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Optimal Design and Tolerancing of Compressor Blades

Subject to Manufacturing Variability

Eric Dow∗and Qiqi Wang†

Massachusetts Institute of Technology, Cambridge, MA, 02139

This paper presents a computational approach for optimal robust design and toleranc-
ing of turbomachinery compressor blades that are subject to geometric variability. This
approach simultaneously determines the optimal blade geometry and manufacturing tol-
erances to minimize the overall cost of producing and operating the resulting compressor
blades. A pathwise sensitivity method is used to compute gradient information that is in
turn used to optimize the design and tolerances. Results for a two-dimensional subsonic
compressor are presented, demonstrating the significant performance improvements that
can be achieved using the proposed approach.

I. Introduction

The manufacturing processes used to create compressor blades introduce geometric variability, resulting
in manufactured blades that deviate slightly from the design intent geometry. It has been observed that
introducing geometric variability tends to negatively impact the performance of compressor blades. Not sur-
prisingly, the variance of performance quantities of interest, such as the pressure ratio and adiabatic efficiency,
are higher in the presence of manufacturing variability. Moreover, the mean pressure ratio and efficiency
typically decrease in the presence of manufacturing variability.1,2 This reduction in performance leads to
increased operating costs over the life of the compressor blade, e.g. through increased fuel consumption.

The most direct means of improving performance is to impose stricter manufacturing tolerances, thereby
reducing the level of geometric variability. However, this increases the cost of manufacturing. Although
the resulting blades perform better, they are more expensive to produce. Alternatively, robust optimization
techniques can be used to optimize the blade geometry to improve the probabilistic performance. It has been
demonstrated that changing the level of geometric variability changes the optimal blade design resulting from
a robust design optimization.1 This suggests that the manufacturing tolerances should be designed alongside
the compressor geometry. In this paper, we present a computational framework for simultaneously optimizing
the blade design and tolerance scheme that takes both manufacturing cost and performance into account.
This results in compressor blades that can be produced inexpensively and that perform robustly.

This paper consists of the following sections: section II describes a random field model of geometric vari-
ability and a related definition of manufacturing tolerances. Section III derives the non-linear optimization
problem whose solution provides the optimal design and tolerance scheme. Section IV presents approaches
for propagating variability and efficiently computing the sensitivity gradients used to solve the optimization
problem. Results for a subsonic compressor are presented in section V, and conclusions and future work are
outlined in section VI.

II. Modeling geometric variability and tolerances

Various approaches have been developed to model the geometric variations introduced by manufacturing
processes. One approach is to construct probability distributions of geometric parameters such as camber,
thickness, and chord using measurement data.3–5 Principal component analysis (PCA) has also been used to
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characterize manufacturing variability.1,6, 7 PCA can be used to construct a probabilistic model of variability
from the empirical mean and covariance of surface deviations at different locations on the blade.

In this work, we assume that the geometric variability in manufactured compressor blades can be accu-
rately described as a non-stationary Gaussian random field e(s, ω) where s ∈ Ωs parametrizes the location
on the blade surface Ωs. This model is similar to the PCA model developed by Garzon.1 The primary
difference in our approach is that the mean and covariance are provided in closed form, rather than being
estimated from data. The random field e(s, ω) describes the error between the manufactured surface and
the nominal surface in the normal direction at the point s on the nominal blade surface. This random
field is defined by its mean ē(s) and covariance function C(s1, s2). The covariance captures the correlation
between manufacturing errors at two different locations s1 and s2 along the blade surface, and describes the
smoothness and correlation length of the random field.

The variance of the random field at the point s is equal to C(s, s). The variance specifies the level of
geometric variability, and is prescribed by the manufacturing tolerances. For stationary random fields, the
variance is constant and C(s, s) = σ2. The covariance function can then be written as C(s1, s2) = σ2ρ(s1, s2)
where ρ(s1, s2) is the correlation function. In this work, the variance is specified as a spatially varying field
σ2(s), which models the effect of spatially varying tolerances. In regions where the manufacturing tolerances
are loose, the realized variability is large, and thus σ2(s) will also be large. Conversely, in regions where
the tolerances are strict, σ2(s) is small. This is illustrated in figure 1, which depicts two different tolerance
schemes near the leading edge of a compressor blade. The red regions around the black nominal geometry
specify the tolerances, and the width of these tolerances vary around the blade.

Figure 1. Depiction of loose (left) and strict (right) tolerances.

To achieve a non-stationary variance, the covariance function is written as

C(s1, s2) = σ(s1)σ(s2)ρ(s1, s2) (1)

where ρ(s1, s2) is assumed to be positive definite, i.e. ρ(s1, s2) > 0 for any s1, s2. It can be shown that
the variance of the resulting random field is σ2(s).8 We restrict σ(s) to be positive everywhere, since it is
practically impossible to achieve zero variance anywhere on the blade.

It was observed in the limited measurement data available that the geometric variations near the leading
and trailing edges were more oscillatory than in other regions of the blade. This is likely the result of
polishing processes used in the leading and trailing edges as part of the finishing process. To simulate this
effect, a non-stationary correlation length model was used. Specifically, the correlation function was chosen
to be

ρ(s1, s2) = exp

(
− (s1 − s2)2

L2

)
, (2)

where the correlation length is given by L =
√
L′(s1)L′(s2),

L′(s) = L0 + (LLE − L0) exp(−s2/w2). (3)
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The values LLE = 3.0× 10−3, L0 = 0.1, and w = 0.1, all normalized by the blade half-arclength, were used.
To simulate realizations of the random field, we use the Karhunen-Loève expansion, which is constructed

from the eigenvalues λi and eigenfunctions φi(s) of the covariance function:

e(s, ω) = ē(s) +

∞∑
i=1

√
λiφi(s)ξi(ω) (4)

The ξi(ω) are uncorrelated random variables with zero mean and unit variance.9 For a Gaussian random
field, the ξi(ω) are i.i.d. standard normal random variables. The eigenfunctions and eigenvalues are given
by the Fredholm equation: ∫

Ωs

C(s, s′)φi(s
′)ds′ = λiφi(s) (5)

This integral equation is solved numerically on the discretized blade surface using the Nyström method
with Gauss quadrature to approximate the integral.10 The eigenvalues and discretized eigenfunctions are
computed by solving a discrete eigenproblem. This results in a finite number of eigenvalues and eigenvectors,
which is further truncated to give a stochastic dimension of NKL. The truncation is determined by the decay
of the eigenvalues.

III. Simultaneous geometry and tolerance design

In the absence of geometric variability, the nominal blade geometry is determined by a vector of design
variables d ∈ RNd , which are used by the design parametrization to produce the blade surface geometry. The
performance of the compressor blade is characterized by a collection of engineering quantities of interest,
e.g. the total pressure loss coefficient θ and total pressure ratio Π, which are computed from the flow
field obtained by solving the compressible Navier-Stokes equations. The loss coefficient is computed as the
difference between the mixed out total pressure and the theoretical isentropic exit total pressure divided by
the inlet dynamic pressure:

θ =
pisen
o2 − p̃o2
po1 − p1

. (6)

Random geometric variations in the compressor blade surface result in random changes in the flow
solution. The performance quantities derived from the flow solution thus become random variables. The loss
coefficient, for example, can be described by a random variable θ(ω) characterized by its probability density
function. In general, changing the nominal blade design or the properties of the random manufacturing
variations will change the distribution of the quantities of interest. The probabilistic performance of the
compressor can be assessed by the moments of these distributions, such as the mean and variance.

As described previously, the tolerance scheme is specified through the variance field σ2(s). The standard
deviation σ(s) is discretized by introducing a basis {ψi(s)}:

σ(s) =

Nσ∑
i=1

σiψi(s) (7)

where σi are components of the tolerance design vector σ ∈ RNσ . We choose hat functions as our basis,
since ensuring σ(s) > 0 is convenient for a nodal basis that is non-negative. For a given set of nodes on the
blade surface, a hat function ψi is equal to one at si, and zero at all other nodes, decreasing linearly to the
nodes neighboring si. Increasing one of the σi values has the effect of locally increasing the variance of the
error field in the region of support of ψi(s), which has the effect of loosening the tolerances in that region.
Altering the properties of the manufacturing error field, i.e. its covariance function, results in a change to
the flow solution and therefore to the moments of the quantities of interest. The connection between the
performance moments and the nominal design and tolerances is illustrated in figure 2.

The relationship depicted in figure 2 suggests that is possible to optimize the probabilistic performance
of the compressor blade by optimizing the nominal design variables and tolerance scheme simultaneously.
The goal of this optimization is to obtain robust performance using compressor blades that are not overly
expensive to produce. A combination of two cost functions, reflecting the probabilistic performance and
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Figure 2. Relation between performance quantities of interest and the blade design and tolerance scheme.

manufacturing cost, are used to produce the desired design and tolerance schemes. The performance cost
function is chosen to be the mean loss coefficient:

cperf(d,σ) = kmE[θ(ω;d,σ)] (8)

where km is a constant. Reducing the loss coefficient reduces the specific fuel consumption. Thus, operating
an engine with lower mean loss coefficient reduces the operation costs. The second cost function models the
increase in cost resulting from reducing manufacturing tolerances:

cman(σ) =

∫
Ωs

1

σ(s)
ds (9)

Decreasing σ(s), thereby allowing less geometric variability, increases the cost of producing each blade. This
manufacturing cost model closely resembles those previously used in manufacturing tolerance optimization.11

To ensure adequate compression is achieved by the design, it is important to constrain the pressure ratio.
The loss coefficient can be reduced by unloading the blade, and an optimizer will seek to exploit this effect,
thereby reducing the pressure ratio. The mean total pressure ratio is therefore constrained to be greater
than or equal to a threshold value Π̄t. Including this constraint into the optimization framework yields the
following statement for the optimal blade design and tolerancing scheme (d∗,σ∗):

min
d,σ

cman(σ) + cperf(d,σ)

s.t. E[Π(ω)] ≥ Π̄t

σi > 0, i = 1, . . . , Nσ.

(10)

The total number of design variables (Nd + Nσ) is in general large, motivating the use of gradient based
optimization to solve (10). Methods such as sequential quadratic programming (SQP) are ideally suited
to solving nonlinearly constrained optimization problems such as (10), and are used in this work.12 In the
next section, we discuss a computationally efficient approach for computing the gradients of the objective
function and constraints.

IV. Uncertainty propagation and sensitivity analysis

In order to solve the optimization problem (10), it is necessary to estimate the quantities E[θ] and E[Π], as
well as the sensitivities of these quantities to the design variables d and tolerance variables σ. For simplicity,
these moments are estimated using the Monte Carlo method, but more advanced quadrature schemes could
also be used. The stochastic dimension, which is equal to the number of terms in the K-L expansion (4),
is typically large. The Monte Carlo method is well suited to integration in high dimensions since its rate
of convergence is independent of the stochastic dimension. The Monte Carlo estimate of the mean of the
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loss coefficient, for example, is computed by sampling the random error field, and averaging the resulting
functional value obtained for each sample:

θ̄ =
1

NMC

NMC∑
n=1

θn, (11)

whereNMC is the number of Monte Carlo samples used to estimate the mean. Other approaches to estimating
the mean would result in similar summations over sample values of θ, with a different weighting appearing
for each sample in the summation.

Although the convergence rate of the Monte Carlo estimate given by equation (11) does not scale with

the stochastic dimension, it only scales as N
−1/2
MC . To reduce the variance in the Monte Carlo estimate

and thus improve convergence, the antithetic variates method is used.13 For each sample {ξ1, ..., ξNKL},
the corresponding antithetic sample {−ξ1, ...,−ξNKL} is also taken. This is equivalent to choosing pairs of
blade geometries with equal and opposite manufacturing errors. If the results obtained for the antithetic
samples are negatively correlated, the variance of the Monte Carlo estimate is reduced. The magnitude
of the manufacturing error is small, and the quantities of interest vary monotonically for small geometric
perturbations. Thus, the antithetic variates method is able effectively to reduce the variance of the Monte
Carlo estimates.

Since a gradient-based approach is used to solve (10), the gradients of the cost and constraint functions
with respect to d and σ must be computed. In this work, the pathwise sensitivity method, which relies upon
interchanging the differentiation and expectation operators,is used. For example, the sensitivity of the mean
loss coefficient with respect to the nominal design variable dj is computed as

∂

∂dj
E[θ(ω)] = E

[
∂

∂dj
θ(ω)

]
(12)

which is unbiased if θ is smooth with respect to d.14 The sensitivity ∂θ(ω)/∂dj is interpreted as the sensitivity
of the loss to the design variable dj when the realization (or path) ω is fixed. In practice, this is achieved
by fixing the random samples ξ(ω) in the K-L expansion in each step of the optimization. Replacing the
expectation with its Monte Carlo estimate, we have

∂θ̄

∂dj
=

1

NMC

NMC∑
n=1

∂θn
∂dj

. (13)

The sensitivity of the mean performance quantities with respect to the tolerance variables is computed
in the same way:

∂θ̄

∂σj
=

1

NMC

NMC∑
n=1

∂θn
∂σj

. (14)

The sensitivity ∂θ(ω)/∂σj represents the sensitivity of the loss with respect to changing to the variance for
a fixed realization. By the chain rule, we have

∂θn
∂σj

=
∂θn
∂en

∂en
∂σj

. (15)

The first term is a shape sensitivity, namely the sensitivity of the loss with respect to perturbing the error
field. The second term is computed by applying the chain rule to the Karhunen-Loève expansion. When
σ(s) is perturbed, the eigenvalues λi and φi(s) of the K-L expansion are perturbed. Differentiating equation
(4), we have:

∂en
∂σj

=

NKL∑
i=1

(
1

2
√
λi
φi
∂λi
∂σj

+
√
λi
∂φi
∂σj

)
ξi(ω). (16)

The derivatives of the eigenvalues and eigenvectors are given by15

∂λi
∂σj

= φTi
∂C

∂σj
φi, (17)
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∂φi
∂σj

= −(C− λiI)+ ∂C

∂σj
φi, (18)

where C is the matrix resulting from the Nyström discretization of the Fredholm system (5) and (C−λiI)+

denotes the Moore-Penrose pseudoinverse of the matrix (C − λiI). Assuming that the eigenvalues {λi}
are unique, the pseudoinverse can be computed in a numerically stable manner since the dimension of the
nullspace of (C− λiI) is one. Since the explicit dependence of the entries of the covariance matrix C on the
σj is known via equation (1), the sensitivities of the eigenvalues and eigenvectors can be computed in closed
form. The computational cost of computing the eigenvalue and eigenvector sensitivities is also negligible
compared the computational cost of a typical flow solve.

The shape sensitivities ∂θn/∂dj and ∂θn/∂en are computed using second order finite differences. For
example,

∂θn
∂dj
≈ θn(dj + δ)− θn(dj − δ)

2δ
(19)

where δ is chosen sufficiently small. The computational cost of computing sensitivities is small since the
perturbed flow solutions corresponding to dj + δ and dj − δ can be reconverged from the unperturbed flow
solution with a few iterations.

V. Results

To compute the flow solution and performance quantities of interest, the MISES (Multiple blade Interact-
ing Streamtube Euler Solver) code is used.16 MISES is a quasi-three-dimensional viscous flow solver, which
solves the coupled Euler and integral boundary layer equations. The coupling of the inviscid and viscous
regions is accomplished through the boundary layer displacement thickness. The non-linear system resulting
from discretization of the coupled system is solved using Newton-Raphson iteration. Transition is modeled
using a combination of the Abu-Ghannam-Shaw (AGS) bypass transition and en envelope models. The key
advantage of MISES is its speed: a typical flow solution can be converged in a few seconds. Moreover,
the required shape sensitivities can be efficiently computed with finite differences by reconverging the flow
solution in a few iterations.

In this work, all geometries are strictly two-dimensional, resulting in a linear cascade of compressor
blades. The blade surface is parameterized by the arclength s, starting at the trailing edge (s = −1), going
around the leading edge (s = 0), and continuing back to the trailing on the opposite side of the blade (s = 1).
All lengths are normalized by half of the arclength of the blade surface. MISES includes a blunt trailing
edge model and the blade geometry is left “open” at the trailing edge. Thus, the impact of manufacturing
variability at the trailing edge cannot be addressed using MISES. A modal perturbation approach was used
to parameterize the nominal design geometry. Five Chebyshev modes were used, and the blade thickness
was constrained by applying equal and opposite perturbations to corresponding points on the pressure and
suction surfaces, reducing the effective number of modal design parameters to five. A rotational mode was
added to control the blade stagger angle. The tolerances were parameterized with Nσ = 31 basis functions.

We consider a subsonic double-circular-arc (DCA) compressor blade developed by UTRC.17 The mass
flow rate is held constant by fixing the inlet Mach number to be M1 = 0.5 and the inlet flow angle to be
β1 = 41.9◦. Three separate optimizations are performed. The first is a deterministic optimization in the
absence of geometric variability to minimize the loss coefficient (referred to as the ”deterministic optimal”
design hereafter). The pressure ratio is constrained to be greater than 1.158. The second is a robust
optimization with a fixed level of variability (σ = 5.0 × 10−4, corresponding to a level of manufacturing
variability similar to that found in high pressure compressor blades) is prescribed for the entire blade surface
(referred to as the ”robust optimal” design). This is equivalent to solving (10) with fixed σ(s), so that only the
nominal blade design is optimized. The final optimization is a simultaneous optimization of both the nominal
design and manufacturing tolerances, with an initial manufacturing standard deviation of σ = 5.0 × 10−4

(referred to as the ”tolerance optimal” design). For the robust and tolerance optimizations, NMC = 500
Monte Carlo samples were used to estimate the mean loss and pressure ratio, as well as to compute the
necessary gradients. The optimized nominal blade geometries are shown in figure 3. The optimized blades
have reduced camber over the first half of blade, thereby shifting the loading of the blade further aft as
illustrated by the plots of pressure coefficient shown in figure 5. The robust optimal and tolerance optimal
geometries are quite similar. The optimal distribution of σ(s) resulting from the simultaneous optimization
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is shown in figure 4. The tolerances near the leading edge of the suction are reduced. Outside of this region,
the tolerances are loosened significantly. Overall, the manufacturing cost function cman is reduced by 49%.

Baseline
Deterministic Optimal

Baseline
Robust Optimal

Baseline
Tolerance Optimal

Figure 3. Optimal blade geometries (baseline UTRC geometry shown in dashed line).

Table 1 compares the relative performance of the various blade designs. For the baseline, deterministic
optimal and robust optimal, the mean quantities are computed with σ(s) = 5.0 × 10−4. The optimized
variance distribution depicted in figure 4 was used to compute the mean quantities for the tolerance design.
In the absence of variability, the deterministic optimal design attains the minimum loss, as expected. When
manufacturing variability is introduced, the performance of the baseline and deterministic optimal blades,
as measured by the mean loss coefficient, degrades significantly. However, the mean loss coefficient for
the robust and tolerance remains relatively unchanged in the presence of manufacturing variability. This
illustrates the improved robustness of these two designs.

Baseline Deterministic Robust Tolerance

θ0 1.721× 10−2 1.618× 10−2 1.632× 10−2 1.621× 10−2

E[θ] 1.753× 10−2 1.718× 10−2 1.644× 10−2 1.633× 10−2

xtr,0 0.3078 0.3794 0.4198 0.4111

E[xtr] 0.2933 0.3253 0.4108 0.4049

Π0 1.158 1.158 1.158 1.159

E[Π] 1.158 1.158 1.158 1.159

Table 1. Nominal and mean performance values for the four blade geometries/tolerances.

Since the UTRC compressor is subsonic, the dominant loss mechanism is viscous loss generated in the
boundary layer. The location of transition xtr can have a large impact on the amount of loss generated
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Figure 4. Optimized manufacturing tolerances.
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Figure 5. Pressure coefficient distributions for the four blade geometries.
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in the boundary layer, since the turbulent skin friction coefficient is higher than the laminar skin friction
coefficient at a given Reynolds number. If the flow is not separated, as is the case for the UTRC compressor,
delaying transition typically reduces the loss coefficient. Figure 6 illustrates the strong correlation between
the suction side transition location and loss coefficient. The robust and tolerance optimal designs are able
to delay transition for a significant fraction of sample geometries. This explains the increased robustness of
these designs to manufacturing variations.
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Figure 6. Joint (dots) and marginal (bars) distributions of θ and xtr.

To understand why the tolerance distribution shown in figure 4 is optimal, it is important to understand
where the greatest losses are generated on the blade surface. Denton suggests using entropy creation as an
effective measure of loss, and derives an expression for the viscous entropy generation rate (per unit span)
up to the streamwise location s:18

Ṡ =

∫ s

0

ρeU
3
eCD
Te

ds, (20)

where ρe, Ue and Te are the density, velocity and temperature at the edge of the boundary layer, respectively.
The dissipation rate is computed as

CD =
1

ρeU3
e

∫ δ

0

τ
∂u

∂y
dy. (21)

Since the Mach number is low, the flow is nearly isothermal, and the differences in entropy generation
between different geometries can be evaluated by comparing ρeU

3
eCD. This quantity is plotted in figure 7 for

the deterministic optimal design with no variability, as well as for the samples of the deterministic optimal
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design subject to manufacturing variability with the smallest and largest values of xtr, corresponding to the
earliest and latest onset of transition. On the pressure side of the blade, the entropy generation past s = 0.4
is nearly identical for all three geometries. Since the total entropy generated on the pressure blade is the
integral of ρeU

3
eCD, it is not surprising that the difference between the generated entropy for the earliest

and latest transition cases is very small. Clearly, the loss generated on the pressure side is insensitive to
manufacturing variability, thus allowing for reduced tolerances on the pressure side, as illustrated in figure
4. The suction side of the blade is not as robust to geometric variation, as illustrated in the right plot. Early
onset of transition increases the entropy production on most of suction side. Note also that the entropy
production is roughly three times larger on the suction side than on the pressure side. The optimal tolerance
scheme specifies low variability for a significant portion of the suction side to delay transition as much as
possible.
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3 e
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(a) Pressure Side
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Latest Transition, SS

(b) Suction Side

Figure 7. Comparison of ρeU3
eCD on pressure and suction sides for the deterministic optimal design.

VI. Conclusion and future work

A computational framework for performing simultaneous optimization of compressor blade design and
manufacturing tolerances has been presented. This approach was successfully applied to optimize a blade
geometry with increased robustness to manufacturing variability that can be produced at lower cost. For the
subsonic cascade geometry considered in this paper, the optimal designs have reduced loading at the leading
edge, and the optimal tolerance scheme reduces manufacturing tolerances near the leading edge. Analysis of
the entropy production illustrates the importance of controlling geometric variability at the leading edge of
the suction side of the blade.

Future work includes exploring more efficient methods for computing shape sensitivities, e.g. using the
adjoint method, which can compute all shape sensitivities at roughly the cost of an additional flow solve.
We also plan to explore the off-design performance of the optimized geometries, since only a single operating
condition was considered in this work. Extensions to a transonic cascade, where shocks contribute to the
loss, are also being pursued.
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3Lange, A., Vogeler K., Gümmer, V., Schrapp, H., and Clemen, C. “Introduction of a parameter based compressor blade
model for considering measured geometry uncertainties in numerical simulation,” Proceedings of the ASME Turbo Expo 2009,
American Society of Mechanical Engineers, Orlando, FL, 2009.

4Heinze, K., Friedl, W.H., Vogeler, K., and Voigt, M., “Probabilistic HCF-Investigation of compressor blades,” Proceedings
of ASME Turbo Expo 2009, American Society of Mechanical Engineers, Orlando, FL, 2009.

5Javed, A., Pecnik, R., Olivero, M., and van Buijtenen, J.P., “Effects of manufacturing noise on microturbine centrifugal
impeller performance,” Proceedings of ASME Turbo Expo 2012, American Society of Mechanical Engineers, Copenhagen,
Denmark, 2012.
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