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Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation,
feature a unique valley transport regime. Topological valley currents in such materials are dominated by
bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system
ground state hosts dissipationless persistent valley currents existing even when topologically protected
edge modes are absent. Valley currents induced by an external bias are characterized by a quantized
half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall
effect in a light-induced valley-polarized state.
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Bloch bands in materials with broken inversion sym-
metry can feature Berry curvature, an intrinsic physical
field which dramatically impacts carrier transport [1,2].
The key manifestation of Berry curvature is the anomalous
Hall effect (AHE), arising in the absence of magnetic field
due to topological currents flowing in the system bulk
transverse to an applied electric field [3,4]. Of high current
interest are Dirac materials with several valleys, such as
graphene and transition metal dichalcogenide monolayers
[5,6]. Topological currents in these systems have opposite
signs in different valleys and, if intervalley scattering is
weak, can give rise to long-range charge-neutral valley
currents. Such currents have been observed recently in
graphene superlattices [7]. Alternatively, if valley polari-
zation is induced by light with nonzero helicity, a charge
Hall effect is observed [8].
Topological effects are particularly striking in gapped

systems where Chern bands support topologically pro-
tected edge modes and quantized transport [9–12].
However, existing valley Hall materials [5–8] lie squarely
outside this paradigm. First, gapless edge states in these
materials are not enforced by topology or symmetry and
may thus be absent. Second, even when present, these
states are not protected against backscattering and locali-
zation. Naïvely, the lack of edge transport would lead one
to conclude that topological currents cease to exist. If true,
this would imply that the key manifestations, such as valley
Hall conductivity and orbital magnetization, vanish in the
gapped state [6].
Here we argue that the opposite is true: the absence of

conducting edge modes does not present an obstacle since
valley currents can be transmitted by bulk states beneath the
gap. As we will see, rather than vanishing, valley currents
peak in the gapped state. Further, we will argue that such
currents are of a persistent nature, since they represent a
ground state property, an integral part of thermodynamic

equilibrium. In a valley-polarized state, the undergap
currents dominate magnetization and the charge Hall effect.
The effects due to undergap states should be contrasted

with those due to deep-lying states which govern field-
theoretic anomalies [13,14]. The anomaly-related currents
can lead to interesting transport effects such as chiral
transport in Weyl semimetals [15,16] and in 3He [17].
Importantly, the deep-lying states in our system obey
inversion symmetry and thus do not contribute to valley
transport. Indeed, a weak gap-opening perturbation which
breaks inversion symmetry at energies near the Dirac point
has little impact on deep-lying states. This is quite unlike
the anomaly situation where symmetry is broken by
regularization at the bandwidth scale but remains intact
at lower energies. The regime studied here, where valley
currents aredominatedbystates just beneath thegap, isunique
for systems with a weak inversion-breaking perturbation.
A similar behavior is expected in systems such as gapped
graphene bilayers and twisted double layers.
To gain insight into these delicate issues, we consider a

model edge-free gapped system: a pn junction in gapped
graphene created by a static in-plane electric field;
see Fig. 1. This system features an interesting spatial
distribution of valley currents which peak in the gapped
pn region −x0 < x < x0. The origin of such (perhaps
counterintuitive) behavior is as follows. Valley currents
are due to states just above and just below the gap and,
crucially, are of opposite sign for the two groups of states.
These states are either both depleted of carriers or both
filled away from the gapped region, giving contributions
that nearly cancel. This produces a net current decreasing to
zero away from the pn region; see Eq. (14). In contrast,
these contributions are maximally imbalanced in the pn
region, creating a maximum current which is quantized to a
half-integer value per valley j ¼ ðe2=2hÞE, where E is the
in-plane field.
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Our analysis, which is microscopic and explicit, applies
equally well to a spatially uniform gapped system under
bias (and with no gate-induced built-in fields), predicting a
quantized valley Hall effect with σxy ¼ ðe2=2hÞ per valley.
In terms of the arrangement shown in Fig. 1 this corresponds
to system sizes L smaller than the gapped region width
2x0 ¼ Eg=eE, i.e., weak bias voltage V ¼ EL ≪ Eg=e.
Since valley currents are transmitted by undergap states in
the system bulk, they are nondissipative. Below we also
discuss valley edge currents resulting from the side jumps of
the undergap states upon reflection from system boundary;
see Fig. 3. Together with bulk currents, such edge currents
ensure the valley flow continuity. These currents circulate
along the edge, producing orbital magnetization in the
system ground state; see Eq. (15). We note parenthetically
that σxy values become unquantized by intervalley scattering
by disorder. However, given the exceptionally long mean
free paths in currently studied graphene systems, we expect
our ballistic model to be adequate.
We model carriers in each valley as a 2þ 1 massive

Dirac particle in the presence of a static uniform electric
field which defines a pn junction:

H ¼
� Δ vp−

vpþ −Δ

�
− eEx; p� ¼ p1 � ip2; ð1Þ

where Δ ¼ Eg=2 and p1;2 denote momentum components
px;y. The system ground state is a Fermi sea with a density

gradient imposed by the E field, n doped on one side and p
doped on the other side of a gapped region; see Fig. 1.
Simple as it is, the above Hamiltonian captures all essential
elements of interest: tunneling through the gapped region,
AHE in surrounding regions, and their interplay.
We tackle Eq. (1) by mapping it onto a fundamental

problem in quantum dynamics: a pair of quantum levels
driven through an avoided level crossing. The Landau-
Zener (LZ) problem describing these transitions admits an
exact solution [18,19]. As we will see, the LZ framework
fully accounts for the AHE transport. Below we discuss the
relation between our LZ approach and the conventional
quasiclassical approach based on the adiabatic theorem and
Berry phase [1,2]. Since the LZ approach is not restricted to
the adiabatic limit, it gives a full account of nonadiabatic
effects associated with tunneling through the gapped region
in our transport problem. Such effects, which are naturally
described in the LZ framework, are not accounted for by
the quasiclassical approach.
Mapping of Eq. (1) onto the LZ problem proceeds in

two steps. We first note that in the momentum representa-
tion εψ ¼ Hψ is a first-order differential equation, since
the only term containing a derivative is −eEx ¼ eEiℏ∂p1

.
We can thus rewrite our equation as a time-dependent
Schrödinger equation for a 2 × 2 Hamiltonian, with
t ¼ p1=eE playing the role of time:

iℏ∂tψðtÞ¼ ~HðtÞψðtÞ; ~HðtÞ¼ βtσ1þvp2σ2þΔσ3. ð2Þ

Here we set ε ¼ 0 without loss of generality and defined
β ¼ veE. Next, by interchanging spin components via
σ1 ↔ σ3, σ2 → −σ2 we bring ~H to the canonical LZ form

~HðtÞ ¼
�

βt Δp

Δ�
p −βt

�
; Δp ¼ Δþ ivp; ð3Þ

where from now on we use p instead of p2 for brevity.
Time evolution in Eq. (2) defines a unitary S matrix

which takes its simplest form in the adiabatic basis of
instantaneous eigenstates of ~HðtÞ. These states correspond
to a particle moving in a classically allowed region, p or n,
without tunneling through the gapped region. Tunneling is
thus described by the LZ transitions between different
adiabatic states. Written in the adiabatic basis, the S matrix
is of the form

S ¼
� ffiffiffi

q
p −

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
eiφffiffiffiffiffiffiffiffiffiffiffi

1 − q
p

e−iφ
ffiffiffi
q

p
�
; q ¼ e−2πδ; ð4Þ

where δ ¼ jΔpj2=2βℏ. Here the phase φ is given by [20]

φ ¼ π=4þ argΓð1 − iδÞ þ δðln δ − 1Þ þ argΔp ð5Þ

with ΓðzÞ the Gamma function. The nonadiabatic and
adiabatic LZ transitions, taking place with the probabilities

FIG. 1 (color online). Persistent valley currents inside and
outside the pn junction. The currents arise from side jumps of
band carriers just beneath and just above the gap upon reflection
from the gapped region, as illustrated by trajectories in Fig. 2.
The undergap and overgap currents (red and blue regions) flow
in opposite directions and fully cancel deep in the Fermi sea.
The two contributions are maximally uncompensated inside
the region −x0 < x < x0, giving a maximum current value of
j ¼ ðe2=2hÞE per valley, where E is the in-plane electric field.
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q and 1 − q, correspond to particle transmission through
the gapped region and reflection from it. The evolution is
adiabatic at small β, i.e., at a weak E field. In this case, the
system tracks one of the instantaneous eigenstates of ~HðtÞ
whereas nonadiabatic transitions describe tunneling. Such
transitions are exponentially suppressed at small β.
Importantly, the S matrix exhibits features expected for

the AHE transport. In particular, it predicts side jumps—
transverse particle displacement induced by its proximity
to the pn region. We evaluate the y displacement as
hδyi ¼ hψ jiℏ∂pjψi, with the expectation value taken

over the left- and right-incident states jLi ¼ S

�
1

0

�
,

jRi ¼ S

�
0

1

�
. We find

hδyiL;R ¼�∂φ
∂p¼�lð1− qÞ; l¼ ℏvΔ

jΔpj2
; ð6Þ

where only the last term of the phase in Eq. (5), which is
even in p, gives a contribution to the net valley current.
Interestingly, the result in Eq. (6) only depends on 1 − q
that corresponds to reflection, indicating that side jumps
occur only at reflection from the gapped region but
not in transmission through it. The side-jump direction
reverses upon Δ sign reversal. Valley K and K0 contribu-
tions are of opposite sign as expected for valley Hall
transport.
Encouraged by these observations, we proceed to con-

struct individual one-particle quantum states exhibiting side
jumps. Since Dirac particle velocity is expressed through its
spin v ¼ ð1=iℏÞ½x; H� ¼ vðσ1; σ2Þ, it will be convenient to
represent LZ dynamics as spin-1=2 evolution. The latter is
described by the Bloch equation for magnetization vector
mðtÞ ¼ hψðtÞjsjψðtÞi, si ¼ ðℏ=2Þσi,

∂tm ¼ bðtÞ ×m; bðtÞ ¼ 2

ℏ
ðΔ;−vp; βtÞ ð7Þ

where the magnetic field bðtÞ orientation changes gradually
from −z to þz over −∞ < t < ∞.
We focus on the weak field regime eE ≪ Δ=l ¼ Δ2=ℏv.

In the LZ formulation (3) this corresponds to spin 1=2
evolving in a slowly changing magnetic field bðtÞ which
rotates in the plane perpendicular to the vector

n ¼ ðsin α; cos α; 0Þ; tan α ¼ vp=Δ: ð8Þ

Crucially, the adiabatic spin evolution in a rotating field
bðtÞ can generate a component of m (and thus of the
velocity) transverse to the rotation plane and thus point-
ing along n. This happens because when the field rotates
in the plane perpendicular to n the spin tries to follow it
but is left slightly behind. Then, as a result of Bloch
precession, the spin rotates out of the plane swept by bðtÞ;

see Fig. 2. The transverse component is proportional to
rotation speed, i.e., is not exponentially small in the
adiabatic limit.
Such a behavior, while somewhat counterintuitive, can

be understood as follows. We usually think of a spin
precessing in a strong but slowly changing magnetic field
as being “slaved to the field.” This is basically correct;
however, the spin excursions away from the field direction
can be nonexponential due to Berry curvature effects. This
is precisely the case in our problem.
It is convenient to use a (nonuniformly) rotating frame

in which the field bðtÞ has a frozen orientation. We
write jψðtÞi ¼ UðtÞjψ 0ðtÞi with the unitary transformation
UðtÞ chosen so that the field b0ðtÞ defined by U−1ðtÞ
(bðtÞ · s)UðtÞ ¼ b0ðtÞ · s is directed along a fixed axis.
For the Hamiltonian in Eq. (3) the operator UðtÞ with
this property can be defined as a spin rotation

UðtÞ ¼ eði=ℏÞθðtÞn·s; tan θðtÞ ¼ βt=jΔpj; ð9Þ

where θðtÞ is the angle between vectors bðtÞ and bð0Þ.
In the rotated frame our equations read

iℏ∂tjψ 0ðtÞi ¼ (b0ðtÞ · s − iℏU−1ðtÞ _UðtÞ)jψ 0ðtÞi: ð10Þ

The last term equals −iℏU−1ðtÞ _UðtÞ ¼ ð∂θðtÞ=∂tÞn · s
giving a spin Hamiltonian with an effective field
b0ðtÞ þ ð∂θðtÞ=∂tÞn.
So far our analysis has been completely general; now, we

specialize to an adiabatic evolution in which the spin
orientation tracks the field. In this case, when viewed in
our rotated frame, mðtÞ remains aligned with the vector

FIG. 2 (color online). (a) The undergap and overgap trajectories
near the gapped region, Eq. (13). Skewed Hall-like motion gives
rise to side jumps. Shown are normally incident trajectories for
electrons and holes. The opposite-flowing undergap and overgap
currents partially cancel when summed over all filled states,
producing net currents flowing in the same direction in the p and
n regions, with the maximum current attained in the middle
region −x0 < x < x0; see Eq. (14) and Fig. 1. (b) Spin-1=2
interpretation of side jumps. Magnetization mðtÞ evolves adia-
batically in a slowly varying field bðtÞ that sweeps a plane
perpendicular to n; see Eq. (7). Magnetization tracks the field but
lags slightly behind, rotating out of the plane and acquiring a
component parallel to n; see Eq. (11). So does the velocity vector
which is aligned with mðtÞ.
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b0ðtÞ þ ð∂θðtÞ=∂tÞn at all times. Transforming back to the
lab frame, we conclude that mðtÞ tracks the field

~bðtÞ ¼ bðtÞ þ ∂θðtÞ
∂t n ð11Þ

which, because of the last term, has an additional y com-
ponent. Finally, since the velocity operator v ¼ vðσ1; σ2Þ
expectation value is aligned with m, the velocity compo-
nents are easily evaluated as vx;y ¼ v ~bx;y=j ~bj giving

vxðtÞ ¼
vβt
εðtÞ ; vyðtÞ ¼

v2p
εðtÞ þ

vΔβ
2ε3ðtÞ ; ð12Þ

where εðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2t2 þ jΔpj2

q
with the plus (minus) sign

describing the p (n) state. Here we normalized ~bðtÞ
approximating j ~bðtÞj ≈ jbðtÞj. Trajectories are readily
obtained by integrating velocity, giving

xðtÞ ¼ vεðtÞ
β

; yðtÞ ¼ v2p
jΔpj

ln
εðtÞþ βt
jΔpj

þ vΔβt
2jΔpj2εðtÞ

ð13Þ

(here we suppressed integration constants). The last term in
Eqs. (12) and (13) originates from Berry curvature, giving
rise to side jumps; see Fig. 2. The net side-jump value is
δy ¼ R∞

−∞ vyðtÞdt ¼ vΔ=jΔpj2, which matches the result
found above.
These results are in accord with the classical equations

of motion augmented with the anomalous velocity term
describing the nonclassical Berry’s “Lorentz force” [1,2]:

_p ¼ eE; _x ¼ ∇pεp;� þ Ωp × _p; Ωp ¼ v2Δ
2ε3p;�

;

where εp;� ¼ �ðv2p2 þ Δ2Þ1=2 is particle dispersion.
Current density, found by summing the velocity contribu-
tions of all states in the Fermi sea, is

jðxÞ ¼
�
j0 jxj < x0
j0x0=jxj jxj > x0;

j0 ¼
e2

2h
E ð14Þ

per valley. The current peaks in the gapped region, falling
off inversely with distance outside this region, as shown in
Fig. 1(a). An identical result is obtained by integrating the
velocity in Eq. (12) over allowed values of p. As discussed
above, this current jðxÞ originates from side jumps
of undergap trajectories, whereas the decrease of jðxÞ at
jxj > x0 accounts for partial cancellation between the
overgap and undergap side jumps. Equation (14) predicts
a universal, E-independent net current flowing through the
gapped region Ijxj<x0 ¼ eΔ=ℏ.
Dissipationless currents in a spatially uniform gapped

system can also be created by a voltage bias. Indeed, the

microscopic transport picture under a weak bias (and no
gate-induced built-in fields) is well described by the above
model, so long as eEbias ≪ Δ=Lwhere L is the system size.
Our analysis then predicts a universal valley Hall conduc-
tivity σxy ¼ ðe2=2hÞ per valley. Since valley currents in
this case are transmitted solely by undergap states in the
system bulk, they are nondissipative.
Another interesting phenomenon is persistent edge

currents in a spatially uniform unbiased gapped system.
These currents arise due to side jumps of the undergap
states scattered off system edges; see Fig. 3. Circulating
along the edge, the currents produce orbital magnetization
in the system ground state. Valley K and K0 contributions
are of opposite sign, giving zero net magnetization in
thermodynamic equilibrium. Finite magnetization can be
created by using light of a particular helicity to polarize
valleys (as in the valley Hall effect measurements [6,8]).
We analyze the total magnetic moment

M ¼
Z

d2r
2c

r × jðrÞ ≈ A
γeΔ
ℏc

X
p;i;�

Ωpni;F½εp;��; ð15Þ

where A is the system area, ni;F are the Fermi functions
with i labeling valleys, and γ ∼ 1 is a numerical constant
accounting for edge current suppression due to intervalley
scattering induced by edge roughness. This estimate was
obtained from considering current I circulating around the
sample with the typical side-jump value ℏv=Δ found above
(in the narrow p-n junction limit). The dependence on the
Fermi level arises from summing the contributions of all
filled states. Magnetization (magnetic moment per area)
attains maximum value when the Fermi level lies inside the
gap; see Fig. 3. We estimate the maximum value for each
valley and spin projection to be

m ¼ M=A ≈ eΔ=2ℏc ¼ 12.8 × ðΔ½eV�ÞμB=ðnmÞ2; ð16Þ

FIG. 3 (color online). (a) Persistent valley currents in a spatially
uniform gapped system with the Fermi level inside the gap.
Currents arise due to side jumps of the undergap trajectories
bouncing off the system boundary. Persistent currents circulate
along the edge, giving rise to a constant magnetization per valley,
Eq. (15). (b) Orbital magnetization—Eq. (15)—as a function of
chemical potential. Magnetization peaks for the Fermi level
inside the gap and decreases at large detuning as a result of
compensation from overgap and undergap contributions.
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where we have taken the maximum value of Berry flux ¼
1=2 that occurs in the gap (for a single valley), and used
γ ¼ 1. Here μB is the Bohr magneton. For graphene stacked
on hexagonal boron nitride, gap sizes can be as large
as several tens of meV [7], yielding values of m of
≳0.13μB=ðnmÞ2; larger gap sizes Δ≳ 1 eV in transition
metal dichalcogenides will yield correspondingly larger
values of magnetization. In 2D systems, magnetization can
be measured with torque magnetometry techniques, allowing
access to values as low as 0.1 μB per two-dimensional
unit cell [21].
Summing up, topological valley currents in gapped

materials are transmitted by undergap bulk states rather
than by edge modes. The lack of an edge contribution,
which is not protected by topology or symmetry, does not
present an obstacle since the undergap currents can give
rise to dissipationless transport in the gapped state. The
undergap currents generate persistent (magnetization) cur-
rents in the thermodynamic ground state, flowing in the
system bulk and along boundaries. We predict that the key
manifestations and observables, such as the valley Hall
conductivity and orbital magnetization in valley-polarized
systems, reach maximum value in the gapped state. The
requirements for observing dissipationless valley transport
can be met under realistic conditions.
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