos(δi−θi)+ ẼFi (3)

PG
i = EiVi

x′d i
sin(δi−θi)+

(
x′di−xqi
2xqix

′
di

)
V 2

i sin(2(δi−θi)) (4)

QG
i = EiVi

x′d i
cos(δi−θi)−

(
x′di−xqi
2xqix

′
di
−

x′di−xqi
2xqix

′
di

cos(2(δi−θi))

)
V 2

i (5)

where, the states δi, ωi and Ei are, respectively, the gen-
erator phase angle (radians), rotor velocity (rad/sec), and
the quadrature-axis internal emf; ωs is the synchronous
frequency of 120π radian/sec; PG

i and QG
i are, respectively,

the active and reactive power produced by the ith generator
(MW and Mega VAr), 2Hi is the inertia constant (seconds),
Di is the generator damping, Pmi is the mechanical power
input to the ith turbine (MW); τi is the excitation time
constant (seconds); xdi, x′di, and xqi are the direct-axis salient
reactance, direct-axis transient reactance, and quadrature-
axis salient reactance (all in ohms), respectively. The control
variable is the field voltage EFi, which is the variation of
ẼFi from the equilibrium point. Equations (1)-(2) follow
from Newton’s second law of motion applied to the internal
states of the ith generator. The algebraic variables at any bus,
however, follow Kirchoff’s law manifesting in the form of

(a) Multi-Area Power System Network

(b) Envisioned architecture for wide-area communication

Fig. 1: a) Multi-Area Power System Network, b) Envisioned archi-
tecture for wide-area communication.

active and reactive power balance

0 = ∑
k∈Ni

Pik−PG
i , 0 = ∑

k∈Ni

Qik−QG
i , (6)

0 = ∑
k∈N j

Pjk +PL
j , 0 = ∑

k∈N j

Q jk +QL
j , (7)

where i = 1 : n, j = n + 1 : q, Ni denotes the set of bus
numbers that are connected to bus i, i.e., the neighbor set
of bus i. The dynamical model for the entire system can be
constructed by relating the generator models, load models
and transmission line models over any given interconnection
of the n buses making use of the power balance equations (6)-
(7). Considering small perturbations (δi0, ωs, Ei0,Vi0, θi0),
i = 1 : n, the overall linearized (3n)th-order dynamic model
of the network can be expressed as ∆δ̇ (t)

2H∆ω̇(t)
T ∆Ė(t)

=

 0 I 0
−L−D−P
K 0 J


︸ ︷︷ ︸

A

 ∆δ (t)
∆ω(t)
∆E(t)

+
0 0

I 0
0 I


︸ ︷︷ ︸

B

[
∆Pm
∆EF

]
(8)

where ∆δ = col(∆δ1, · · · ,∆δn), ∆ω = col(∆ω1, · · · ,∆ωn),
∆E = col(∆E1, · · · ,∆En), ∆Pm = col(∆Pm1, · · · ,∆Pmn), ∆EF =
col(∆EF1, · · · ,∆EFn), H = diag(H1, · · · ,Hn), and T =
diag(τ1, · · · ,τn). The expressions for the various matrices on
the RHS can be found in [2]. In (8), the turbine mechanical
power ∆Pm typically has a much lower bandwidth than
needed for oscillation damping. Therefore, for all practical
wide-area control designs, ∆Pm is treated as zero, and ∆EF
is designed via PMU data feedback.

The next step is to design a controller for system (8). Using
a non-singular matrix T representing elementary column and
row transformations, we rearrange the states (∆δ ,∆ω,∆E) in
the form of the tuple xi

def
= (∆δi,∆ωi,∆Ei) for every generator



i, and define ui = ∆EFi . By defining X(t) = col(x1, . . . ,xn(t))
and U(t) = col(u1, . . . ,un), to include all states and inputs of
the syste, we write the continuous-time dynamic model of
the power system as

Ẋ(t) = AcX(t)+BcU(t), (9)

where Ac ∈ℜN×N and Bc ∈ℜN×M , are the appropriate size
matrices for the vectors of all the states and inputs, with
N def

= ∑
n
i=1 ni and M def

= ∑
n
i=1 mi, and defined as

Ac
def
= T A T T , Bc = T B. (10)

The Wide Area control problem is to design U in (9) such
that system (8) is stable.

In practice, however, the feedback controller U(t) will be
affected by the network delays. For the purpose of this paper,
we classify these delays into three types
• Small delays if the feedback measurements are com-

municated from PMUs located very close to a given
controller,

• Medium delays if the measurements are communicated
from PMUs from distant buses but still within the
operating region of the same utility company,

• Large delays if the measurements are communicated
from remote buses that belong to a different utility
company.

Our objective is to design a controller U(t) to minimize
a quadratic cost function J (X(t),U(t)) in presence of
multiple delays belonging to the three categories mentioned
above. We use flexibility and transparancies of the messages
as in [9], [10] to design the controller in §IV-B. The input
has the form

U(t) = KX(t)+GU(t− τ), (11)

meaning that it is a linear combination of the current states
and the previous inputs of the system. This approach is
different from traditional robust control, where the design
is independent of τ and the system relies on the robustness
of the controller to τ (e.g. [13]).

The other aspect of this work is the development of
an overrun analysis to guarantee stability of the system if
the messages are lost. This overrun strategy consists using
previously available information until a new message arrives,
and aborting the computation of the message altogether if
it arrives with a very large delay. The latter allows one
to achieve the desired control performance while freeing
up resources for other applications in the network. Tools
from switching theory are used to ensure that stability
is maintained even in the face of varying delays in the
messages.

III. DELAY MODEL FOR WIDE-AREA COMMUNICATION

Following [14], the stochastic end-to-end delay experi-
enced by any PMU data sample in a wide-area network
consists of three components: the minimum deterministic
delay denoted by m, the Internet traffic delay with Probability
Density Function (PDF) denoted by φ1, and router processing

delay with PDF denoted by φ2. Then, the PDF of the sum
of three independent components is as follows:

φ(t) = pφ2(t)+(1− p)φ1 ∗φ2(t), t ≥ 0, (12)

with φ1 ∗ φ2(t) =
∫ t

0 φ2(u)φ1(t − u)du. Here p is the prob-
ability of open period of the path with no Internet traffic,
and the router processing delay can be well approximated

by a Gaussian density function φ2(t) = 1
σ
√

2π
e−

(t−µ)2

2σ2 , where
µ >m. The Internet traffic delay is modeled by an alternating
renewal process with exponential closure period when the
Internet traffic is on, with the PDF φ1(t) = λe−λ t , where
λ−1 models the mean length of the closure period. The
benchmark value of all parameters of this model are set as:
p = 0.58,λ = 1.39,µ = 5.3,σ = 0.078 [14].

Equatin (12) can be rewritten as

φ(t) =
p

σ
√

2π
e−

(t−µ)2

2σ2 +
λ (1− p)
σ
√

2π
e−λ t

∫ t

0
eλ s− (s−µ)2

2σ2 ds. (13)

We calculate the integral part of (13) by using the error func-
tion erf(x) = 2√

π

∫ x
0 e−t2

dt. Then, the complete expression of
the PDF is

φ(t) =
p

σ
√

2π
e−

(t−µ)2

2σ2 +
λ (1− p)

2
e(

1
2 λ 2σ2+µλ )erf(

λσ2 +µ√
2σ

)e−λ t

+
λ (1− p)

2
e(

1
2 λ 2σ2+µλ )e−λ t erf(

t−λσ2−µ√
2σ

). (14)

By using the partial integral method and the first derivative
of the error function, d

ds erf(s) = 2√
π

e−s2
, we derive the CDF

of the delay model as follows:

P(t) =
∫ t

−∞

φ(s)ds =
1
2
[erf(

µ√
2σ

)+ erf(
t−µ√

2σ
)]+

(1− p)
2

e(
1
2 λ 2σ 2+µλ )[erf(

λσ2 +µ√
2σ

)+ erf(
t−λσ2−µ√

2σ
)]. (15)

The CDF (15) will be used to estimate the maximum
delays in the wide-area network in §IV and design of τth
in §VI. The wide-area network (such as SDN) is dynamically
programmable and reconfigurable so that the network spec-
ifications can be designed to achieve desired delay values.
Alternatively, or in addition to that, one can also modify
the scheduling policy and the priority of using PMU data
samples to design the delays, as illustrated in the next
section.

IV. DELAY-AWARE WIDE-AREA LQR CONTROL

In this section, we consider the PMU data communi-
cation delays and their effects on the design of closed-
loop dynamics of the power system model (8). First, we
investigate the effect of communication delays on the closed
loop performance, and develop a model for dynamic response
of the system in §IV-A, then we use this model to develop
the controllers and a procedure to implement the controller.

A. Dynamic effects of delays due to shared resources
As mentioned in §II, communication delays depend on

the data sharing protocols as well as the relative distance
between the PMU and the excitation controller. To put
the relative size of delays in perspective, we consider the
measurements from the first generator x1(t), and how they



spread over the network. Such data become available for
the controller located at generator 1 with a very short delay
τ11, whereas the same measurement may reach the controller
block of the third generator with a large delay τ13. If
generator 3 is located in a different area than generator 1, the
delay become larger (inter-area delay). Delays experienced
by the measurements from generator i at the actuator of the
jth generator is denoted by τi j and stacking them together
results in the form of the following matrix

τ
def
=


τ11 · · · · · · τ1n
...

. . .
...

τi1 τii τin
...

. . .
...

τn1 · · · · · · τnn

 , (16)

We note that generator i has ni states, and therefore it is
possible to have up to ni delays associated with its states as
well. For such cases, τi j are matrices themselves. Without
loss of generality, we consider a case where all elements of
xi experience the same amount of delay and τi j are scalar.

The delays in (16) can reduce efficiency of the designed
system or even destabilize it. We design a controller for (9)
with taking their implementation including communication
delays into account; such delays can be estimated using
a method such using the one presented in §III. Since the
controllers are implemented using digital logic blocks, a
discrete-time analysis is used. We start with (9) with a sam-
pling interval h. In order to bring individual elements τi j of
matrix τ in (16) into the control design and implementation,
we break the interval h into to smaller intervals at which
the inputs are updated as new measurements arrive at the
controller block from locally, within each area, and from
other areas (see figure 2). For example, input of the first
generator u1[k] is divided to

[
u11[k] u12[k] u13[k]

]
, where

ui j(k) denotes the input of the ith generator adjusted using
the measurements of jth generator as shown in Fig. 2. Using
the same logic for all generators, we derive the discrete-time
model of the system as:

X [k+1] = AX [k]+B1
31u13[sk]+B1

21u12[k]+

+B1
11u11[k]+B12u13[k−1]+

+
n

∑
i=2

m(i)

∑
j=1

Bi
j1ui j[k]+

n

∑
i=2

Bi
i2uik(i)[k−1], (17)

where m(i) shows the number of times that the inputs are
updated in each generator (number of distinct delays) for
every row of the matrix τ in (16), and k(i) is the index of
the largest delay in row i of (16). In (17), it is assumed that
the diagonal terms have least delays in the system, but it can
be easily extended to include other cases. Also, A, Bi

j1, and
Bi

i2 for i = 1 and j = 1 : 3 are defined as

A = eAc·h, B1
31 =

∫ h−τ13

0
eAc·ν dνBc, B1

21 =
∫ h−τ12

h−τ13

eAc·ν dνBc,

Fig. 2: Discrete time delays with τ11(local delays) <
τ12(intra-area delays)< τ13(inter-area delays); the vector indicated
next to the arrow represents the state that is used to compute the
corresponding input ui j. Wherever the states are not available, they
are replaced by their predicted values.

B1
11 =

∫ h−τ11

h−τ12

eAc·ν dνBc, B1
12 =

∫ h

h−τ11

eAc·ν dνBc (18)

Similarly, the expressions for Bi
j1 and Bi

i2 for any other i and
j can be found. By defining new matrices B1 and B2 as

B1
def
=

[
B1

11 B1
21 B1

31 B2
11 · · · B3

31
]

(19)

B2
def
=

[
0 0 B1

12 0 · · · B3
32 0

]
, (20)

equation (17) can be written as:

X [k+1] = AX [k]+B2U [k−1]+B1U [k]. (21)

By defining an augmented state Z[k] = [X [k]T U [k− 1]T ]T ,
(21) is written as:

Z[k+1] =
[

A B2
0 0

]
Z[k]+

[
B1
I

]
U [k], (22)

where I ∈ℜMi×Mi is an identity matrix, and Mi
def
= ∑

n
i=1 m(i).

Equation (22) shows that an excitation control law of the
form

U [k] = K0X [k]+G0U [k−1] (23)

stabilizes the power system (8). In other words, the proposed
excitation controller needs feedback from the current state
samples as well as the past input samples to stabilize the
closed-loop swing dynamics with communication delays. We
note that using control law of (23), closed loop dynamics of
the system can be described as:

Z[k+1] =
[

A+B1K0 B2 +B1G0
K0 G0

]
Z[k] def

= ΓnZ[k] (24)

B. Delay-aware Control Design
As mentioned in the previous section, it is possible to

rearrange the dynamic system with no delays into a control-
lable form; however, implementing such controllers is not
efficient since some states are not available for the controller
to compute the excitation voltage inputs. For example, in
Fig. 2, the input u11[k] needs the PMU measurements of
x1,x2, and x3 at time kh, while x2 and x3 are significantly
delayed and are not available to the controller at kh+τ11. On



the other hand, augmenting the system with states at previous
instants (for example, adding X [k−1] into Z) usually results
in an uncontrollable plant. So, we propose designing the
controller using (22) and the predicted values x̂i[k] for any
missing state xi[k] at the computational blocks until new
measurements arrive. Such an approach permits the non-zero
eigenvalues of the closed loop system (in discrete-time) to
remain unchanged. For example, as shown in Fig. 2, we use
predicted values x̂2 and x̂3 along with actual measurement x1
at kh+τ11. Similarly, at kh+τ12, instead of waiting for inter-
area messages to arrive, we use actual measurements x1 and
x2 and predicted value x̂3 for the computations of the control
input. Finally, at kh+ τ13, since all the measurements arrive
by kh+τ13, all measured states xi rather than their predicted
values x̂i are used to adjust the control input.

We can use any control strategy for this plant, and we
choose the controllers to minimize the following LQR cost
function

min .J =
1
2

∞

∑
0

Z[k]T QancsZ[k]+U [k]T RancsU [k] (25)

with Qancs� 0 and Rancs� 0 being semi-positive and positive
definite matrices, respectively.

C. Control Implementation
As indicated in the previous section, the inputs are based

on the gains that minimize cost function (25). Since, not all
the PMU measurements become available at the same time,
we propose using predicted values of the states x̂i[k] for the
short time intervals within each period until they become
available (see Fig.2). So, we define a set of transformation
matrices Ti such that T (1)

i X gives the available measurements
at the current time, and T (2)

i X are the states that need to be
estimated. Using Ti the closed loop dynamics of the system
is represented by:

[
Z[k+1]

Z[k]

]
=

A+B1K0T (1) B2 +B1(G0 +K0T (2)B1) B1K0T (2)A B1K0T (2)B2
K0T (1) G0 +K0T2B1 K0T (2)A K0T (2)B2

I 0 0 0
0 I 0 0

[ Z[k]
Z[k−1]

]
(26)

where X̂ [k] was replaced by the available values using the
following relation:

X̂ [k] = AX [k−1]+B1U [k−1]+B2U [k−2] (27)

In the next section, we will show that the resulting closed-
loop dynamics in (26), which is denoted as the “ANCS”,
results in a much better performance when compared to a
design that ignores delays. The elements τi j of the delay
matrix τ in (16) can be estimated using the method pre-
sented in §III. Further, one can use a shaper to regulate the
delays [10].

V. GUARANTEEING OPTIMAL DYNAMIC PERFORMANCE
In this section we present an approach to find the optimal

parameters to design the LQR controller of §IV-B based on
minimizing (25). J consists of two weighting functions

on states Qancs and inputs of the system Rancs. Section V-
A presents tuning parameters for Qancs and §V-B presents
different components of the weights and how they affect the
closed-loop dynamic performance of the power system (8).

A. Optimizing State Cost Qancs
To better describe the state cost, we consider it in the

following form

Qancs =

[
Qlqr 0

0 Rancs

]
, (28)

Qlqr � 0 should be chosen to achieve the following:

1) Minimize ∆ω(t) which is the deviation of the rotor
velocities from the synchronous speed,

2) Minimize ∆E: deviations of the quadrature-axis internal
emf from their nominal values.

3) Minimize deviations of the active power inside each
area to achieve minimum deviation of the phase differ-
ence (∆δi−∆δ j), for any two generators i and j in the
same area.

So we choose XT QlqrX as following:

XT QlqrX =
P

∑
i=1

pi

∑
j=1

αi j(∆δi−∆δ j)
2 +

n

∑
j=1

(β j∆ω
2
i + γ j∆E2), (29)

where αi j,β j, and γ j are normalized weight coefficients,
whose values depend on which states need to be penalized
more than others for a given design problem.

While choosing Qancs follows almost the same procedure
as for the nominal mode (i.e. LQR with zero delay), choosing
matrix Rancs requires more attention as described in the
following sections.

B. Input Cost Rancs

The dynamic structure of (17) treats ui j as different inputs
for j = 1 : m(i). However, these inputs are generated using
one (set of) actuators within the excitation system, and such
approach requires a lot of effort from the actuators. To
reduce the changes of the inputs between these values and
hence minimize the actuator’s effort, we propose using an
alternative form of Rancs instead of a diagonal matrix that is
used for most LQR problems.

Rancs
def
= ν ·RD +Ru (30)

Ru is the cost on size of inputs similar to the nominal mode
(i.e. LQR with zero delay, with a different size), and ν is
the weight on RD, which is the weight on the differences
between segments of each input to minimize chattering of
the inputs within each sampling interval.

The weighting on the input Rancs has two parts: i) RD
weight on deviations of the input within each sampling time,
and ii) Ru, which is the weight on the size of inputs.

In order to minimize deviations of the input within each
sampling time with minimum number of parameters, we
define a block diagonal matrix of the following form:

RD = diag(ρ1,ρ2, · · · ,ρm), (31)



and define the blocks ρi as

ρi
def
=

1
m(i)


ρ1

i −1 · · · −1
−1 ρ2

i · · · −1
...

. . .
...

−1 −1 · · · ρ
m(i)
i

 (32)

where ρ
j

i = m(i)− 1, and m(i) is the number of distinct
delays (inputs) used in generator i.

The second part includes scaling of Ru, where we choose a
diagonal matrix with elements (r1, · · · ,rn). Suppose we start
with an LQR design for Ru, and scale it with a weight σ .

Remark 1: ρi should be chosen such that matrix Rancs is
positive definite. Conditions in the form of ρ

j
i ≥m(i)−1 and

Ru � 0 satisfy this requirement.
We investigate the LQR design by fixing the nominal (no

delay) LQR weights on states Qlqr, and scaling Ru based
on the size of delays τ11,τ12, and τ13. Then we use νRD
to minimize deviations of the inputs within each sampling
interval. Therefore, the cost function J can be written as

J = Jlqr +ρJD (33)

where JD
def
= νUT [k]RDUT [k].

C. Effect of Time Delays
In this section, we investigate the effect of delays on con-

trol performance. Traditional control design without taking
delays into design associate increasing delays with perfor-
mance degradation of dynamical systems; however, using
the delays in the control design may result in a shift in the
desired delays.

First we note that time delays have significant effect on
the control design as they change matrices of (18). We
also note that increasing allowable delays can result in
significant reduction in the implementation and maintenance
costs. Therefore, we propose a numeral analysis based on the
power system model to find a delay combination that result
in both desired performance and minimum implementation
cost/resource utilization. The overall performance of the
controller and the platform is then quantified by a Joverall =
ρ1J + ρ2JI , where J is the control performance cost
defined in (25), JI is the implementation cost, and ρ1,ρ2 ∈
R are constant parameters. JI is chosen so as to reflect the
overall average resource utilization and implementation cost
of the application. The goal of the co-design algorithm is to
find the optimal parameters τi j that minimize a cost Joverall.

VI. WIDE-AREA CONTROL WITH DELAY OVERRUN

The discussions in the above section imply that as long
as τwc < h, a control design can be carried out as in (23)
for the plant in (22), where τ = τwc. The platform resources
therefore have to be such that τwc computed using (15) does
not exceed h. Any time-variations in τ between (0,τwc) can
be accommodated by using a shaper. By locating the shaper
at the last PE and having it hold every fully processed sample
for exactly τth− τ time units before sending to the actuator,
we can ensure that the total end-to-end delay encountered
by every PMU data sample from the PMU to the control

actuator is always τth. However, the messages can be dropped
or their delays can become too large to be deemed useful. We
therefore address in this section the possibility that τ varies,
and allow some of the messages to be overrun, i.e. τ < τth for
some messages, and τ > τth for others. In this framework, we
assume that a single parameter τth is available, similar in the
nominal case described in §IV-B. We allow the possibility
for the actual delay τ to vary with respect to τth. Therefore,
we consider the possibility of two cases, described below:

A1. Nominal: τ ≤ τth, That is, the message has a delay less
than the threshold.

A2. Overrun, τ > τth: The message suffers a delay greater
than τth. In this case, we propose an abort strategy,
where the computation of the current control input is
aborted.

We present the details of control design in cases A1 and
A2 discussed below. First we present the design for a case
with a single delay in the system in §VI-A and then in §VI-
B extend the design for WAC with multiple delays from
different areas.

A. Abort Strategy for a Single Delay
In this case τ > τth. As this implies that the control

message U [k] will arrive too close to the end of the interval,
computation of U [k] is aborted and U [k] is set to the
previously computed value. That is at any time k, the delay
τ continues to be larger than τth for j consecutive instants,
with τ ≤ τth at k−1, then it follows that

U [k+ `] =U∗[k−1], `= 0 : j−1. (34)

where U∗[k− 1] is a previously computed value. That is,
the signal has j drops during which no new control input is
computed, but rather an old input is used.

Fig. 3: Abort Strategy, τk > τth, with a ZOH-based Control Input.

We now present two different control designs with the
abort strategy. The first is based on a standard Zero-Order
Hold (ZOH), where the previous input in the system is
retained as the current input and discussed in §VI-A.1
(illustrated in Figure 3), and the second is a control design
based on the number of consecutive drops, denoted as Drop
Compensation Control and discussed in §VI-A.2.

1) Case (i): Abort with Zero Order Hold

Let there be i nominal cases followed by j messages for
all of which the delays exceed τth, that is{

τ ≤ τth for k1 < k ≤ k1 + i (35a)
τ > τth for k1 + i+1≤ k ≤ k1 + i+ j. (35b)



Then the corresponding control input based on zero-order
hold is given by

U [k] =
{

K0X [k]+G0U [k−1] for k1 ≤ k < k1 + i (36a)
U [k1 + i] for k1 + i+1≤ k ≤ k1 + i+ j. (36b)

The reason for the choice of the ZOH-controller as in (36a)
and (36b) is self-evident: For [k1,k1 + i], the system has
a delay less than τth and as such, the nominal controller
proposed in §IV-B is chosen in (36a). Since for [k1 + i,k1 +
i+ j], the message is dropped, the controller is simply set to
the previous value in (36b). The question that remains to be
addressed is the stability of the closed-loop system for the
power system model in (22) and the wide area controller as
in (36).

Suppose j = 1 in (36). It follows from the discussions in
§IV-B that for k = k1 : k1 + i1, the power system models is
given by

X [k+1] = AX [k]+BU [k−1], (37)

where B def
= B11 +B12. A control design as in (23) can then

be used over this interval, leading to closed-loop dynamics
given by

Z[k+1] = ΓnZ[k], for k = k1 : k1 + i1, (38)

with Γn defined as in (24). Since at k = k1 + i1, there is one
drop, it follows that for k = k1 + i1 : k1 + i1 + j,

U [k] =U [k−1]. (39)

And since at k1 + i1− 1, the system is in nominal mode, it
follows that

U [k−1] = K0x[k−1]+G0U [k−2]. (40)

Therefore, the closed-loop dynamics can be derived by
combining (37), (39), and (40) as

Z[k+1] =
[

A B
0 I

]
Z[k] def

= ΓaZ[k] for k = k1 + i1. (41)

Therefore, if starting at k1, there are j1 drops followed by
i1 instants of the nominal case, it follows that{

Z[k1 + j] = Γ
j
aZ[k1], j = 1, · · · , j1

Z[k1 + j+ i] = Γi
nZ[k1 + j1], i = 1, · · · , i1

In summary, suppose that starting at k, the signal was
dropped for the next j` instants, and i` instants where it was
not dropped, for `= 1 : p, over Na = ∑

p
`=1(i`+ j`) samples.

Let ma and na be defined as

ma
def
=

p

∑
`=1

j` na
def
=

p

∑
`=1

(i`). (42)

where ma is the total number of drops over an interval Na
and na is the total number of nominals. Then the evolution
of the switched system over a time window [k1,k1 + Na],
Na = ma +na, is given by

Z[k+Na] = Γ
ip
n Γ

jp
a · · ·Γi2

n Γ
j2
a Γ

i1
n Γ

j1
a Z[k] (43)

Remark 2: We note that in (43), over any interval [k,k+
Na], the sequence j1, i1, · · · , jp, ip can vary, with p varying as
well, with the only constraint that ma ≤ma0 and the i’s such
that na = Na−ma ≥ na0, where ma0 and na0 are fixed upper
and lower bounds on the drops and nominals, respectively.
We discuss conditions under which the switching dynamics
in (43) is stable in Theorem 1. In what follows,[

A ∗
B D

]
def
=

[
A BT

B D

]
(44)

Theorem 1: System (43) is stable (exponentially stable) if
there exist positive definite matrix P� 0, and positive scalars
γ1,γ2 > 0 such that the following Linear Matrix Inequalities
(LMI) are satisfied: [

−γ1P ∗
PΓn −P

]
≺ 0, (45)[

−γ2P ∗
PΓa −P

]
≺ 0, (46)

with
γ

na0
1 · γ

ma0
2

def
= α

−2
a ≤ 1(< 1). (47)

where αa > 1 is the exponential decay rate over interval of
Na samples.

Proof: See Appendix I.

2) Case (ii): Drop Compensation Strategy
The second method is based on a control action that

varies explicitly with the number of drops. For the abort
case as described in (35), for any k ≥ k1 + i+ 1, the drop
compensation control is chosen to be of the form

U [k+ `] = K`X [k−1]+G`U [k+ `−1], `= 0 : j−1. (48)

That is, for the case when there are j PMU data drops
starting k1 + i+1 following i nominals, the control input is
computed using previous measurements, and K`,G` are gains
that are precomputed depending on the number of drops `.
In what follows, we show how these gains can be computed
so as to guarantee closed-loop stability. For the abort case as
in (35), the drop compensation controller has the structure

U [k]=

{
K0X [k1]+G0U [k1−1] for k1 ≤ k < k1 + i def

= k2 (49a)
K`X [k1 + i]+G`U [k1 + i−1] for k2 +1≤ k ≤ k2 + j, `= 1 : j.(49b)

The closed-loop system with the plant as in (22) and the
control as in (49) can now be derived. If (49a) is used, the
closed-loop system dynamics is given by (24). Proposition 1
describes the closed-loop dynamics when (49b) is used.

Proposition 1: For the power system model in (22) and
the control input given in (49) for the abort case given in
(35), the closed-loop dynamics is of the form

Z[k+1] =
[

AK AG
Ki Gi

]
Z[k− j] def

= A( j)
m Z[k− j], (50)

where

AK
def
= A j+1 +

j

∑
`=1

A j−`ABK`−1 +B11K j

AG
def
= A jB12 +

j−1

∑
`=1

A j−`ABG`−1 +B11G j



Proof: See Appendix II.
The stability of the overall closed-loop system for the abort
case in (35), with the drop compensation control as in (49)
is now summarized in Theorem 2.

Theorem 2: Ki and Gi, i = 1 : ma exist such that (43) is
stable(exponentially stable) if there exist positive definite
matrices Qi � 0, and positive scalars γi > 0 such that the
following LMI are satisfied for some matrices Ei and Fi:

−γ0Q1 0 ∗ ∗
0 −γ0Q2 ∗ ∗

AQ1 +B11E0 B12 +B11F0 −Q1 0
E0 F0 0 −Q2

≺ 0, (51)

[
−γ jQ ∗
L j −γ jQ

]
≺ 0, j = 1 : m (52)

where
Q def

=

[
Q1 0
0 Q2

]
,

L j
def
=

A j+1Q1 +
j

∑
`=1

A j−`ABE`−1 +B11E j AiB2Q2 +
j−1
∑
`=1

A j−`ABF̀ −1 +B11Fj

E j Fj


and

Ki = EiQ−1
1 Gi = FiQ−1

2 , max(γn
0 · γm

i )
def
= α

−2
DCC ≤ 1(< 1).

(53)
where αDCC > 1 is the least exponential decay rate over ma+
na samples.

Proof: See Appendix III.
Remark 3: Although Theorem 2 results in guaranteed

performance for the system with dropped signals, it may
result in infeasibility of LMI. An alternative approach is to
design the controllers for the dropped modes and evaluate
robustness of the system to the worst combination of the
drops with an approach similar to [10].

B. Abort Strategy with Multiple Delays
In a practical wide-area network, any arbitrary PMU data

sample can be dropped while transmission using TCP or
UDP protocols. Therefore, instead of dealing with all delays
as a single delay, we should consider presence of multiple
messages in the system. This can be done by expanding
the number of LMI in Theorem 1 and Theorem 2. First we
notice that instead of a single matrix Γa for the abort mode,
there are several matrices Γai depending on the combination
of possible drops. For example, if drops can happen only
for inter-area messages, nτ , the number of matrices Γai that
should be considered in the analysis or the design of this
system includes single drops and a combination of multiple
drops at the same time. Γai can be found by setting ui j[k] to
u∗i j[k] of the respective message in (17). Now, we present the
following corollaries for multiple delays.

Corollary 3: System (43) is stable (exponentially stable)
if there exist positive definite matrix P � 0, and positive
scalars γ1,γ2 > 0 such that the following Linear Matrix
Inequalities (LMI) are satisfied:[

−γ1P ∗
PΓn −P

]
≺ 0, (54)

[
−γ2P ∗
PΓai −P

]
≺ 0,∀i = 1 : n (55)

with
γ

na0
1 · γ

ma0
2

def
= α

−2
a ≤ 1(< 1). (56)

where αa > 1 is the exponential decay rate over interval of
Na samples, and nτ is the number of different modes that
should be considered depending on the possibility of aborting
messages.

VII. CASE STUDY ON A 50-BUS AUSTRALIAN POWER
SYSTEM MODEL

In this section, we illustrate our proposed design method
using a power system model with 50 buses and 14 generators,
as shown in Fig. 1(a) [15]. The network is divided into four
areas. The generators in each area, denoted by red dots,
are: G1 −G5 in Area 1, G6 −G7 in Area 2, G8 −G11 in
Area 3, and G12−G14 in Area 4. In order to evaluate the
robustness of this system to the delays, we consider three sets
of delays for local, intra-area, and inter-area communications
as discussed in §IV. We assume that the local delays are
negligible τii ≈ 0, whereas the intra-area delays that are
the results of communications through dedicated subnetwork
channels inside each area are τi j = 30 ms, and the inter-area
communication delays via the Internet are about 60 ms. In
what follows, we discuss the results of the proposed optimal
controller, and compare the delay-aware controller to an
optimal controller without delay in the design. An example
of performance optimization based on the combinations of
local, intra-area, and inter-area delays is given in §VII-B. An
analysis of possible dropped signals and the performance of
the system subject to aborted signals are presented in §VII-C.
A. Optimal Control with No Overrun

We first design an LQR excitation controller ∆EF for (8)
assuming that the feedback from the PMUs is instantaneous,
i.e., there is no network delay. The closed-loop phase angle
response of G1, as shown by the blue curve in Fig. 4,
is observed to be satisfactorily damped. However, when
we implement this LQR controller in presence of network
delays, the closed-loop system loses stability as shown by
the red curve in the figure. This clearly indicates how any
excitation controller which is completely negligent of delays
may end up destabilizing the grid during a disturbance. To
circumvent this instability, we design our delay-aware ANCS
controller and re-stabilize the system as testified by the
magenta curve in Fig. 4. For this particular system the ANCS
controller, in fact, almost recovers the nominal closed-loop
response. The corresponding control inputs for these three
designs are shown in Fig. 5. Again, it must be observed that
the input signal diverges sharply if the controller is oblivious
to the delays. The ANCS controller, although slightly more
chattering than the nominal controller, recovers closed-loop
stability, and for this example closed-loop performance as
well.

Figures 6(a) and 6(b) respectively show the phase angle
and velocity responses for all 14 generators. It can be seen
that all states remain bounded within a small neighborhood
of the initial equilibrium. The rate of convergence of these



(a) Phase angle deviations of all generators (b) Rotor velocities of all generators (c) Excitation input to the generators
Fig. 6: Evaluation of the ANCS Design with: local delays= 0, intra-area delays= 30ms , and inter-area delays= 60

states can be controlled by appropriately tuning the constants
αi j and β j as in (29). Figure 6(c) shows the arbitrated control
inputs for the 14 generators. Depending on the choice of Rn
the input can exhibit chattering. This is one drawback of this
design, but if needed it can be avoided by placing a saturation
block on the amplitude of the excitation voltage.

B. Effect of Delay Combinations on control Design and
Performance

Figure 7 shows a plot of In order to find the combination of
delays, a combination of delays are investigated to determine

While in conventional control design, increasing time
delays are usually associated with decreasing performance
of the systems. We showed that when delays are taken in
the control design, increasing delays from zero can result in
better control performance.

C. Message Dropout Analysis
In this section, we used the same LQR controller as

the previous section in combination with a zero-order hold
block. Therefore, results ofn we used Theorem 1 to find the
maximum drop rates for the controller. For the result of this
section, we assumed that only the inter-area messages can
be dropped. A norm-based approach was used to estimate
the maximum rate of drops that the system can tolerate
without becoming unstable. the analysis showed that the ancs
system can tolerate up to 30% drop rate from the inter-area
messages. however, the quality of control degrades and the
system response slower.

Figure 8 shows the network traffic for the six inter-area
communication links connecting the VPN routers of the four
areas, as shown in Figure 1b. We assume all-to-all connection
between the routers. The N state means that a link has
normal SDN traffic, and therefore, can pass data packets
successfully from PMUs to controllers. The C state, however,
means that the link encounters a congestion status due to
heavy instantaneous traffic in the SDN, and thereby fails to
deliver the data packet, which is then treated as dropped.
Once the status goes back to N, the link can transfer packets

Fig. 4: Phase Angle of G1 Fig. 5: Inputs of G1

again, without dropping them. The corresponding closed-
loop response of the frequency of G1 with abort strategy
is shown in Figure 9(a) compares input of the system when
there are no aborted signals versus the case that 30% of inter-
area messages drop. Figure 9(b) shows a comparison of the
output of the system. these figures prove the stability of the
system, while degradation of the control performance when
the drops happen frequently.

Fig. 8: Timing diagram showing possible drops in the system with
C representing congestion and N representing normal

(a) Phase Angle of G1 (b) Inputs of G1

Fig. 9: Effect of 30% abort on control performance

VIII. CONCLUSIONS

In this paper we presented an arbitrated network control
design for wide-area optimal control of power systems using
Synchrophasors in presence of communication delays. We
showed that our control design depends on the estimates
of the worst-case delay, and that by regulating the delay in
the control messages appropriately it is possible to guaran-



Fig. 7: Effect of delays on the objective function

tee both stability and optimal performance of the closed-
loop system. Our simulations illustrate that this approach
is superior to traditional robust controllers, especially for
combating variable delays that are commonly found in wide-
area communication networks.
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APPENDIX I
PROOF OF THEOREM 1

Proof: Inequality (54) implies that the following inequalities are
satisfied as well, with the Schur complement:

Γ
T
n PΓn ≺ γ1P, (57)

similarly, we can show that inequality (55) implies that

Γ
T
mPΓm ≺ γ2P, (58)

Also, we note from (43) that starting at time k1, there are at least na0 nominal
signals and at most ma0 dropped signals; with γ2 ≥ 1 > γ1 ≥ 0 we have:(

Γ
ip
n Γ

jp
m · · ·Γi2

n Γ
j2
m Γ

i1
n Γ

j1
m

)T
P
(

Γ
ip
n Γ

jp
m · · ·Γi2

n Γ
j2
m Γ

i1
n Γ

j1
m

)
< γ

n
1 γ

m
2 P < α

−2P
(59)

with α−2 def
= γ

na0
1 γ

ma0
2 .

These inequalities imply that a quadratic Lyapunov function in the form
of V =X [k]T PX [k] exists for systems (54) and (55), and it is decreasing with
a decay rate of at least α for any interval Na = ma +na, proving Theorem
1.

APPENDIX II
PROOF OF PROPOSITION 1

Proof: If (49a) is used, the closed-loop system corresponds to (48). If
(49b) is used, the closed-loop system should be written in the same form
as (48) to allow for a switching design as is derived below.

Suppose the drops occur starting at k = k1 + i1. If j = 1 in (49b), then

x[k+1] = Ax[k]+B11ud [k]+B12u[k−1], (60)

where ud [k] is the current input that is computed using old available
information. Noting that the previous signal was a nominal one, from (48)
and (49a) we have

x[k] = Ax[k−1]+B11u[k−1]+B12u[k−2]
u[k−1] = K0x[k−1]+G0u[k−2] (61)

Using (61) and (60) we write (60) as

x[k+1] = (A2 +AB11K0 +B12K0)x[k−1]+
(AB11G0 +B12G0)u[k−2]+B11ud [k]. (62)

Based on (62), we design a controller in the form of (49b) to stabilize
the plant in the drop mode. Therefore, with X [k] = [x[k]T ,u[k− 1]T ]T , the
closed-loop dynamics in the drop mode becomes

X [k+1] =
[

AAK1 AG1
K1 G1

]
X [k−1] def

= A(1)
m X [k−1]. (63)

where AK1
def
= A2 +(AB11 +B12)K0 +B11K1 and AG1

def
= (AB11 +B12)G0 +

B11G1. For a general j number of drops, we have that

ud [k] = Kix[k− j]+Giu[k− j−1].

which results in the following form for the closed loop dynamics of the
system with j consecutive drops and the control strategy (60):

X [k+1] =
[

AK j AG j
Ki Gi

]
X [k− j] def

= A( j)
m X [k− j], (64)

where

AK j
def
= A j+1 +

j

∑
`=1

A j−`(AB11 +B12)K`−1 +B11K j (65)

AG j
def
= A jB12 +

j−1

∑
`=1

A j−`ABG`−1 +B11G j (66)

APPENDIX III
PROOF OF THEOREM 2

Proof: Proof of Theorem 2 follows the same procedure as the proof
of Theorem 1 as stated in Appendix I, using Proposition 1.


