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Enabling Force Sensing during Ground Locomotion:
A bio-inspired, multi-axis, composite force sensor

using discrete pressure mapping
Meng Yee (Michael) Chuah, and Sangbae Kim, Member, IEEE

Abstract—The paper presents a new force sensor design
approach that maps the local sampling of pressure inside a
composite polymeric footpad to forces in three axes, designed
for running robots. Conventional multi-axis force sensors made
of heavy metallic materials tend to be too bulky and heavy to
be fitted in the feet of legged robots, and vulnerable to inertial
noise upon high acceleration. To satisfy the requirements for
high speed running, which include mitigating high impact forces,
protecting the sensors from ground collision and enhancing trac-
tion, these stiff sensors should be paired with additional layers
of durable, soft materials; but this also degrades the integrity
of the foot structure. The proposed foot sensor is manufactured
as a monolithic, composite structure composed of an array of
barometric pressure sensors completely embedded in a protective
polyurethane rubber layer. This composite architecture allow the
layers to provide compliance and traction for foot collision while
the deformation and the sampled pressure distribution of the
structure can be mapped into three axis force measurement.
Normal and shear forces can be measured upon contact with
the ground, which causes the footpad to deform and change the
readings of the individual pressure sensors in the array. A one-
time training process using an artificial neural network is all
that is necessary to relate the normal and shear forces with the
multi-axis foot sensor output. The results show that the sensor
can predict normal forces in the Z-axis up to 300N with a root
mean squared error of 0.66% and up to 80N in the X- and Y-
axis. The experiment results demonstrates a proof-of-concept for
a lightweight, low cost, yet robust footpad sensor suitable for use
in legged robots undergoing ground locomotion.

Index Terms—Force measurement, Force sensors, Robot sens-
ing systems, Sensor arrays, Tactile sensors, Artificial neural
networks, Legged locomotion, Pressure gauges, Piezoresistive
devices, Piezoresistance

I. INTRODUCTION

H IGH speed running places great demands on the diverse
capabilities of the foot. In animals, the foot serves

several functions during locomotion that are unmatched by
current mobile robots. Their feet can adapt to the contours of
the ground and provide traction [1], [2], dampen out harmful
shocks through the medial longitudinal arch [3], and sense
the surface roughness and adapt to changes [4], [5]; making
the biological feet well suited for moving at high speed over
uneven terrain. The force sensor in the footpad should have a
high dynamic range1 in both normal and shear directions, to
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1Dynamic range is defined as the ratio between the largest and smallest
values of a signal.

Fig. 1. Deformation of elastomeric padding. As ground reaction forces are
applied to the footpad in this cross-sectional view, the soft elastomer deforms,
sending a unique signal, based on the normal and shear components, to the
barometric pressure sensor array PCB embedded within.

detect incipient slip and for the robot to implement corrective
measures to remain upright [6]. However, while maintaining
high force sensitivity, the foot still needs to absorb the shock
from impact, protect its internals, create traction in uneven
terrain, and be tough enough to withstand the repeated foot
strikes during running [7], [8]. Also to reduce the burden on
the leg actuators and to achieve higher energy efficiency, the
foot should be lightweight to reduce the rotational inertia when
the leg cycles at high speed during running [9]. This set of
diverse requirements are not readily addressed by conventional
sensing methodologies.

As a conventional approach, force/torque (F/T) sensors
using strain gauges are commonly used to perform both
feedback control and gait analysis in legged robots. However,
these commercial sensors have limitations in highly dynamic
applications. To measure ground reaction forces (GRFs), com-
mercial F/T sensors are often used in series with a robot’s feet,
but at the cost of higher leg inertias and higher impact masses,
making the robot less capable of dynamic motions. ‘ASIMO’
[10], ‘KHR-3 Hubo’ [11], ‘iCub’ [12], ‘LOLA’ [13], ‘BHR-2’
[8] and ‘WABIAN-2’ [14] are some examples of robots that
incorporate a F/T sensor in each foot for sensing GRFs. The
F/T sensor is either obtained commercially, or incorporated
into the robot by measuring the deformation of rigid metal
structures with semiconductor strain gauges [12]. However, the
mass of the F/T sensor at the distal end of the leg significantly
increases the leg inertia, and is prone to experiencing inertial
noise during high impact and rapid movements, both of which
occur all the time in running. In particular, the inertial noise
is highly undesirable as it may produce false positives for the
occurrence of ground contact, which may cause instabilities
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in the system controller [15]. A typical commercial sensor
will suffer from inertial noise under high acceleration and has
been experimentally verified in a commercial F/T sensor under
shaking.2 Hence it is not viable to use F/T sensors for high
speed locomotion and an alternative force sensing method is
needed [16].

Researchers have attempted alternative methods of force
sensing such as using force sensing resistors, contact switches
or a combination of different sensors, but with limited degrees
of success. Legged robots such as ‘H6’ and ‘H7’ [17], [18]
use force sensing resistors (FSRs) to do force sensing in the
foot, but this limits the GRFs measured to only the normal
direction [19]. FSRs fail under large shear forces, so they
still need to be protected when used in the foot. Some legged
robots simplify things further by forgoing with force sensors
completely and just making do with simple contact switches
[20], [21]. This makes it hard to control the robot on surfaces
where the friction differs from normal (i.e. on a wet or sandy
floor with low friction or on inclined or uneven surfaces) [7].
Soft sensing techniques have been explored by Park et. al.
in the form of a custom-built strain sensor developed for use
in an active soft orthotic device [22]. This is combined with
their hyperelastic pressure sensor [23] to form a soft artificial
skin with conductive liquid metal channels capable of multi-
modal sensing [24]. Similarly, the exoskeletal end-effectors
embedded with optical fiber Bragg grating sensors allowed
Park et al. to integrate sensing while minimizing the bulkiness
of hardware [25]. Kuehn et al. emphasizes the importance of
sensing in the foot, and hence their quadrupedal robot contains
multiple sensors in the foot, such as a F/T sensor, an array of
49 FSRs, an accelerometer, an absolute angular encoder and
a proximity distance sensor [26]. These sensors are used to
measure GRFs and detect collisions. Nevertheless, this large
number of sensors integrated in the foot reduces the structural
integrity, drives up the cost of the robot, and still suffers from
the inertial noise issues associated with the use of F/T sensors
as described above. Therefore, there is still a need to develop a
force sensor capable of measuring high loads accurately while
undergoing high speed locomotion.

Current research in tactile sensing has resulted in both high
force sensing in a single axis, as well as force sensing in
multiple axes, but not in combination and not suitable for the
needs fo high speed locomotion. Mei et al. have created a
MEMS tactile sensor that is capable of measuring up to 50N
in the vertical direction and ±10N in the horizontal directions
[27]. However, typical loads are much higher in legged animals
[28] and robots. An example is the MIT Cheetah, a running
robotic quadruped that currently reaches speeds of 22 km/h,
seen in Fig. 2. In the foot of the MIT Cheetah, forces go up
to 300N in the vertical direction and ±60N in the horizontal
directions in simulations [29]. A survey of multiple tactile
sensors by Dahiya et al. [30] and a review by Yousef et al. [31]
show that most tactile sensors are not capable of measuring
forces above 10N. While this and other similar solutions are
well suited for tactile sensing in robotic manipulators, there

2A demonstration of inertial noise in a commercial F/T sensor can be seen
at http://www.youtube.com/watch?v= 6Rvv9s5hko

Fig. 2. Prototype footpad iterations to achieved integrated force sensing
in the foot of the MIT Cheetah. (a) is a picture of the MIT Cheetah. (b) is
the fabrication process of the composite foot. This work is further described
in [16]. (c) is a prototype foot using magnets and Hall-effect sensors. (d) is a
cutaway of another prototype foot using magnets and Hall-effect sensors. (e)
is a prototype foot using FSR sensors. (f) is prototype foot using IR sensors.

is still much to be desired when considering the dynamic
requirements of the foot on a running robot. It is desirable
to extract only the essential measurements and minimize the
demands put on the control system, which must compute the
GRFs in real-time during running. It is interesting to note that
Tajima et al. did not use force sensors in the feet of their
humanoid robot precisely because of these difficulties [32].

The critical challenge here is to create a robotic foot that
is compliant, robust and lightweight, while still being able to
measure the large forces encountered in dynamic locomotion.
It is also highly desirable to be able to measure forces in both
the normal and shear directions, to construct the friction cone
and detect slip during running.

To address these design challenges, we introduce a new ap-
proach to develop a lightweight, resilient force sensor suitable
for use in high speed running robots, based on inspiration from
biological skin. A number of mechanoreceptors (e.g. Ruffini
endings, Merkel’s discs and Meissner’s corpuscles in the
dermis layer.) [33] measure forces by multiplicity of sensing
deformation and vibration of the skin layer, which also provide
traction, compliance, and protection of the mechanoreceptors.
Similarly, our footpad, represented in Fig. 1, has a compliant
layer made out of polyurethane rubber and the local pressure
distribution is sampled by an array of embedded pressure
sensors.

The remainder of the paper explains the details of the sens-
ing technique. Section II describes the design and fabrication
of the foot with the embedded sensing technology. Section III
describes how the foot sensor was characterized and calibrated,
going into detail about how an artificial neural network was
used to accurately obtain the force relationship of the foot
sensor. Section IV discusses the challenges encountered and
how future prototypes might be improved.

http://www.youtube.com/watch?v=_6Rvv9s5hko
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II. MULTI-AXIS SENSING METHODOLOGY

A. Sensor Array Design

To measure forces in both the normal and shear directions,
the foot sensor utilizes the approach of embedding barometric
pressure sensors within a layer of polyurethane rubber. The
original purpose of these barometric pressure sensors are to
measure atmospheric pressure changes, but in this case they
have been re-purposed and embedded in an elastomer to be
used for sensing force. A similar approach has been explored
by researchers such as Zillich et al., who used a soft foam
rubber with an embedded pressure sensor. Using just a single
sensor, they have achieved high sensitivity in the order of
tens of mNs in the normal direction [34]. Tenzer et al. have
taken this concept and expanded it to make an open-source
sensor array, called ‘TakkTile’, that communicates using the
I2C bus protocol for use in tactile sensing tasks [35]. In our
foot sensor, a 3-by-3 array of high pressure sensors (Freescale
Semiconductor MPXH6400A) is first mounted onto a custom
printed circuit board (PCB) of size 40mm by 50mm (Fig.
3a). The port of each individual pressure sensor is cut open
to expose more of the silicon piezoresistive transducer as
seen in Fig. 3b. Each peripheral sensor is separated by a
distance of 15mm in the X-axis and 10mm in the Y-axis. This
orientation allows each sensor to pick up the slight changes
in the pressure distribution within the polymer during ground
contact. As the MIT Cheetah will be running on largely planar
surfaces, the differences in pressure distribution are likely to
arise due to shear forces. Using the pressure signals, these
normal and shear forces will be reconstructed following the
use of a neural network in Section III-C. On non-planar terrain,
this assumption no longer holds and it would be difficult to
resolve the normal and shear forces. The whole PCB is then
embedded within a layer of polyurethane rubber that is in
the shape of the desired footpad (Fig. 3c). As the pressure
sensors are in direct contact with the elastomer, any forces on
the foot are transmitted as strain in the elastomer and affects
the individual pressure sensors differently. The signals from
the pressure sensors are then collected and used to determine
the original applied forces on the foot.

An additional benefit of using commercially available baro-
metric pressure sensors is the low cost. The prototype foot
sensor was made for less than $100 in parts and this price is
expected to go down in volume. This makes it an attractive
option as compared to a commercial force-torque sensor that
can cost up to $10,000. As noted by Lee and Tiwana et
al., the cost of current tactile sensors is one of the main
reasons that they are not adopted in industrial and commercial
products, especially health care and service robots [36], [37].
The cost effectiveness of our multi-axis force sensor makes it
an attractive option for use in these aforementioned contexts.

B. Footpad Design and Fabrication

The design and fabrication of the footpad is vital to ensure
that the footpad remains compliant enough to provide good
traction with the ground, while robust enough to withstand
the forces and wear and tear during ground locomotion.
This current foot design has gone through multiple design

(a) Barometric pressure sensors
soldered onto the PCB in a 3-by-3
array.

(b) Closeup view of the exposed
silicon piezoresistive transducer
within a barometric pressure sen-
sor.

(c) Completed multi-axis force
sensing footpad prototype.

(d) Footpad prototype with graph-
ical overlay showing where the
pressure sensor array PCB is lo-
cated.

Fig. 3. Barometric pressure sensors used and completed force sensor.

iterations (as seen in Fig. 2) and has demonstrated robust
performance with our MIT Cheetah, a quadrupedal robotic
platform intended to test high speed running. The biomimetic
design was inspired by the texture and shape of feline paws
[1], [4]. The geometry of the base of these footpads are
intentionally curved so as to amplify the differences in the
pressure distribution and to avoid simple shear from occurring.
This work serves to incorporate force sensing into the current
design for measuring GRFs.

Several aspects were incorporated into the design of the foot
in order to promote successful interaction with the ground.
The footpad was fabricated by casting several different ther-
mosetting polymers to one another. The monolithic design was
chosen to promote robustness during impact, and minimize the
size the sensing unit occupied. As an added bonus, since the
sensor is completely encased in the footpad, it is protected
from the environment and unlikely to fail. An illustrated
overview of the process can be seen in Fig. 2. Firstly, the
tough, outer “skin” of the foot was constructed by embedding
woven fiberglass into a 2mm thick layer of Vytaflex R© 20,
a polyurethane rubber of Shore hardness 20A, in order to
withstand the wear and tear that repeated impact and load-
ing would impose on the material. The polyurethane rubber
material provided a high coefficient of friction to generate
sufficient forces tangent to the ground during contact. Sitti et
al. has found that Vytaflex R© 10 has a high static coefficient of
friction of 2, due to the adhesion forces between the material
and the tested acrylic surface [38]. As the MIT Cheetah is cur-
rently running on a treadmill, and will eventually be running
outdoors, this increased traction is desirable to handle a variety
of ground conditions. Woven fiberglass embedded within the
outer, polyurethane rubber layer strengthen it against strain in
the surface area of the pad. This resistivity to strain strengthens
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the pad to shear forces but keeps the foot compliant to
forces acting normal to its surface. This directional compliance
further facilitates the driving mechanism utilized by the sensor,
as the soft elastomer is prevented from slipping out from under
the foot due to shear. The compliant pad also lowers peak
forces experienced by the foot and acts as a mechanical, low-
pass filter for asperities in the ground. The compliance allows
the foot to simply deform around smaller asperities in the
ground that would trouble rigid structures. After demolding,
the skin retained the shape imposed by the casting process
and was filled with Ecoflex R© 00-10 Supersoft Silicone rubber
of Shore hardness 00-10A, which was allowed to self-level.
A rigid, outer lining was cast on top of these polyurethane
rubbers using Task R© 4 polyurethane resin of Shore hardness
83D. The rigid lining provided structural integrity and allowed
for the PCB to be anchored onto the foot. This approach was
used in the previous prototype footpad made with magnets
and Hall-effect sensors, as described in [16]. The results in
this paper are solely from the prototype footpad utilizing
barometric pressure sensors.

This current prototype (Fig. 3c) using barometric pressure
sensors is made with a layer of Vytaflex R© 10. The next
prototype would use the fabrication approach outlined above.
The current prototype was made quickly as a proof-of-concept,
and work is already underway to integrate the barometric
pressure sensors into the more complex fabrication method
as described in the previous paragraph. Integrating the foot
sensor into the footpad means that the amount of mass
in series with the sensing unit is kept to a minimum. In
the current design, the foot sensor is very lightweight, only
weighing 90g. This reduces unwanted dynamic effects which
give rise to instabilities, such as inertial noise during periods
of high acceleration. This commonly occurs in running robots
performing dynamic locomotion.

In order to measure force, it must be converted into a
quantity that can readily be measured as a signal. The defor-
mation of the soft elastomer within the paw pad was chosen
as the sensing mechanism. This required no additional mass
to the foot other than embedding barometric pressure sensors
into the structure. The chosen mechanism incorporates the
compliance necessary to facilitate successful interaction with
the terrain, and minimizes any additional weight or compo-
nents, and allows for a monolithic and robust structure. The
presented sensor strives to attain a greater level of integration
within a compliant structure in order to preserve the original
design intent and promote dynamics favorable to running while
measuring ground reaction forces as close to the foot-ground
interface as possible.

III. SENSOR CHARACTERIZATION

In order to map the pressure signals to represent force data
properly, it first needs to be characterized and calibrated. This
section details the collection of the experimental data, sev-
eral system identification approaches tested (AutoRegressive-
moving-average model, Prediction-Error Model, and Artificial
Neural Network) and the rationale behind choosing to imple-
ment an artificial neural network in the end.

(a) CNC milling machine with the footpad and
F/T sensor mounted within.

(b) A close-up of the footpad and F/T sensor
before contact.

Fig. 4. Experimental setup with the CNC milling machine. The foot was
mounted directly to the quill of the milling machine to ensure stiffness. The
footpad made direct contact with the 6-axis force sensor during testing.

A. Experimental Setup

In order to get data to characterize the sensor, accurate
linear positioning of the footpad is required in both normal
and shear directions. This was achieved by using an industrial
3 axis CNC milling machine (HAAS Super Mini Mill 2).
A mount was fabricated to attach the footpad directly to
the quill and a separate mount for attaching a 6-axis F/T
sensor (ATI Industrial Automation SI-660-60) to the mill
table. This experimental setup is shown in Fig. 4. The data
from the foot sensor and the F/T sensor are acquired through
a National Instruments (NI) CompactDAQ 9205 connected
through LabVIEW. The data is then further processed in
MATLAB

TM
. The input data needs to be persistently exciting3

enough in order to be informative enough to distinguish any
two models from each other. To this end, a swept sine signal
is commanded to the CNC mill in each of the 3 axes (i.e. X-,
Y-, and Z-axis). The data was first collected by having the
CNC milling machine run through a programmed path with

3Persistent excitation is defined here as the quality of an input signal to
be able to excite all the modes of the system to be identified to assure the
convergence of the parameters to their true values.
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Fig. 5. Swept Sine Data in Z-axis. The top graph shows the output
voltages from the array of barometric sensors embedded in the footpad. The
bottom graph shows the forces recorded from the 6-axis F/T sensor (mounted
beneath). The red line represents the Z-axis force data.

Fig. 6. Comparison of the Z-axis models with the actual data. The graph
shows the comparison between a 2nd order transfer function model, a 4th
order ARX model and the actual data. Note that since the models predict the
actual data so well, the plots overlap each other and are hard to distinguish.

the footpad in contact with the F/T sensor. With a known
normal load, the footpad was made to traverse 3mm in both
the positive and negative directions along the X-axis. This was
then repeated in the Y-axis. The Z-axis traverses only 1mm in
displacement, but this is enough to generate a large change in
normal forces. In the context of the MIT Cheetah, the Z-axis
would correspond to the normal direction (i.e. the direction
of the acceleration due to gravity), and the X-axis would
correspond to the direction of forward motion of the MIT
Cheetah. The swept sine signal is limited to a conservative
900mm/min in order to not damage the CNC mill. This data
was found to be persistently exciting of order 50 in each of
the 3 axes.

B. System Identification

The resulting voltages of the footpad from the Z-axis swept
sine input showed that the sensors had repeatable output, with
the peaks of each pressure sensor reaching the same level each
time. The forces in the Z-axis range from 0 to 300N. This is
shown in Fig. 5. Since the individual sensor readings exhibit
the same trend, it is more efficient to use the average of the
nine readings as an ensemble mean to represent the data in
the Z-axis.

Fig. 7. Bode Plot of 2nd order transfer function for the Z-axis. The bode
plot shows very little change in the magnitude as well as the phase.

A variety of models were applied using the System Iden-
tification Toolbox in MATLAB

TM
and the best models shown

here. Both the transfer function estimation and a 4th order
AutoRegressive-moving-average (ARX) model gave good re-
sults. A 2nd order transfer function estimation model gave
the best result, with a root mean squared error (RMSE) of
only 2.44N, an Akaike’s Information Criterion (AIC) of 1.84
and a normalized RMSE (NRMSE) fitness value of 97.2%.
The results of the models as compared to the actual data are
plotted in Fig. 6. The RMSE, AIC [39] and NRMSE fitness
values are found using the following formulae

RMSE =

[
1

N

N∑
i=1

(ŷi − yi)2
] 1

2

(1)

AIC = −2 log{L[θ̂|y]}+ 2d (2)

NRMSE =

(
1− ‖ŷi − yi‖
‖yi − ȳ‖

)
∗ 100% (3)

The 2nd order transfer function obtained is shown and it
shows that in the Z-axis, the footpad behaves as a mass-
spring-damper system. The bode plot of this 2nd order transfer
function is plotted in Fig. 7.

G(z) =
−126.8

1− 0.008069z−1 − 0.01041z−2
(4)

The Y-axis results are much less accurate than the Z-axis
results, even though the individual signals were used instead of
the ensemble mean. The resulting voltages of the footpad from
the Y-axis swept sine input is shown in Fig. 8. The forces in the
Y-axis range from -80N to +80N. Since the individual sensor
readings show different behaviors, this becomes a multivariate
system identification problem. In this case, the best option was
to use a 4th order Prediction-Error Model (PEM). This resulted
in a RMSE of 14.12N, an AIC of 4.22 and a NRMSE fitness
value of 71.72%. The plot shows the comparison between the
model and actual data (Fig. 9).

The X-axis results are largely similar to those of the Y-axis,
but with a higher level of accuracy. The resulting voltages
of the footpad from the X-axis swept sine input is shown in
Fig. 10. The forces in the X-axis range from -80N to +80N.
Similar to the Y-axis, the individual sensor signals are unique
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and hence a multivariate model is sought. A 5th order PEM
was found to minimize the errors. This is one order higher
than that the optimal one found for the Y-axis data. The 5th
order PEM produced a RMSE of 7.61N, an AIC of 4.63 and
a NRMSE fitness value of 85.21%. These are all better values
compared to those of the Y-axis model. This could be due to
the difference in spacing of the barometric pressure sensors in
the X- and Y-axis. As mentioned in Section II-A, the spacing
between sensing elements is 15mm in the X-axis and only
10mm in the Y-axis. The plot shows the comparison between
the model and actual data (Fig. 11).

C. Artificial Neural Network

Due to the complexity in the geometry of the footpad and
the elastomer, attaining analytical models through the use of
hyperelastic material models is non-trivial. The total force can
be estimated by assuming that the footpad is a rectangular
block of elastomeric material with various material models
such as Mooney-Rivlin [40], Arruda-Boyce [41] and Ogden
[42], but these models are highly dependent on the quality
of the experimental data collected. The difficulty is furthered
with the use of an elastomer (Vytaflex R© 10) and the complex
geometric boundary condition around the pressure sensor. This
makes it almost impossible to accurately predict the actual
pressure distribution in the footpad. Simulating the footpad
deformations using a finite-element analysis package such as
Abaqus

TM
was considered, but the resulting model was overly

complex yet inaccurate. The footpad is essentially a Multiple
Inputs, Multiple Outputs (MIMO) system, with the multiple
inputs being the nine barometric pressure sensor signals, and
the multiple outputs being the desired force predictions in the
3 axes. As shown in Section III-B, even using system iden-
tification techniques for each axis individually as a Multiple
Inputs, Single Output (MISO) system presented difficulties.
In the end, the use of an artificial neural network (ANN) to
directly associate the forces with the pressure sensor readings
was determined to be the best way to obtain the correlation.
By training the neural network, the system transfer function
of the foot sensor is approximated over particular regions of

Fig. 8. Swept Sine Data in Y-axis. The top graph shows the output voltages
from the array of barometric sensors embedded in the footpad. The bottom
graph shows the forces recorded from the 6-axis F/T sensor. The green line
represents the Y-axis force data.

Fig. 9. Comparison of the Y-axis models with the actual data. The graph
shows the comparison between a 4th order PEM model and the actual data.

Fig. 10. Swept Sine Data in X-axis. The top graph shows the output voltages
from the array of barometric sensors embedded in the footpad. The bottom
graph shows the forces recorded from the 6-axis F/T sensor. The blue line
represents the X-axis force data.

the state space. This creates a mapping that encompasses the
non-linearity between the sensor output and the multi-axis
force data. Lu et al. has explored using ANN for strain gauge
to force/torque calibrations [43]. It offers the advantages of
only requiring a one-time calibration procedure and is able to
provide force feedback to the system in real-time. The basic
procedure is show in the flow diagram in Fig. 12.

As described in Section II-A, a small 40mm by 50mm PCB

Fig. 11. Comparison of the X-axis models with the actual data. The graph
shows the comparison between a 5th order PEM model and the actual data.
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Fig. 12. Neural Network Training Procedure. The flow chart shows how
the artificial neural network is trained with data from the F/T sensor.

was designed and manufactured and populated with a 3 by 3
array of barometric pressure sensors. The voltage readings are
measured by the NI CompactDAQ 9205 and represented as 9
individual signals (S0, S1, S2, S3, S4, S5, S6, S7, and S8). The
overall change in the sensor array signal distribution can be
summarized by the function:

Spressure(t) = [S0(t) . . . Si(t) . . . S8(t)]T (5)

where Si is the individually measured voltage signal of
the ith pressure sensor. This PCB is then embedded in the
polyurethane rubber layer of 10mm thickness. However, in
the case of shear forces, the pressure signals along the outer
edges change by different amounts and these discrepancies are
picked up by the pressure sensors on the PCB.

The loading conditions on the footpad are measured by a
F/T sensor and can be represented as:

F (t) = [FX(t) FY (t) FZ(t)]T (6)

where Fi(t) is the recorded force in each respective axis.
This change in the pressure distribution, Spressure(t) is

then parsed in MATLAB
TM

and the pressure distribution and
the applied forces are empirically correlated using the Neural
Network Toolbox. A feed-forward neural network is created
where an input-output relationship is mapped between the
pressure distribution as measured by the 9 barometric pressure
sensors and the 3 axis forces recorded by the F/T sensor. The
Levenberg-Marquardt optimization network training function
[44] then uses a back-propagation algorithm to update the
weights and bias values of the neural network until the
minimum mean squared error is obtained and the desired
performance is realized. Note that the Levenberg-Marquardt
algorithm, or damped least-squares method, is an example of
a nonlinear regression algorithm. The Levenberg-Marquardt
algorithm is given as:

[JTWJ + λdiag(JTWJ)]δ = JTW [F (t)− F̂ (t)] (7)

where J is the Jacobian matrix, W is the weighting matrix,
λ is the algorithmic parameter, δ is the increment in each
iteration, F (t) is the target force output from the F/T sensor
and F̂ (t) denotes the force estimates of the ANN. This method

(a) Predicted vs Measured Forces in the Z-Axis

(b) Predicted vs Measured Forces in the Y-Axis

(c) Predicted vs Measured Forces in the X-Axis

Fig. 13. Experimental results for correspondence between the predicted
force and actual force. The blue line shows the actual force measured and
the red line shows the neural network predicted force.

on the use of artificial neural networks for force sensing
is based on work done by Ananthanarayanan et al. [45].
Using the combined swept sine data collected previously,
a 10 neuron neural network was trained and the resulting
comparison between the predicted output and actual output
is shown in Fig. 13. For the Z-axis, the RMSE was only
0.69N and the maximum deviation was only 1.85N when the
data ranged from 50N to 300N. Similarly, the Y-axis and X-
axis results were equally impressive, with the RMSE being
1.23N and 0.92N and a maximum deviation 2.60N and 2.86N
respectively, out of a range of ±80N.

Since the artificial neural network showed the best per-
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(a) Training Paths. The two paths above were used to
train the ANN.

(b) Testing Paths. The two paths above were used to test
the ANN.

Fig. 14. Training and testing paths used to collect the data needed for the
ANN. The furthest points on each sub-trajectory correspond to a radius of
3mm away from the center of each path. Both paths were run at several, set
normal displacements in the Z-axis.

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS. THE MAXIMUM FORCE,
RMSE AND MAXIMUM ERROR BETWEEN THE PREDICTED FORCES AND

ACTUAL FORCES AS MEASURED BY THE F/T SENSOR IS SHOWN.

formance when compared to the linear system identifications
methods in minimizing the RMSE, more training and testing
data was collected for use with the artificial neural network
and further verification. Training data was first collected by
having the CNC milling machine run through a programmed
training path with the footpad in contact with the F/T sensor.
Under a range of displacements in Z-axis up to 1.5mm with
steps of 0.1mm, the footpad was made to follow the ‘asterisk
path’ and ‘circular path’ as shown in Fig. 14a. The ‘asterisk
path’ starts from the origin and traverses 3mm in 45 degree
intervals until a full revolution is made. The ‘circular path’
involves the footpad traversing a 2mm, then 4mm, and finally a
6mm diameter circle in both clockwise and counter-clockwise
directions.

For verification, the more data was gathered with two
arbitrary testing paths. The first testing path involves the
footpad moving 3mm in both the positive and negative X-
axis direction, followed by the Y-axis direction and ending
with it traversing a circular path of 6mm diameter clockwise
and then counter-clockwise. The second testing path involved
a diagonal motion of 3mm in each of the 4 quadrants of the
X and Y-axis. This was then followed with 4 smaller circular
paths of 3mm diameter along each of the positive and negative
X and Y-axis. A qualitative depiction of the testing paths is
shown in Fig. 14b.

Once the artificial neural network is trained, the network
is simulated with the testing data and the predicted results
are plotted together with the actual forces experienced by the

(a) Predicted vs Measured Forces in the Z-Axis

(b) Predicted vs Measured Forces in the Y-Axis

(c) Predicted vs Measured Forces in the X-Axis

Fig. 15. Experimental results for correspondence between the predicted
force and actual force. The blue line shows the actual force measured and
the red line shows the neural network predicted force. Note that each plot
only shows one cycle of the testing paths.

footpad during the testing phase. The results (Fig. 15) show
that the neural network is able to predict normal forces in the
Z-axis up to 300N with the greatest accuracy with an RMSE
of only 1.98N. This is followed by the X-axis where shear
forces of 80N are measured and the RMSE is only 2.95N. In
the Y-axis, similar performance is observed where shear forces
of up to 80N are predictable, with a RMSE of 4.73N. These
results are summarized in Table 1. With the trained neural
network stored, the signals for the barometric pressure sensor
array can be simulated and the forces in three axes obtained in
real-time. Experimentally, peak forces above 400N have been
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Fig. 16. Stress Relaxation in the Z-axis. The blue line shows the actual
force measured in the Z-axis when subjected to a displacement step of 1.5mm
The force increases to almost 400N before relaxing back to 250N without any
change in displacement.

observed for the Z-axis and forces in the X- and Y-axis have
reached 100N maximally during tests.

IV. DISCUSSION AND FUTURE WORKS

The end goal is to have sensing capabilities were efficiently
integrated to the structure with minimal addition of hardware,
but several aspects of the design are readily available for
possible improvement. In the case of the MIT Cheetah, a
proven foot using this fabrication structure had already been
developed and utilized in currently running experiments (Fig.
3). The experimental results show that the footpad sensor is
able to detect normal loading conditions in the Z-axis and
shear in both the X- and Y-axis with great accuracy. This can
be used to detect when slipping occurs between the foot of the
robot and the ground, and corrective measures can be taken.
These results present a promising proof-of-concept on a novel
mechanism to sense ground reaction forces while utilizing an
inherently compliant interface with the terrain. While this has
been achieved in the current prototype, other improvements
could be made with further investigation.

Collecting additional training data may further fine-tune the
ANN parameters and will allow us to minimize the errors in
the force sensing. Only a few trajectories, repeated at varying
normal loads, was used to produce the current correlation.
There might be some load history dependence (e.g. stress
relaxation and hysteresis) which needs to be investigated
further. Stress relaxation effect can be seen taking place in
Fig. 16, where the measured Z-axis force drops from 400N to
250N without any change in displacement. Specifically, impact
tests may prove to be the most relevant training method for
running and would provide more telling information. However
the short duration of ground contact in running robots (about
120ms in our experiments) might make this a moot point.
The effect of impact is currently under investigation. A new
footpad design has been fabricated and attached to the MIT
Cheetah. Tests are underway to establish the reliability of the
new footpad sensor in high speed locomotion.

There is a trade-off between increasing the number of
neurons used in the artificial neural network to improve the
accuracy and the associated danger of overfitting the ANN to
the training data. To investigate this, the training is repeated

Fig. 17. Investigation of the Effect of Additional Neurons. The top row
shows the RMSE plots and the bottom row the maximum error. The leftmost
column represents the Z-axis data, the middle the Y-axis data and the rightmost
the X-axis data. The blue lines show the training data and the red lines show
the testing data for 10 trials.

for neural networks of 10 to 100 neurons and each time the
training is further repeated for ten trials each. The results
are shown in Fig. 17. The blue lines show the RMSE and
maximum error of the training data of the ten trials as the
number of neurons increase from 10 to 100. The red lines
represent the testing data. The trials show that while the RMSE
and maximum error decreases as expected with increasing
number of neurons for the training data, the testing data does
not show a similar trend of benefiting from additional neurons.
This is especially the case for the Y-axis testing data where the
RMSE and maximum error actually increases for increasing
number of neurons.

In order to further improve the measurement of shear
forces, the number of sensors and alternative placement of the
barometric pressure sensors is currently being further explored.
Rather than having the pressure sensors spaced regularly, an
irregular spatial arrangement or circular orientation may in-
crease sensitivity and accuracy to shear forces. The minimum
number of sensing elements that is needed to detect forces
in three axes is being investigated in hopes of reducing the
overall footprint.

A combination of pressure sensors with different sensing
ranges could be used together in a single footpad to achieve
a greater dynamic range in force measurement. In the hu-
man skin, there are four main types of mechanoreceptors
(i.e. Ruffini’s end organs, Meissner’s corpuscles, Pacinian
corpuscles and Merkel’s discs). These mechanoreceptors each
perform a different role, enabling the skin to differentiate
between a wide variety of forces and textures [33]. By varying
the pressure range and types of the barometric pressure sensors
used in the sensor array, as well as the material properties of
the elastomer, a similar effect can be achieved. This can be
incorporated into the current ‘2-pad’ design (Fig. 2) where a
single foot will have 2 gel-like footpads of different stiffness.
This will allow the MIT Cheetah foot to measure a wider
dynamic force range.

In the next prototype, a microcontroller and additional



10 IEEE SENSORS JOURNAL, VOL. 14, NO. 5, MAY 2014

Analog-to-Digital Converter (ADC) microchips would be able
to directly process the voltage signals from the barometric
pressure sensor array onboard and send out the predicted
multi-axis forces. This could be done with SPI communica-
tions for high bandwidth. Bluetooth or WiFi communications
could also be utilized to transmit the data and make the foot
sensor a truly ‘intelligent sensor’ [46].

V. CONCLUSION

During running, the foot of a legged robot hits the ground
multiple times with large forces, introducing undesirable ef-
fects such as inertial noise that make it difficult to detect
ground contact. Current sensors are not suitable for measuring
ground reaction forces because of these problematic effects.
This paper presents a footpad with integrated force sensing
capabilities that addresses these issues in ground locomotion.
Ground reaction forces can be accurately measured during
ground locomotion, allowing a robot to react to changing
terrain and incipient slip. The foot is made of a polyurethane
rubber with an embedded array of barometric pressure sensors,
which allows normal and shear forces to be detected indirectly
without the need to expose the sensor. The elastomer cover-
ing the pressure sensor array also provides durability under
repeated impacts while still being compliant enough to offer
good traction. A one-time training process using an artificial
neural network is all that is necessary to relate the normal and
shear forces with the foot sensor output. The multi-axis foot
sensor is able to detect large normal forces up to 300N with a
RMSE of 0.66% and up to ±80N in the X and Y-axis with an
RMSE of 3.69% and 5.91% respectively. Peak forces of 400N
in the normal direction, and ±100N in the shear directions
were observed during tests. This is a lightweight (<100g)
and low cost (<$100), robust footpad sensor suitable for use
in robots performing locomotion to detect the occurrence of
ground contact and the ground reaction forces involved.
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